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Microscopic Theory of Heat Transport

Heat Flux: Flow of energy + momentum by

electrons

phonons

photons

+ resonances

(polaritons, polarons, etc.)

Thermal resistance is due to scattering processes

that destroy the total momentum of the heat carriers

o Phonon – Defect

• Isotope

• Impurity

• Dislocations

o Phonon – Boundary

• Free surface

• Grain Boundary

• Substrate scattering

o Phonon – Phonon

• U-processes: Δq = Q

• N-processes: Δq = 0

https://doi.org/10.1021/acsami.9b06196
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Microscopic Theory of Heat Transport

Transport Regimes:

Dominant Mechanism Diffusion Mechanism

Ballistic Boundary Boundary

Poiseuille N-scattering Boundary

Ziman N-scattering Umklapp + Defect

Kinetic Umklapp + Defect Umklapp + Defect

o Ballistic: Scattering only by the 'walls' ('ball-hitting-wall' model). Phonon lMFP ~ L

'Hydrodynamic'
o Poiseuille: Phonons → hard balls bouncing from each other but 'feel the walls'

o Ziman: Phonons still 'feel the walls' but dissipation by resistive processes (U+defect)

o Kinetic (Diffusive): Classical Fourier regime. No size dependence

[1] Fugallo et al (2018), Phys. Scr., 93 043002



Microscopic Theory of Heat Transport

The special case of graphene:

o N-processes dominant at all temperatures 

→ Ballistic/Hydrodynamic Transport [3]

o Thermal conductivity highly size-dependent: 

ballistic/hydrodynamic regime reaches orders of 

~mm !! [4]

o Selection rules due to symmetry further restrict 

scattering paths of ZA phonons 

→ ZA dominate Thermal Transport? [2]

[2] Lindsay et al (2010), Phys. Rev. B 82, 115427

o Light C atoms with strong sp2 bonds and low 

dimensionality: high-energy phonons with 

restricted scattering phase space

o Although semimetal, κel ≪ κph (~1%)

[4] Fugallo et al (2014), Nano Lett. 14 (11) 6109

[3] Cepellotti et al (2015), Nat. Commun. 6, 6400



Thermal Conductivity of Pure Graphene

No converging value?

??

??

An open debate:



Heat Transport Calculations in Graphene

Influencing factors:

1. Computational Method (NEMD, GK, BTE, etc.)

2. Definition of Heat Flux operator (Even in QM non unique definition!)

3. Type of Interatomic Potential (Tersoff, AIREBO, LCBOP, GGA, LDA)

4. Choice of Boundary Conditions (Periodic BC vs Free BC)

5. Temperature

6. Size

7. Substrate (or freestanding)

8. Chemical Purity (dopants, natural isotopes, etc.)

9. Divergence from Pristine Structure (grain boundaries, vacancies, dislocations, pores etc.)
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Thermal Conductivity: Non-Equilibrium MD

Methodology:

❖ Impose a Bias (ΔT or J)

❖ Reach steady state

❖ Measure response (J or ΔT)
𝜿 =

𝑰

𝑨
∙

𝟏

𝚻



Thermal Conductivity: Non-Equilibrium Method

Variations:

How to define thermal gradient ?
(linear regime gradient vs external bias) 

❑ Bias is experimentally measured

❑ Linear regime gradient is theoretically correct 

according to Fourier’s law 

Usually, 𝚻 <
𝚫𝐓

𝚫𝐱
, therefore κBias< κGradient



Thermal Conductivity: Length-Dependence

Size-dependence of κ for Graphene:

Increasing Size:

More modes contribute to heat flow 

(Denser Brillouin Zone)

More scattering paths (either 

with boundaries or ph-ph) 

Increasing κ

Decreasing κ

Theoretical Approaches

Converging:

❑ Averaged phonon properties 

❑
1

𝜅
=

𝑎3

4𝑘𝐵ഥ𝜐

1

𝑙∞
+

2

𝐿

❑ Converges for L ≫ 𝑙∞

Diverging:

❑ Strictly 2D (no out-of plane movement)

❑ Basic Principle: Non-ergodicity and non-

thermalization due to restricted 

scattering phase-space (Fermi-Pasta-

Ulam systems) 

𝟏

𝜿
= 𝒂 +

𝒃

𝑳

❑ Phonon Gas Kinetic Model
❑ κ ~ log(L) [5,6]

Balance

[5] Wang et al (2012) Phys. Rev. E, 86 040101(R)

[6] Lippi (2000) J. Stat. Phys, 100 1147-1172

Less frequent scattering by the 

boundaries



Thermal Conductivity: Length-Dependence

Results:

❑ Fix has larger values for smaller sizes

because the thermostats need to inject

more energy to keep T constant against

the fixed ends.

❑ Bias: J/ΔΤ (Experimentally measured).

Gradient: J/∇𝑇 (Theoretically accurate)

❑ For the Bias definition, almost constant

difference of ~200 W/mK between pNEMD

and fNEMD results for l > 500 nm.

❑ For larger sizes, this effect becomes

negligible.

~200 W/mK



Thermal Conductivity: Length-Dependence

Ballistic-Diffusive limit:

❑ Ziman vs Poiseuille

❑ At the ballistic regime, 𝜿𝐋

❑ However, down to ~10 nm no linear

relation!

❑ Therefore, the simple formula
1

𝑙∞
+

2

𝐿
is

not valid at small lengths

❑ For l > 500 nm we have sort of a plateau



Thermal Conductivity: Length-Dependence

Fitting with Models:

➢ Both models fit well the calculated points

➢ Does the log divergence still persist at larger 

lengths?

➢ Below ~500 nm we have different slope



Thermal Conductivity: Length-Dependence

Comparison with Experiment:

❑ Experimentally, divergence at least 

up to 10 μm [7]

❑ BTE calculations have implied convergence 

at much larger scales (~1 μm) [4]

❑ Computationally prohibitive for MD (~109 

atoms)

❑ But BTE assumes molecular chaos (no 

correlation between scattering events)

[4] Fugallo et al. Nano Lett. (2014), 14, 11, 6109–6114[7] Xu et al (2014) Nat. Commun. 5, 3689



Green-Kubo Formalism:

Fluctuation Dissipation Theorem + Linear

Response:

• Naturally occurring fluctuations of heat 

flux (zero average in equilibrium)

• Mechanism that restores these 

fluctuations are the same that dissipate

the energy that those fluctuations carry

Thermal Conductivity: Equilibrium MD

10 x 10 nm

❑ For small sizes κ is overestimated due to 

“memory effect” in Periodic Boundary Conditions

❑ Large underestimation: the heat flux formulation 

of LAMMPS doesn’t consider many-body 

potentials!



Thermal Conductivity: Nanoporous Graphene

Perforation Parameters:
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Thermal Conductivity: Nanoporous Graphene

Perforation Parameters:

w

L

Ny

Nx

D

nx

ny

λx

λy

𝑷𝒐𝒓𝒐𝒔𝒊𝒕𝒚 =
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑨𝒍𝒍 𝑷𝒐𝒓𝒆𝒔

𝑻𝒐𝒕𝒂𝒍 𝑨𝒓𝒆𝒂



Thermal Conductivity: Nanoporous Graphene

Previous Work:

❑ NEMD-BTE

❑ Periodically Perforated Graphene

❑ Studying the effect of:

▪ Perforation Period 

▪ Sample length

[8] Wei et al (2022) Carbon 197, 18-26

❑ Comparison between MD-BTE: at 

small periods phonon interference 

enhances conductivity

❑ At larger lengths, κ quickly saturates



Thermal Conductivity: Nanoporous Graphene

Perforation Parameters:

Periodic (n, d constant):

𝒅𝒊 =
𝒅𝟎 − 𝑵𝒙

𝑵𝒙

𝒍𝒊 =
𝒍𝟎 − 𝑵𝒙

𝑵𝒙

Diameter-Modulated:

Neck-Modulated:

w =10 nm

d0 = 4 nm

l0 = 6 nm

p = 12.6 %



Thermal Conductivity: Nanoporous Graphene

Results: Temperature Profiles

Periodic Diameter Neck



Thermal Conductivity: Nanoporous Graphene

Results: κ-values

~85%

❑ Huge reduction with respect to

pristine (~85%)

❑ Reaching a plateau at much

lower lengths.

❑ Similar length-dependence for all

perforation profiles.



Thermal Conductivity: Nanoporous Graphene

Results: κ-values

❑ Periodic and neck-modulated

have similar trends

❑ For larger sizes the neck -

modulated is mechanically 

unstable.

❑ Diameter-modulated is 

systematically lower (~15%)~15%

❑ Despite same porosity!



Thermal Conductivity: Nanoporous Graphene

Results: κ-values

❑ Along the flow direction phonons are restricted in smaller “channels”, as the

diameters increase (to keep porosity constant for larger lengths)
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➢Large-length behaviour of κ of pristine 1L graphene is an 
open debate: need ~mm orders of magnitude!

➢Perforation dramatically reduces κ even for small porosities

➢Porosity is not the only influencing factor

➢Modulation of the pore diameter affects more

➢Restriction of phonon “pathways” along heat flow

Conclusions:
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➢Thermal Rectification:

oNanoperforated 2D structures

oHave found Rectification Ratio of ~6% 

oExtend study to more materials (hBN, 
TMDC’s, multilayered, etc.)

oPossibly combine with experimental work

Future Prospect:
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THANK YOU!!



Thermal Conductivity: Non-Equilibrium Method

Variations:

Fixed-ends NEMD (fNEMD) vs Periodic NEMD (pNEMD) 

• The pNEMD method avoids possible artefacts caused by the clamped-ends, but x2 

computational cost 

• For larger characteristic sizes (e.g. lengths between thermostats), the influence of the fixed 

ends becomes negligible 

Th
Tc Th

Tc Tc



Appendix:

Thermal Conductivity: Non-Equilibrium Method

Variations:

Heat Current vs ΔT bias

Different temperature and heat flux profiles, 

but does it always give the same results?

[Hu (2020) Phys. Rev. B, 101, 155308]



Appendix:

Microscopic Theory of Heat Transport

Acoustic Phonons carry most of the heat flux

Significant only for acoustic phonon branches (non-flat)

Single Mode Approximation: Within steady state, each non-equilibrium phonon 'sees' the other phonons

in equilibrium→ no repopulation after scattering→ heat is dissipated at each scattering event

Not valid when momentum-preserving processes dominate

Thermal Conductivity:

In these cases, we solve the full Boltzmann Transport Equation! 

Obtain a much higher thermal conductivity

Heat Flux (Harmonic Approximation)



Appendix: Size Dependence of κ

Kinetic Model:

1

𝜅
=

𝑎3

4𝑘𝐵 ҧ𝜐

1

𝑙∞
+

2

𝐿

𝑙∞: Intrinsic Phonon MFP

𝐿: Characteristic length (e.g. length between thermostats)

[Schelling et al, Phys. Rev. B 65 144306 (2002)]
𝟏

𝜿
= 𝒂 +

𝒃

𝑳

❑ Phonon gas kinetic model (Averaged phonon quantities) 

❑ Γtotal = Γintrinsic + Γboundary ֜
1

𝑙𝑒𝑓𝑓
=

1

𝑙∞
+

2

𝐿

Assumptions:

Γboundary ∝
𝜐𝑔

𝐿
(Ziman Model)
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