

Thermal Conductivity of Nanoperforated Graphene Monolayers: An Atomistic Study

Markos POULOS

Supervisor: DR-CNRS Konstantinos TERMENTZIDIS

10/05/2023

Microscopic Theory of Heat Transport

Microscopic Theory of Heat Transport

Transport Regimes:

	Dominant Mechanism	Diffusion Mechanism
Ballistic	Boundary	Boundary
Poiseuille	N-scattering	Boundary
Ziman	N-scattering	Umklapp + Defect
Kinetic	Umklapp + Defect	Umklapp + Defect

'Hydrodvnamic'

- \circ **<u>Ballistic</u>**: Scattering only by the 'walls' (*'ball-hitting-wall'* model). Phonon I_{MFP} ~ L
- **Poiseuille**: Phonons \rightarrow hard balls bouncing from each other but 'feel the walls'
- **Ziman:** Phonons still 'feel the walls' but dissipation by resistive processes (U+defect)
- Kinetic (Diffusive): Classical Fourier regime. No size dependence

[1] Fugallo et al (2018), Phys. Scr., 93 043002

Microscopic Theory of Heat Transport

The special case of graphene:

- Light C atoms with strong sp² bonds and low dimensionality: high-energy phonons with restricted scattering phase space
- o Although semimetal, $\kappa_{el} \ll \kappa_{ph}$ (~1%)
- Selection rules due to symmetry further restrict scattering paths of ZA phonons
 - → ZA dominate Thermal Transport? [2]
- N-processes dominant at all temperatures
 → Ballistic/Hydrodynamic Transport [3]
- Thermal conductivity highly size-dependent: ballistic/hydrodynamic regime reaches orders of ~mm !! [4]

[2] Lindsay et al (2010), Phys. Rev. B 82, 115427
[3] Cepellotti et al (2015), Nat. Commun. 6, 6400
[4] Fugallo et al (2014), Nano Lett. 14 (11) 6109

Thermal Conductivity of Pure Graphene

An open debate:

Gottinences in Literature

Occurences in Literature

Calculated Thermal Conductivity of Graphene

No converging value?

Heat Transport Calculations in Graphene

Influencing factors:

Heat Transport in Graphene

Influencing factors:

- 1. Computational Method (NEMD, GK, BTE, etc.)
- 2. Definition of Heat Flux operator (Even in QM non unique definition!)
- 3. Type of Interatomic Potential (Tersoff, AIREBO, LCBOP, GGA, LDA)
- 4. Choice of Boundary Conditions (Periodic BC vs Free BC)
- 5. Temperature
- 6. Size
- 7. Substrate (or freestanding)
- 8. Chemical Purity (dopants, natural isotopes, etc.)
- 9. Divergence from Pristine Structure (grain boundaries, vacancies, dislocations, pores etc.)

Thermal Conductivity: Non-Equilibrium MD

Methodology:

Impose a Bias (ΔT or J)

✤ Reach steady state

Measure response (J or ΔT)

Thermal Conductivity: Non-Equilibrium Method

Variations:

How to define <u>thermal gradient</u> ? (linear regime gradient vs external bias)

Usually, $\nabla T < \frac{\Delta T}{\Delta x}$, therefore $\kappa_{Bias} < \kappa_{Gradient}$

Size-dependence of κ for Graphene:

[6] Lippi (2000) J. Stat. Phys, 100 1147-1172

Results:

- □ Fix has larger values for smaller sizes because the thermostats need to inject more energy to keep T constant against the fixed ends.
- □ For larger sizes, this effect becomes negligible.
- $\square \underline{Bias:} J/\Delta T (Experimentally measured).$ <u>Gradient:</u> J/ ∇T (Theoretically accurate)
- □ For the Bias definition, almost constant difference of ~200 W/mK between pNEMD and fNEMD results for I > 500 nm.

Ballistic-Diffusive limit:

Fitting with Models:

- Below ~500 nm we have different slope
- Both models fit well the calculated points
- Does the log divergence still persist at larger lengths?

Comparison with Experiment:

- Experimentally, divergence at least up to 10 µm [7]
- BTE calculations have implied convergence at much larger scales (~1 µm) [4]
- Computationally prohibitive for MD (~10⁹ atoms)
- But BTE assumes molecular chaos (no correlation between scattering events)

Thermal Conductivity: Equilibrium MD

Green-Kubo Formalism: $\kappa = \frac{V}{3k_BT^2} \int_0^\infty \langle \mathbf{J}(t)\mathbf{J}(t+\tau) \rangle d\tau$

Fluctuation Dissipation Theorem + Linear Response:

- Naturally occurring fluctuations of heat flux (zero average in equilibrium)
- Mechanism that restores these <u>fluctuations</u> are the same that <u>dissipate</u> the energy that those fluctuations carry

- For small sizes κ is overestimated due to
 "memory effect" in Periodic Boundary Conditions
- Large underestimation: the heat flux formulation of LAMMPS doesn't consider many-body potentials!

Perforation Parameters:

Perforation Parameters:

Previous Work:

- □ NEMD-BTE
- Periodically Perforated Graphene
- □ Studying the effect of:
 - Perforation Period
 - Sample length

- Comparison between MD-BTE: at small periods *phonon interference* enhances conductivity
- \Box At larger lengths, κ quickly saturates

Perforation Parameters:

Results: Temperature Profiles

Results: ĸ-values

Results: ĸ-values

Results: ĸ-values

□ Along the flow direction phonons are restricted in smaller "channels", as the diameters increase (to keep porosity constant for larger lengths)

Conclusions:

- Large-length behaviour of κ of pristine 1L graphene is an open debate: need ~mm orders of magnitude!
- > Perforation dramatically reduces κ even for small porosities
- Porosity is not the only influencing factor
- Modulation of the pore diameter affects more
- Restriction of phonon "pathways" along heat flow

Future Prospect:

≻Thermal Rectification:

Nanoperforated 2D structures
Have found Rectification Ratio of ~6%
Extend study to more materials (hBN, TMDC's, multilayered, etc.)
Possibly combine with experimental work

THANK YOU!!

Thermal Conductivity: Non-Equilibrium Method

Variations:

Fixed-ends NEMD (fNEMD) vs Periodic NEMD (pNEMD)

- The pNEMD method avoids possible artefacts caused by the clamped-ends, but x2 computational cost
- For larger characteristic sizes (e.g. lengths between thermostats), the influence of the fixed ends becomes negligible

Appendix: Thermal Conductivity: Non-Equilibrium Method

Variations:

Different temperature and heat flux profiles, but does it always give the same results?

[Hu (2020) Phys. Rev. B, 101, 155308]

Appendix: Microscopic Theory of Heat Transport

Thermal Conductivity:

$$J_{\rm h} = \frac{1}{N\Omega_c} \sum_{\vec{q}j} \hbar \omega_{\vec{q}j} v_{\vec{q}j} n_{\vec{q}j}$$

Heat Flux (Harmonic Approximation)

Significant only for acoustic phonon branches (non-flat)

Acoustic Phonons carry most of the heat flux

Single Mode Approximation: Within steady state, each non-equilibrium phonon 'sees' the other phonons in equilibrium \rightarrow no repopulation after scattering \rightarrow heat is dissipated at each scattering event

$$\kappa^{\text{SMA}} = \frac{\hbar^2}{N\Omega_c} \sum_{\nu} C_{\nu,\nu} v_{\nu}^2 \tau_{\nu}^{\text{SMA}}$$

Not valid when momentum-preserving processes dominate

In these cases, we solve the full Boltzmann Transport Equation! Obtain a much higher thermal conductivity

Appendix: Size Dependence of κ

Kinetic Model:

 $\Gamma_{\text{boundary}} \propto \frac{v_g}{I}$

(Ziman Model)

 l_{∞} : Intrinsic Phonon MFP

L: Characteristic length (e.g. length between thermostats)

[Schelling et al, Phys. Rev. B 65 144306 (2002)]

Assumptions:

□ Phonon gas kinetic model (Averaged phonon quantities)

$$\Box \ \Gamma_{\text{total}} = \Gamma_{\text{intrinsic}} + \Gamma_{\text{boundary}} \Rightarrow \frac{1}{l_{eff}} = \frac{1}{l_{\infty}} + \frac{2}{L}$$

THANK YOU!