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Estimation in State-Space Models
Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski and Nicolas Chopin

Abstract. Nonlinear non-Gaussian state-space models are ubiquitous
in statistics, econometrics, information engineering and signal process-
ing. Particle methods, also known as Sequential Monte Carlo (SMC)
methods, provide reliable numerical approximations to the associated
state inference problems. However, in most applications, the state-space
model of interest also depends on unknown static parameters that need
to be estimated from the data. In this context, standard particle meth-
ods fail and it is necessary to rely on more sophisticated algorithms.
The aim of this paper is to present a comprehensive review of particle
methods that have been proposed to perform static parameter estima-
tion in state-space models. We discuss the advantages and limitations
of these methods and illustrate their performance on simple models.

Key words and phrases: Bayesian inference, maximum likelihood in-
ference, particle filtering, Sequential Monte Carlo, state-space models.

1. INTRODUCTION

State-space models, also known as hidden Markov
models, are a very popular class of time series mod-
els that have found numerous of applications in
fields as diverse as statistics, ecology, economet-
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rics, engineering and environmental sciences; see
[11, 30, 34, 87]. Formally, a state-space model is
defined by two stochastic processes {Xn}n≥0 and
{Yn}n≥0. The process {Xn}n≥0 is an X -valued la-
tent Markov process of initial density µθ(x) and
Markov transition density fθ(x

′|x), that is,
X0 ∼ µθ(x0),

(1.1)
Xn|(X0 : n−1 = x0 : n−1)∼ fθ(xn|xn−1),

whereas the Y-valued observations {Yn}n≥0 satisfy

Yn|(X0 : n = x0 : n, Y0 : n−1 = y0 : n−1)
(1.2)

∼ gθ(yn|xn),
where gθ(y|x) denotes the conditional marginal den-
sity, θ ∈ Θ the parameter of the model and zi : j
denotes components (zi, zi+1, . . . , zj) of a sequence
{zn}. The spaces X and Y can be Euclidean, but
what follows applies to more general state spaces as
well.
The popularity of state-space models stems from

the fact that they are flexible and easily inter-
pretable. Applications of state-space models include
stochastic volatility models where Xn is the volatil-
ity of an asset and Yn its observed log-return [52],
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biochemical network models where Xn corresponds
to the population of various biochemical species and
Yn are imprecise measurements of the size of a subset
of these species [93], neuroscience models where Xn

is a state vector determining the neuron’s stimulus–
response function and Yn some spike train data [77].
However, nonlinear non-Gaussian state-space mod-
els are also notoriously difficult to fit to data and
it is only recently, thanks to the advent of powerful
simulation techniques, that it has been possible to
fully realize their potential.
To illustrate the complexity of inference in state-

space models, consider first the scenario where the
parameter θ is known. On-line and off-line infer-
ence about the state process {Xn} given the ob-
servations {Yn} is only feasible analytically for sim-
ple models such as the linear Gaussian state-space
model. In nonlinear non-Gaussian scenarios, numer-
ous approximation schemes, such as the Extended
Kalman filter or the Gaussian sum filter [1], have
been proposed over the past fifty years to solve these
so-called optimal filtering and smoothing problems,
but these methods lack rigor and can be unreliable
in practice in terms of accuracy, while determinis-
tic integration methods are difficult to implement.
Markov chain Monte Carlo (MCMC) methods can
obviously be used, but they are impractical for on-
line inference; and even for off-line inference, it can
be difficult to build efficient high-dimensional pro-
posal distributions for such algorithms. For nonlin-
ear non-Gaussian state-space models particle algo-

rithms have emerged as the most successful. Their
widespread popularity is due to the fact that they
are easy to implement, suitable for parallel imple-
mentation [60] and, more importantly, have been
demonstrated in numerous settings to yield more
accurate estimates than the standard alternatives,
for example, see [11, 23, 30, 67].
In most practical situations, the model (1.1)–(1.2)

depends on an unknown parameter vector θ that
needs to be inferred from the data either in an on-
line or off-line manner. In fact inferring the param-
eter θ is often the primary problem of interest; for
example, for biochemical networks, we are not inter-
ested in the population of the species per se, but we
want to infer some chemical rate constants, which
are parameters of the transition prior fθ(x

′|x). Al-
though it is possible to define an extended state
that includes the original state Xn and the param-
eter θ and then apply standard particle methods to
perform parameter inference, it was recognized very

early on that this naive approach is problematic [54]
due to the parameter space not being explored ad-
equately. This has motivated over the past fifteen
years the development of many particle methods for
the parameter estimation problem, but numerically
robust methods have only been proposed recently.
The main objective of this paper is to provide a
comprehensive overview of this literature. This pa-
per thus differs from recent survey papers on parti-
cle methods which all primarily focus on estimating
the state sequence X0 : n or discuss a much wider
range of topics, for example, [32, 55, 58, 65]. We
will present the main features of each method and
comment on their pros and cons. No attempt, how-
ever, is made to discuss the intricacies of the specific
implementations. For this we refer the reader to the
original references.
We have chosen to broadly classify the methods as

follows: Bayesian or Maximum Likelihood (ML) and
whether they are implemented off-line or on-line. In
the Bayesian approach, the unknown parameter is
assigned a prior distribution and the posterior den-
sity of this parameter given the observations is to be
characterized. In the ML approach, the parameter
estimate is the maximizing argument of the likeli-
hood of θ given the data. Both these inference pro-
cedures can be carried out off-line or on-line. Specifi-
cally, in an off-line framework we infer θ using a fixed
observation record y0 : T . In contrast, on-line meth-
ods update the parameter estimate sequentially as
observations {yn}n≥0 become available.
The rest of the paper is organized as follows. In

Section 2 we present the main computational chal-
lenges associated to parameter inference in state-
space models. In Section 3 we review particle meth-
ods for filtering when the model does not include
any unknown parameters, whereas Section 4 is ded-
icated to smoothing. These filtering and smoothing
techniques are at the core of the off-line and on-line
ML parameter procedures described in Section 5.
In Section 6 we discuss particle methods for off-line
and on-line Bayesian parameter inference. The per-
formance of some of these algorithms are illustrated
on simple examples in Section 7. Finally, we sum-
marize the main advantages and drawbacks of the
methods presented and discuss some open problems
in Section 8.

2. COMPUTATIONAL CHALLENGES

ASSOCIATED TO PARAMETER INFERENCE

A key ingredient of ML and Bayesian parame-
ter inference is the likelihood function pθ(y0 : n) of
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θ which satisfies

pθ(y0 : n) =

∫
pθ(x0 : n, y0 : n)dx0 : n,(2.1)

where pθ(x0 : n, y0 : n) denotes the joint density of
(X0 : n, Y0 : n) which is given from equations (1.1)–
(1.2) by

pθ(x0 : n, y0 : n)
(2.2)

= µθ(x0)
n∏

k=1

fθ(xk|xk−1)
n∏

k=0

gθ(yk|xk).

The likelihood function is also the normalizing con-
stant of the posterior density pθ(x0 : n|y0 : n) of the
latent states X0 : n given data y0 : n,

pθ(x0 : n|y0 : n) =
pθ(x0 : n, y0 : n)

pθ(y0 : n)
.(2.3)

This posterior density is itself useful for comput-
ing the score vector ∇θℓn(θ) associated to the log-
likelihood ℓn(θ) = log pθ(y0 : n), as Fisher’s identity
yields

∇θℓn(θ) =

∫
∇θ log pθ(x0 : n, y0 : n)

(2.4)
· pθ(x0 : n|y0 : n)dx0 : n.

The main practical issue associated to parame-
ter inference in nonlinear non-Gaussian state-space
models is that the likelihood function is intractable.
As performing ML parameter inference requires
maximizing this intractable function, it means prac-
tically that it is necessary to obtain reasonably low-
variance Monte Carlo estimates of it, or of the as-
sociated score vector if this maximization is car-
ried out using gradient-based methods. Both tasks
involve approximating high-dimensional integrals,
(2.1) and (2.4), whenever n is large. On-line infer-
ence requires additionally that these integrals be ap-
proximated on the fly, ruling out the applications of
standard computational tools such as MCMC.
Bayesian parameter inference is even more chal-

lenging, as it requires approximating the posterior
density

p(θ|y0 : n) =
pθ(y0 : n)p(θ)∫
pθ(y0 : n)p(θ)dθ

,(2.5)

where p(θ) is the prior density. Here not only
pθ(y0 : n) but also p(y0 : n) =

∫
pθ(y0 : n)p(θ)dθ are in-

tractable and, once more, these integrals must be
approximated on-line if one wants to update the
posterior density sequentially. We will show in this
review that particle methods are particularly well
suited to these integration tasks.

3. FILTERING AND PARTICLE

APPROXIMATIONS

In this section the parameter θ is assumed known
and we focus on the problem of estimating the la-
tent process {Xn}n≥0 sequentially given the obser-
vations. An important by-product of this so-called
filtering task from a parameter estimation viewpoint
is that it provides us with an on-line scheme to com-
pute {pθ(y0 : n)}n≥0. As outlined in Section 2, the
particle approximation of these likelihood terms is
a key ingredient of numerous particle-based param-
eter inference techniques discussed further on.

3.1 Filtering

Filtering usually denotes the task of estimating
recursively in time the sequence of marginal poste-
riors {pθ(xn|y0 : n)}n≥0, known as the filtering den-
sities. However, we will adopt here a more gen-
eral definition and will refer to filtering as the
task of estimating the sequence of joint posteriors
{pθ(x0 : n|y0 : n)}n≥0 recursively in time, but we will
still refer to the marginals {pθ(xn|y0 : n)}n≥0 as the
filtering densities.
It is easy to verify from (2.1) and (2.3) that the

posterior pθ(x0 : n|y0 : n) and the likelihood pθ(y0 : n)
satisfy the following fundamental recursions: for n≥
1,

pθ(x0 : n|y0 : n)
(3.1)

= pθ(x0 : n−1|y0 : n−1)
fθ(xn|xn−1)gθ(yn|xn)

pθ(yn|y0 : n−1)

and

pθ(y0 : n) = pθ(y0 : n−1)pθ(yn|y0 : n−1),(3.2)

where

pθ(yn|y0 : n−1)

=

∫
gθ(yn|xn)fθ(xn|xn−1)(3.3)

· pθ(xn−1|y0 : n−1)dxn−1 : n.

There are essentially two classes of models for
which pθ(x0 : n|y0 : n) and pθ(y0 : n) can be computed
exactly: the class of linear Gaussian models, for
which the above recursions may be implemented us-
ing Kalman techniques, and when X is a finite state
space; see, for example, [11]. For other models these
quantities are typically intractable, that is, the den-
sities in (3.1)–(3.3) cannot be computed exactly.



4 N. KANTAS ET AL.

Algorithm 1 Auxiliary particle filtering

• At time n= 0, for all i ∈ {1, . . . ,N}:
1. Sample Xi

0 ∼ qθ(x0|y0).
2. Compute W

i
1 ∝w0(X

i
0)qθ(y1|Xi

0),
∑N

i=1W
i
1 = 1.

3. Resample X
i
0 ∼

∑N
i=1W

i
1δXi

0
(dx0).

• At time n≥ 1, for all i ∈ {1, . . . ,N}:

1. Sample Xi
n ∼ qθ(xn|yn,X

i
n−1) and set Xi

0 : n← (X
i
0 : n−1,X

i
n).

2. Compute W
i
n+1 ∝wn(X

i
n−1 : n)qθ(yn+1|Xi

n),
∑N

i=1W
i
n+1 = 1.

3. Resample X
i
0 : n ∼

∑N
i=1W

i
n+1δXi

0 : n
(dx0 : n).

3.2 Particle Filtering

3.2.1 Algorithm Particle filtering methods are a
set of simulation-based techniques which approxi-
mate numerically the recursions (3.1) to (3.3). We
focus here on the APF (auxiliary particle filter [78])
for two reasons: first, this is a popular approach, in
particular, in the context of parameter estimation
(see, e.g., Section 6.2.3); second, the APF covers as
special cases a large class of particle algorithms, such
as the bootstrap filter [46] and SISR (Sequential Im-
portance Sampling Resampling [31, 69]).
Let

qθ(xn, yn|xn−1) = qθ(xn|yn, xn−1)qθ(yn|xn−1),(3.4)

where qθ(xn|yn, xn−1) is a probability density func-
tion which is easy to sample from and qθ(yn|xn−1)
is not necessarily required to be a probability den-
sity function but just a nonnegative function of
(xn−1, yn) ∈ X × Y one can evaluate. [For n = 0,
remove the dependency on xn−1, i.e., qθ(x0, y0) =
qθ(x0|y0)qθ(y0).]
The algorithm relies on the following importance

weights:

w0(x0) =
gθ(y0|x0)µθ(x0)

qθ(x0|y0)
,(3.5)

wn(xn−1 : n) =
gθ(yn|xn)fθ(xn|xn−1)

qθ(xn, yn|xn−1)
(3.6)

for n≥ 1.

In order to alleviate the notational burden, we omit
the dependence of the importance weights on θ; we
will do so in the remainder of the paper when no
confusion is possible. The auxiliary particle filter can
be summarized in Algorithm 1 [12, 78].

One recovers the SISR algorithm as a special case
of Algorithm 1 by taking qθ(yn|xn−1) = 1 [or, more
generally, by taking qθ(yn|xn−1) = hθ(yn), some ar-
bitrary positive function]. Further, one recovers
the bootstrap filter by taking qθ(xn|yn, xn−1) =
fθ(xn|xn−1). This is an important special case, as
some complex models are such that one may sample
from fθ(xn|xn−1), but not compute the correspond-
ing density; in such a case the bootstrap filter is
the only implementable algorithm. For models such
that the density fθ(xn|xn−1) is tractable, [78] rec-
ommend selecting qθ(xn|yn, xn−1) = pθ(xn|yn, xn−1)
and qθ(yn|xn−1) = pθ(yn|xn−1) when these quanti-
ties are tractable, and using approximations of these
quantities in scenarios when they are not. The intu-
ition for these recommendations is that this should
make the weight function (3.6) nearly constant.
The computational complexity of Algorithm 1 is
O(N) per time step; in particular, see, for example,
[31], page 201, for a O(N) implementation of the
resampling step. At time n, the approximations of
pθ(x0 : n|y0 : n) and pθ(yn|y0 : n−1) presented earlier in
(2.3) and (3.3), respectively, are given by

p̂θ(dx0 : n|y0 : n) =
N∑

i=1

W i
nδXi

0 : n
(dx0 : n),(3.7)

p̂θ(yn|y0 : n−1) =

(
1

N

N∑

i=1

wn(X
i
n−1 : n)

)

(3.8)

·
(

N∑

i=1

W i
n−1qθ(yn|Xi

n−1)

)
,

whereW i
n ∝wn(X

i
n−1 : n),

∑N
i=1W

i
n = 1 and p̂θ(y0) =

1
N

∑N
i=1w0(X

i
0). In practice, one uses (3.7) mostly
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to obtain approximations of posterior moments

N∑

i=1

W i
nϕ(X

i
0 : n)≈ E[ϕ(X0 : n)|y0 : n],

but expressing particle filtering as a method for
approximating distributions (rather than moments)
turns out to be a more convenient formalization. The
likelihood (3.2) is then estimated through

p̂θ(y0 : n) = p̂θ(y0)

n∏

k=1

p̂θ(yk|y0 : k−1).(3.9)

The resampling procedure is introduced to replicate
particles with high weights and discard particles
with low weights. It serves to focus the computa-
tional efforts on the “promising” regions of the state
space. We have presented above the simplest resam-
pling scheme. Lower variance resampling schemes
have been proposed in [53, 69], as well as more ad-
vanced particle algorithms with better overall per-
formance, for example, the Resample–Move algo-
rithm [44]. For the sake of simplicity, we have also
presented a version of the algorithm that operates
resampling at every iteration n. It may be more effi-
cient to trigger resampling only when a certain crite-
rion regarding the degeneracy of the weights is met;
see [31] and [68], pages 35 and 74.

3.2.2 Convergence results Many sharp convergen-
ce results are available for particle methods [23]. A
selection of these results that gives useful insights on
the difficulties of estimating static parameters with
particle methods is presented below.
Under minor regularity assumptions, one can

show that for any n ≥ 0, N > 1 and any bounded
test function ϕn :X n+1 → [−1,1], there exist con-
stants Aθ,n,p <∞ such that for any p≥ 1

E

[∣∣∣∣
∫

ϕn(x0 : n)

· {p̂θ(dx0 : n|y0 : n)− pθ(dx0 : n|y0 : n)}
∣∣∣∣
p]

(3.10)

≤ Aθ,n,p

Np/2
,

where the expectation is with respect to the law
of the particle filter. In addition, for more general
classes of functions, we can obtain for any fixed n
a Central Limit Theorem (CLT) as N →+∞ ([17]
and [23], Proposition 9.4.2). Such results are reassur-
ing but weak, as they reveal nothing regarding long-
time behavior. For instance, without further restric-
tions on the class of functions ϕn and the state-space

model, Aθ,n,p typically grows exponentially with n.
This is intuitively not surprising, as the dimension
of the target density pθ(x0 : n|y0 : n) is increasing with
n. Moreover, the successive resampling steps lead to
a depletion of the particle population; pθ(x0 :m|y0 : n)
will eventually be approximated by a single unique
particle as n −m increases. This is referred to as
the degeneracy problem in the literature ([11], Fig-
ure 8.4, page 282). This is a fundamental weakness
of particle methods: given a fixed number of parti-
cles N , it is impossible to approximate pθ(x0 : n|y0 : n)
accurately when n is large enough.
Fortunately, it is also possible to establish much

more positive results. Many state-space models pos-
sess the so-called exponential forgetting property
([23], Chapter 4). This property states that for
any x0, x

′
0 ∈ X and data y0 : n, there exist constants

Bθ <∞ and λ ∈ [0,1) such that

‖pθ(dxn|y1 : n, x0)− pθ(dxn|y1 : n, x′0)‖TV
(3.11)

≤Bθλ
n,

where ‖ · ‖TV is the total variation distance, that is,
the optimal filter forgets exponentially fast its initial
condition. This property is typically satisfied when
the signal process {Xn}n≥0 is a uniformly ergodic
Markov chain and the observations {Yn}n≥0 are not
too informative ([23], Chapter 4), or when {Yn}n≥0

are informative enough that it effectively restricts
the hidden state to a bounded region around it [76].
Weaker conditions can be found in [29, 90]. When
exponential forgetting holds, it is possible to estab-
lish much stronger uniform-in-time convergence re-
sults for functions ϕn that depend only on recent

states. Specifically, for an integer L > 0 and any
bounded test function ΨL :XL→ [−1,1], there ex-
ist constants Cθ,L,p <∞ such that for any p ≥ 1,
n≥ L− 1,

E

[∣∣∣∣
∫

XL

Ψ(xn−L+1 : n)∆θ,n(dxn−L+1 : n)

∣∣∣∣
p]

(3.12)

≤ Cθ,L,p

Np/2
,

where

∆θ,n(dxn−L+1 : n)

=

∫

x0 : n−L∈Xn−L+1

{p̂θ(dx0 : n|y0 : n)(3.13)

− pθ(dx0 : n|y0 : n)}.
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This result explains why particle filtering is an
effective computational tool in many applications
such as tracking, where one is only interested in
pθ(xn−L+1 : n|y0 : n), as the approximation error is
uniformly bounded over time.
Similar positive results hold for p̂θ(y0 : n). This es-

timate is unbiased for any N ≥ 1 ([23], Theorem
7.4.2, page 239), and, under assumption (3.11), the
relative variance of the likelihood estimate p̂θ(y0 : n),
that is the variance of the ratio p̂θ(y0 : n)/pθ(y0 : n),
is bounded above by Dθn/N [14, 90]. This is a great
improvement over the exponential increase with n
that holds for standard importance sampling tech-
niques; see, for instance, [32]. However, the con-
stants Cθ,L,p and Dθ are typically exponential in nx,
the dimension of the state vector Xn. We note that
nonstandard particle methods designed to minimize
the variance of the estimate of pθ(y0 : n) have recently
been proposed [92].
Finally, we recall the theoretical properties of par-

ticles estimates of the following so-called smoothed
additive functional ([11], Section 8.3 and [74]),

Sθn =

∫

Xn+1

{
n∑

k=1

sk(xk−1 : k)

}

(3.14)
· pθ(x0 : n|y0 : n)dx0 : n.

Such quantities are critical when implementing ML
parameter estimation procedures; see Section 5. If
we substitute p̂θ(dx0 : n|y0 : n) to pθ(x0 : n|y0 : n)dx0 : n
to approximate Sθn, then we obtain an estimate Ŝθn
which can be computed recursively in time; see, for
example, [11], Section 8.3. For the remainder of this
paper we will refer to this approximation as the path
space approximation. Even when (3.11) holds, there
exists 0<Fθ,Gθ <∞ such that the asymptotic bias
[23] and variance [81] satisfy

|E(Ŝθn)−Sθn| ≤ Fθ
n

N
, V(Ŝθn)≥Gθ

n2

N
(3.15)

for sp :X 2→ [−1,1] where the variance is w.r.t. the
law of the particle filter. The fact that the variance
grows at least quadratically in time follows from the
degeneracy problem and makes Ŝθn unsuitable for
some on-line likelihood based parameter estimation
schemes discussed in Section 5.

4. SMOOTHING

In this section the parameter θ is still assumed
known and we focus on smoothing, that is, the prob-
lem of estimating the latent variables X0 : T given a

fixed batch of observations y0 : T . Smoothing for a
fixed parameter θ is at the core of the two main par-
ticle ML parameter inference techniques described
in Section 5, as these procedures require computing
smoothed additive functionals of the form (3.14).
Clearly, one could unfold the recursion (3.1) from
n = 0 to n = T to obtain pθ(x0 : T |y0 : T ). However,
as pointed out in the previous section, the path
space approximation (3.7) suffers from the degener-
acy problem and yields potentially high variance es-
timates of (3.14) as (3.15) holds. This has motivated
the development of alternative particle approaches
to approximate pθ(x0 : T |y0 : T ) and its marginals.

4.1 Fixed-lag Approximation

For state-space models with “good” forgetting
properties [e.g., (3.11)], we have

pθ(x0 : n|y0 : T )≈ pθ(x0 : n|y0 : (n+L)∧T )(4.1)

for L large enough, that is, observations collected
at times k > n + L do not bring any significant
additional information about X0 : n. In particular,
when having to evaluate SθT of the form (3.14)
we can approximate the expectation of sn(xn−1 : n)
w.r.t. pθ(xn−1 : n|y0 : T ) by its expectation w.r.t.
pθ(xn−1 : n|y0 : (n+L)∧T ).
Algorithmically, a particle implementation of (4.1)

means not resampling the components Xi
0 : n of the

particles Xi
0 : k obtained by particle filtering at times

k > n + L. This was first suggested in [56] and
used in [11], Section 8.3, and [74]. This algorithm is
simple to implement, but the main practical prob-
lem is the choice of L. If taken too small, then
pθ(x0 : n|y0 : (n+L)∧T )) is a poor approximation of
pθ(x0 : n|y0 : T ). If taken too large, the degeneracy re-
mains substantial. Moreover, even as N →∞, this
particle approximation will have a nonvanishing bias
since pθ(x0 : n|y0 : T ) 6= pθ(x0 : n|y0 : (n+L)∧T ).

4.2 Forward–Backward Smoothing

4.2.1 Principle The joint smoothing density
pθ(x0 : T |y0 : T ) can be expressed as a function of the
filtering densities {pθ(xn|y0 : n)}Tn=0 using the follow-
ing key decomposition:

pθ(x0 : T |y0 : T )
(4.2)

= pθ(xT |y0 : T )
T−1∏

n=0

pθ(xn|y0 : n, xn+1),
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where pθ(xn|y0 : n, xn+1) is a backward (in time)
Markov transition density given by

pθ(xn|y0 : n, xn+1) =
fθ(xn+1|xn)pθ(xn|y0 : n)

pθ(xn+1|y0 : n)
.(4.3)

A backward in time recursion for {pθ(xn|y0 : T )}Tn=0

follows by integrating out x0 : n−1 and xn+1 : T in
(4.2) while applying (4.3),

pθ(xn|y0 : T )
= pθ(xn|y0 : n)(4.4)

·
∫

fθ(xn+1|xn)pθ(xn+1|y0 : T )
pθ(xn+1|y0 : n)

dxn+1.

This is referred to as forward–backward smooth-
ing, as a forward pass yields {pθ(xn|y0 : n)}Tn=0 which
can be used in a backward pass to obtain {pθ(xn|
y0 : T )}Tn=0. Combined to {pθ(xn|y0 : n, xn+1)}T−1

n=0 ,
this allows us to obtain SθT . An alternative to
these forward–backward procedures is the general-
ized two-filter formula [6].

4.2.2 Particle implementation The decomposi-
tion (4.2) suggests that it is possible to sample ap-
proximately from pθ(x0 : T |y0 : T ) by running a par-
ticle filter from time n = 0 to T , storing the ap-
proximate filtering distributions {p̂θ(dxn|y0 : n)}Tn=0,
that is, the marginals of (3.7), then sampling XT ∼
p̂θ(dxT |y0 : T ) and for n = T − 1, T − 2, . . . ,0 sam-
pling Xn ∼ p̂θ(dxn|y0 : n,Xn+1) where this distribu-
tion is obtained by substituting p̂θ(dxn|y0 : n) for
pθ(dxn|y0 : n) in (4.3):

p̂θ(dxn|y0 : n,Xn+1)
(4.5)

=

∑N
i=1W

i
nfθ(Xn+1|Xi

n)δXi
n
(dxn)

∑N
i=1W

i
nfθ(Xn+1|Xi

n)
.

This Forward Filtering Backward Sampling (FF-
BSa) procedure was proposed in [45]. It requires
O(N(T + 1)) operations to generate a single path
X0 : T , as sampling from (4.5) costs O(N) oper-
ations. However, as noted in [28], it is possible
to sample using rejection from an alternative ap-
proximation of pθ(xn|y0 : n,Xn+1) in O(1) opera-
tions if we use an unweighted particle approxima-
tion of pθ(xn|y0 : n) in (4.3) and if the transition
prior satisfies fθ(x

′|x) ≤ C <∞. Hence, with this
approach, sampling a path X0 : T costs, on average,
only O(T + 1) operations. A related rejection tech-
nique was proposed in [48]. In practice, one may gen-
erate N such trajectories to compute Monte Carlo

averages that approximate smoothing expectations
E[ϕ(X0 : T )|y0 : T ]. In that scenario, the first approach
costs O(N2(T +1)), while the second approach costs
O(N(T + 1)) on average. In some applications, the
rejection sampling procedure can be computation-
ally costly as the acceptance probability can be very
small for some particles; see, for example, Section 4.3
in [75] for empirical results. This has motivated the
development of hybrid procedures combining FF-
BSa and rejection sampling [85].
We can also directly approximate the marginals
{pθ(xn|y0 : T )}Tn=0. Assuming we have an approxima-

tion p̄θ(dxn+1|y0 : T ) =
∑N

i=1W
i
n+1|T δXi

n+1
(dxn+1)

where W i
T |T =W i

T , then by using (4.4) and (4.5), we

obtain the approximation p̄θ(dxn|y0 : T ) =∑N
i=1W

i
n|T δXi

n
(dxn) with

W i
n|T =W i

n ×
N∑

j=1

W j
n+1|T fθ(X

j
n+1|Xi

n)
∑N

l=1W
l
nfθ(X

j
n+1|X l

n)
.(4.6)

This Forward Filtering Backward Smoothing
(FFBSm, where “m” stands for “marginal”) pro-
cedure requires O(N2(T +1)) operations to approx-
imate {pθ(xn|y0 : T )}Tn=0 instead of O(N(T +1)) for
the path space and fixed-lag methods. However,
this high computational complexity of forward–
backward estimates can be reduced using fast com-
putational methods [57]. Particle approximations
of generalized two-filter smoothing procedures have
also been proposed in [6, 38].

4.3 Forward Smoothing

4.3.1 Principle Whenever we are interested in
computing the sequence {Sθn}n≥0 recursively in
time, the forward–backward procedure described
above is cumbersome, as it requires performing a
new backward pass with n+ 1 steps at time n. An
important but not well-known result is that it is pos-
sible to implement exactly the forward–backward
procedure using only a forward procedure. This re-
sult is at the core of [34], but its exposition relies on
tools which are nonstandard for statisticians. We fol-
low here the simpler derivation proposed in [24, 25]
which simply consists of rewriting (3.14) as

Sθn =

∫
V θ
n (xn)pθ(xn|y0 : n)dxn,(4.7)

where

V θ
n (xn) :=

∫ { n∑

k=1

sk(xk−1 : k)

}

(4.8)
· pθ(x0 : n−1|y0 : n−1, xn)dx0 : n−1.
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It can be easily checked using (4.2) that V θ
n (xn) sat-

isfies the following forward recursion for n≥ 0:

V θ
n+1(xn+1) =

∫
{V θ

n (xn) + sn+1(xn : n+1)}
(4.9)

· pθ(xn|y0 : n, xn+1)dxn,

with V θ
0 (x0) = 0 and where pθ(xn|y0 : n, xn+1) is

given by (4.3). In practice, we shall approximate
the function V θ

n on a certain grid of values xn, as
explained in the next section.

4.3.2 Particle implementation We can easily pro-
vide a particle approximation of the forward smooth-
ing recursion. Assume you have access to approxi-
mations {V̂ θ

n (X
i
n)} of {V θ

n (X
i
n)} at time n, where

p̂θ(dxn|y0 : n) =
∑N

i=1W
i
nδXi

n
(dxn). Then when up-

dating our particle filter to obtain p̂θ(dxn+1|y0 : n+1) =∑N
i=1W

i
n+1δXi

n+1
(dxn+1), we can directly compute

the particle approximations {V̂ θ
n+1(X

i
n+1)} by plug-

ging (4.5) and p̂θ(dxn|y0 : n) in (4.7)–(4.9) to obtain

V̂ θ
n+1(X

i
n+1) =

(
N∑

j=1

W j
nfθ(X

i
n+1|Xj

n)

· {V̂ θ
n (X

j
n) + sn+1(X

j
n,X

i
n+1)}

)
(4.10)

/( N∑

j=1

W j
nfθ(X

i
n+1|Xj

n)

)
,

Ŝθn =
N∑

i=1

W i
nV̂

θ
n (X

i
n).(4.11)

This approach requires O(N2(n + 1)) operations

to compute Ŝθn at iteration n. A variation over
this idea recently proposed in [75] and [88] consists

of approximating V θ
n+1(X

i
n+1) by sampling Xi,j

n ∼
p̂θ(dxn|y0 : n,Xi

n+1) for j = 1, . . . ,K to obtain

V̂ θ
n+1(X

i
n+1)

(4.12)

=
1

K

K∑

j=1

{V̂ θ
n (X

i,j
n ) + sn+1(X

i,j
n ,Xi

n+1)}.

When it is possible to sample from p̂θ(dxn|y0 : n,Xi
n+1)

in O(1) operations using rejection sampling, (4.12)
provides a Monte Carlo approximation to (4.10) of
overall complexity O(NK).

4.4 Convergence Results for Particle Smoothing

Empirically, for a fixed number of particles, these
smoothing procedures perform significantly much
better than the naive path space approach to
smoothing (i.e., simply propagating forward the
complete state trajectory within a particle filter-
ing algorithm). Many theoretical results validating
these empirical findings have been established un-
der assumption (3.11) and additional regularity as-
sumptions. The particle estimate of Sθn based on
the fixed-lag approximation (4.1) has an asymptotic
variance in n/N with a nonvanishing (as N →∞)
bias proportional to n and a constant decreasing
exponentially fast with L [74]. In [24, 25, 28], it is
shown that when (3.11) holds, there exists 0 < Fθ,
Hθ <∞ such that the asymptotic bias and variance

of the particle estimate of Sθn computed using the
forward–backward procedures satisfy

|E(Ŝθn)−Sθn| ≤ Fθ
n

N
, V(Ŝθn)≤Hθ

n

N
.(4.13)

The bias for the path space and forward–backward
estimators of Sθn are actually equal [24]. Recently,
it has also been established in [75] that, under sim-
ilar regularity assumptions, the estimate obtained
through (4.12) also admits an asymptotic variance
in n/N whenever K ≥ 2.

5. MAXIMUM LIKELIHOOD PARAMETER

ESTIMATION

We describe in this section how the particle fil-
tering and smoothing techniques introduced in Sec-
tions 3 and 4 can be used to implement maximum
likelihood parameter estimation techniques.

5.1 Off-Line Methods

We recall that ℓT (θ) denote the log-likelihood
function associated to data y0 : T introduced in Sec-
tion 2. So as to maximize ℓT (θ), one can rely on
standard nonlinear optimization methods, for ex-
ample, using quasi-Newton or gradient-ascent tech-
niques. We will limit ourselves to these approaches
even if they are sensitive to initialization and might
get trapped in a local maximum.

5.1.1 Likelihood function evaluation We have seen
in Section 3 that ℓT (θ) can be approximated us-
ing particle methods, for any fixed θ ∈Θ. One may
wish then to treat ML estimation as an optimization
problem using Monte Carlo evaluations of ℓT (θ).
When optimizing a function calculated with a Monte
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Carlo error, a popular strategy is to make the evalu-
ated function continuous by using common random
numbers over different evaluations to ease the opti-
mization. Unfortunately, this strategy is not helpful
in the particle context. Indeed, in the resampling

stage, particles {Xi
n}Ni=1 are resampled according to

the distribution
∑N

i=1W
i
n+1δXi

n
(dxn) which admits

a piecewise constant and hence discontinuous cumu-
lative distribution function (c.d.f.). A small change
in θ will cause a small change in the importance

weights {W i
n+1}Ni=1 and this will potentially gener-

ate a different set of resampled particles. As a result,
the log-likelihood function estimate will not be con-
tinuous in θ even if ℓT (θ) is continuous.
To bypass this problem, an importance sampling

method was introduced in [49], but it has compu-
tational complexity O(N2(T + 1)) and only pro-
vides low variance estimates in the neighborhood
of a suitably preselected parameter value. In the
restricted scenario where X ⊆ R, an elegant solu-
tion to the discontinuity problem was proposed in
[72]. The method uses common random numbers
and introduces a “continuous” version of the re-
sampling step by finding a permutation σ such that

X
σ(1)
n ≤ X

σ(2)
n ≤ · · · ≤ X

σ(N)
n and defining a piece-

wise linear approximation of the resulting c.d.f. from
which particles are resampled, that is,

Fn(x) =

(
k−1∑

i=1

W
σ(i)
n+1

)
+W

σ(k)
n+1

x−X
σ(k−1)
n

X
σ(k)
n −X

σ(k−1)
n

,

X
σ(k−1)
n ≤ x≤X

σ(k)
n .

This method requires O(N(T +1) logN) operations
due to the sorting of the particles, but the result-
ing continuous estimate of ℓT (θ) can be maximized
using standard optimization techniques. Extensions
to the multivariate case where X ⊆R

nx (with nx >
1) have been proposed in [59] and [22]. However,
the scheme [59] does not guarantee continuity of
the likelihood function estimate and only provides
log-likelihood estimates which are positively corre-
lated for neighboring values in the parameter space,
whereas the scheme in [22] has O(N2) computa-
tional complexity and relies on a nonstandard par-
ticle filtering scheme.
When θ is high dimensional, the optimization over

the parameter space may be made more efficient if
provided with estimates of the gradient. This is ex-
ploited by the algorithms described in the forthcom-
ing sections.

5.1.2 Gradient ascent The log-likelihood ℓT (θ)
may be maximized with the following steepest as-
cent algorithm: at iteration k+1

θk+1 = θk + γk+1∇θℓT (θ)|θ=θk ,(5.1)

where ∇θℓT (θ)|θ=θk is the gradient of ℓT (θ) w.r.t. θ
evaluated at θ = θk and {γk} is a sequence of positive
real numbers, called the step-size sequence. Typi-
cally, γk is determined adaptively at iteration k us-
ing a line search or the popular Barzilai–Borwein al-
ternative. Both schemes guarantee convergence to a
local maximum under weak regularity assumptions;
see [95] for a survey.
The score vector ∇θℓT (θ) can be computed by us-

ing Fisher’s identity given in (2.4). Given (2.2), it is
easy to check that the score is of the form (3.14). An
alternative to Fisher’s identity to compute the score
is presented in [20], but this also requires computing
an expectation of the form (3.14).
These score estimation methods are not appli-

cable in complex scenarios where it is possible to
sample from fθ(x

′|x), but the analytical expres-
sion of this transition kernel is unavailable [51]. For
those models, a naive approach is to use a finite
difference estimate of the gradient; however, this
might generate too high a variance estimate. An
interesting alternative presented in [50], under the
name of iterated filtering, consists of deriving an ap-
proximation of ∇θℓT (θ)|θ=θk based on the posterior
moments {E(ϑn|y0 : n),V(ϑn|y0 : n)}Tn=0 of an artifi-
cial state-space model with latent Markov process
{Zn = (Xn, ϑn)}Tn=0,

ϑn+1 = ϑn + εn+1, Xn+1 ∼ fϑn+1(·|xn),(5.2)

and observed process Yn+1 ∼ gϑn+1(·|xn+1). Here
{εn}n≥1 is a zero-mean white noise sequence with
variance σ2Σ, E(ϑn+1|ϑn) = ϑn, E(ϑ0) = θk, V(ϑ0) =
τ2Σ. It is shown in [50] that this approximation im-
proves as σ2, τ2→ 0 and σ2/τ2→ 0. Clearly, as the
variance σ2 of the artificial dynamic noise {εn} on
the θ-component decreases, it will be necessary to
use more particles to approximate ∇θℓT (θ)|θ=θk as
the mixing properties of the artificial dynamic model
deteriorates.

5.1.3 Expectation–Maximization Gradient ascent
algorithms can be numerically unstable as they re-
quire to scale carefully the components of the score
vector. The Expectation Maximization (EM) algo-
rithm is a very popular alternative procedure for
maximizing ℓT (θ) [27]. At iteration k+1, we set

θk+1 = argmax
θ

Q(θk, θ),(5.3)
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where

Q(θk, θ) =

∫
log pθ(x0 : T , y0 : T )

(5.4)
· pθk(x0 : T |y0 : T )dx0 : T .

The sequence {ℓT (θk)}k≥0 generated by this algo-
rithm is nondecreasing. The EM is usually favored
by practitioners whenever it is applicable, as it is
numerically more stable than gradient techniques.
In terms of implementation, the EM consists of

computing a ns-dimensional summary statistic of
the form (3.14) when pθ(x0 : T , y0 : T ) belongs to the
exponential family, and the maximizing argument
of Q(θk, θ) can be characterized explicitly through a
suitable function Λ :Rns→Θ, that is,

θk+1 =Λ(T−1SθkT ).(5.5)

5.1.4 Discussion of particle implementations The
path space approximation (3.7) can be used to ap-
proximate the score (2.4) and the summary statis-
tics of the EM algorithm at the computational cost
of O(N(T + 1)); see [11], Section 8.3, and [74, 81].
Experimentally, the variance of the associated esti-
mates increases typically quadratically with T [81].
To obtain estimates whose variance increases only
typically linearly with T with similar computational
cost, one can use the fixed-lag approximation pre-
sented in Section 4.1 or a more recent alternative
where the path space method is used, but the addi-
tive functional of interest, which is a sum of terms
over n= 0, . . . , T , is approximated by a sum of sim-
ilar terms which are now exponentially weighted
w.r.t. n [73]. These methods introduce a nonvanish-
ing asymptotic bias difficult to quantify but appear
to perform well in practice.
To improve over the path space method without

introducing any such asymptotic bias, the FFBSm
and forward smoothing discussed in Sections 4.2 and
4.3 as well as the generalized two-filter smoother
have been used [6, 24, 25, 81, 82]. Experimen-
tally, the variance of the associated estimates in-
creases typically linearly with T [81] in agreement
with the theoretical results in [24, 25, 28]. However,
the computational complexity of these techniques
is O(N2(T + 1)). For a fixed computational com-
plexity of order O(N2(T + 1)), an informal com-
parison of the performance of the path space esti-
mate using N2 particles and the forward–backward
estimate using N particles suggest that both esti-
mates admit a Mean Square Error (MSE) of order

O(N−2(T + 1)), but the MSE of the path space es-
timate is variance dominated, whereas the forward–
backward estimates are bias dominated. This can be
understood by decomposing the MSE as the sum of
the squared bias and the variance and then substi-
tuting appropriately for N2 particles in (3.15) for
the path space method and for N particles in (4.13)
for the forward–backward estimates. We confirm ex-
perimentally this fact in Section 7.1.
These experimental results suggest that these par-

ticle smoothing estimates might thus be of limited
interest compared to the path based estimates for
ML parameter inference when accounting for com-
putational complexity. However, this comparison ig-
nores that the O(N2) computational complexity
of these particle smoothing estimates can be re-
duced to O(N) by sampling approximately from
pθ(x0 : T |y0 : T ) with the FFBSa procedure in Sec-
tion 4.2 or by using fast computational methods [57].
Related O(N) approaches have been developed for
generalized two-filter smoothing [7, 38]. When ap-
plicable, these fast computational methods should
be favored.

5.2 On-Line Methods

For a long observation sequence the computation
of the gradient of ℓT (θ) can be prohibitive, and
moreover, we might have real-time constraints. An
alternative would be a recursive procedure in which
the data is run through once sequentially. If θn is
the estimate of the model parameter after the first
n observations, a recursive method would update
the estimate to θn+1 after receiving the new data
yn. Several on-line variants of the ML procedures
described earlier are now presented. For these meth-
ods to be justified, it is crucial for the observation
process to be ergodic for the limiting averaged like-
lihood function ℓT (θ)/T to have a well-defined limit
ℓ(θ) as T →+∞.

5.2.1 On-line gradient ascent An alternative to
gradient ascent is the following parameter update
scheme at time n≥ 0:

θn+1 = θn + γn+1∇ logpθ(yn|y0 : n−1)|θ=θn ,(5.6)

where the positive nonincreasing step-size sequence
{γn}n≥1 satisfies

∑
n γn =∞ and

∑
n γ

2
n <∞ [5, 64],

for example, γn = n−α for 0.5< α≤ 1. Upon receiv-
ing yn, the parameter estimate is updated in the
direction of ascent of the conditional density of this
new observation. In other words, one recognizes in
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(5.6) the update of the gradient ascent algorithm
(5.1), except that the partial (up to time n) like-
lihood is used. The algorithm in the present form
is, however, not suitable for on-line implementation,
because evaluating the gradient of log pθ(yn|y0 : n−1)
at the current parameter estimate requires comput-
ing the filter from time 0 to time n using the current
parameter value θn.
An algorithm bypassing this problem has been

proposed in the literature for a finite state-space la-
tent process in [64]. It relies on the following update
scheme:

θn+1 = θn + γn+1∇ logpθ0 : n(yn|y0 : n−1),(5.7)

where ∇ logpθ0 : n(yn|y0 : n−1) is defined as

∇ log pθ0 : n(yn|y0 : n−1)
(5.8)

=∇ logpθ0 : n(y0 : n)−∇ log pθ0 : n−1(y0 : n−1),

with the notation ∇ log pθ0 : n(y0 : n) corresponding to
a “time-varying” score which is computed with a
filter using the parameter θp at time p. The update
rule (5.7) can be thought of as an approximation to
the update rule (5.6). If we use Fisher’s identity to
compute this “time-varying” score, then we have for
1≤ p≤ n,

sp(xp−1 : p) =∇ log fθ(xp|xp−1)|θ=θp
(5.9)

+∇ log gθ(yp|xp)|θ=θp .

The asymptotic properties of the recursion (5.7)
(i.e., the behavior of θn in the limit as n goes to infin-
ity) has been studied in [64] for a finite state-space
HMM. It is shown that under regularity conditions
this algorithm converges toward a local maximum
of the average log-likelihood ℓ(θ), ℓ(θ) being max-
imized at the “true” parameter value under iden-
tifiability assumptions. Similar results hold for the
recursion (5.6).

5.2.2 On-line Expectation–Maximization It is also
possible to propose an on-line version of the EM
algorithm. This was originally proposed for finite
state-space and linear Gaussian models in [35, 42];
see [9] for a detailed presentation in the finite state-
space case. Assume that pθ(x0 : n, y0 : n) is in the
exponential family. In the on-line implementation
of EM, running averages of the sufficient statistics
n−1Sθn are computed [8, 35]. Let {θp}0≤p≤n be the
sequence of parameter estimates of the on-line EM

algorithm computed sequentially based on y0 : n−1.
When yn is received, we compute

Sθ0 : n = γn+1

∫
sn(xn−1 : n)

· pθ0 : n(xn−1, xn|y0 : n)dxn−1 : n
(5.10)

+ (1− γn+1)

n∑

k=0

(
n∏

i=k+2

(1− γi)

)
γk+1

·
∫

sk(xk−1 : k)pθ0 : k
(xk−1 : k|y0 : k)dxk−1 : k,

where {γn}n≥1 needs to satisfy
∑

n γn = ∞ and∑
n γ

2
n <∞. Then the standard maximization step

(5.5) is used as in the batch version

θn+1 =Λ(Sθ0 : n).(5.11)

The recursive calculation of Sθ0 : n is achieved by set-
ting Vθ0 = 0, then computing

Vθ0 : n(xn) =

∫
{γn+1sn(xn−1, xn)

+ (1− γn+1)Vθ0 : n−1(xn−1)}(5.12)

· pθ0 : n(xn−1|y0 : n−1, xn)dxn−1

and, finally,

Sθ0 : n =

∫
Vθ0 : n(xn)pθ0 : n(xn|y0 : n)dxn.(5.13)

Again, the subscript θ0 : n on pθ0 : n(x0 : n|y0 : n) indi-
cates that the posterior density is being computed
sequentially using the parameter θp at time p ≤ n.
The filtering density then is advanced from time
n − 1 to time n by using fθn(xn|xn−1), gθn(yn|xn)
and pθn(yn|y0 : n) in the fraction of the r.h.s. of (3.1).
Whereas the convergence of the EM algorithm to-
ward a local maximum of the average log-likelihood
ℓ(θ) has been established for i.i.d. data [10], its con-
vergence for state-space models remains an open
problem despite empirical evidence it does [8, 9, 24].
This has motivated the development of modified ver-
sions of the on-line EM algorithm for which conver-
gence results are easier to establish [4, 62]. However,
the on-line EM presented here usually performs em-
pirically better [63].

5.2.3 Discussion of particle implementations Both
the on-line gradient and EM procedures require
approximating terms (5.8) and (5.10) of the form
(3.14), except that the expectation is now w.r.t. the
posterior density pθ0 : n(x0 : n|y0 : n) which is updated
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using the parameter θp at time p≤ n. In this on-line
framework, only the path space, fixed-lag smoothing
and forward smoothing estimates are applicable; the
fixed-lag approximation is applicable but introduces
a nonvanishing bias. For the on-line EM algorithm,
similarly to the batch case discussed in Section 5.1.4,
the benefits of using the forward smoothing estimate
[24] compared to the path space estimate [8] with
N2 particles are rather limited, as experimentally
demonstrated in Section 7.1. However, for the on-
line gradient ascent algorithm, the gradient term
∇ logpθ0 : n(yn|y0 : n−1) in (5.7) is a difference be-
tween two score-like vectors (5.8) and the behavior
of its particle estimates differs significantly from its
EM counterpart. Indeed, the variance of the particle
path estimate of ∇ logpθ0 : n(yn|y0 : n−1) increases lin-
early with n, yielding an unreliable gradient ascent
procedure, whereas the particle forward smooth-
ing estimate has a variance uniformly bounded in
time under appropriate regularity assumptions and
yields a stable gradient ascent procedure [26]. Hence,
the use of a procedure of computational complexity
O(N2) is clearly justified in this context. The very
recent paper [88] reports that the computationally
cheaper estimate (4.12) appears to exhibit similar
properties whenever K ≥ 2 and might prove an at-
tractive alternative.

6. BAYESIAN PARAMETER ESTIMATION

In the Bayesian setting, we assign a suitable
prior density p(θ) for θ and inference is based on
the joint posterior density p(x0 : T , θ|y0 : T ) in the
off-line case or the sequence of posterior densities
{p(x0 : n, θ|y0 : n)}n≥0 in the on-line case.

6.1 Off-Line Methods

6.1.1 Particle Markov chain Monte Carlo meth-

ods Using MCMC is a standard approach to ap-
proximate p(x0 : T , θ|y0 : T ). Unfortunately, designing
efficient MCMC sampling algorithms for nonlin-
ear non-Gaussian state-space models is a difficult
task: one-variable-at-a-time Gibbs sampling typi-
cally mixes very poorly for such models, whereas
blocking strategies that have been proposed in the
literature are typically very model-dependent; see,
for instance, [52].
Particle MCMC are a class of MCMC tech-

niques which rely on particle methods to build ef-
ficient high-dimensional proposal distributions in a
generic manner [3]. We limit ourselves here to the

presentation of the Particle Marginal Metropolis–
Hastings (PMMH) sampler, which is an approxima-
tion of an ideal MMH sampler for sampling from
p(x0 : T , θ|y0 : T ) which would utilize the following
proposal density:

q((x′0 : T , θ
′)|(x0 : T , θ))

(6.1)
= q(θ′|θ)pθ′(x′0 : T |y0 : T ),

where q(θ′|θ) is a proposal density to obtain a can-
didate θ′ when we are at location θ. The acceptance
probability of this sampler is

1∧ pθ′(y0 : T )p(θ
′)q(θ|θ′)

pθ(y0 : T )p(θ)q(θ′|θ)
.(6.2)

Unfortunately, this ideal algorithm cannot be imple-
mented, as we cannot sample exactly from pθ′(x0 : T |
y0 : T ) and we cannot compute the likelihood terms
pθ(y0 : T ) and pθ′(y0 : T ) appearing in the acceptance
probability.
The PMMH sampler is an approximation of this

ideal MMH sampler which relies on the particle ap-
proximations of these unknown terms. Given θ and
a particle approximation p̂θ(y0 : T ) of pθ(y0 : T ), we
sample θ′ ∼ q(θ′|θ), then run a particle filter to ob-
tain approximations p̂θ′(dx0 : T |y0 : T ) and p̂θ′(y0 : T )
of pθ′(dx0 : T |y0 : T ) and pθ′(y0 : T ). We then sam-
ple X ′

0 : T ∼ p̂θ′(dx0 : T |y0 : T ), that is, we choose ran-
domly one of N particles generated by the particle
filter, with probability W i

T for particle i, and accept
(θ′,X ′

0 : T ) [and p̂θ′(y0 : T )] with probability

1∧ p̂θ′(y0 : T )p(θ
′)q(θ|θ′)

p̂θ(y0 : T )p(θ)q(θ′|θ)
.(6.3)

The acceptance probability (6.3) is a simple approx-
imation of the “ideal” acceptance probability (6.2).
This algorithm was first proposed as a heuris-

tic to sample from p(θ|y0 : T ) in [39]. Its remark-
able feature established in [3] is that it does ad-
mit p(x0 : T , θ|y0 : T ) as invariant distribution what-
ever the number of particles N used in the particle
approximation [3]. However, the choice of N has an
impact on the performance of the algorithm. Using
large values of N usually results in PMMH aver-
ages with variances lower than the corresponding av-
erages using fewer samples, but the computational
cost of constructing p̂θ(y0 : T ) increases with N . A
simplified analysis of this algorithm suggests that N
should be selected such that the standard deviation
of the logarithm of the particle likelihood estimate
should be around 0.9 if the ideal MMH sampler was
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using the perfect proposal q(θ′|θ) = p(θ′|y0 : n) [79]
and around 1.8 if one uses an isotropic normal ran-
dom walk proposal for a target that is a product
of d i.i.d. components with d→∞ [83]. For gen-
eral proposal and target densities, a recent theoret-
ical analysis and empirical results suggest that this
standard deviation should be selected around 1.2–
1.3 [33]. As the variance of this estimate typically
increases linearly with T , this means that the com-
putational complexity is of order O(T 2) by iteration.
A particle version of the Gibbs sampler is also

available [3] which mimicks the two-component
Gibbs sampler sampling iteratively from p(θ|
x0 : T , y0 : T ) and pθ(x0 : T |y0 : T ). These algorithms
rely on a nonstandard version of the particle fil-
ter where N − 1 particles are generated conditional
upon a “fixed” particle. Recent improvements over
this particle Gibbs sampler introduce mechanisms
to rejuvenate the fixed particle, using forward or
backward sampling procedures [66, 89, 91]. These
methods perform empirically extremely well, but,
contrary to the PMMH, it is still unclear how one
should scale N with T .

6.2 On-Line Methods

In this context, we are interested in approxi-
mating on-line the sequence of posterior densities
{p(x0 : n, θ|y0 : n)}n≥0. We emphasize that, contrary
to the on-line ML parameter estimation procedures,
none of the methods presented in this section by-
pass the particle degeneracy problem. This should
come as no surprise. As discussed in Section 3.2.2,
even for a fixed θ, the particle estimate of pθ(y0 : n)
has a relative variance that increases linearly with n
under favorable mixing assumptions. The methods
in this section attempt to approximate p(θ|y0 : n)∝
pθ(y0 : n)p(θ). This is a harder problem, as it implic-
itly requires having to approximate pθi(y0 : n) for all
the particles {θi} approximating p(θ|y0 : n).
6.2.1 Augmenting the state with the parameter

At first sight, it seems that estimating the se-
quence of posterior densities {p(x0 : n, θ|y0 : n)}n≥0

can be easily achieved using standard particle meth-
ods by merely introducing the extended state Zn =
(Xn, θn), with initial density p(θ0)µθ0(x0) and tran-
sition density fθn(xn|xn−1)δθn−1(θn), that is, θn =
θn−1. However, this extended process Zn clearly
does not possess any forgetting property (as dis-
cussed in Section 3), so the algorithm is bound to
degenerate. Specifically, the parameter space is ex-
plored only in the initial step of the algorithm. Then,

each successive resampling step reduces the diversity
of the sample of θ values; after a certain time n, the
approximation p̂(dθ|y0 : n) contains a single unique
value for θ. This is clearly a poor approach. Even
in the much simpler case when there is no latent
variable X0 : n, it is shown in [17], Theorem 4, that
the asymptotic variance of the corresponding parti-
cle estimates diverges at least at a polynomial rate,
which grows with the dimension of θ.
A pragmatic approach that has proven useful in

some applications is to introduce artificial dynamics
for the parameter θ [54],

θn+1 = θn + εn+1,(6.4)

where {εn}n≥0 is an artificial dynamic noise with
decreasing variance. Standard particle methods
can now be applied to approximate {p(x0 : n, θ0 : n|
y0 : n)}n≥0. A related kernel density estimation
method also appeared in [67], which proposes to
use a kernel density estimate p(θ|y0 : n) from which
one samples from. As before, the static parameter
is transformed to a slowly time-varying one, whose
dynamics is related to the kernel bandwidth. To
mitigate the artificial variance inflation, a shrink-
age correction is introduced. An improved version
of this method has been recently proposed in [41].
It is difficult to quantify how much bias is intro-

duced in the resulting estimates by the introduc-
tion of this artificial dynamics. Additionally, these
methods require a significant amount of tuning, for
example, choosing the variance of the artificial dy-
namic noise or the kernel width. However, they can
perform satisfactorily in practice [41, 67].

6.2.2 Practical filtering The practical filtering ap-
proach proposed in [80] relies on the following fixed-
lag approximation:

p(x0 : n−L, θ|y0 : n−1)≈ p(x0 : n−L, θ|y0 : n)(6.5)

for L large enough; that is, observations coming af-
ter n − 1 presumably bring little information on
x0 : n−L. To sample approximately from p(θ|y0 : n),
one uses the following iterative process: at time n,
several MCMC chains are run in parallel to sample
from

p(xn−L+1 : n, θ|y0 : n,Xi
0 : n−L)

= p(xn−L+1 : n, θ|yn−L+1 : n,X
i
n−L),

where the Xi
n−L have been obtained at the pre-

vious iteration and are such that (approximately)
Xi

n−L ∼ p(xn−L|y0 : n−1) ≈ p(xn−L|y0 : n). Then one
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collects the first component Xi
n−L+1 of the simu-

lated sample Xi
n−L+1 : n, increments the time index

and runs several new MCMC chains in parallel to
sample from p(xn−L+2 : n+1, θ|yn−L+2 :n+1,X

i
n−L+1)

and so on. The algorithm is started at time L− 1,
with MCMC chains that target p(x0 : L−1|y0 : L−1).
Like all methods based on fixed-lag approximation,
the choice of the lag L is difficult and this introduces
a nonvanishing bias which is difficult to quantify.
However, the method performs well on the exam-
ples presented in [80].

6.2.3 Using MCMC steps within particle meth-

ods To avoid the introduction of an artificial dy-
namic model or of a fixed-lag approximation, an
approach originally proposed independently in [36]
and [44] consists of adding MCMC steps to re-
introduce “diversity” among the particles. Assum-
ing we use an auxiliary particle filter to approximate

{p(x0 : n, θ|y0 : n)}n≥0, then the particles {Xi
0 : n, θ

i
n}

obtained after the sampling step at time n are ap-
proximately distributed according to

p̃(x0 : n, θ|y0 : n)
∝ p(x0 : n−1, θ|y0 : n−1)qθ(xn, yn|xn−1).

We have p̃(x0 : n, θ|y0 : n) = p(x0 : n, θ|y0 : n) if qθ(xn|
yn, xn−1) = pθ(xn|yn, xn−1) and qθ(yn|xn−1) = pθ(yn|
xn−1). To add diversity in this population of parti-
cles, we introduce an MCMC kernel Kn(d(x

′
0 : n, θ

′)|
(x0 : n, θ)) with invariant density p̃(x0 : n, θ|y0 : n) and
replace, at the end of each iteration, the set of resam-

pled particles, (X
i
0 : n, θ̄

i
n) with N “mutated” parti-

cles (X̃i
0 : n, θ̃

i
n) simulated from, for i= 1, . . . ,N ,

(X̃i
0 : n, θ̃

i
n)∼Kn(d(x0 : n, θ)|(Xi

0 : n, θ̄
i
n)).

If we use the SISR algorithm, then we can alter-
natively use an MCMC step of invariant density
p(x0 : n, θ|y0 : n) after the resampling step at time n.
Contrary to standard applications of MCMC, the

kernel does not have to be ergodic. Ensuring ergodic-
ity would indeed require one to sample an increasing
number of variables as n increases—this algorithm
would have an increasing cost per iteration, which
would prevents its use in on-line scenarios, but it
can be an interesting alternative to standard MCMC
and was suggested in [61]. In practice, one there-

fore sets X̃i
0 : n−L =Xi

0 : n−L and only samples θi and

X̃i
n−L+1 : n, where L is a small integer; often L= 0

(only θ is updated). Note that the memory require-
ments for this method do not increase over time if

p̃θ(x0 : n, y0 : n) is in the exponential family and thus
can be summarized by a set of fixed-dimensional suf-
ficient statistics sn(x0 : n, y0 : n). This type of method
was first used to perform on-line Bayesian parame-
ter estimation in a context where p̃θ(x0 : n, y0 : n) is
in the exponential family [36, 44]. Similar strategies
were adopted in [2] and [84]. In the particular sce-
nario where qθ(xn|yn, xn−1) = pθ(xn|yn, xn−1) and
qθ(yn|xn−1) = pθ(yn|xn−1), this method was men-
tioned in [2, 86] and is discussed at length in [70]
who named it particle learning. Extensions of this
strategy to parameter estimation in conditionally
linear Gaussian models, where a part of the state
is integrated out using Kalman techniques [15, 31],
is proposed in [13].
As opposed to the methods relying on kernel or

artificial dynamics, these MCMC-based approaches
have the advantage of adding diversity to the par-
ticles approximating p(θ|y0 : n) without perturbing
the target distribution. Unfortunately, these algo-
rithms rely implicitly on the particle approximation
of the density p(x0 : n|y0 : n) even if algorithmically
it is only necessary to store some fixed-dimensional
sufficient statistics {sn(Xi

0 : n, y0 : n)}. Hence, in this
respect they suffer from the degeneracy problem.
This was noticed as early as in [2]; see also the word
of caution in the conclusion of [4, 36] and [18]. The
practical implications are that one observes empir-
ically that the resulting Monte Carlo estimates can
display quite a lot of variability over multiple runs as
demonstrated in Section 7.2. This should not come
as a surprise, as the sequence of posterior distribu-
tions does not have exponential forgetting proper-
ties, hence, there is an accumulation of Monte Carlo
errors over time.

6.2.4 The SMC2 algorithm The SMC2 algorithm
introduced simultaneously in [19] and [43] may
be considered as the particle equivalent of Par-
ticle MCMC. It mimics an “ideal” particle algo-
rithm proposed in [16] approximating sequentially
{p(θ|y0 : n)}n≥0 where Nθ particles (in the θ-space)
are used to explore these distributions. The Nθ

particles at time n are reweighted according to
pθ(y0 : n+1)/pθ(y0 : n) at time n + 1. As these like-
lihood terms are unknown, we substitute to them
p̂θ(y0 : n+1)/p̂θ(y0 : n) where p̂θ(y0 : n) is a particle ap-
proximation of the partial likelihood pθ(y0 : n), ob-
tained by a running a particle filter of Nx particles
in the x-dimension, up to time n, for each of the
Nθ θ-particles. When particle degeneracy (in the θ-
dimension) reaches a certain threshold, θ-particles
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are refreshed through the succession of a resampling
step, and an MCMC step, which in these particular
settings takes the form of a PMCMC update. The
cost per iteration of this algorithm is not constant
and, additionally, it is advised to increase Nx with n
for the relative variance of p̂θ(y0 : n) not to increase,
therefore, it cannot be used in truly on-line scenar-
ios. Yet there are practical situations where it may
be useful to approximate jointly all the posteriors
p(θ|y1 : n), for 1 ≤ n ≤ T , for instance, to assess the
predictive power of the model.

7. EXPERIMENTAL RESULTS

We focus on illustrating numerically a few algo-
rithms and the impact of the degeneracy problem
on parameter inference. This last point is motivated
by the fact that particle degeneracy seems to have
been overlooked by many practitioners. In this way
numerical results may provide valuable insights.
We will consider the following simple scalar linear

Gaussian state space model:

Xn = ρXn−1 + τWn, Yn =Xn + σVn,(7.1)

where Vn,Wn are independent zero-mean and unit-
variance Gaussians and ρ∈ [−1,1]. The main reason
for choosing this model is that Kalman recursions
can be implemented to provide the exact values of
the summary statistics Sθn used for ML estimation
through the EM algorithm and to compute the exact
likelihood pθ(y0 : n). Hence, using a fine discretiza-
tion of the low-dimensional parameter space, we can
compute a very good approximation of the true pos-
terior density p(θ|y0 : n). In this model it is straight-
forward to present numerical evidence of some ef-
fects of degeneracy for parameter estimation and to
show how it can be overcome by choosing an appro-
priate particle method.

7.1 Maximum Likelihood Methods

As ML methods require approximating smoothed

additive functionals Sθn of the form (3.14), we be-
gin by investigating the empirical bias, variance
and MSE of two standard particle estimates of Sθn,
where we set sk(xk−1, xk) = xk−1xk for the model
described in (7.1). The first estimate relies on the
path space method with computational cost O(N)
per time, which uses p̂θ(dx0 : n|y0 : n) in (3.7) to ap-

proximate Sθn as Ŝθn; see [11], Section 8.3, for more
details. The second estimate relies on the forward
implementation of FFBSm presented in Section 4.3

using (4.7)–(4.11); see [24]. Recall that this proce-
dure has a computational cost that is O(N2) per
time for N particles and provides the same esti-
mates as the standard forward–backward implemen-
tation of FFBSm. For the sake of brevity, we will
not consider the remaining smoothing methods of
Section 4; for the fixed-lag and the exponentially
weighted approximations we refer the reader to [74],
respectively, [73] for numerical experiments.
We use a simulated data set of size 6 × 104 ob-

tained using θ∗ = (ρ∗, τ2
∗
, σ2∗) = (0.8,0.1,1) and

then generate 300 independent replications of each
method in order to compute the empirical bias and
variance of Ŝθ∗n when θ is fixed to θ∗. In order to
make a comparison that takes into account the com-
putational cost, we use N2 particles for the O(N)
method and N for the O(N2) one. We look sep-

arately at the behavior of the bias of Ŝθn and the

variance and MSE of the rescaled estimates Ŝθn/
√
n.

The results are presented in Figure 1 for N = 50,
100, 200.
For both methods the bias grows linearly with

time, this growth being higher for the O(N2)

method. For the variance of Ŝθn/
√
n, we observe a

linear growth with time for the O(N) method with
N2 particles, whereas this variance appears roughly
constant for the O(N2) method. Finally, the MSE

of Ŝθn/
√
n grows for both methods linearly as ex-

pected. In this particular scenario, the constants of
proportionality are such that the MSE is lower for
the O(N) method than for the O(N2) method. In
general, we can expect that the O(N) method be su-
perior in terms of the bias and the O(N2) method
superior in terms of the variance. These results are
in agreement with the theoretical results in the lit-
erature [24, 25, 28], but additionally show that the

lower bound on the variance growth of Ŝθn for the
O(N) method of [81] appears sharp.
We proceed to see how the bias and variance

of the estimates of Sθn affect the ML estimates,
when the former are used within both an off-line
and an on-line EM algorithm; see Figures 2 and
3, respectively. For the model in (7.1) the E-step
corresponds to computing Sθn where sk(xk−1, xk) =
((yk−xk)

2, x2k−1, xk−1xk, x
2
k) and the M-step update

function is given by

Λ(z1, z2, z3, z4) =

(
z3
z4

, z4 −
z23
z2

, z1

)
.

We compare the estimates of θ∗ when the E-step is
computed using the O(N) and the O(N2) meth-
ods described in the previous section with 1502
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Fig. 1. Estimating smoothed additive functionals: empirical bias of the estimate of Sθ
n (top panel), empirical variance (middle

panel) and MSE (bottom panel) for the estimate of Sθ
n/

√
n. Left column: O(N) method using N2 = 2500, 10,000, 40,000

particles. Right column: O(N2) method using N = 50, 100, 200 particles. In every subplot, the top line corresponds to using
N = 50, the middle for N = 100 and the lower for N = 200.

and 150 particles, respectively. A simulated data
set for θ∗ = (ρ∗, τ∗, σ∗) = (0.8,1,0.2) will be used.
In every case we will initialize the algorithm using
θ0 = (0.1,0.1,0.2) and assume σ∗ is known. In Fig-
ures 2 and 3 we present the results obtained using
150 independent replications of the algorithm. For
the off-line EM, we use 25 iterations for T = 100,
1000, 2500, 5000, 10,000. For the on-line EM, we
use T = 105 with the step size set as γn = n−0.8 and
for the first 50 iterations no M-step update is per-
formed. This “freezing” phase is required to allow
for a reasonable estimation of the summary statis-
tic; see [8, 9] for more details. Note that in Figure 3
we plot only the results after the algorithm has con-
verged, that is, for n≥ 5×104. In each case, both the
O(N) and the O(N2) methods yield fairly accurate

results given the low number of particles used. How-
ever, we note, as observed previously in the litera-
ture, that the on-line EM as well as the on-line gra-
dient ascent method requires a substantial number
of observations, that is, over 10,000, before achiev-
ing convergence [8, 9, 24, 81]. For smaller data sets,
these algorithms can also be used by going through
the data, say, K times. Typically, this method is
cheaper than iterating (5.1) or (5.4)–(5.5) K times
the off-line algorithms and can yield comparable pa-
rameter estimates [94]. Experimentally, the proper-
ties of the estimates of Sθn discussed earlier appear
to translate into properties of the resulting parame-
ter estimates: the O(N) method provides estimates
with less bias but more variance than the O(N2)
method.
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Fig. 2. Off-line EM: boxplots of θ̂n for various T using 25 iterations of off-line EM and 150 realizations of the algorithms.
Top panels: O(N) method using N = 1502 particles. Bottom panels: O(N2) with N = 150. The dotted horizontal lines are the
ML estimate for each time T obtained using Kalman filtering on a grid.

For more numerical examples regarding the re-
maining methods discussed in Section 5, we re-
fer the reader to [50, 51] for iterated filtering, to
[24, 25, 81] for comparisons of the O(N) and O(N2)
methods for EM and gradient ascent, to [8] for the

O(N) on-line EM, to [72] and [59], Chapter 10,

for smooth likelihood function methods and to [11],

Chapters 10–11, for a detailed exposition of off-line

EM methods.

Fig. 3. On-line EM: boxplots of θ̂n for n≥ 5× 104 using 150 realizations of the algorithms. We also plot the ML estimate
at time n obtained using Kalman filtering on a grid (black).
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7.2 Bayesian Methods

We still consider the model in (7.1), but simplify
it further by fixing either ρ or τ . This is done in
order to keep the computations of the benchmarks
that use Kalman computations on a grid relatively
inexpensive. For those parameters that are not fixed,
we shall use the following independent priors: a uni-
form on [−1,1] for ρ, and inverse gamma for τ2, σ2

with the shape and scale parameter pair being (a, b)
and (c, d), respectively, with a = b = c = d = 1. In
all the subsequent examples, we will initialize the
algorithms by sampling θ from the prior.
We proceed to examine the particle algorithms

with MCMC moves that we described in Sec-
tion 6.2.3. We focus on an efficient implementation
of this idea discussed in [70] which can be put in
practice for the simple model under consideration.
We investigate the effect of the degeneracy problem
in this context. The numerical results obtained in
this section have been produced in Matlab (code
available from the first author) and double-checked
using the R program available on the personal web
page of the first author of [70, 71].
We first focus on the estimate of the poste-

rior of θ = (τ2, σ2) given a long sequence of simu-
lated observations with τ = σ = 1. In this scenario,
pθ(x0 : n, y0 : n) admits the following two-dimensional
sufficient statistics, sn(x0 : n, y0 : n) = (

∑n
k=1(xk −

xk−1)
2,
∑n

k=0(yk − xk)
2), and θ can be updated us-

ing Gibbs steps. We use T = 5× 104 and N = 5000.
We ran the algorithm over 100 independent runs
over the same data set. We present the results only
for τ2 and omit the ones for σ2, as these were very
similar. The top left panel of Figure 4 shows the box
plots for the estimates of the posterior mean, and
the top right panel shows how the corresponding
relative variance of the estimator for the posterior
mean evolves with time. Here the relative variance is
defined as the ratio of the empirical variance (over
different independent runs) of the posterior mean
estimates at time n over the true posterior variance
at time n, which in this case is approximated using
a Kalman filter on a fine grid. This quantity exhibits
a steep increasing trend when n ≥ 15,000 and con-
firms the aforementioned variability of the estimates
of the posterior mean. In the bottom left panel of
Figure 4 we plot the average (over different runs)
of the estimators of the variance of p(τ2|y0 : n). This
average variance is also scaled/normalized by the
actual posterior variance. The latter is again com-
puted using Kalman filtering on a grid. This ratio

between the average estimated variance of the pos-
terior over the true one decreases with time n and
it shows that the supports of the approximate pos-
terior densities provided by this method cover, on
average, only a small portion of the support of the
true posterior. These experiments confirm that in
this example the particle method with MCMC steps
fails to adequately explore the space of θ. Although
the box plots provide some false sense of security, the
relative and scaled average variance clearly indicate
that any posterior estimates obtained from a single
run of particle method with MCMC steps should be
used with caution. Furthermore, in the bottom right
panel of Figure 4 we also investigate experimentally
the empirical relative variance of the marginal likeli-
hood estimates {p̂(y0 : n)}n≥0. This relative variance
appears to increase quadratically with n for the par-
ticle method with MCMC moves instead of linearly
as it does for state-space models with good mixing
properties. This suggests that one should increase
the number of particles quadratically with the time
index to obtain an estimate of the marginal like-
lihood whose relative variance remains uniformly
bounded with respect to the time index. Although
we attribute this quadratic relative variance growth
to the degeneracy problem, the estimate p̂(y0 : n) is
not the particle approximation of a smoothed addi-
tive functional, thus there is not yet any theoretical
convergence result explaining rigorously this phe-
nomenon.
One might argue that these particle methods with

MCMC moves are meant to be used with larger
N and/or shorter data sets T . We shall consider
this time a slightly different example where τ = 0.1
is known and we are interested in estimating the
posterior of θ = (ρ,σ2) given a sequence of obser-
vations obtained using ρ = 0.5 and σ = 1. In that
case, the sufficient statistics are sn(x0 : n, y0 : n) =
(
∑n

k=1 xk−1xk,
∑n−1

k=0 x
2
k−1,

∑n
k=0(yk−xk)2), and the

parameters can be rejuvenated through a single
Gibbs update. In addition, we let T = 5000 and use
N = 104 particles. In Figure 5 we display the esti-
mated marginal posteriors p(ρ|y0 : n) and p(σ2|y0 : n)
obtained from 50 independent replications of the
particle method. On this simple problem, the es-
timated posteriors seem consistently rather inac-
curate for ρ, whereas they perform better for σ2

but with some nonnegligible variability over runs,
which increases as T increases. Similar observations
have been reported in [18] and remain unexplained:
for some parameters this methodology appears to
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Fig. 4. Top left: box plots for estimates of posterior mean of τ 2 at n= 1000, 2000, . . . ,50,000. Top right: relative variance,
that is, empirical variance (over independent runs) for the estimator of the mean of p(τ 2|y0 : n) using particle method with
MCMC steps normalized with the true posterior variance computed using Kalman filtering on a grid. Bottom left: average
(over independent runs) of the estimated variance of p(τ 2|y0 : n) using particle method with MCMC normalized with the true
posterior variance. Bottom right: relative variance of the {p̂(y0 : n)}n≥0; All plots are computed using N = 5000 and over 100
different independent runs.

provide reasonable results despite the degeneracy
problem and for others it provides very unreliable
results.
We investigate further the performance of this

method in this simple example by considering the
same example for T = 1000, but now consider two
larger numbers of particles, N = 7.5× 104 and N =
6×105, over 50 different runs. Additionally, we com-
pare the resulting estimates with estimates provided
by the particle Gibbs sampler of [66] using the same
computational cost, that is, N = 50 particles with
3000 and 24,000 iterations, respectively. The results
are displayed in Figures 6 and 7. As expected, we im-

prove the performance of the particle with MCMC
moves when N increases for a fixed time horizon T .
For a fixed computational complexity, the particle
Gibbs sampler estimates appear to display less vari-
ability. For a higher-dimensional parameter θ and/or
very vague priors, this comparison would be more fa-
vorable to the particle Gibbs sampler as illustrated
in [3], pages 336–338.

8. CONCLUSION

Most particle methods proposed originally in the
literature to perform inference about static param-
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Fig. 5. Particle method with MCMC steps, θ = (ρ,σ2); estimated marginal posterior densities for n= 103,2×103, . . . ,5×103

over 50 runs (red) versus ground truth (blue).

eters in general state-space models were computa-
tionally inefficient as they suffered from the degen-
eracy problem. Several approaches have been pro-
posed to deal with this problem by either adding an
artificial dynamic on the static parameter [40, 54,
67] or introducing a fixed-lag approximation [56, 74,
80]. These methods can work very well in practice,
but it remains unfortunately difficult/impossible to
quantify the bias introduced in most realistic ap-
plications. Various asymptotically bias-free methods

with good statistical properties and a reasonable
computational cost have recently appeared in the
literature.
To perform batch ML estimation, the forward

filter backward sampler/smoother and generalized
two-filter procedures are recommended whenever
the O(N2T ) computational complexity per itera-
tion of their direct implementations can be low-
ered to O(NT ) using, for example, the methods de-
scribed in [7, 28, 38, 57]. Otherwise, besides a low-
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Fig. 6. Estimated marginal posterior densities for θ = (ρ,σ2) with T = 103 over 50 runs (black-dashed) versus ground truth
(green). Top: particle method with MCMC steps, N = 7.5× 104. Bottom: particle Gibbs with 3000 iterations and N = 50.

Fig. 7. Estimated marginal posterior densities for θ = (ρ,σ2) with T = 103 over 50 runs (black-dashed) versus ground truth
(green). Top: particle method with MCMC steps, N = 6× 105. Bottom: particle Gibbs with 24,000 iterations and N = 50.
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ering of memory requirements, not much can be
gained from these techniques compared to simply
using a standard particle filter with N2 particles.
In an on-line ML context, the situation is markedly
different. Whereas for the on-line EM algorithm, the
forward smoothing approach in [24, 81] of complex-
ity O(N2) per time step will be similarly of limited
interest compared to a standard particle filter us-
ing N2 particles; it is crucial to use this approach
when performing on-line gradient ascent as demon-
strated empirically and established theoretically in
[26]. In on-line scenarios where one can admit a ran-
dom computational complexity at each time step,
the method presented in [75] is an interesting al-
ternative when it is applicable. Empirically, these
on-line ML methods converge rather slowly and will
be primarily useful for large data sets.
In a Bayesian framework, batch inference can be

conducted using particle MCMC methods [3, 66].
However, these methods are computationally expen-
sive as, for example, an efficient implementation of
the PMMH has a computational complexity of order
O(T 2) per iteration [33]. On-line Bayesian inference
remains a challenging open problem as all methods
currently available, including particle methods with
MCMC moves [13, 36, 84], suffer from the degen-
eracy problem. These methods should not be ruled
out, but should be used cautiously, as they can pro-
vide unreliable results even in simple scenarios as
demonstrated in our experiments.
Very recent papers in this dynamic research area

have proposed to combine individual parameter es-
timation techniques so as to design more efficient
inference algorithms. For example, [21] suggests to
use the score estimation techniques developed for
ML parameter estimation to design better proposal
distributions for the PMMH algorithm, whereas [37]
demonstrates that particle methods with MCMC
moves might be fruitfully used in batch scenarios
when plugged into a particle MCMC scheme.
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[11] Cappé, O., Moulines, E. and Rydén, T. (2005). In-
ference in Hidden Markov Models. Springer, New
York. MR2159833

[12] Carpenter, J., Clifford, P. and Fearnhead, P.

(1999). An improved particle filter for non-linear
problems. IEE Proceedings—Radar, Sonar and
Navigation 146 2–7.

[13] Carvalho, C. M., Johannes, M. S., Lopes, H. F.

and Polson, N. G. (2010). Particle learning and
smoothing. Statist. Sci. 25 88–106. MR2741816

[14] Cérou, F., Del Moral, P. and Guyader, A.

(2011). A nonasymptotic theorem for unnormal-
ized Feynman–Kac particle models. Ann. Inst.
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[51] Ionides, E. L., Bretó, C. and King, A. A. (2006).
Inference for nonlinear dynamical systems. Proc.
Natl. Acad. Sci. USA 103 18438–18443.

[52] Kim, S., Shephard, N. and Chib, S. (1998). Stochas-
tic volatility: Likelihood inference and comparison
with ARCH models. Rev. Econ. Stud. 65 361–393.

[53] Kitagawa, G. (1996). Monte Carlo filter and smoother
for non-Gaussian nonlinear state space models. J.
Comput. Graph. Statist. 5 1–25. MR1380850

[54] Kitagawa, G. (1998). A self-organizing state-space
model. J. Amer. Statist. Assoc. 93 1203–1215.

[55] Kitagawa, G. (2014). Computational aspects of se-
quential Monte Carlo filter and smoother. Ann.
Inst. Statist. Math. 66 443–471. MR3211870

[56] Kitagawa, G. and Sato, S. (2001). Monte Carlo
smoothing and self-organising state-space model.
In Sequential Monte Carlo Methods in Practice.
Stat. Eng. Inf. Sci. 177–195. Springer, New York.
MR1847792

[57] Klaas, M.,Briers, M.,De Freitas, N.,Doucet, A.,
Maskell, S. and Lang, D. (2006). Fast particle
smoothing: If I had a million particles. In Proc.
International Conf. Machine Learning 481–488.
Pittsburgh, PA.
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