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Higher-order Monte Carlo through cubic
stratification

Nicolas Chopin(1), Mathieu Gerber(2)

(1) ENSAE, Institut Polytechnique de Paris, Paris, France

(2) School of Mathematics, University of Bristol, UK

We propose two novel unbiased estimators of the integral
´
[0,1]s f(u)du for

a function f , which depend on a smoothness parameter r ∈ N. The first
estimator integrates exactly the polynomials of degrees p < r and achieves
the optimal error n−1/2−r/s (where n is the number of evaluations of f) when
f is r times continuously differentiable. The second estimator is also optimal
in term of convergence rate and has the advantage to be computationally
cheaper, but it is restricted to functions that vanish on the boundary of
[0, 1]s. The construction of the two estimators relies on a combination of
cubic stratification and control variates based on numerical derivatives. We
provide numerical evidence that they show good performance even for mod-
erate values of n.

1. Introduction

1.1. Background

This paper is concerned with the construction of unbiased estimators of the integral
I(f) :=

´
[0,1]s f(u)du based on a certain number n of evaluations of f . The motivation

for this problem is well-known. Many quantities of interest in applied mathematics may
be expressed as such an integral. Providing random, unbiased approximations present
several practical advantages. First, it greatly facilitates the assessment of the numer-
ical error, through repeated runs. Second, such independent estimates may be gener-
ated in parallel, and then may be averaged to obtain a lower variance approximation of
I(f). Third, generating unbiased estimates as plug-in replacements is of interest in vari-
ous advanced Monte Carlo methodologies, such as pseudo-marginal sampling Andrieu
and Roberts (2009), stochastic approximation Robbins and Monro (1951) and stochastic
gradient descent. Finally, random integration algorithms converge at a faster rate than
deterministic ones Novak (1988) (but note that these convergence rates correspond to
different criteria).
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The most basic and well-known stochastic integration rule is the crude Monte Carlo
method, where one simulates uniformly n independent and identically distributed variates
Ui, and returns n−1

∑n
i=1 f(Ui) as an estimate of I(f). Assuming that f ∈ L2([0, 1]

s),
the root mean square error (RMSE) of this estimator converges to zero at rate n−1/2.
In this paper we consider the problem of estimating I(f) under the additional condition
that all the partial derivatives of f of order less or equal to r exist and are continuous,
or, in short, that f ∈ Cr([0, 1]s). Under this assumption on f it is well-known that we
can improve upon the crude Monte Carlo error rate. More precisely, for f ∈ Cr([0, 1]s)
the optimal convergence rate for the RMSE of an estimate Î(f) of I(f) based on n
evaluations of f is n−1/2−r/s, in the sense that if g : N → [0,∞) is such that

∀f ∈ Cr ([0, 1]s) , n ≥ 1, E
[
|Î(f)− I(f)|2

]1/2
≤ g(n)∥f∥r

(where ∥f∥r is a bound on the r-th order derivatives of f , see Section 1.4 for a proper
definition) then we must have n−1/2−r/s/g(n) = O(1) (this result can for instance be
obtained from Propositions 1-2 given in Section 2.2.4, page 55, of Novak (1988)).

Stochastic algorithms that achieve this optimal convergence rate for f ∈ Cr([0, 1]s)
have been proposed e.g. in Haber (1966) for r = 1 and in Haber (1967) for r ∈ {1, 2}. In
Haber (1969) it is shown that if Î(·) is a stochastic quadrature (SQ) of degree r−1, that
is, if E[Î(f)] = I(f) for all f ∈ L1([0, 1]

s) and P(Î(f) = I(f)) = 1 if f is a polynomial of
degree p < r, then Î(·) can be used to define an estimator of I(f) whose RMSE converges
to zero at rate n−1/2−r/s when f ∈ Cr([0, 1]s). In Haber (1969) a formula for a SQ of
degree r− 1 is given for r ∈ {3, 4} while, for s = 1, Siegel and O’Brien (1985) provides a
SQ of degree 2r+1 for all r ≥ 1. For multivariate integration problems, and an arbitrary
value of r ≥ 1, a SQ of degree r − 1 can be constructed from the integration method
proposed in Ermakov and Zolotukhin (1960). However, the algorithm proposed in this
reference requires to perform a sampling task which is so computationally expensive that
it is considered as almost intractable Patterson (1987).

A related approach is derived by Dick in Dick (2011), which achieves rate O(n−1/2−α+ε)
for ε > 0 and a certain class of functions indexed by α (which differs from Cr ([0, 1]s)
even when r = sα). We will go back to this point and compare our approach to Dick’s
in our numerical study.

1.2. Motivation and plan

The paper is structured as follows. We introduce in Section 2 an unbiased estimator of
I(f) which has the following three appealing properties when f ∈ Cr([0, 1]s). First, its
RMSE converges to zero at the optimal n−1/2−r/s rate. Second, it integrates exactly f if
f is a polynomial of degree p < r. Third, for some constant C <∞ and with probability
one, the absolute value of its estimation error is bounded by Cn−r/s, where n−r/s is the
optimal convergence rate for a deterministic integration rule (this result can for instance
be obtained from Proposition 1.3.5, page 28, of Novak (1988)). In addition, we establish
a central limit theorem (CLT) for a particular version of the proposed estimator. To the
best of our knowledge, a CLT for an estimator of I(f) having an RMSE that converges
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at the optimal rate when f ∈ Cr([0, 1]s) exists only for r = 1 (see Bardenet and Hardy
(2020)).

In Section 3, we focus our attention on the estimation of I(f) when f ∈ Cr0([0, 1]s),
where we define Cr0([0, 1]s) as the set of functions in Cr([0, 1]s) whose partial derivatives of
order o ≤ r are all equal to zero on the boundary of [0, 1]s. As we explain in that section,
this set-up is particularly relevant for solving integration problems on Rs. Restricting
our attention to Cr0([0, 1]s) ⊂ Cr([0, 1]s) allows us to derive an estimator of I(f), referred
to as the vanishing estimator in what follows, which is computationally cheaper than the
previous estimator, while retaining its convergence properties, namely an RMSE of size
O(n−1/2−r/s) and an actual error of size O(n−r/s) almost surely. We note that these
convergence rates are optimal for integrating a function in Cr0([0, 1]s) (again, see Sections
1.3.5 and 2.2.4 of Novak (1988)) and that an algorithm considering a similar class of
functions is proposed in Krieg and Novak (2017). The algorithm derived in this latter
reference has the advantage to achieve the optimal aforementioned convergence rates for
any r ∈ N but its implementation at reasonable computational cost remains an open
problem.

Section 4 discusses some practical details about the proposed estimators, regarding on
how their variance may be estimated and how the order of the vanishing estimator may
be selected automatically. Section 5 presents numerical experiments which confirm that
the estimators converge at the expected rates, and show that they are already practical
for moderate values of n. Section 6 discusses future work. Proofs of certain technical
lemmas are deferred to Appendix C.

1.3. Connection with function approximation

As noted by e.g. Novak (2016), there is a strong connection between (unbiased) integra-
tion and function approximation. If one is able to construct an optimal approximation
An(f) of f ∈ Cr([0, 1]s), that is ∥f −An(f)∥∞ = O(n−r/s) (see Novak (1988), page 36)
then one may derive the following unbiased estimate of I(f)

Î(f) := I (An(f)) +
1

n

n∑
i=1

(f −An(f)) (Ui), Ui
iid∼ U([0, 1]s) (1)

which is also optimal, in the sense that its RMSE is O(n−1/2−r/s) for estimating I(f).
The (non-vanishing) estimator proposed in this paper for integrating a function f ∈

Cr([0, 1]s) is to some extent related to this idea, with An(f) a piecewise polynomial
approximation of f based on local Taylor expansions in which the partial derivatives of
f are approximated using numerical differentiation techniques. Note however that we
use stratified random variables, rather than independent and identically distributed ones.
This makes the estimator easier to compute, and reduces its variance.

1.4. Notation regarding derivatives and Taylor expansions

Let N be the set of positive integers, and N0 = N ∪ {0}. For α ∈ Ns0, let |α|0 =
s −

∑s
j=1 1{0}(αj), |α| =

∑s
i=1 α, α! =

∏s
i=1 αi!, u

α =
∏s
i=1 u

αi
i for u ∈ Rs. For
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g ∈ Cr([0, 1]s) we let Dαg : [0, 1]s → R be defined by

Dαg(u) =
∂|α|

∂uα1
1 . . . ∂uαs

s
g(u), u ∈ [0, 1]s,

with the convention Dαg = g if |α| = 0, and we let ∥g∥r := maxα: |α|=r ∥Dαg∥∞.
With this notation in place, we recall that if g ∈ Cr([0, 1]s) then, by Taylor’s theorem,

there exists a function Rg,r : [0, 1]s× [0, 1]s → R such that (Loomis and Sternberg (1968),
Section 3.17, page 191)

g(v) =
r−1∑
l=0

∑
α:|α|=l

(v − u)α
Dαg(u)

α!
+Rg,r(u, v), ∀u, v ∈ [0, 1]s (2)

where, for some τu,v ∈ [0, 1],

Rg,r(u, v) =
∑

α:|α|=r

Dαg (u+ τu,v(v − u))

α!
(v − u)α. (3)

1.5. Notation related to stratification

Throughout the paper, f : [0, 1]s → R and s ≥ 1. Our approach relies on stratifying
[0, 1]s into ks closed hyper-cubes, k ≥ 2, and performing a certain number l of evaluations
of f inside each hyper-cube; see Figure 1. The total number of evaluations is therefore
something like n = lks, but with a value for l that depends on the considered estimator
and other parameters such as r. Thus, we will index the proposed estimators by k, e.g
Îk(f) (or Îr,k(f) when it also depends on r) rather than n. We will provide the exact
expression of n alongside the definition of the considered estimator.

For c ∈ Rs and k ≥ 1, we use the short-hand Bk(c) for the hyper-cube
∏s
i=1[ci −

1/2k, ci + 1/2k]; in other words, the ball with radius 1/2k and centre r with respect to
the maximum norm.

For m ∈ N0 let

Cm,k =

{(
2j1 + 1

2k
, . . . ,

2js + 1

2k

)
s.t. (j1, . . . , js) ∈ {−m, . . . , k +m− 1}s

}
(4)

be the set of the centres of the (k+2m)s hypercubes Bk(c) whose union is equal to the set
Sm,k := [−m/k, 1+m/k]s. In Section 2, we will setm = 0 and recover the aforementioned
stratification; in that case, we will use the short-hand Ck := C0,k. However, in order to
define the second (vanishing) estimator in Section 3, we shall take m ≥ 0.

To each c ∈ Cm,k (with m, again, fixed and determined by the context), we associate
a random variable Uc such that

Uc ∼ U
([

− 1

2k
,
1

2k

]s)
.

Notice that the support of c+ Uc is Bk(c).
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Figure 1: Stratification of [0, 1]s when s = 2 and k = 5, and two evaluations are performed
in each of the ks = 25 squares. The location of the points are generated as in
Haber’s second estimator, which we discuss in Section 2.1.

2. Integration of functions in Cr ([0, 1]s)

2.1. Preliminaries: Haber’s estimators

In Haber (1966) Haber introduced the following estimator:

Î1,k(f) :=
1

ks

∑
c∈Ck

f(c+ Uc), Uc ∼ U
([

− 1

2k
,
1

2k

]s)
(5)

based on n = ks evaluations of f , which is optimal for r = 1; i.e. its RMSE is
O(n−1/2−1/s) provided f ∈ C1([0, 1]s). To establish this result, note that each term
f(c+ Uc) has expectation ks

´
Bk(c)

f(u)du and variance O(n−2/s), since |f(u)− f(v)| =
O(k−1) = O(n−1/s) for u, v ∈ Bk(c).

We note in passing that an alternative, and closely related, estimator may be obtained
by approximating f with the piecewise constant function fn defined by

fn(u) =
∑
c∈Ck

f(c)1Bk(c)(u), u ∈ [0, 1]s

and using that particular fn in (1). Since ∥f − fn∥∞ = O(n−1/s) when f ∈ C1([0, 1]s),
this alternative estimator is indeed optimal for r = 1. The estimator defined in (5) is
however slightly more convenient to compute, and relies on only n evaluations (versus
2n for the alternative estimator).
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In Haber (1967) Haber introduced a second estimator:

Î2,k(f) :=
1

ks

∑
c∈Ck

gc(Uc), Uc ∼ U
([

− 1

2k
,
1

2k

]s)
(6)

with gc(u) := {f(c+ u) + f(c− u)}/2 and n = 2ks, which is optimal for f ∈ C2([0, 1]s).
Note that gc is a symmetric function, thus its Taylor expansion at 0 only includes even
order terms:

gc(u) = f(c) +
1

2
uTHf (c)u+O(k−4), for u ∈ Bk(c) (7)

whereHf (c) denotes the Hessian matrix of f at c. The term gc(Uc) has variance O(n−4/s)

when f ∈ C2 ([0, 1]s), leading to an O(n−1/2−2/s) RMSE for Î2,k(f).
The estimators introduced in this paper have the same form as Haber’s two estimators;

i.e. an average of terms gr,c(Uc), where gr,c(Uc) = f(c) +O(k−r) essentially. To achieve
this, we consider two approaches: one based on control variates (this section), and another
based on combining more than two terms of the form f(c+ λUc) (Section 3).

2.2. Control variates

One simple way to improve on Haber’s second estimator is to add a control variate based
on a Taylor expansion of gc. To fix ideas, suppose that f ∈ C4 ([0, 1]s), and add to each
term gc(Uc) in (6) the quantity

−1

2
UTc Hf (c)Uc + E

[
1

2
UTc Hf (c)Uc

]
.

This does not change the overall expectation, since this extra term has zero mean, and,
given (7), it reduces the variance of each term to O(n−8/s).

More generally, for r ≥ 2, let pc,r−1 be the polynomial function that corresponds to
the (r−1)-order Taylor expansion of gc at 0, i.e. (2) with g = gc and u = 0. Then, using
(2) and (3), we have

|gc(u)− pc,r−1(u)| ≤ C∥f∥r∥u∥r, ∀u ∈ [1/2k, 1− 1/2k]s, ∀c ∈ Ck

for some constant C <∞ (which does not depend on c). Letting

Vr,k(f) := − 1

ks

∑
c∈Ck

{pc,r−1(Uc)− E[pc,r−1(Uc)]} ,

the variance of the estimator I∗
r,k(f) := Î2,k(f) + Vr,k(f) is therefore such that

Var [I∗
k(f)] =

1

k2s

∑
c∈Ck

Var [gc(Uc)− pc,r−1(Uc)]

≤ C2∥f∥2r × k−s−2r

= C ′ ∥f∥2r n−1−2r/s, C ′ := C2 × 21+2r/s.
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Since I∗
k(f) is an unbiased estimator of I(f), its RMSE is O(n−1/2−r/s). Moreover,

with probability one I∗
k(f) = I(f) if f is a polynomial of degree p < r since, in this case,

∥f∥r = 0.
The main drawback of estimator I∗

k(f) is that it requires to compute and evaluate
derivatives of f ; that may be feasible in certain cases (using for instance automatic
differentiation, see Baydin et al. (2017)). However, it is generally simpler to have an
estimator that relies only on evaluations of f . Surprisingly, and as shown in the following,
higher-order difference methods make it possible to replace, in the definition of pc,r−1,
the partial derivatives of f by numerical derivatives while preserving the convergence
rate of I∗

k(f) as well as its ability to integrate exactly polynomials of degree p < r.
Higher-order difference methods are widely used in practice for numerical differenti-

ation. However it is surprisingly hard to find a reference providing an explicit definition
of an estimate D̂αf of Dαf along with an explicit error bound ef (s, r, |α|) for the ap-
proximation error ∥D̂αf − Dαf∥∞. For this reason, in the next subsection we provide
two results on numerical differentiation based on higher-order difference methods before
coming back to the estimation of I(f) in the subsequent subsections.

2.3. Numerical differentiation

The result in the following lemma can be used, for s = 1, to compute an estimate D̂αf
of Dαf as well as to obtain an upper bound for the approximation error.

Lemma 1. Let g ∈ Cl([0, 1]) for some integer l ≥ 2, a ∈ {1, . . . , l − 1} and κ ∈ Rl be a
vector containing l distinct elements. Next, let e(a) ∈ Rl be such that e(a)a+1 = a!, e(a)j = 0
for j ̸= (a+ 1), and let

w = A−1
κ e(a), Aκ =


1 1 . . . 1
κ1 κ2 . . . κl
...

...
...

...
κl−1
1 κl−1

2 . . . κl−1
l

 .

Let x ∈ [0, 1] and h > 0 be such that x+ κjh ∈ (0, 1) for all j ∈ {1, . . . , l}. Then,∣∣∣∣∣
∑l

j=1wjg(x+ κjh)

ha
− g(a)(x)

∣∣∣∣∣ ≤ hl−a∥g∥l
l∑

j=1

|wjκlj |.

Remark 1. The matrix Aκ is invertible since Aκ is a Vandermonde matrix and κj ̸= κl
for all j ̸= l.

Proof. By construction, {wj}lj=1 is such that
∑l

j=1wjκ
i
j = 0 for all i ∈ {0, . . . , l−1}\{a}

and such that
∑l

j=1wjκ
a
j = a!. Therefore, using (2)-(3), for some {τj}lj=1 in [−1, 1] we
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have

l∑
j=1

wjg(x+ κjh) =

l−1∑
i=0

hi
g(i)(x)

i!

 l∑
j=1

wjκ
i
j

+

l∑
j=1

wj(κjh)
lg(l)(x+ τjκjh)

= hag(a)(x) + hl

 l∑
j=1

wjκ
l
j g

(l)(x+ τjκjh)


and thus ∣∣∣∣∣g(a)(x)−

∑l
j=1wjg(x+ κjh)

ha

∣∣∣∣∣ ≤ hl−a

∣∣∣∣∣∣
l∑

j=1

wjκ
l
j g

(l)(x+ τjκjh)

∣∣∣∣∣∣
≤ hl−a∥g(l)∥∞

l∑
j=1

|wjκlj |.

The proof is complete.

Remark 2. Usually, one sets the κj’s to small integers; e.g. κ = (0, 1, 2) for l = 3 and
a = 2 gives the well-known forward formula with first-order accuracy:

g(x)− 2g(x+ h) + g(x+ 2h)

h2
= g(2)(x) +O(h).

If one uses instead so-called central coefficients, e.g. κ = (−1, 0, 1), then one may actually
get an extra order of accuracy:

g(x− h)− 2g(x) + g(x+ h)

h2
= g(2)(x) +O(h2)

as one can check from first principles. We stick to the general case to keep our notations
simpler, as it will not have an impact on our general results.

In our case, we need to compute (multivariate) numerical derivatives of f at all the
points c ∈ Ck, simultaneously. The previous lemma indicates that a numerical derivative
of f at c is a linear combination of terms of the form f(c + κjh). If we take h = 1/k,
and κj ∈ N, then (c + κjh) ∈ Ck (unless c + κj ̸∈ [0, 1]s, which should happen if c is
too close to the boundary). This suggests the following strategy: first, compute f(c) for
all c ∈ Ck; then, for a given α ∈ Ns0, approximate Dαf at each c ∈ Ck by computing
appropriate linear combinations of these f(c).

The following lemma formalises this remark. We note in passing that this trick seems
to be already known; it is implemented for instance in the package findiff of Baer (2018)
(which we use in our numerical experiments, see Section 5), although it seems rarely
mentioned in books on numerical analysis.

Lemma 2. Let r ≥ 2. Then, there exist finite constants {Ci,s}r−1
i=1 and a finite set Wr

of real numbers, which does not depend on s, for which the following holds. For k ≥ r,
c ∈ Ck, α such that |α| < r and lr,α :=

∏|α|0
i=1(r− i+1) elements {c(q)}lr,αq=1 of Ck such that

8



1. ∥c− c(q)∥ ≤ (r − 1)/k for all q ∈ {1, . . . , ls,α},

2. for all j ∈ {1, . . . , s}, if αj = 0 then c
(q)
j = cj for all q ∈ {1, . . . , ls,α},

3. for all j ∈ {1, . . . , s}, if αj ̸= 0 then c(q)j ̸= c
(q′)
j for all q, q′ ∈ {1, . . . , ls,α} such that

q ̸= q′,

there exist real numbers {wj}
lr,α
j=1 such that

• each wj is the product of |α|0 elements of the set Wr,

• the set {wj}
lr,α
j=1 depends on c only through the set {k(c(q)− c)}lr,αq=1, and is therefore

independent of k,

• for all f ∈ Cr([0, 1]s) we have
∣∣D̂α

k f(c)−Dαf(c)
∣∣ ≤ C|α|,s ∥f∥r k−(r−|α|), where

D̂α
k f(c) = k|α|

lr,α∑
j=1

wjf(c
(j)). (8)

For what follows it is important to stress that, in (8), the sets {wj}
lr,α
j=1 and {c(j)}lr,αj=1

are independent of f and that the computational cost of computing these two sets is
independent of k. We also point out that, building on Lemma 1, the proof of Lemma 2 is
constructive and thus can be used in practice to compute a numerical derivative D̂α

k f(c)
as defined in (8).

2.4. Proposed estimator

Let r ≥ 3, k ≥ r and f : [0, 1]s → R. Then, the proposed estimator of I(f) is

Îr,k(f) :=
1

ks

∑
c∈Ck

{
f(c+ Uc) + f(c− Uc)

2

−
⌊(r−1)/2⌋∑

l=1

∑
α: |α|=2l

D̂α
k f(c)

α!

Uαc −
s∏
j=1

dk(αj)

} (9)

where the numerical derivatives D̂α
k f(c)’s are as in Lemma 2 and

dk(i) := E[V i] =

{
1

(i+1)(2k)i
if i is even,

0 otherwise,
with V ∼ U

([
− 1

2k
,
1

2k

])
.

This estimator is based on n = 3ks evaluations of f : two thirds at random locations,
and one third at deterministic locations (the f(c)’s for c ∈ Ck which are used to compute
the derivatives). Note that Î2q,k(f) = Î2q−1,k(f) for all q ≥ 1, and that only even-order
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derivatives appear in (9), because of the symmetry of function gc(u) = {f(c+u)+ f(c−
u)}/2 (as explained before).

The main drawback of the estimator Îr,k(f) is that its computational cost increases
quickly with r and s. We may rewrite the second term of (9) as∑

c∈Ck

Wr,cf(c)

where the Wr,c’s are random weights that do not depend on f . The number of partial
derivatives of f of order |α| being equal to

(
s+|α|−1
s−1

)
, the number of operations required

to compute these weights is:

O

sr2ks ⌊(r−1)/2⌋∑
l=1

(
s+ 2l − 1

s− 1

) = O(rs+3ks)

which is exponential in s.
On the other hand, since the Wr,c’s are independent of f , they may be pre-computed,

and re-used for several functions f . Alternatively, when f is expensive to compute,
the cost of computing these Wr,c will remain negligible (relative to the cost of the n
evaluations of f) whenever s and r are not too high. See Section 5.2 for a practical
example where the function of interest f is expensive to compute.

2.5. An alternative estimator

The estimator Îr,k(f) defined in (9) was obtained by adding control variates to Haber’s
second estimator (6). By adding similar variates to his first estimator (5), we obtain the
following alternative estimator:

Ĩr,k(f) :=
1

ks

∑
c∈Ck

f(c+ Uc)−
r−1∑
l=1

∑
α: |α|=l

D̂α
k f(c)

α!

Uαc −
s∏
j=1

dk(αj)

 (10)

with the derivatives D̂α
k f(c)’s as in Lemma 2.

The estimator Ĩr,k(f) has the advantage of requiring only n = 2ks evaluations of f ,
against n = 3ks for Îr,k(f). In addition, Ĩr,k(f) has a different expression for each value
of r, while Î2q,k(f) = Î2q−1,k(f).

On the other hand, computing Ĩr,k(f) is more expensive than Îr,k(f), since the former
requires to approximate all the partial derivatives of f of order |α| < r, while the latter
necessitates to compute only those having an even order.

In our numerical experiments, we implement only Îr,k(f). But, for the sake of com-
pleteness, we shall state the properties of both estimators in the following section.
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2.6. Error bounds

The error bounds presented in this subsection follow directly from the following key
lemma, whose proof is in Appendix C.2.

Lemma 3. Let f ∈ Cr([0, 1]s) for some r ≥ 1. Then there exists, for each c ∈ Ck and
k ≥ r, a function hk,c : [−1/2k, 1/2k]s → R (which depends implicitly on r) such that

Îr,k(f)− I(f) = 1

ks

∑
c∈Ck

hk,c(Uc)

and such that, for a constant Ĉs,r <∞ independent of k and f ,

max
c∈Ck

∥hk,c∥∞ ≤ Ĉs,r∥f∥rk−r.

This statement also holds for Ĩr,k(f).

The following theorem provides three types of error bounds for the estimators Îr,k(f)
and Ĩr,k(f), namely an error bound for the RMSE, an error bound that holds with
probability one and an error bound that holds with large probability. We recall that the
number n of evaluations of f is n = 3ks for the former estimator and n = 2ks for the
latter.

Theorem 1. Let f ∈ Cr([0, 1]s) for some r ≥ 1 and let Ĉs,r < ∞ be as in Lemma 3.
Then, for all k ≥ r,

1. E
[
Îr,k(f)

]
= I(f),

2.
[
E
∣∣Îr,k(f)− I(f)

∣∣2] 1
2 ≤ Ĉs,r ∥f∥r n−

1
2
− r

s ,

3. P
(∣∣Îr,k(f)− I(f)

∣∣ ≤ Ĉs,r ∥f∥r n−
r
s

)
= 1,

4. For all δ ∈ (0, 1),

P
{∣∣Îr,k(f)− I(f)

∣∣ ≤ n−
1
2
− r

s Ĉs,r∥f∥r
√

2 log(2/δ)
}
≥ 1− δ.

The results given in 1-4 also hold with Îr,k(f) replaced by Ĩr,k(f).

Proof. We have already mentioned that Îr,k(f) = Î2,k(f) + V̂r,k(f), where Î2,k(f) is
unbiased Haber (1967) and V̂r,k(f) has zero mean. (The same remarks apply to Ĩk,k(f).)
The second and third parts of the theorem are direct consequences of Lemma 3 and
the last part of the theorem is a direct consequence of Lemma 3 and of Hoeffding’s
inequality.
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The second part of the theorem shows that Îr,k(f) and Ĩr,k(f) are optimal for integ-
rating a function f ∈ Cr([0, 1]s), in the sense that their RMSE converge to zero at the
optimal rate (see Section 1). The third part of the theorem states that each realization of
the estimators achieves the optimal convergence rate for a deterministic algorithm (again,
see Section 1). The last part of the theorem shows that the distribution of Îr,k(f) and of
Ĩr,k(f) are sub-Gaussian. Finally, and importantly, Theorem 1 shows that for any k ≥ r

the estimators Îr,k(f) and Ĩr,k(f) are exact if f is a polynomial of degree p < r. Indeed,
if f ∈ Cr([0, 1]s) is a polynomial of degree p < r then ∥f∥r = 0 and thus, by Theorem 1,

P
(
Îr,k(f) = I(f)

)
= 1, P

(
Ĩr,k(f) = I(f)

)
= 1, ∀k ≥ r.

2.7. Central limit theorem

The following lemma provides a sufficient condition for a central limit theorem to hold
for Îr,k(f) and Ĩr,k(f).

Lemma 4. Let f ∈ Cr([0, 1]s) for some r ≥ 1 and assume that there exists a sequence
(vk)k≥1 such that vk → ∞ and such that

Var
(
Îr,k(f)

)
≥ vkk

−2s−2r, ∀k ≥ r.

Then,
Îr,k(f)− I(f)√
Var

(
Îr,k(f)

) ⇒ N1(0, 1).

This statement also holds with Îr,k(f) replaced by Ĩr,k(f).

Proof of Lemma 4. We prove only the result for Îr,k(f), the proof for Ĩr,k(f) being
identical.

Let k ≥ r and, for all c ∈ Ck, let

Xk,c =
1

ks
hk,c(Uc)

with hk,c(Uc) as in Lemma 3. Note that Îr,k(f)−I(f) =
∑

c∈Ck
Xk,c and that {Xk,c}c∈Ck

is a set independent random variables for all k ≥ r. Then, by Lindeberg-Feller central
limit theorem (see Billingsley (1995), Theorem 27.2, page 359) to prove the lemma it is
enough to show that, as k → ∞,

1

B2
k

∑
c∈Ck

E
[
X2
k,c1(X

2
k,c > ϵB2

k)
]
→ 0, ∀ϵ > 0 (11)

where Bk = Var
(
Îr,k(f)

)1/2
for all k.
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To show (11) remark first that, by Theorem 1 and under the assumptions of the lemma,
we have

vkk
−2s−2r ≤ B2

k ≤ Cf,r,sk
−s−2r (12)

where Cf,r,s = Ĉ2
s,r∥f∥2r with Ĉs,r <∞ as in Theorem 1.

Next, let k ≥ r and c ∈ Ck, and note that, by Lemma 3,

X2
k,c = k−2s hk,c(Uc)

2 ≤ Cf,s,rk
−2s−2r, P− a.s.

which, together with (12), implies that for all ϵ > 0 and P-a.s. we have

1(X2
k,c > ϵB2

k) ≤ 1
(
Cf,s,rk

−2s−2r > ϵB2
k

)
≤ 1

(
Cf,s,rk

−2s−2r > ϵvkk
−2s−2r

)
= 1 (Cf,s,r > ϵvk) .

Since vk → ∞, (11) follows and the proof is complete.

By Lemma 4, a CLT therefore holds for Îr,k(f) and Ĩr,k(f) if the variance of these
estimators does not converge to zero too quickly as k → ∞. Noting that the lower bound
on the variances assumed in Lemma 4 converges to zero much faster than the upper
bound given in Theorem 1 (part 2), we conjecture that a CLT holds in general for Îr,k(f)
(and Ĩr,k(f)).

We are able to establish this conjecture provided that the numerical derivatives are
computed in the following way. We introduce pr,k := ⌈k/r⌉s hyper-cubes B̃q of volume
(r/k)s, q = 1, . . . , pr,k, such that ∪pr,kq=1B̃q = [0, 1]s, and let B̃q = ∪rsj=1Bk(c

q
j) with

{cqj}
pr,k
q=1 ⊂ Ck such that the Bk(c

q
j)’s are contiguous. Then, to each c ∈ Ck we assign

a q(c) such that c ∈ Bq(c) and impose that the numerical derivatives at c are computed
using only points c′ ∈ Bq(c). The following lemma establishes that this way of computing
numerical derivatives ensures that the condition in Lemma 4 is fulfilled.

Lemma 5. Let f ∈ Cr([0, 1]s) for some r ≥ 2 and, for all k ≥ r, α such that |α| < r and
c ∈ Ck, let D̂α

k f(c) be as defined in Lemma 2 with cj ∈ Bq(c) for all j ∈ {1, . . . , lr,α}. In
addition, for all α such that |α| = r let gα : [0, 1]s → R be defined by gα(u) = (−1/2+u)α,
u ∈ [0, 1]s, and let

σ̂2f,r = r2r+s
∑
|α|=r

∑
|α′|=r

Cov
(
Îr,r(gα), Îr,r(gα′ )

)
α!α′!

ˆ
[0,1]s

Dαf(u)Dα′
f(u)du. (13)

Then
lim
k→∞

{
ks+2rVar

(
Îr,k(f)

)}
= σ̂2f,r. (14)

The same result holds if Îr,k(f) is replaced by Ĩr,k(f).
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To understand why the numerical derivatives assumed in Lemma 5 are convenient to
show that (14) holds, let [a, b] ⊂ [0, 1]s and f[a,b] : [0, 1]s → R be defined by

f[a,b](u) = f(a+ u(b− a)), u ∈ [0, 1]s

where, for all u, the product u(b− a) must be understood as being component-wise. In
addition, assume that k = mr for some integer m ≥ 1, so that the set [0, 1]s can be
covered by ms hypercubes {B̃q}m

s

q=1 of volume m−s. Then, under the assumptions on the
D̂α
k f(c)’s made in Lemma 5,

Îr,mr(f)
dist
=

ms∑
q=1

Îr,mr(f1B̃q
)

dist
=

1

ms

ms∑
q=1

Îr,r(fB̃q
)

where the terms of the sum are independent random variables. Since Îr,r is a stochastic
quadrature of degree r − 1, it follows from (Haber, 1969, Theorem 2) that

lim
m→∞

Var
{
(mr)s/2+rÎr,mr(f)

}
= σ̂2f,r.

Lemma 5 extends this result to the case where k is not a multiple of r.
Combining Lemma 4 and Lemma 5 we readily obtain the following result.

Theorem 2. Let f ∈ Cr([0, 1]s) for some r ≥ 2 and assume that, for all k ≥ r, c ∈ Ck
and α such that |α| < r, the numerical derivative D̂α

k f(c) and the constant σ̂2f,r are as
defined in Lemma 5. Then, if σ̂2f,r > 0 we have

Îr,k(f)− I(f)√
Var

(
Îr,k(f)

) ⇒ N1(0, 1).

This statement also holds if Îr,k(f) is replaced by Ĩr,k(f).

3. Integration of vanishing functions

3.1. Principle

We now focus on functions whose derivatives are null at the boundary of the set [0, 1]s.
Formally, for r ≥ 1 we let

Cr0 ([0, 1]s) :=
{
f ∈ Cr([0, 1]s) s.t. max

α:|α|≤r
|Dαf(u)| = 0 or all u ∈ ∂[0, 1]s

}
and consider the problem of approximating I(f) for f ∈ Cr0([0, 1]s). Our objective is to
derive an estimator that has the same optimality properties as the estimator introduced
in the previous section, while being cheaper to compute when f ∈ Cr0 ([0, 1]s). Vanishing
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functions may arise for instance when performing importance sampling with a heavy-
tail proposal distribution; see the second set of numerical experiments (Section 5.2) for
an illustration of this idea, and see Appendix A for a longer discussion of the practical
relevance of vanishing functions.

We return to Haber’s second estimator:

Î2,k(f) =
1

ks

∑
c∈Ck

gc(Uc), Uc ∼ U
([

− 1

2k
,
1

2k

]s)

where, assuming f ∈ C4 ([0, 1]s),

gc(u) =
f(c+ u) + f(c− u)

2
= f(c) +

1

2
uTHf (c)u+O(∥u∥4),

and Hf (c) is the Hessian of f at c. To get a smaller error, one may combine more than
two terms; e.g. with four terms:

gc(λu)− λ2gc(u)

1− λ2
=
f(c+ λu) + f(c− λu)− λ2f(c+ u)− λ2f(c− u)

2(1− λ2)

= f(c) +O(∥u∥4).

The resulting estimator will then be a linear combination of averages of the form
k−s

∑
c f(c+ λUc), for a given λ. But, if |λ| ≠ 1, such an average will typically not have

the desired expectation I(f), since the support of c+ λUc is a hyper-cube inflated by a
factor λ.

To address this issue, we note first that, since f ∈ Cr0 ([0, 1]s), we may extend f to
f̄ ∈ Cr(Rs), with f̄(u) = f(u) if u ∈ [0, 1]s, and f̄(u) = 0 otherwise. This implies that:

I(f) =
ˆ
[0,1]s

f(u)du =

ˆ
Rs

f̄(u)du =
∑

c∈C∞,k

ˆ
Bk(c)

f̄(u)du

where C∞,k is simply (4) with m = +∞; i.e. the (infinite) set of centres of hypercubes
of volume k−s, the union of which is Rs.

Second, if we restrict λ to values such that |λ| = 1, 3, 5, . . ., we observe that the support
of (c+λUc) is the union of |λ|s contiguous hyper-cubes in C∞,k. If we sum over c ∈ C∞,k,
we make sure that each hyper-cube is ‘visited’ the same number of times. In practice,
we need to consider only c such that support of (c+λUc) intersects with [0, 1]s, since the
corresponding integral is zero otherwise. The following lemma formalises these ideas.

Lemma 6. Let g ∈ L1([0, 1]
s), λ ∈ {±(2i+ 1), i ∈ N0}, k ≥ 2, and ḡ : Rs → R be such

that ḡ(u) = g(u) if u ∈ [0, 1]s and ḡ(u) = 0 otherwise. Then,

E

 1

ks

∑
c∈Cm,k

ḡ(c+ λUc)

 =

ˆ
[0,1]s

g(u)du, ∀m ≥ (|λ| − 1)/2.
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3.2. Proposed estimator

We are now able to define our vanishing estimator. Assume r ≥ 1 is fixed, and f ∈
Cr0 ([0, 1]s). Let (λj)

∞
j=1 be the sequence 1,−1, 3,−3, 5,−5, . . ., and

mr := max{|λj |}rj=1 =

{
r, if r is odd
r − 1, otherwise

γ(r) := Γ−1
r


1
0
...
0

 , Γr :=


1 1 . . . 1
λ1 λ2 . . . λr
...

...
...

...
λr−1
1 λr−1

2 . . . λr−1
r

 .

The matrix Γr is a Vandermonde matrix and thus, since λj ̸= λl for all j ̸= l, this
matrix is invertible. In addition, using Taylor’s theorem it is easy to check that γ(r) is
the vector of coefficients such that

gr,c(u) :=
r∑
j=1

γ
(r)
j f̄(c+ λju) = f(c) +O(∥u∥r). (15)

We now define our vanishing estimator as follows:

Î0
r,k(f) :=

1

ks

∑
c∈Cmr,k

gr,c(Uc), Uc ∼ U
([

− 1

2k
,
1

2k

]s)
. (16)

When r = 1 or r = 2, we recover Haber’s estimators: Î0
r,k(f) = Îr,k(f) for r = 1, 2.

Î0
r,k(f) is clearly cheaper (and simpler) to compute than the general estimator Îr,k(f)

of the previous section, as the latter required computing a O(es) number of numerical
derivatives. The unbiasedness of Î0

r,k(f) is a direct consequence of Lemma 6. From (15),
we see that the variance of Î0

r,k(f) is O(n−1−2r/s). It has therefore the same RMSE
rate as the estimator considered in Section 2. These and other properties are stated in
Theorem 3 below.

Before that, we must clarify what we mean by n in this context. We may define n to be
the number of evaluations of f̄ ; in this case, n = r(k+2mr)

s, since |Cmr,k| = (k+2mr)
s.

Or we may define it to be the number of evaluations of f(u) for u ∈ [0, 1]s. In that case,
n is random, with expectation rks. (To see this, apply Lemma 6 to function g(u) = 1.) It
is also bounded, i.e. (k−2mr)

s ≤ n ≤ (k+2mr)
s with probability one. Hence, whatever

the chosen definition of n, the statement k = O(n−1/s) remains correct.

Theorem 3. Let f ∈ Cr0([0, 1]s) for some r ≥ 1. Then, for all k ≥ 2 we have E[Î 0
r,k(f)] =

I(f) and there exists a constant Ĉ 0
f,s,r <∞ such that

E
[
|Î 0
r,k(f)− I(f)|2

]1/2 ≤ Ĉ 0
f,s,rn

− 1
2
− r

s , P
(
|Î 0
r,k(f)− I(f)| ≤ Ĉ 0

f,s,rn
− r

s

)
= 1

and such that, for all δ ∈ (0, 1),

P
{
|Î 0
r,k(f)− I(f)| ≤ n−

1
2
− r

s Ĉ 0
f,s,r

√
2 log (2/δ)

}
≥ 1− δ.
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Proof. As in Lemma 3: for k ≥ 2 and c ∈ Cmr,k, let hk,c : [0, 1]s → R be defined by

hk,c(u) := gr,c(u)− E[gr,c(Uc)], u ∈ [0, 1]s

so that Îr,k(f) − I(f) = k−s
∑

c∈Cmr,k
hr,c(Uc). (Function hk,c also depends on r impli-

citly.)
Let u ∈ [−1/2k, 1/2k]s and note that, from (15) and the definition of gr,c:

|hk,c(u)| ≤ ∥f∥r
r∑
j=1

|γ(r)j λrj |
∑

α:|α|=r

∣∣uα +
∏
j:αj ̸=0 dk(j)

∣∣
α!

≤
(
∥f∥r

r∑
j=1

|γ(r)j λrj |
) (

2−rk−r + k−r
) (17)

where the second inequality uses the fact that dk(j) ≤ k−j for all j ∈ N.
By (17) there exists a constant C <∞ such that,

|hk,c(u)| ≤ Ck−r, ∀u ∈ [−1/2k, 1/2k]s, ∀c ∈ Cmr,k, ∀k ≥ 2

and thus, since by Lemma 6 the estimator Î 0
r,k(f) is unbiased, the proof of theorem

follows from the same remarks as in the proof of Theorem 1.

4. Practical details

4.1. Variance estimation

One advantage of the standard Monte Carlo estimator is that it is possible to estimate
its variance from a single run. It does not seem possible to do so with the estimators
proposed in this paper. However, we highlight briefly a method to approximate the
variance from a potentially small number l ≥ 2 of independent runs. This method is
actually a generalisation of an approach outlined in Section 5 of Haber (1966) for the
estimator (5).

Consider a generic estimator of the form:

Î =
1

n

n∑
i=1

Yi

where the Yi’s are independent but not (necessarily) identically distributed. Both estim-
ators presented in this paper are of this form (up to some notation adjustment); e.g. for
the vanishing estimator, Yi may be identified with gr,c(Uc), see (16).

Assume we obtain l ≥ 2 realisations of the estimator Î, based on independent copies
Y

(j)
n of the Yn. Since

Var(Î) = 1

n2

n∑
i=1

Var(Yi)
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take, as an estimator of Var(Î),

V̂ :=
1

n2

n∑
i=1

1

l − 1

l∑
j=1

(Y
(j)
i − Ȳi)

2, Ȳi :=
1

l

l∑
j=1

Y
(j)
i .

It is easy to establish that, for the two types of estimators introduced in this paper,
Îr,k(f) and Î0

r,k(f) (for a given r ≥ 1), one has, for a fixed l ≥ 1:

Var(V̂ ) = O(n−3−4r/s)

which is n−1 smaller than the square of O(n−1−2r/s), the rate at which the true variance
goes to zero.

In other words, estimator V̂ will have a small relative error as soon as n is large (even
for a small l). Of course, if we generate l independent realisations of a given estimator
(preferably in parallel), then we should return as a final estimate the average of these l
realisations, together with an estimate of its variance, that is, V̂/l.

4.2. Automatic order selection for the vanishing estimator

Given (15) and (16), we may rewrite the vanishing estimator as follows:

Î0
r,k(f) =

r∑
j=1

γ
(r)
j

 1

ks

∑
c∈Cmr,k

f̄(c+ λjUc)

 =

r∑
j=1

γ
(r)
j

 1

ks

∑
c∈Cmj,k

f̄(c+ λjUc)


where in the second line we use the fact that f̄(c+ λjUc) = 0 whenever c /∈ Cmj ,k.

We may pre-compute the r averages above, and use them to compute simultaneously
Î0
r′,k(f) for r′ = 1, . . . , r, at (essentially) the same cost as computing only Î0

r,k(f). If
we generate several copies of these estimators, we may then choose the value r′ with
the smallest estimated variance (using the variance estimator proposed in the previous
section). We may use a similar approach for the non-vanishing estimator Îr,k(f), but in
that case there does not seem to be any short-cut for computing simultaneously Îr,k(f)
for different values of r.

5. Numerical experiments

In this section, we assess and compare estimators of expectations I(f) as follows. For a
fixed function f : [0, 1]s → R and a range of values for k, we generate 50 independent
copies of the considered estimators, and produce plots where:

• the x−axis is the number of evaluations of f . When this quantity is random
(vanishing estimator), we report the average over the independent runs.

• the y−axis is a measure of the relative error; that is, either the mean squared
error (MSE) divided by the true value of I(f), when this quantity is known, or
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the empirical variance divided by the square of the average, when it is not. In the
former (resp. latter) case, the label of the y−axis is rel-mse (resp. rel-var). In both
cases, we discard results where the relative error is too close to machine epsilon
(i.e. when MSE or variance is not ≫ 10−32 ). In such cases, the corresponding
estimates may be considered as exact (up to machine epsilon).

It is customary in this type of plot to overlay a straight line that corresponds to the
expected rate, i.e. O(n−1+2r/d) for our estimators. (The log-scale is used on both axes.)
However, in our case, the performance of our estimators (often) matches closely these
rates, making these lines hard to distinguish. For this reason we do not plot them in
what follows.

An open-source python package implementing the two proposed estimators and the
following numerical experiments may be found at https://github.com/nchopin/cubic_
strat. The numerical derivatives that appear in the control variates of the non-vanishing
estimator were computed by the the findiff package of Baer (2018). We note that the
numerical derivatives computed with this package are not implemented in a way which
ensures that we have a CLT for Îr,k(f) (that is, they do not verify the assumptions of
Theorem 2).

5.1. Comparison between the non-vanishing estimator and Dick’s
estimator

As mentioned in the introduction, in Dick (2011) Dick introduced higher-order estimators
of I(f) (henceforth, Dick’s estimators), based on scrambled digital nets, which achieve
O(n−1/2−α+ϵ) RMSE for functions f ∈ Dα([0, 1]s), α ≥ 2, the set of functions such that
all partial derivatives obtained by differentiating with respect to each variable up to α-
times is square integrable. When s ≥ 2, this estimator does not require the existence
of the same number of partial derivatives as our stratified estimators (even if we set
r = s × α). For instance, for s = 2, denoting u = (x, y), Dick’s estimator requires the
existence of ∂f/∂x, ∂f/∂y and ∂2f/∂x∂y at order α = 1, while our stratified estimator
requires only the first two when r = 1; or, alternatively, these three derivatives plus
∂2f/∂x2, ∂2f/∂y2 at order r = 2. This technical point should be kept in mind in the
following comparison, where Dick’s estimator is implemented using the Sobol’ sequence
as underlying digital sequence.

We consider the following functions: for s = 1, f1(u) = ueu, and for s ≥ 2,

f(u) =

 s∏
j=1

uj−1
j

 exp

 s∏
j=1

uj

 .

Note that I(f1) = 1, and I(fs) = e−
∑s−1

j=0(1/j!) for s ≥ 2. The aforementioned paper
used the first two functions of this sequence to illustrate the numerical performance of
Dick’s estimators. We compare the performance of Dick’s higher-order estimators (for
α = 1, 2, 3, 4) with our non-vanishing estimator (for r = 1, 2, 4, 6, 8, and, in addition,
r = 10 for s = 1 and s = 2); see Figures 2 and 3.
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Figure 2: Relative MSE (mean squared error) vs number of evaluations for the vanish-
ing estimator (thick lines) and Dick’s estimator (dotted line). The value of r
(stratified) or α (Dick’s) are printed next to each curve. Left: f1; Right: f2.
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Figure 3: Same plot as in Figure 2 for functions f4 (left) and f6 (right).

For s = 1 (left panel of Figure 2), both estimators require exactly the same number of
derivatives, hence the comparison is straightforward. Both estimators show the expected
MSE rate, O(n−1+2r), (taking α = r); on the other hand, the stratified estimator seems
to consistently have lower MSE.

For s = 2 (right panel of Figure 2), the comparison becomes less straightforward, as we
explained above. The fact that Dick’s estimator shows intermediate performance between
the stratified estimators for r = 1 and r = 2 is reasonable, since it requires strictly more
partial derivatives than for r = 1, and strictly less than for r = 2; as discussed in the
example above. On the other hand, Dick’s estimator at order α = 4 seems outperformed
by both the same estimator at orders α = 2 and 3, and the stratified estimator at order
r = 4. This is despite the fact that Dick’s estimator with α = 4 requires strictly more
partial derivatives than the stratified estimator with r = 4. This suggests that, when
α increases, Dick’s estimator requires a larger and larger number of evaluations before
exhibiting the expected rate of convergence.

For s = 4 (left panel of Figure 3), we plot only the relative MSE of Dick’s estimator
for α = 4. Again, we observe the same phenomenon: i.e. even with 107 evaluations it
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is not yet competitive with the stratified estimator (with r = 4) despite requiring more
partial derivatives.

In all these plots, the MSE of the proposed estimator matches very closely the expected
rate. On the other hand, recall that, for r ≥ 4, the estimator requires 3ks evaluations of
f , and is properly defined only for k ≥ r. (In addition, the way the numerical derivatives
are computed in package findiff imposes that k ≥ 3r/2 − 1.) This implies that this
estimator is only defined for a large number of evaluations when r and s are large, as
shown in Figures 2 and 3. This is of course a limitation of the non-vanishing estimator.
We shall see that the vanishing estimator is less affected by this issue; i.e. it may be
computed for smaller values of n.

5.2. Vanishing estimator: Bayesian model choice

We now consider a class of vanishing functions in order to assess our vanishing estim-
ator. We construct these functions so that their integral equals the marginal likelihood´
p(β)L(y|β)dβ of a Bayesian statistical model, where β ∈ Rs, p(β) is a Gaussian prior

density (with mean 0, and covariance 52Is), L(y|β) is the likelihood of a logistic regression
model: L(y|β) =

∏n
i=1 F (yiβ

Txi), F (z) = 1/(1 + e−z), and the data (xi, yi)
n
i=1 consist

of predictors xi ∈ Rs and labels yi ∈ {−1, 1}.
We adapt the importance sampling approach described in Chopin and Ridgway (2017)

to approximate such quantities as follows: we obtain numerically the mode β̂, and the
Hessian at β = β̂, of the function h(β) = log{p(β)L(y|β)}; hence h(β) ≈ h(β̂)−(1/2)(β−
β̂)TH(β−β̂). Then we set f(u) = exp{h(β̂+Lψs(u))}, with L the Cholesky lower triangle
of H, LL⊤ = H, and ψs the function defined in Appendix A (for τ = 1.5), which maps
(0, 1)s into Rs.

As in Chopin and Ridgway (2017), we consider the Pima dataset (which has 10 pre-
dictors, if we include an intercept). More precisely, for s = 2, 4, 6, and 8, we take the first
s predictors, and compute the corresponding marginal likelihoods. Note that computing
these quantities for all possible subsets of the predictors is a standard way to perform
variable selection in Bayesian inference.

Figure 4 showcases the performance of the vanishing estimators for s = 2 to 8 and at
orders 1 to 10 (for s = 2 and s = 4), 8 (for s = 6), and 4 (for s = 8). Results for higher
orders are not displayed for s = 6 and s = 8 because they did not lead to lower variance
even for the highest values of number of evaluations.

Note the slightly different behaviour relative to the previous example. The vanishing
estimator is defined for lower numbers of evaluations. On the other hand, it exhibits the
expected rate only for a large enough number of evaluations. As expected, the relative
gain obtained by increasing r decreases with the dimension (and requires a larger and
larger number of evaluations to appear clearly).

Notice that, in Figure 4, the number of evaluations has a different range for different
values of r. This is because the number of evaluations at order r is rks, and we considered
the same range of values for k. It was convenient to do so, because, as explained in
Section 4.2, it is possible to compute simultaneously the vanishing estimators at orders
1 to, say rmax (using the same random numbers), at the cost of obtaining the estimator
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at highest order, rmax.
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Figure 4: Relative variance of the vanishing estimator versus number of evaluations for
Pima example, with s = 2, 4, 6, 8.

See Appendix B for a comparison of the non-vanishing and vanishing estimators on
this example.

6. Future work

The main limitation of cubic stratification is that it cannot realistically work for s≫ 10,
since the number of cubes required to partition [0, 1]s is ks. We could use rectangles
instead, and take n =

∏s
i=1 ki, with ki smaller (or even = 1) when f is nearly constant

in component i, a bit in the spirit of Sloan and Woźniakowski (1998). Determining how
we could choose the ki in a meaningful way is left for future work.
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A. Relevance of vanishing functions

Consider the problem of approximating the integral of a function g over Rs. A common
strategy is to rewrite this integral as an expectation with respect to a chosen, [0, 1]s-
supported distribution; and then use Monte Carlo to approximate it. Since lim∥x∥→∞ g(x) =
0, this expectation will often be an integral of a vanishing function. Thus, one may use
instead our vanishing estimator to approximate the integral of interest.

The following lemma outlines a particular recipe to rewrite an integral over Rs into the
integral of a vanishing function. We designed this recipe to make sure that the conditions
on g (to ensure that the transformed integrand is indeed vanishing) are weak; essentially
g and its derivatives must decay at polynomial rates at infinity. The rewritten integral
is an expectation with respect to a ‘Student-like’ distribution, with heavy tails, whose
Rosenblatt transformation is given by ψ below.

Proposition 1. Let r ≥ 1, g ∈ Cr(Rs) ∩ L1(Rs) be such that

lim
∥x∥→∞

(
max
α:|α|≤r

Dαg(x)

s∏
i=1

|xi|c
)

= 0, ∀c > 0 (18)

and, for some τ > 0, let ψs : Rs → (0, 1)s be the Cr-diffeomorphism defined by

ψs(u) =

(
2u1 − 1

uτ1(1− u1)τ
, . . . ,

2us − 1

uτs(1− us)τ

)
, u ∈ (0, 1)s,
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and let fg,ψ : [0, 1]s → R be defined by

fg,ψ(u) = g (ψs(u))
s∏
i=1

(
2

uτi (1− ui)τ
+

τ(2ui − 1)2

uτ+1
i (1− u)τ+1

)
. (19)

Then, fg,ψ ∈ Cr0([0, 1]s) and I(fg,ψ) =
´
Rs g(x)dx.

Proof. We have

Dαfg,ψ(u) =
∑
ν∈Nα

D|ν|(g ◦ ψs)(u)
s∏
i=1

dαi−νi

duαi−νi
i

ψ1(ui), ∀u ∈ (0, 1)s (20)

where
Nα = {ν ∈ Ns0 : νi ∈ {0, αi}, i = 1, . . . , s}.

By (Constantine and Savits, 1996, Theorem 1) for all ν ∈ Ns we have

Dν(g ◦ ψs)(u)
ν!

=
∑

λ∈Ns
0: |λ|≤|ν|

(
Dλg

)
(ψs(u))

|λ|∑
l=1

∑
(γ,β)∈pl(ν,λ)

l∏
j=1

1

(β!)(γ!)|β|

s∏
i=1

(
dγij

du
γij
i

ψ1(ui)

)βij (21)

where, for all λ ∈ N0 with |λ| ≤ |ν|, the set pl(ν, λ) ⊂ Ns0×Ns0 is as defined in (Constantine
and Savits, 1996, Theorem 1).

On the other hand, it is easily checked that, as u→ u′ ∈ {0, 1},

daψ−1
1 (u)

dua
= O

(
(u(1− u))−(a+τ)

)
, ∀a ∈ N0

which, together with (20)-(21), shows the result.

Remark 3. Condition (21) on g is stronger than needed. Indeed, given a value of τ > 0,
for the conclusion of Proposition 1 to hold it is enough that

lim
∥x∥→∞

max
α:|α|≤r

Dαg(x)
s∏
i=1

|xi|cr,s,τ = 0

for some constant cr,s,τ < ∞. From the proof of the proposition we note that cr,s,τ
decreases with τ .

See also our second set of numerical experiments (Section 5.2) for an application of
this recipe to the computation of the marginal likelihood in Bayesian inference.
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Figure 5: Relative variance of the non-vanishing estimator versus number of evaluations
for Pima example when s = 2 (left) and s = 4 (right).

B. Comparing the non-vanishing and the vanishing
estimators

When a function f is vanishing, one may use either a vanishing estimator Î0
r,k(f) or a

non-vanishing estimator Îr,k(f) to compute its integral. One may wonder which type of
estimators may lead to better performance. Figure 5 showcases the performance of the
non-vanishing estimator when applied to the functions of the previous example for s = 2
and s = 4, and should be compared to the top panels of Figure 4.

One sees that, in this particular case, we do obtain better performance with the non-
vanishing estimator for s = 2. (The picture is less clear for s = 4.) On the other hand,
note that the non-vanishing estimator is less convenient to use. As we explained in
the previous example and in Section 4.2, one can compute simultaneously the vanishing
estimators at orders 1 to some rmax. It is then possible to select the order that leads to
best performance (using the variance estimator described in Section 4.1). On the other
hand, the left panel of Figure 5 shows clearly that one does not know in advance which
value of r may lead to best performance when using the non-vanishing estimator.

C. Proofs

C.1. Proof of Lemma 2

We consider first the univariate case: s = 1, g ∈ Cr([0, 1]). Let

C
(1)
k :=

{
2j + 1

2k
s.t. j ∈ {0, . . . , k − 1}

}
which is Ck when s = 1, and let l ≥ 2 be an integer, k ≥ l,

Sl :=
{
κ ∈ {−l + 1, . . . , l − 1}l : κi ̸= κj , ∀i ̸= j

}
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and Vl :=
{
A−1
κ e(a) : κ ∈ Sl, a ∈ {1, . . . , l − 1}

}
with Aκ and e(a) as defined in Lemma

1 (with r = l).
Let

C̃l = max
{wj}lj=1∈Vl, {κj}kj=1∈Sl

l∑
j=1

|wjκlj |.

Then, by Lemma 1, for all c′ ∈ C
(1)
k , all κ ∈ Sl such that c′ + κj/k ∈ [0, 1] for all

j ∈ {1, . . . , l}, and all a ∈ {1, . . . , l − 1}, there exists a set {w(a,c′)
j }lj=1 ∈ Vl such that∣∣∣∣∣∣g(a)(c′)−

∑l
j=1w

(a,c′)
j g(c′ + κj/k)

k−a

∣∣∣∣∣∣ ≤ k−(l−a)∥g∥lC̃l. (22)

We let Wr = ∪rj=2Vj . We now consider the multivariate case, s ≥ 2, and prove the
lemma by induction on |α|0.

To this aim, let α be such that |α|0 = 1, c = (c1, . . . , cs) ∈ Ck, p ∈ {1, . . . , s} such that
αp = 1 and gc ∈ Cr([0, 1]) defined as (with obvious convention when p ∈ {1, s})

gc(c
′) := f

(
c1, . . . , cp−1, c

′, cp+1, . . . , cs
)
, ∀c′ ∈ [0, 1].

Next, let {c′j}rj=1 be r distinct elements of C(1)
k such that |cp − c′j | ≤ (r − 1)/k for all

j ∈ {1, . . . , r}, and let καj = k(cj − cp) for all j. Note that the resulting vector κα is such
that κα ∈ Sr. Then, applying (22) with l = r, a = |α|, c′ = cp, κ = κα and g = gc, it
follows that there exists a set {wαj }rj=1 ∈ Vr such that∣∣∣∣∣Dαf(c)−

∑r
j=1w

α
j gc(c

′
j)

k−|α|

∣∣∣∣∣ =
∣∣∣∣∣g(|α|)c (cp)−

∑r
j=1w

α
j gc(cjα + κj/k)

k−a

∣∣∣∣∣
≤ k−(r−|α|)∥gc∥rC̃r
≤ k−(r−|α|)∥f∥rC̃r. (23)

Then, since c′j ∈ C
(1)
k for all j ∈ {1, . . . , r} if follows that there exist a set {c(j)}rj=1 ∈ Ck

such that gc(c′j) = f(c(j)) for all j ∈ {1, . . . , r}. Noting that r =
∏|α|0
i=1(r−i+1) if |α|0 = 1,

the conclusion of the lemma holds with C|α|,s = C̃r for an α such that |α|0 = 1.
We now let α be such that |α|0 ≥ 2 and α′ ∈ Ns0 be such that |α′|0 = |α|0 − 1 and

such that there exists a unique p ∈ {1, . . . , s} for which α′
j = αj for all j ̸= p. Let

c = (c1, . . . , cs) ∈ Ck and gc ∈ Cr−|α|′([0, 1]) be defined by (with obvious convention when
p ∈ {1, s})

gc(c
′) = Dα′

f
(
c1, . . . , cp−1, c

′, cp+1, . . . , cs
)
, c′ ∈ [0, 1].

Note that |α| = |α′|+ αp, and thus Dαf(c) = g(αp)(cp).
We now let {c′j}

r−|α′|
j=1 be r− |α′| distinct elements of the set C

(1)
k such that |cp − c′j | ≤

(r − |α′| − 1)/k for all j ∈ {1, . . . , r − |α′|}, and καj = k(cj − cp) for all j. Note that the
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resulting vector κα is such that κα ∈ Sr−|α′| and let {c(j)}r−|α′|
j=1 ⊂ Ck be such that (with

obvious convention when p ∈ {1, s})

c(j) = (c1, . . . , cp−1, c
′
j , cp+1, . . . , cs), ∀j ∈ {1, . . . , r − |α′|}.

Then, applying (22) with l = r − |α′|, a = αp, c′ = cp, κ = κ(α) and g = gc, it follows
that there exists a set {w(p)

j }r−|α′|
j=1 ∈ Vr−|α′| such that∣∣∣∣∣∣Dαf(c)−

∑r−|α′|
j=1 w

(p)
j Dα′

f(c(j))

k−αp

∣∣∣∣∣∣ =
∣∣∣∣∣∣Dαf(c)−

∑r−|α′|
j=1 w

(p)
j gc(c

′
j)

k−αp

∣∣∣∣∣∣
≤ k−(r−|α′|−αp)∥gc∥r−|α′|C̃r−|α′|

≤ k−(r−|α′|−αp)∥f∥rC̃r−|α′|

= k−(r−|α|)∥f∥rC̃r−|α′|.

(24)

To proceed further for j ∈ {1, . . . , r − |α′|} let

D̂α′
f(c(j)) = k|α

′|
lr,α′∑
q=1

w(j)
q f(c(j,q))

where {w(j)
q }lr,α′

q=1 and {c(j,q)}lr,α′
q=1 verify the conditions of the lemma for c = c(j) and are

such that ∣∣∣D̂α′
f(c(j))−Dα′

f(c(j))
∣∣∣ ≤ k−(r−|α′|)∥f∥rC|α′|,s (25)

for some constant C|α′|,s < ∞. By the induction hypothesis, there exist sets {w(j)
q }lr,α′

q=1

and {c(j,q)}lr,α′
q=1 that verify these conditions.

We now let

D̂α
f (c) = kαp

r−|α′|∑
j=1

w
(p)
j D̂

(α′)
f (c(j))

and remark that

D̂α
f (c) = kαp+|α′|

r−|α′|∑
j=1

w
(p)
j

lr,α′∑
q=1

w(j)
q f(c(j,q))

= k|α|
(r−|α′|)lr,α′∑

j=1

w̃jf(c̃j) = k|α|
lr,α∑
j=1

w̃jf(c̃j)

where the last equality uses the fact that

(r − |α′|)lr,α′ = (r − |α′|)
|α′|0∏
i=1

(r − i+ 1) =

|α|0∏
i=1

(r − i+ 1)
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while the penultimate equality holds for a suitable definition of {w̃j}
lr,α
j=1 and of {c̃j}

lr,α
j=1.

Under the induction hypothesis, each w(j)
q is the product of |α′|0 elements of Wr, and

since each wpj belongs to this set it follows that each w̃j is the product of |α′|0+1 = |α|0
elements of Kr, as required. It is also clear that, under the induction hypothesis and the
conditions on {cj}r−|α′|

j=1 imposed above, the set {c̃j}
lr,α
j=1 verifies the assumption of the

lemma.
Finally, using (24) and (25), we have∣∣∣∣∣∣Dαf(c)−

∑r−|α′|
j=1 wpj D̂

(α′)
f(cj)

k−αp

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Dαf(c)−

∑r−|α′|
j=1 w

(p)
j Dα′

f(c(j))

k−αp

∣∣∣∣∣∣
+

r−|α′|∑
j=1

wpj
k−αp

∣∣∣D̂(α′)
f(cj)

−Dα′
(cj)

∣∣∣
≤k−(r−|α|)∥f∥rC̃r−|α′|

+ kαp

r−|α′|∑
j=1

|wpj |

 k−(r−|α′|)∥f∥rC|α′|,s

≤k−(r−|α|) ∥f∥r
(
C̃r−|α′| + C̃r−|α′|C|α′|,s

)
≤k−(r−|α|) ∥f∥rC|α|,s

with C|α|,s = C̃r−|α′|(1 + C|α′|,s). The proof is complete.

C.2. Proof of Lemma 3

Below we only prove the lemma for Ĩr,k(f), the proof for Îr,k(f) being identical.
Let k ≥ r, c ∈ Ck, and hk,c : [−1/2k, 1/2k]s → R be defined as hk,c(u) := h̄k,c(u) −

E[h̄k,c(Uc)] where

h̄k,c(u) := f(c+ u)−
r−1∑
l=1

∑
|α|=l

D̂α
k f(c)

α!

uα −
s∏
j=1

dk(αj)

 .

Then, Ĩr,k(f) = k−s
∑

c∈Ck
h̄k,c(Uc) and, since E[Ĩr,k(f)] = I(f), we have

Ĩr,k(f)− I(f) = 1

ks

∑
c∈Ck

hk,c(Uc).

To prove the second part of the lemma let k ≥ r, c ∈ Ck and u ∈ (−1/2k, 1/2k)s.
Then, using (2) and with Rf,r as in (3),

f(c+ u) = f(c) +

r−1∑
l=1

∑
|α|=l

Dαf(c)

α!
uα +Rf,r(c, u)
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so that

hk,c(u) =

r−1∑
l=1

∑
|α|=l

Dαf(c)− D̂α
k f(c)

α!

Uαc −
s∏
j=1

dk(αj)


+Rf,r(c, u)− E[Rf,r(c, Uc)].

(26)

To proceed further, remark that for all α we have

uα ≤ (2k)−|α| (27)

and thus
|Rf,r(c, u)| ≤ k−r2−r∥f∥r

∑
α:|α|=r

1

α!
. (28)

In addition, using (27) and noting that dk(j) ≤ k−j for all j ∈ N, we have∣∣∣∣∣∣uα −
s∏
j=1

dk(αj)

∣∣∣∣∣∣ ≤ (2k)−|α| + k−|α| = k−|α|(2−|α| + 1) (29)

while, letting C̄r,s = maxj∈{1,...,r−1}Cj,s with {Cj,s}r−1
j=1 as in Lemma 2,

|Dαf(c)− D̂α
k f(c)| ≤ Cr,s∥f∥rk−(r−|α|). (30)

Therefore, using (26) and (28)-(30), it follows that

|hk,c(u)| ≤ Ĉs,r∥f∥rk−r, ∀c ∈ Ck, ∀u ∈ (−1/2k, 1/2k)s (31)

where

Ĉs,r = 2Cr,s

r−1∑
l=1

∑
|α|=l

1

α!
+ 2−r+1

∑
α:|α|=r

1

α!
.

The proof is complete.

C.3. Proof of Lemma 5

We prove the result for the estimator Îr,k(f), the proof for Ĩr,k(f) being identical.
Recall that, for [a, b] ⊂ [0, 1]s and f : [0, 1]s → R, function f[a,b] : [0, 1]s → R is defined

as
f[a,b](u) := f(a+ u(b− a)), u ∈ [0, 1]s

where the product u(b− a) must be understood as being component-wise.
We assume without loss of generality that the elements of the set {B̃q}

pr,k
q=1 are labelled

so that
´
B̃q∩B̃q′

du = 0 whenever q, q′ ≤ ⌊k/r⌋s. (Recall that the number of B̃q is
pr,k = ⌈k/r⌉s > ⌊k/r⌋s when k/r /∈ N.)
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Then letting
Er,k = [0, 1]s \ ∪⌊k/r⌋s

q=1 B̃q,

it follows that

Îr,k(f)
dist
=
rs

ks

⌊k/r⌋s∑
q=1

Îr,r(fB̃q
) + Îr,k(f1Er,k

).

Since these ⌊k/r⌋s + 1 terms are independent, we have

Var(Îr,k(f)) =
r2s

k2s

⌊k/r⌋s∑
q=1

Var
(
Îr,r(fB̃q

)
)
+Var

(
Îr,k(f1Er,k

)
)
. (32)

We now let q ∈ {1, . . . , ⌊k/r⌋s} and follow the same lines as in (?, Theorem 2) in order
to compute limp→∞Var

(
Îr,r(fB̃q

)
)
.

To this aim let c̃q denote the centre of B̃q so that, using Taylor’s theorem, (2), we have
for all u ∈ [0, 1]s

f(u) =

r∑
l=0

∑
α:|α|=l

Dαf(c̃q)

α!
(u− c̃q)

α +Rf,r(c̃q, u) (33)

where the function Rf,r is such that (Amann et al., 2008, Theorem 5.11, p. 187)

lim
δ↘0

δ−r sup
u,v∈[0,1]s :∥u−v∥≤δ

|Rf,r(u, v − u)| = 0. (34)

Next, let g : [0, 1]s → R be defined by

g(u) :=
∑

α:|α|=r

Dαf(c̃q)

α!
(u− c̃q)

α +Rf,r (c̃q, u) , u ∈ [0, 1]s

and h := f − g. By Theorem 1, Îr,r(hB̃q
) = vq a.s. with vq :=

´
hB̃q

(u)du since h is a
polynomial of degree at most r − 1. Hence, using (33), we have

Îr,r(fB̃q
)− vq = Îr,r(gB̃q

)

=
∑

α:|α|=r

Dαf(c̃q)

α!
Îr,r

(
{(· − c̃q)

α}B̃q

)
+ Îr,r

(
Rf,r(c̃q, ·)|B̃q

)
=
rr

kr

∑
α:|α|=r

Dαf(c̃q)

α!
Îr,r ((· − 1/2)α) + Îr,r (rk,q)

where the function rk,q is defined as rk,q(u) := Rf,r(c̃q, c̃q− r/(2k)+ur/k) for u ∈ [0, 1]s.
This implies that

E
[
Îr,r(gB̃q

)
]
=
rr

kr

∑
α:|α|=r

Dαf(c̃q)

α!

ˆ
[0,1]s

(u− 1/2)αdu+

ˆ
[0,1]s

rk,q(u)du
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and letting

Mα := Îr,r ((· − 1/2)α)−
ˆ
[0,1]s

(u− 1/2)αdu

Rk,q := Îr,r(rk,q)−
ˆ
[0,1]s

rk,q(u)du

for all α such that |α| = r, we have

Var
(
Îr,r(fB̃q

)
)
=E

 rr

kr

∑
α:|α|=r

Dαf(c)

α!
Mα +Rk,q]


2

=
r2r

k2r

∑
α, α′:|α|=|α′|=r

Dαf(c)

α!

Dαf(c)

α′!
E[MαMα′ ] + Var(Rk,q)

+
2rr

kr

∑
α:|α|=r

Dαf(c)

α!
E [MαRk,q] .

The above computations show that

ks+2r

 r2s

k2s

⌊k/r⌋s∑
q=1

Var
(
Îr,r(fB̃q

)
)

=r2r+s
∑

α, α′:|α|=|α′|=r

E[MαMα′ ]

 rs

ks

⌊k/r⌋s∑
q=1

Dαf(c̃q)

α!

Dαf(c̃q)

α′!


+ r2sk2r−s

⌊k/r⌋s∑
q=1

Var(Rk,q)

+ 2rr+2skr−s
⌊k/r⌋s∑
q=1

∑
α:|α|=r

Dαf(c)

α!
E [MαRk,q]

(35)

and we now study in turn each of these three terms.
To study the first term recall that Bk(c) denotes the hypercube of volume k−s and

centre c ∈ Ck, and let {cj}k
s−⌊k/r⌋srs
j=1 be the ks − ⌊k/r⌋srs elements of Ck such that

ˆ
Bk(cj)∩B̃q

du = 0, ∀j ∈ {1, . . . , ks − ⌊k/r⌋srs}, ∀q ∈ {1, . . . , ⌊k/r⌋s}

and such that ks−⌊k/r⌋srs⋃
j=1

Bk(cj)

⋃⌊k/r⌋s⋃
q=1

B̃q

 = [0, 1]s,
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and let α and α′ be such that |α| = |α′| = r. Then, since

lim sup
k→∞

∣∣∣∣∣∣ 1ks
ks−⌊k/r⌋srs∑

j=1

Dαf(cj)D
α′
f(cj)

∣∣∣∣∣∣ ≤ lim sup
k→∞

ks − ⌊k/r⌋srs

ks
∥f∥r

≤ ∥f∥r lim sup
k→∞

(1− (1− r/k)s) = 0

and because the Riemann sum

rs

ks

⌊k/r⌋s∑
q=1

Dαf(c̃q)D
α′
f(c̃q) +

1

ks

ks−⌊k/r⌋srs∑
j=1

Dαf(cj)D
α′
f(cj)

converges to
´
[0,1]s D

αf(u)Dα′
f(u)du as k → ∞, it follows that

lim
k→∞

 rs

ks

⌊k/r⌋s∑
q=1

Dαf(c̃q)D
α′
f(c̃q)

 =

ˆ
[0,1]s

Dαf(u)Dα′
f(u)du. (36)

Next, using (34) we have

lim sup
k→∞

k2r−s
⌊k/r⌋s∑
q=1

Var(Rk,q)

 ≤ r−s × lim sup
k→∞

{
k2r max

1≤q≤⌊k/r⌋s
E[R2

k,q]

}
= 0. (37)

Finally, noting that for some constant C <∞ we have, P-a.s., |Mα| ≤ C for all α such
that |α| = r, it follows that

lim sup
k→∞

∣∣∣∣∣∣kr−s
⌊k/r⌋s∑
q=1

∑
α:|α|=r

Dαf(c̃q)

α!
E [MαRk,q]

∣∣∣∣∣∣
≤ 2Cr−s∥f∥r

 ∑
α:|α|=r

1

α!

 lim sup
k→∞

{
kr max

1≤q≤⌊k/r⌋s
E[|Rk,q|]

}
= 0 (38)

where the equality holds by (34).
Therefore, combining (35)-(38), we obtain

lim
k→∞

ks+2r

 r2s

k2s

⌊k/r⌋s∑
q=1

Var
(
Îr,r(fB̃q

)
)

= r2r+s
∑

α, α′:|α|=|α′|=r

E[MαMα′ ]

α!α′!

ˆ
[0,1]s

Dαf(u)Dα′
f(u)du (39)
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and thus, by (32), to conclude the proof of the lemma it remains to show that

lim
k→∞

{
ks+2rVar

(
Îr,k(f1Er,k

)
)}

= 0. (40)

To this aim let mk := pr,k − ⌊k/r⌋s, {cj}mk
j=1 be such that ∪mk

j=1Bk(cj) = Er,k and note
that

ks

mk
Îr,k(f1Er,k

) =
1

mk

mk∑
j=1

f(cj + Ucj ) + f(cj − Ucj )

2

− 1

mk

mk∑
j=1

⌊(r−1)/2⌋∑
l=1

∑
α: |α|=2l

D̂α
k,f(cj)

α!

Uαcj − s∏
j=1

dk(αj)

 .

Then, using Lemma 3

Var
(
(ks/mk)Îr,k(f1Er,k

)
)
≤ Ĉ2

s,r∥f∥2rm−1
k k−2r

⇔ Var
(
Îr,r(fEr,k

)
≤ mkk

−2s−2rĈ2
s,r∥f∥2r

where Ĉs,r <∞ is as in Lemma 3.
Therefore, noting that

mk = ⌈k/r⌉s − ⌊k/r⌋s ≤ ks
{
(r−1 + k−1)s − (r−1 − k−1)s

}
,

we have

lim sup
k→∞

{
k2r+sVar

(
Îr,r(fEr,k

)
)}
≤ lim sup

k→∞

{
(r−1 + k−1)s − (r−1 − k−1)s

}
Ĉ2
s,r∥f∥2r = 0.

This shows (40) and the proof of the lemma is complete.

C.4. Proof of Lemma 6

Recall that Bk(c) denotes the hyper-cube [c−1/2k, c+1/2k] =
∏s
i=1[ci−1/2k, ci+1/2k],

with centre c and volume k−s. Treating k as fixed from now on, we define for j ∈
N0, Bj,1 = {Bk(c)}c∈Cj,k

, and, for l = 3, 5, . . ., we define Bj,l to be the set of hyper-
cubes Bk/l(c), which are then unions of ls elements in Bj,1. We also treat as fixed
λ ∈ {±(2i+ 1), i ∈ N0}, p = (|λ| − 1) and m ≥ p/2.

Consider a given c ∈ Cm,k. We have [c− λ/2k, c+ λ/2k] ∈ Bm,|λ| and thus there exist
distinct hypercubes {Bc,l}

|λ|s
l=1 in Bm,1 such that

[c− λ/2k, c+ λ/2k] =

|λ|s⋃
l=1

Bc,l.
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For Uc ∼ U([−1/2k, 1/2k]s), ḡ defined as in the statement of the lemma, we have

E[ḡ(c+ λUc)] = ks
ˆ
[−1/2k,1/2k]s

ḡ(c+ λu)du

=
ks

|λ|s

ˆ
[0,1]s∩[c−λ/2k,c+λ/2k]

g(u)du

=
ks

|λ|s

|λ|s∑
l=1

ˆ
[0,1]s∩Bc,l

g(u)du. (41)

To proceed further we remark that (again, recall m ≥ p/2, otherwise this would not
be true): ⋃

c∈Cm,k

{
[0, 1]s ∩ ∪|λ|s

l=1Bc,l

}
= B0,1 ∪ · · · ∪ B0,1︸ ︷︷ ︸

|λ|s times

which, together with (41), yields

1

ks

∑
c∈Cm,k

E[ḡ(c+ λUc)] =
1

|λ|s
∑

c∈Cm,k

|λ|s∑
l=1

ˆ
[0,1]s∩Bc,l

g(u)du

=
∑

B∈B0,1

ˆ
B
g(u)du

=

ˆ
[0,1]s

g(u)du.

The proof is complete.
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