
HAL Id: hal-04793340
https://hal.science/hal-04793340v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable bayesian bi-level variable selection in
generalized linear models

Younès Youssfi, Nicolas Chopin

To cite this version:
Younès Youssfi, Nicolas Chopin. Scalable bayesian bi-level variable selection in generalized linear
models. Foundations of Data Science, 2024, �10.3934/fods.2024010�. �hal-04793340�

https://hal.science/hal-04793340v1
https://hal.archives-ouvertes.fr


SCALABLE BAYESIAN BI-LEVEL VARIABLE SELECTION IN

GENERALIZED LINEAR MODELS

A PREPRINT

Younès Youssfi
ENSAE Paris

Institut Polytechnique de Paris
91120 Palaiseau, France

younes.youssfi@ensae.fr

Nicolas Chopin˚

ENSAE Paris
Institut Polytechnique de Paris

91120 Palaiseau, France
nicolas.chopin@ensae.fr

ABSTRACT

Motivated by a real-world application in cardiology, we develop an algorithm to perform Bayesian
bi-level variable selection in a generalized linear model, for datasets that may be large both in terms of
the number of individuals and the number of predictors. Our algorithm relies on the waste-free SMC
(Sequential Monte Carlo) methodology of Dau and Chopin (2022), a new proposal mechanism to deal
with the constraints specific to bi-level selection (which forbid to select an individual predictor if its
group is not selected), and the ALA (approximate Laplace approximation) approach of Rossell et al.
(2021). We show in our numerical study that the algorithm may offer reliable performance on large
datasets within a few minutes, on both simulated data and real data related to the aforementioned
cardiology application.

Keywords Approximate Laplace approximation ¨ Bi-level variable selection ¨ Sequential Monte Carlo ¨ waste-free
Sequential Monte Carlo

1 Introduction

1.1 Motivation

While useful more generally, the approach developed in this paper was initially motivated by a public health dataset
recording the medical history of a large number of individuals that may or may not have suffered from sudden cardiac
death (SCD); this dataset will be described more fully later. One may use this data to determine whether consumption of
medical drugs or hospitalization may increase the odds of an SCD event. Unfortunately, the number of potential drugs
and diseases is very large, and their incidence in the studied population vary a lot. This makes it difficult to assess the
impact of drugs and diseases that are rarely prescribed or observed. On the other hand, there are official nomenclatures
for drugs and diseases, which can be classified into groups with similar properties. Hospital diagnoses are coded
according to the International Classification of Diseases and drugs are coded according to the Anatomical Therapeutic
Chemical system, that classifies them according to the organ or system on which they act and their therapeutic,
pharmacological, and chemical properties. Therefore, there is clear medical interest in determining automatically
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whether there is enough information in the data to indicate that a particular drug or disease affects SCD, or, if not,
whether the group it belongs to does.

This led us to develop a bi-level variable selection procedure, based on a binary regression (outcome variable is whether
the individual had an SCD event) model, and which should work reliably for a fairly large number of individuals,
variables and groups. In addition, we wanted this procedure to be Bayesian, in order to be able to obtain posterior
probabilities of inclusion (rather than simply 0/1 answers).

There are surprising few papers on Bayesian bi-level variable selection, and most of them focus on linear regression
with Gaussian noise (Chen et al., 2016; Mallick and Yi, 2017; Cai et al., 2020). For such a model, one may integrate out
the regression coefficients (the prior provided is Gaussian) to obtain the marginal posterior distribution over a finite
space (the inclusion of either individual variables or groups). Even so, designing a MCMC able to efficiently explore
that finite space is challenging. Such discrete distributions tend to exhibit strongly separated modal regions, and a
MCMC chain may fail to escape one of this region. We refer in particular to the numerical experiments of Schäfer and
Chopin (2013) that show that various MCMC schemes may lead to unstable estimates because of this problem. Of
course, this issue gets worse when the number of variables increases, making MCMC unable to scale properly with
datasets with a large number of variables (and groups).

1.2 Proposed approach

Schäfer and Chopin (2013) designed a tempering SMC sampler for standard (one-level) variable selection for linear
regressions, and showed it outperformed significantly MCMC, as explained above. We adapt this approach to our
problem in three ways. First, we replace it by a waste-free SMC sampler, following Dau and Chopin (2022), as
waste-free SMC tends to outperform standard SMC. Waste-free SMC amounts to resampling only a fraction of the
particles, then moving them through numerous MCMC steps, and keeping all these intermediate. Second, we adapt the
proposal mechanism within the MCMC step so as to accommodate the constraints specific to bi-level selection (namely,
that a variable may be selected only if its group is selected).

Third, we replace the intractable marginal likelihood (obtained by integrating out the regression coefficients) by either
its LA (Laplace approximation), or by a cheaper approximation introduced by Rossell et al. (2021), called ALA
(approximate LA). The reason why ALA is particularly attractive in our context is that it scales very well with respect
to n (as we explain later). We assess in our numerical experiments the impact of the error introduced by ALA on the
actual results. We note that Schäfer (2012) already showed in his PhD thesis that replacing the marginal likelihood by
its LA within a SMC sampler (targeting a variable selection posterior) incurs only a negligible bias.

1.3 Plan

Section 2 describes the considered class of model, the bi-level variable selection problem, and the related notations.
Section 3 describes the proposed algorithm, starting with a generic (waste-free) SMC sampler, and explaining how this
generic algorithm may be adapted to bi-level variable selection. Section 4 assesses (statistically and numerically) the
proposed approach through two numerical experiments, one on simulated data and one on the public health dataset
mentioned in the introduction.

2 Model

2.1 Regression model

For the sake of concreteness, we consider the following binary regression model, although our approach could easily
be generalised to other generalised linear models. We suppose that we have collected a dataset D “ tX,U,Z, yu

with sample size n, where y P t0, 1un is a vector of binary responses, X “ pxijq P Rnˆp, U “ puijq P Rnˆq, and

2



Scalable Bayesian bi-level variable selection in generalized linear models A PREPRINT

Z “ pzijq P Rnˆr, are design matrices that contain, respectively, ‘individual variables’, ‘group variables’ (both subject
to variable selection later on), and extra variables that the user wants to include systematically (e.g. the intercept,
socio-demographic effects such as sex, age, etc.).

Regarding the group structure, we assume that each of the p variables in X belongs to one (and only one) of the q
groups; let gpjq be the group of variable j. A group variable (in U ) may represent different types of ‘group effects’. For
instance, in a medical application, the variables in a group k may be the indicator that the patient took a certain drug in
the last six months, and the group variable may be the indicator that a patient took any drug in that group in the same
period. Alternatively, these variables could be the number of drug intakes for each drug; in that case, the group variable
would be the number of intakes of drugs in that group. In either scenarios, the point is to determine whether one may
measure a significant effect for each individual variable, on top of the group effect, or a significant effect for its group
only, or neither.

To sum up, without variable selection, the distribution of each data point would be such that, for i “ 1, . . . , n:

P pYi “ 1|βq “ F

˜

p
ÿ

j“1

βxj xij `
q
ÿ

k“1

βukuik `
r
ÿ

l“1

βzl zil

¸

(1)

and P pYi “ 0|βq “ 1 ´ P pYi “ 1|βq, where β “ pβx, βu, βzq is the vector of regression parameters, F is the link
function (e.g. F “ Φ, the unit Gaussian CDF for a probit model). We assign independent Gaussian priors to the
regression coefficients: ppβzq „ Np0r, σ

2Irq, ppβuq „ Np0q, σ
2Iqq and ppβxq „ Np0p, σ

2Ipq.

2.2 Bi-level variable selection

We extend our model to perform selection of groups and variables simultaneously. Most of existing models lack
flexibility as they impose only “all-in” or “all-out” selection for variables in the same group. That is, if a group is not
selected by the model, variables belonging to this group will also not be selected. In this work, we propose a more
general approach in order to capture sparsity at both the group and variable levels. To this end, we introduce θ “ pγ, ηq,
a set of two types of binary variables: γk indicates whether group k is active (γk “ 1) or not (γk “ 0), and ηj indicates
whether individual variable j, which is in group gpjq, is active (ηj “ 1) or not (ηj “ 0q. We consider a hierarchical
structure such that the variable j is not selected if γgpjq “ 0, that is P pηj “ 1|γk “ 0q “ 0 for k “ gpjq. As compared
to existing models, we propose to keep the flexibility of selecting variables within a group. For example, when a group
of drugs is related to SCD, it does not necessarily mean that all drugs of this group are related to SCD. Therefore, we
may want to not only remove unimportant groups effectively, but also identify important variables within important
groups as well. Thus, we replace (1) by

P pYi “ 1|β, θq “ F

˜

p
ÿ

j“1

ηjβ
x
j xij `

q
ÿ

k“1

γkβ
u
kuik `

r
ÿ

l“1

βzl zil

¸

. (2)

Let ppγq be the prior density of γ, which is a product of Bernoulli distributions with probabilities pγj . For the predictors,
we introduce a spike-and-slab prior defined by

P pηj “ 1|γq “

#

pηj if γgpjq “ 1

0 otherwise.
(3)

This bi-level structure implies that variable j may be selected only if the group it belongs to, gpjq, is selected.

To perform Bayesian bi-level variable selection, we aim to approximating the (marginal) posterior distribution of
θ “ pγ, ηq, i.e. πpθq “ ppθ|Dq9ppθqLpθq, where ppθq is the prior described above, and Lpθq is the integrated likelihood
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obtained by integrating out β:

Lpθq “

ż

Lpβ, θqppβqdβ, Lpβ, θq “

#

N
ź

i“1

P pYi “ yi|β, θq

+

.

3 The proposed algorithm

3.1 Tempering waste-free SMC

We propose a tempering waste-free Sequential Monte Carlo (SMC) sampler to approximate the joint posterior
distribution πpθq “ ppθ|Dq. SMC methods are iterative stochastic algorithms that approximate a sequence of probability
distributions through successive importance sampling, resampling and Markov steps. In Bayesian modeling, this
sequence can be used to interpolate between a distribution ppθq which is easy to sample from (e.g. the prior distribution)
and a distribution of interest πpθq which may be difficult to simulate directly (i.e. the posterior distribution). The
tempering approach in particular is based on a sequence of tempered distributions of the form

@t ě 1, πtpθq “
ppθqLpθqλt

Zt

where ppθq is the prior density, Lpθq the likelihood, Zt ą 0 is the normalising constant and 0 “ λ0 ă λ1 ă . . . ă λT “

1 is a sequence increasing from 0 to 1. This geometric bridge smoothly interpolates between the initial distribution ppθq
and the target distribution πpθq9ppθqLpθq.

A typical application of such an approach is the simulation of a multimodal distribution π. Since simulating directly
from such a distribution is difficult, we may use tempering SMC instead, to sample initially from a distribution p which
covers the support of π, and to move progressively towards π through intermediate distributions that are progressively
more and more multimodal. In this work, we combined the tempering approach with the waste-free SMC sampler
proposed by Dau and Chopin (2022). The main idea of this scheme is to resample only M ancestors from the N
particles in the standard SMC sampler (with M ! N ). Each of the ancestors is then moved P ´ 1 times through a
Markov kernel Kt. The M chains of length P are finally put together to form a new particle sample of size N “MP .
Algorithm 1 describes the corresponding algorithm for a tempering sequence. At the final iteration T of the algorithm,
one may approximate any expectation Eπϕpθq with

řN
n“1W

n
T ϕpθ

n
T q, where the Wn

T are the normalised weights at the
final iteration T .

In practice, it is recommended to set the successive λt automatically, by choosing the next λt so that the ESS (effective
sample size) of the weights equal a certain threshold. Another advantage of a SMC sampler such as Algorithm 1 is that
it is easy to parallelise; in particular the evaluation of the likelihood of the N particles (which is typically the bulk of
the computation) may be performed in parallel. We refer to Dau and Chopin (2022) for a more thorough discussion of
the advantages of SMC samplers over MCMC, and the extra advantage brought by waste-free SMC (relative to standard
SMC), in particular the greater robustness relative to the choice of tuning parameters such as P and M .

For now, there are two points that need to be addressed in order to apply Algorithm 1 to our variable selection problem:
first, we need to design Markov kernels Kt that leave invariant πt´1 at time t, and in particular that sample within the
constrained support of πt´1 in our bi-level selection scenario (i.e. the fact that ηj “ 0 as soon as γgpjq “ 0). Second,
we must find a way to evaluate, or approximate, the marginal likelihood Lpθq. These two points are discussed in the
next two sections.

3.2 πt´1´invariant kernels

Consider a target distribution over binary vectors; that is πpγq with γ P t0, 1uq. Designing an efficient MCMC kernel
that leaves invariant this target is challenging. One option is to use a Gibbs kernel, or a Metropolis kernel based on a

4
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Algorithm 1: Tempering Waste-free SMC
Input :Prior distribution ppθq, likelihood function θ Ñ Lpθq, integers N , M , P such that N “MP , sequence

0 “ λ0 ă . . . ă λT “ 1, Markov kernels Kt that leave invariant πt´1 @t ě 1
1 for tÐ 0 to T do
2 if t “ 0 then
3 for nÐ 1 to N do
4 θn0 „ ppθq
5 else
6 A1:M

t „ resample (M,W 1:N
t´1 q (Draw IID variables such that P pAmt “ nq “Wn

t´1 for n “ 1, . . . , N )
7 for mÐ 1 to M do
8 θ̃m,1t Ð θ

Amt
t´1

9 for pÐ 2 to P do
10 θ̃m,pt „ Ktpθ̃

m,p´1
t , dθtq

11 Gather variables θ̃m,Pt so as to form a new sample θ1:Nt
12 for nÐ 1 to N do
13 wnt Ð Lpθnt q

λt´λt´1

14 for nÐ 1 to N do
15 Wn

t Ð wnt {
řN
m“1 w

m
t

local proposal, where only one component may be flipped at a time. But such kernels tend to mix poorly, and to get
stuck in local modes.

The SMC sampler of Schäfer and Chopin (2013) used instead an independent Metropolis kernel based on a global
proposal of the form:

qpγq “ q1pγ1q
q
ź

k“1

qkpγk|γ1:k´1q, qkpγk “ 1|γ1:k´1q “ logistic

˜

bkk `
k´1
ÿ

i“1

bkiγi

¸

. (4)

that is, a sequence of nested logistic regressions. Given the chain rule decomposition above, it is easy to sample from this
proposal distribution. In order to ensure that the resulting independent Metropolis sampler mixes well (and in particular
that the acceptance rate is high), one needs to ensure that the proposal is as close as possible to the target. To ensure this,
Schäfer and Chopin (2013) set the parameters bji to the maximum likelihood estimators of the corresponding logistic
regressions, based on the current (weighted) particle sample. The numerical experiments of Schäfer and Chopin (2013)
show that a SMC sampler based on such global (properly calibrated) Metropolis steps may outperform significantly
local MCMC chains.

Since Schäfer and Chopin (2013) considered standard (one-level) variable selection, they did not have to deal with
constrained distribution (i.e. each vector γ P t0, 1up has positive probability). We adapt their approach to bi-level
variable selection as follows. First, we extend the proposal in (4) as follows:

qpθq “ qpγ, ηq “ q1pγ1q
q
ź

k“1

qkpγk|γ1:k´1q

p
ź

j“1

qjpηj |γgpjqq. (5)

where the conditional distributions of the γ1js are set in the same way as in (4). Second, we set the conditional proposals
of the ηj as follows:

qjpηj “ 1|γgpjqq “

#

cj if γgpjq “ 1

0 otherwise

where cj P r0, 1s is a tuning parameter. We calibrate the cj’s in the same way as for the coefficients bji in (4): by
maximum likelihood estimation on the current particle sample.

5



Scalable Bayesian bi-level variable selection in generalized linear models A PREPRINT

This proposal respects the constraint that ηj must be zero as soon as γgpjq “ 0. It is basic, and may be extended by
correlating the η1js in the same group through a nested logistic regression of the same form as for the γk. In practice
however, we did not observe much benefit in doing so, and stuck to this basic structure. Algorithm 2 summaries how
one may implement the considered type of Metropolis kernels.

Algorithm 2: Independent Metropolis kernel used to move the particles within Algorithm 1 at time t
Input :θ “ pγ, ηq, tuning parameters pbjiq and pcjq (estimated from the current particle sample).
Output :A sample from Ktpθ, dθ

1q, where Kt leaves invariant πt´1.
1 θp „ qpθq (as defined in (5))
2 u „ Uniformr0, 1s
3 if u ď πt´1pθ

pqqpθq{πt´1pθqqpθ
pq then

4 return θp
5 else
6 return θ

3.3 Approximation of the marginal likelihood

The marginal likelihood Lpθq “
ş

Lpβ, θqppβqdβ is typically intractable (unless one considers a linear Gaussian
regression model). A popular approximation to this quantity is the Laplace approximation (LA), which amounts to
Taylor expanding the log of the integrand around its mode. Let βθ denote the vector made of the components βi such
that θi “ 1, hθpβθq “ ´ logtLpβ, θqppβqu, and β̂θ “ arg minβθ hθpβθq (i.e. the MAP estimator given θ), then

logLpθq “ log

ż

exp t´hθpβθqu dβθ

« ´hθpβ̂θq ` log

ż

exp

"

´
1

2
pβθ ´ β̂θq

T Ĥθpβθ ´ β̂θq

*

dβθ

“ ´hθpβ̂θq `
dθ
2

log 2π ´
1

2
log |Ĥθ|

where |Ĥθ| is the determinant of the Hessian of function βθ Ñ hθpβθq at βθ “ β̂θ, and dθ “ dimβθ.

Schäfer (2012) in his thesis gave numerical evidence than replacing the marginal likelihood with its Laplace
approximation, within a SMC sampler for standard (one-level) variable selection, works well, in the sense that it leads
to a negligible error (for approximating the posterior of θ). On the other hand, computing the Laplace approximation
for many simulated θ´values is expensive; for each θ, one needs to run a Newton-Raphson optimiser to obtain β̂θ and
Ĥθ. Furthermore these operations have complexity Opnq in the sample size, and Opd3θq in the dimension.

Rossell et al. (2021) proposed a cheaper approximation, based on a Taylor expansion similar to Laplace, but around
zero. Let 0θ denote a vector of zeros of the same dimension as βθ, then, the ALA (approximate Laplace approximation)
is

logLpθq « ´hθp0θq ` log

ż

exp

"

´βTθ gθ ´
1

2
βTθ Hθβθ

*

dβθ

“ ´hθp0θq `
1

2
gTθ H

´1
θ gθ `

dθ
2

log 2π ´
1

2
log |Hθ|

where gθ and Hθ denote respectively the gradient and Hessian of function β Ñ hθpβθq at point βθ “ 0θ. Note that in
practice, one simply need to compute the gradient g and Hessian H of minus log-likelihood at zero for the full model
(i.e. θ is a vector of ones, all variables are included), to obtain gθ and Hθ (e.g. gθ contains the components i of g such
that θpiq “ 1, and Hθ is defined similarly).

Once quantities g and H have been computed in a preliminary step, the computation of ALA is Op1q in the sample size
n. Its complexity remains cubic in the dimension, because of the determinant, however. Rossell et al. (2021) make
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Figure 1: Comparison of ALA and LA for posterior inclusion probabilities of groups and predictors when n varies from
100 to 2, 500, with p “ 50. Left: average posterior inclusion probabilities for truly active variables. Right: average
posterior inclusion for truly inactive variables.

it clear that ALA is not a consistent (in n) approximation of the marginal likelihood; they mention that it tends to be
biased against truly active variables. That is, it tends to under-estimate the posterior probability that an active variable
should be included. We refer to Rossell et al. (2021) for more discussion on this matter.

Still, ALA remains particularly attractive in our context, as our SMC sampler must perform many evaluations of the
marginal likelihood. We will assess the impact of the approximation error of ALA by comparing two waste-free SMC
samplers, one based on LA, and one based on ALA.

4 Numerical experiments

As explained above, our goal in this section is to assess numerically the performance of our tempering waste-free
SMC sampler for bi-variable selection, when the marginal likelihood is evaluated through either LA or ALA. We take
the number of particles to be N “ 25, 000, and set M “ 125, P “ 200. Our algorithm was implemented using the
particles Python library (see https://github.com/nchopin/particles). The results were obtained using a server
with 64 Gb RAM and 8 cores.

4.1 Simulated data

We simulate data from our model (using the probit link function), using g “ 5 groups, r “ 5 systematically included
covariates, a varying number p of individual variables, and a varying sample size n; see below. The rows of the design
matrices X , U , and Z are sampled independently from a Gaussian distribution Np0,Σq, where Σii “ 1, and Σij “ 0.5.
The corresponding regression parameters are set to βz “ p0, 0, 1, 1, 1q, βu “ p0, 0, 1, 1, 1q and the components of βx

are all set to zero, except for the last variable of each active group, where it is set to one.

In a first scenario, we set p “ 50 and let n vary from 100 to 2, 500; while in a second scenario we fix n “ 1, 500 and
let p vary from 10 to 250. We run our algorithm 10 times and uses the empirical standard deviation to draw confidence
intervals.

Figure 1 summarizes the results from the first scenario. Both LA and ALA discriminate properly truly active from
inactive groups and variables when n is large enough. However, LA assigns larger inclusion probabilities for truly

7
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Figure 2: Comparison of ALA and LA for posterior inclusion probabilities of groups and predictors when p varies from
10 to 25, with n “ 1, 500. Left: average posterior inclusion probabilities for truly active variables. Right: average
posterior inclusion for truly inactive variables.
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Figure 3: Comparison of ALA and LA for run time of waste-free SMC. Left: average run time when n varies from 100
to 2, 500 (p “ 50). Right: average run time when p varies from 10 to 25 (n “ 1, 500).

variables when n ď 500. Figure 2 summarizes the results for the n “ 1, 500 case, when p varies from 10 to 25. LA and
ALA performed equally and provided accurate estimates both for groups and variables.

Figure 3 compares the performance of ALA and LA in terms of computation time in both scenarios. ALA significantly
reduces run times compared to LA, especially for larger n (mean run time = 16 min for ALA vs. 102 min for LA when
n “ 2, 500 and p “ 50) and p (mean run time = 39 min for ALA vs. 330 min for LA when p “ 250 and n “ 1, 500). It
is interesting to note that the CPU time still grows with n with ALA, although the computation of ALA is independent
of n. The likely explanation is that when n grows, the prior and the posterior differ more markedly, and thus more
intermediate tempering distributions are required to bridge between the two. Still, the dependence on n of the CPU
time remains mild compared to the LA-based sampler.
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To sum up, one observes that ALA considerably reduces the CPU time of the sampler, in particular for large n (sample
size) and p (number of variables). In return, as expected ALA tends to under-estimate the probability of inclusion of
active variables, at least for n not sufficiently large.

4.2 Bi-level selection on the French National Healthcare Insurance database

To examine the performance of our SMC sampler on a big dataset, we study which factors are associated to sudden
cardiac death (SCD) in a French epidemiological study. Sudden cardiac death is an unexpected death due to cardiac
causes that occurs in a short time period (generally within 1 hour of symptom onset) in a person with known or unknown
cardiac disease. Despite progress in epidemiology, clinical profiling and interventions, it remains a major public health
problem worldwide, accounting for 10 to 20% of deaths in industrialised countries. The annual incidence of SCD is
estimated 180,000 to 450,000 in the United States (Melissa et al. (2011)) and 275,000 in Europe (Empana et al. (2022)).
The prognosis is terrible, with less than 10% surviving to hospital discharge, and significant functional and cognitive
disabilities often persist among those who survive (Bougouin et al. (2014)). Therefore, identification of persons with an
elevated risk of SCD is highly relevant from a clinical and public health perspective.

In this study, we implement bi-level variable selection to identify outpatient drugs and hospital diagnoses that could help
to enhance risk prediction performance of SCD over many potential risk factors collected from electronic health records.
We analyse the medical trajectories of ncases “ 23, 958 cases of SCD collected between 2016 and 2020 throughout
the Paris Sudden Death Expertise Center (Bougouin et al. (2014)), and ncontrols “ 23, 958 controls sampled from the
French general population. Cases and controls were matched with age, sex and residence area.

For the n “ ncases ` ncontrols “ 47, 916 individuals, we collected data from the French National Health Insurance
(SNDS) database, which manages all reimbursements of healthcare for people affiliated to a health insurance scheme in
France. It provides information on all healthcare expenses, on an individual level, including visits, procedures and
reimbursed drugs relative to outpatient medical care claims, information from hospital discharge summaries and chronic
conditions. Data acquisition is permanent, from birth to death, irrespective of wealth, age, or work status, resulting in
one of the largest electronic health records databases in the world. The SNDS database has been described in detail
previously and has been used to conduct multiple studies in cardiovascular epidemiology (Olivier et al. (2022)). More
details are available at https://www.health-data-hub.fr/.

We collected all outpatient drugs and hospital diagnoses that occurred up to 5 years before SCD; in this way we obtained
q “ 36 groups and p “ 337 binary variables (0/1 whether the individual took a particular drug in the last 5 years, or a
drug in the corresponding group). In the 36 groups, the minimum number of variables observed is 2 and the maximum is
27. No external variables were included in the study (r “ 0). Figures 4 and 5 summarise the results of our ALA-based
SMC sampler in terms of variable (and group) selection. We evaluate groups and variables selected by our model by
comparing them with those described in the medical literature related to SCD. Overall, 16 out of 36 groups and 55 out
of 337 variables are selected (Figure 4). Our bi-level variable selection scheme allows for a more flexible structure than
"all-in all-out" methods and identifies 3 different "clusters" represented in Figure 5.
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Figure 4: Groups and predictors selected by the ALA-based SMC sampler. Top: selection of groups. Bottom: selection
of predictors.

10



Scalable Bayesian bi-level variable selection in generalized linear models A PREPRINT

0 20 40 60 80 100
Percentage of variables selected

0.0

0.2

0.4

0.6

0.8

1.0
M

ar
gi

na
l p

os
te

rio
r p

ro
ba

bi
lit

y 
of

 in
clu

sio
n

Cluster 1: 4 groups selected 
 with no variable selected

Cluster 2: 20 groups not selected

Cluster 3: 12 groups selected with at least 
 1 variable selected

Figure 5: Bi-level variable selection scheme proposed by the ALA-based SMC sampler

In the first cluster (located in the upper left corner), 4 groups of hospital diagnoses are selected without any variable
included. These groups correspond to diseases of the eye (πpγk “ 1q “ 0.82), diagnoses related to pregnancy, childbirth
and the puerperium (πpγk “ 1q “ 0.82), injury and poisoning (πpγk “ 1q “ 0.72) and diagnoses for other special
purposes (πpγk “ 1q “ 0.89). They are selected with high marginal posterior probabilities of inclusion, although
none of their 46 corresponding variables are selected. This result suggests therefore that only global relationships exist
between these groups and SCD, with no any precise effect of diseases or treatments.

In the second cluster (located in the lower left corner), 20 groups are not selected, as well as their 189 corresponding
variables. They include diverse subgroups of diseases and treatments.

In the third cluster (located in the upper right corner), 12 groups are selected with at least 1 variable included. Among
them, 3 well known groups of risk factors of SCD are identified. First, diseases and drugs associated to the cardiovascular
system are selected (with πpγk “ 1q “ 0.74 and πpγk “ 1q “ 1 respectively), including 9 out of 19 variables. This
result was expected, as cardiovascular conditions are known to be the most common pathology under SCD. Second,
diseases and drugs related to the nervous system are selected (with πpγk “ 1q “ 0.72 and πpγk “ 1q “ 1 respectively),
including 9 out of 18 variables. Several studies have suggested relationships between diseases of the nervous system
and SCD (Japundzic-Zigon et al. (2018)). Indeed, some neurological disorders can cause damage to the heart and blood
vessels (such as stroke or brain injury) or arrhythmia (such as epilepsy), increasing the risk of SCD. There are also
neurological conditions that can cause SCD directly, such as long QT or Brugada syndromes, which affect the electrical
activity of the heart. Third, a group related to treatments of the respiratory system is selected. A number of studies have
also addressed the relationship between respiratory disorders and SCD. In particular, cumulating evidence associates
chronic obstructive pulmonary diseases with an increased risk of SCD both in cardiovascular patient groups and in
community-based studies, independent of cardiovascular risk profile (Van den Berg et al. (2016)).

We ran our ALA-based SMC samplers 10 times to assess its numerical stability. Figure 6 describes the interquartile
range of the marginal posterior probabilities of inclusion for variables. The mean run time was 61.8 hours (totalling to 7
days of total CPU time). We also launched 10 executions of our LA-based SMC sampler, but these executions had not
completed after 30 days. We can see that, for this particular dataset, using ALA becomes crucial to make the approach
usable for practitioners.
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Figure 6: Kernel density estimate of the interquartile range (log scale) of the marginal posterior inclusion probabilities
(variables) for the ALA-based SMC sampler.

5 Conclusion

Our bi-level variable selection approach based on a waste-free SMC sampler and the ALA approximation offers reliable
performance for large-scale datasets within a reasonable computation time. Furthermore, our approach is more flexible
than most of existing schemes, which impose only “all-in” or “all-out” selection for variables in the same group. This
work could be therefore helpful in a wide range of applications, such as biomedical studies, where standard approaches
provide information which may be difficult for physicians to interpret.
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