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Abstract
Creoles represent an under-explored and
marginalized group of languages, with few
available resources for NLP research. While
the genealogical ties between Creoles and a
number of highly resourced languages imply a
significant potential for transfer learning, this
potential is hampered due to this lack of anno-
tated data. In this work we present CREOLEVAL,
a collection of benchmark datasets spanning 8
different NLP tasks, covering up to 28 Creole
languages; it is an aggregate of novel devel-
opment datasets for reading comprehension
relation classification, and machine translation
for Creoles, in addition to a practical gateway
to a handful of preexisting benchmarks. For
each benchmark, we conduct baseline experi-
ments in a zero-shot setting in order to further
ascertain the capabilities and limitations of
transfer learning for Creoles. Ultimately, we
see CREOLEVAL as an opportunity to empower
research on Creoles in NLP and computational
linguistics, and in general, a step towards
more equitable language technology around
the globe.

1 Introduction

Despite efforts to extend advances in Natural
Language Processing (NLP) to more languages,
Creoles are markedly absent from multilingual
benchmarks. As such, progress towards reliable
NLP for Creoles remains impeded, and conse-
quently there is a dearth of language technologies
available for the hundreds of millions of peo-
ple who speak Creoles around the world. The

omission of Creoles from such benchmarks can be
attributed to two key factors: modality and stigma-
tization. The first, modality, is a notable factor as
some Creoles are rarely used in writing, and thus
text-based NLP is largely moot, highlighting a
need for efforts in speech technology for Creoles.
The latter, stigmatization, is perhaps the most
salient of the two, however. As the history of
many Creole languages is intricately interwoven
with broader Western imperialism, colonialism,
and slavery, Creole languages are often sub-
jected to the stigmas and prejudices stemming
from these historical atrocities (Alleyne, 1971;
DeGraff, 2003).

On the surface, social prejudices against Cre-
oles may seem extraneous in the context of NLP.
However, the consequences of this stigmatization
are palpable in preventing data collection for these
languages. For example, it can be greatly challeng-
ing to collect data for a language without official
status in a given country, even if it is the most
widely used language by the populace; common
sources for language data like government docu-
mentation, educational materials, and local news
may not be available. Moreover, even if a Creole is
someone’s primary language, sociolinguistic bar-
riers1 rooted in stigma may further prevent people
from using it in various contexts, making opportu-
nities for gathering data even more sparse. Lastly,
even when financial resources are available to

1In some Creole-speaking communities, the local Creole
language is viewed as a ‘‘corrupted’’ language, with names
like ‘‘broken English’’. Thus, speakers of Creoles might not
even identify their variety as a separate language.
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compensate crowd-workers, logistical challenges
can significantly impede data collection efforts for
Creole languages (Hu et al., 2011).

Stigmatization of Creoles is also an ongoing is-
sue in the scientific domain, which further inhibits
work in NLP. Indeed, this prejudice is deeply
ingrained in linguistics, manifested in the com-
mon misconception that Creoles are incomplete or
under-developed languages, in direct opposition
to concepts like linguistic relativism and Univer-
sal Grammar (DeGraff, 2005; Kouwenberg and
Singler, 2009; Aboh and DeGraff, 2016). This oth-
ering of Creoles that has occurred in linguistics has
led to a research landscape where Creoles are typ-
ically categorized as exceptions among languages,
and thus separated from other languages. Take, for
example, the widely used WALS database (Dryer
and Haspelmath, 2013), which lists Creoles as hav-
ing the language family ‘‘other’’; works in NLP
or computational linguistics relying on WALS to
sample languages from diverse range of families as
a part of their methodology consequently exclude
Creoles from their work (Rama and Kolachina,
2012; Vylomova et al., 2020; Bjerva et al., 2020;
Vastl et al., 2020; Yu et al., 2021; Chronopoulou
et al., 2023).2 Beyond WALS, this pattern of ex-
clusion is palpable across NLP, as demonstrated
by the marked absence of Creoles in works in-
vestigating multilinguality through the lens of
language families (Majewska et al., 2020; Jayanthi
and Pratapa, 2021; Şahin, 2022; Xu et al., 2022).
And while other resources exist to specifically
cater to Creoles (e.g., APICS; Michaelis et al.,
2013), the creation of separate resources to specif-
ically accommodate Creoles is emblematic of their
ghettoization within scientific spaces. In this vein,
though Creoles are the singular focus of this work,
our datasets, code, and models will allow others
to easily incorporate Creoles into broader variety
of projects, thus helping remedy the isolation of
Creoles across NLP.

Inclusion of Creoles In an effort to enable NLP
research on Creoles, we introduce CREOLEVAL,
a set of benchmarks covering a wide variety of
tasks for up to 28 Creole languages. Enabling
NLP research on Creoles offers significant pos-
sibilities. First, this will enable development of
language technologies for Creoles, potentially im-

2For a critical overview of typologically diverse sampling
based on language families, see Ploeger et al. (2024).

proving technological inclusion of the speakers of
these languages. While increasing the number of
NLP datasets for Creoles is important, a crucial
note here is that as set of languages, Creoles are
not a monolith. In some contexts, a Creole can
be someone’s mother tongue, and the sole lan-
guage they speak; in other cases, Creoles can play
an important role as a lingua-franca within lin-
guistic diverse communities, and for this reason,
deserve special attention of the NLP community
(Bird, 2021). Due to their status as marginalized3

languages, we highlight the importance of com-
munity involvement when designing CREOLEVAL.
Inspired by recent recommendations on participa-
tory machine learning (Sloane et al., 2022), we
build on previous work by Lent et al. (2022b), and
attempt to strike a balance by creating resources
that can be beneficial for both Creole-speaking
communities and the NLP community. Creating
the technologies explicitly sought after by various
Creole-speaking communities remains an open
area for future work, and we believe that the bench-
marks and baselines in CREOLEVAL can be useful
to this end. Second, from a scientific perspec-
tive, we argue that Creoles offer an opportunity
for careful development and evaluation of trans-
fer learning methods, e.g., leveraging similarities
to a Creole’s ancestor languages. For example,
consider Chavacano, a language spoken in the
Philippines with genealogical ties to Spanish,
Tagalog, and other languages. Below is a sam-
ple sentence (Steinkrüger, 2013) in Chavacano,
with an accompanying Spanish and English trans-
lation, annotated with Subject, Verb, and Object
roles:

• Chavacano: ‘‘Ya-miráV el mga ómbreS un
póno de ságingO.’’

• Spanish: ‘‘Los hombresS vieronV un árbol
de plátanoO.’’

• English: ‘‘The menS sawV a banana treeO.’’

While Chavacano shares some vocabulary with
Spanish, it grammatically maintains the VSO word
order of Tagalog. Hence, from a transfer learning
perspective, one could expect that transfer from
Spanish could be useful in terms of lexical overlap,

3Notably, a handful of Creoles do have official lan-
guage status by law in their respective lands: Haitian Creole,
Seychelles Creole, Bislama, and Sango.
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but not syntax. As many Creoles are genealogi-
cally related to higher-resourced languages (e.g.,
English, French, Spanish, Portuguese, Dutch),
resource availability permits research on Cre-
oles that can help shed light on the underlying
mechanics of transfer learning. To this effect,
the baselines presented in this work pertain to
zero-shot transfer learning, in order to ascertain
the current viability of transfer learning for Cre-
oles, in line with previous works for other truly
low-resource languages (Ebrahimi et al., 2022;
Snæbjarnarson et al., 2023). Ultimately, the goal
of CREOLEVAL is to facilitate research on transfer
learning, computational linguistics, as well as gen-
eral linguistic research on Creole languages. By
providing this resource, we hope that inclusion of
Creoles in multilingual evaluations will become a
default practice in NLP.

Contributions In this work, we introduce new
datasets for three different NLP tasks (read-
ing comprehension, relation classification, and
machine translation) for understudied Creole
languages. We expand the scope of CREOLE-
VAL by packaging these datasets together with
pre-existing tasks for Creoles (i.e., dependency
parsing, named entity recognition, sentiment
analysis, sentence matching, natural language
inference, and machine translation), in a pub-
lic repository (see Appendix C Table 8). This
repository facilitates further work on Creoles
for the NLP community, as we provide a sin-
gle gateway to this diverse group of languages,
allowing for straight-forward data exploration,
experimentation, and evaluation. The 28 Creole
languages covered in CREOLEVAL are, unfortu-
nately, unequally represented across tasks due to
the difficulties of gathering and curating data.
However, the addition of our new development
data greatly expands upon the existing number of
NLP tasks for Creoles (see Figure 1). For all the
datasets constituting CREOLEVAL, we present base-
line experiments with additional analysis on the
efficacy of transfer learning for Creoles. Our code,
data, documentation, and models are available at
a public repository.4 Where we cannot provide
data for copyright reasons (i.e., Bible data), we
provide detailed documentation and code to allow
for reproducibility.

4https://github.com/hclent/CreoleVal.

Figure 1: CREOLEVAL expands the availability of labeled
data for Creoles around the globe. This chart shows
the increased availability of datasets for concrete tasks,
across Creoles from different regions. Before CREOLE-
VAL, only 11 Creoles had data for at least 1 pre-existing
task, and now 28 Creoles have labeled data for at least
1 task and at most 6 tasks.

2 Background

Linguistic Context The ‘‘Creole’’ label has
been assigned to languages known to have arisen
through contact between a linguistically diverse
set of languages, as a consequence of human
movement throughout history (Kouwenberg and
Singler, 2009). For example, in contrast with Ro-
mance languages, which have a clear traceable
history from Vulgar Latin (Alkire and Rosen,
2010), the phylogenetic origins of any given Cre-
ole language is more varied. This is because
Creoles descend from a combination of lan-
guages belonging to different families (Michaelis
et al., 2013), as illustrated by Creoles across the
Caribbean (e.g., Jamaican Patois), which have
close ancestral ties to both Indo-European lan-
guages (e.g., English) and African ones (e.g.,
Twi), as a result of European colonialism (Patrick,
2004). Due to this genealogical context, linguists
have looked to Creoles to investigate the pro-
cess by which new languages emerge (Bickerton,
1983; Baker, 1994; Mufwene, 1996; Lefebvre,
2001; DeGraff, 2001; Veenstra, 2008) and con-
tinue to evolve (Croft, 2000; Mufwene, 2008,
2009, 2015). Among linguists today, there is no
consensus on whether Creoles constitute a separate
language family (Bakker et al., 2011; Aboh, 2016),
or whether the label of ‘‘Creole’’ itself is even
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linguistically valid for discriminating between lan-
guages, beyond mere sociohistorical backgrounds
(DeGraff, 2005; McWhorter, 2005).

Previous Work Prior work in NLP primarily
focuses on individual Creole languages, such
as Antillean Creole (Mompelat et al., 2022),
Chavacano (Eijansantos et al., 2022), Jamaican
Patois (Armstrong et al., 2022), Mauritian
Creole (Dabre and Sukhoo, 2022), Nigerian
Pidgin (Ogueji and Ahia, 2019; Caron et al.,
2019; Oyewusi et al., 2020; Adelani et al., 2021;
Muhammad et al., 2022, 2023), Singlish (Wang
et al., 2017; Liu et al., 2022), and Sranan Tongo
(Zwennicker and Stap, 2022).5 A few studies
specifically investigate Creoles as a collection
of languages, with interest in language models
(LMs) (Lent et al., 2021) and transfer learning
(Lent et al., 2022a). Lent et al. (2022b) further
discusses some of the social considerations for re-
sponsible NLP for Creoles, due to the languages’
stigmatization and vulnerability (Alleyne, 1971;
Siegel, 1999; Kouwenberg and Singler, 2009).
We expand upon this existing body of research on
Creoles by contributing high-quality evaluation
data across a variety of tasks, ensuring that future
work in Creole NLP has increased opportunities
for measuring progress. While benchmarking con-
stitutes only a small part of quality assurance for
any model in practice, the creation of benchmarks
also serves as an invitation to the broader research
community to engage with new tasks and lan-
guages, as evidenced by the success of datasets
like MasakhaNER (Adelani et al., 2021) and
shared tasks (Mager et al., 2021; Ebrahimi et al.,
2023; Muhammad et al., 2023; Pal et al., 2023) at
bringing more languages into the mainstream of
NLP research. As such, the CREOLEVAL evaluation
benchmarks can similarly encourage increased
involvement of Creoles in research, with the end
result of faster progress towards better language
technologies for Creole language speakers.

Transfer Learning Transfer learning is the pro-
cess by which a model is trained to make use of
knowledge learned in the context of one task
or language, with the aim of generalizing to other
tasks or languages outside the scope of the original
training data (Zhuang et al., 2019). Over the years,
many different techniques have been proposed for

5See https://creole-nlp.github.io/ for a
comprehensive list of datasets for Creoles.

achieving cross-lingual transfer, such as learning
alignments between words (Yarowsky et al., 2001;
Padó and Lapata, 2014; Agić et al., 2016; Dou
and Neubig, 2021) and word vectors (Klementiev
et al., 2012; Grave et al., 2018; Kementchedjhieva
et al., 2019), so knowledge from one language can
be lent to another on the basis of inferred com-
mon ground. Another popular approach relies on
unsupervised pre-training of LMs over large cor-
pora, in order to establish a strong but generalized
baseline of knowledge (Raffel et al., 2019). In this
setting, transfer learning has been effective for
extending models trained over higher-resourced
languages to lower-resourced ones, especially
when the languages in question have similar ge-
nealogy, typology, and script (Pires et al., 2019;
Wu and Dredze, 2019; Nooralahzadeh et al., 2020;
Zhao et al., 2021; de Vries et al., 2021, 2022).
In the context of Creoles, however, some initial
research suggests that transfer-learning from ge-
nealogically related languages may not be entirely
straightforward. de Vries et al. (2022) investi-
gate the most effective language pairs for transfer
learning of part-of-speech (POS) tagging; while
this work does not outright focus on Creoles, a
notable finding is that Swedish—not English nor
Portuguese—is the most useful language for trans-
ferring POS tags to Nigerian Pidgin. Moreover, in
a direct investigation of transfer learning for Cre-
oles, Lent et al. (2022a) found that LMs trained on
multiple ancestor languages failed to transfer well
to Creoles on limited downstream tasks. Further
investigation is required to understand why both
the aforementioned studies obtained seemingly
counter-intuitive results. However, other work in-
vestigating the underlying mechanisms that allow
for transfer learning have indicated that its success
in this setting may be less dependent on genealog-
ical language relatedness, and more dependent on
other factors like sub-word overlap (Pelloni et al.,
2022).

Multilingual Language Models Selecting a
pertinent LM is typically the first step for any
attempt at transfer learning. Creoles, however,
are largely absent from the most commonly used
multilingual LMs (see Table 1). For this work,
we choose to work with mBERT (Devlin et al.,
2019), XLM-Roberta (Conneau et al., 2020), mT5
(Xue et al., 2021) for natural language under-
standing tasks, and mBART-50 (Tang et al.,
2020) for generation tasks. Despite a lack of
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Data #Lang #Creole #Anc

mBERT Wikipedia 104 1 6
XLM-R CC100 100 0 6
mT5 CC4 101 1 6

mBART-50 custom 50 0 5

Table 1: Coverage of total Languages, Creoles,
and their Ancestor languages in training data
for popular multilingual LMs. mBERT training
data includes Haitian Creole. For mT5, 0.33%
of the training data comes from Haitian Creole.
mBART-50 is trained on the same 25 languages
from XLM-R and an additional 25 languages
from regular mBART (Liu et al., 2020). While
we do not experiment with BLOOM (Scao et al.,
2023), it can be noted that 0.0002% of the Big
Science Corpus contains Lingala, a Creole related
to Bantu.

coverage for Creoles, these models do include
relevant pre-training data for some genealogically
related languages.

3 Natural Language Understanding
of Creoles

Tasks across natural language understanding
(NLU) test a model’s capacity for grasping syntax
and semantics. Typical tasks, such as sentiment
analysis and named entity recognition, require
sizeable amounts of training data for models to
exhibit decent performance. In order to expand on
the availability of NLU data for Creoles we in-
troduce two novel benchmark datasets for reading
comprehension and relation classification, before
experimenting with a set of pre-existing NLU
tasks for Creoles. Our baselines are in a zero-shot
transfer learning setting for Creoles, as this is the
most typical setup for working with languages
with little to no data (Ebrahimi et al., 2022).

3.1 Reading Comprehension

Most pre-existing NLU tasks for Creoles largely
examine syntax (see Section 3.3), and there is
a dearth of NLU tasks for Creoles that evalu-
ate semantic understanding. As curating naturally
occurring language data for a new task is of-
ten prohibitively expensive, dataset translation
is a typical alternative, though translation can
be complicated by cultural differences between

the source and target audience (Hershcovich
et al., 2022). In this work, we translate MCTest,
a machine reading comprehension dataset intro-
duced by Richardson et al. (2013), as it pertains
to a semantically oriented task, and as the general
domain and smaller data size make translation
feasible. Reading comprehension is an NLU task
where a model is challenged to correctly answer
questions contingent to a specified piece of text.
The MCTest dataset is composed of short stories
intended for school-aged children, each accom-
panied with four multiple choice questions that
require different levels of reasoning to answer
(i.e., context from one or multiple sentences is
needed for a human to successfully answer the
question).

Translation We chose to translate the
MCTest160 development set because of the
relatively general domain, and smaller size, which
makes it feasible for translation (30 stories, 120
questions). We hired professional translators to
translate the English MC160 development set into
both Haitian Creole and Mauritian Creole. Al-
though we had budget for even more translations,
these were the only two Creole languages that we
could find professional translators for. Notably,
there are two different translations for Haitian
Creole: a direct translation, and a localized
translation. As opposed to the direct translation,
the localized version is a culturally sensitive
translation, with minor changes to include names,
places, and activities that are directly pertinent
to a Haitian audience (Roemmele et al., 2011).
For example, the original English dataset may
discuss an ice cream truck (directly translated
to ‘‘kamyon krèm’’), though ice cream is not
a typical dessert in Haiti; thus in the localized
dataset, ‘‘ice cream truck’’ has been changed
to ‘‘machann fresko’’, a cart which sells a
shaved-ice desert enjoyed in Haiti. The addition
of these two different Haitian Creole datasets for
reading comprehension additionally paves the
way for evaluating progress in cross-cultural NLP
(Hershcovich et al., 2022).

Results and Analysis For our benchmark ex-
periments on the Creole MCTest160 development
set, we use a simple transformer-based baseline
approach, leveraging mBERT and XLMR as the
basis of these models. We fine-tune them for 10
epochs over the English MCTest160 training set.

954



mBERT XLM-R

Haitian-direct 51.60% 39.16%
Haitian-localized 50.83% 43.33%
Mauritian 49.10% 43.33%

English 63.33% 45.00%

Table 2: Accuracy results for MCTest160 devel-
opment data when trained on the English MC160
training data.

A summary of our results is in Table 2, with full
results and hyperparameter settings documented
in the accompanying Github repository. mBERT
out-performs XLMR, although XLMR performs
better over the localized data than the direct trans-
lation for Haitian. The performance on Haitian can
likely be attributed to the fact that mBERT has
been pre-trained on Haitian, while XLMR has not.
Meanwhile, the performance on Mauritian is sur-
prising as neither models have seen this language.
It’s particularly noteworthy that mBERT results
on Creoles outperforms XLMR’s English perfor-
mance by far. In comparison, a random baseline
on MCTest160 yields an accuracy of 25%, and
Attentive Reader (Hermann et al., 2015) has an
accuracy of 42% on English data.

3.2 Relation Classification

Relation classification (RC) aims to identify se-
mantic associations between entities within a text,
essential for applications like knowledge base
completion (Lin et al., 2015) and question answer-
ing (Xu et al., 2016). In this work, we introduce
the first manually verified RC datasets for four
Creole languages: Bislama, Chavacano, Jamaican
Patois, and Tok Pisin.

Our dataset is sourced from Wikipedia, where
we found 16 Creoles with a presence, though
only 9 had readily available Wikidumps.6 While
Wikipedia is a common source for gathering data,
poor quality of articles is an outstanding issue
known to plague Wikipedias of lower-resourced
languages (Kreutzer et al., 2022). As such, the
creation of our RC datasets involves speakers of
the Creoles to ensure quality, and preserve the
domain, allowing for integration of Creoles into
the broader spectrum of RC projects (Sorokin and
Gurevych, 2017; Köksal and Özgür, 2020; Nag
et al., 2021; Chen and Li, 2021; Chen et al., 2022).

6bi, cbk-zam, gcr, hat, jam, pap, pih, sg, tpi.

To construct the dataset, we first preprocess7

Wikipedia dumps and perform automatic entity
linking using OpenTapioca (Delpeuch, 2019).
Unsurprisingly, we observe that many Creole
Wikipedia entries are short and templatic, pos-
sibly due to machine generation. This templatic
nature, however, facilitates the annotation process
for RC, as it allows for straightforward identifica-
tion of entities and relations by the authors of this
work who have linguistic training. For example,
consider the following examples from the Tok
Pisin Wikipedia:

• Talin i kapitol bilong Estonia.

• Vilnius i kapitol bilong Lituwenia.

• Busares i kapitol bilong Romenia.

• Budapest i kapitol bilong Hangri.

• Stockholm i kapitol bilong Suwidan.

From these samples above, we can infer a la-
tent template of ‘‘[[CITY]] is the capital of
[[COUNTRY]]’’, with the entities having the re-
lation ‘‘capital of’’ (P1376 in Wikidata). Thus,
to facilitate manual annotation of relations, and
corrections of the automatic entity tagging, we au-
tomatically cluster sentences based on the latent
templates. Thereafter, sentences with annotated
triples not found in Wikidata are discarded.

After the annotation process, speakers of
the pertinent Creole languages assessed the
quality of the samples, and furthermore pro-
vided spelling and grammar corrections, where
deemed necessary. This quality assurance pro-
cess was complemented by a linguistic expert
who cross-referenced the datasets with linguistic
grammars to identify possible errors. The process
resulted in high-quality evaluation data for 4 of
the 9 initially identified Creole Wikipedias, with
each dataset contains 97 evaluation samples.8

We establish a benchmark for Creole RC using
a zero-shot cross-lingual transfer approach: We
employ LMs that have not been exposed to the
Creoles and train exclusively on English data.

Model and Training We adopt the method
introduced by Chen and Li (2021), which ex-
cels in zero-shot transfer learning for RC on
Wikipedia and Wikidata (Han et al., 2018). This

7https://github.com/attardi/wikiextractor.
8For a complete discussion on dataset creation, latent

templates, and manual review processes, see Appendix A
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Dataset
Sent. Enc. bert-base-multilingual-cased xlm-roberta-base
Rel. Enc. Bb-nli Bl-nli Xr-100 Xr-b Bb-nli Bl-nli Xr-100 Xr-b

Dev(en) 59.63±3.48 76.15±1.59 63.47±1.75 62.15 ±1.65 46.76±2.58 50.58±2.08 49.11±2.51 49.04±1.49

bi 28.01±2.42 25.61±3.92 27.66±5.45 25.96±3.80 18.81±4.04 9.62±0.78 19.42±4.51 14.79±1.77
cbk-zam 20.06±5.88 20.85±6.03 17.67±6.68 17.39±6.45 27.08±6.86 18.48±6.83 18.50±2.77 20.32±2.73
jam 26.97±5.87 15.65±5.00 20.07±5.93 23.98±7.24 10.62±1.27 9.42±5.71 9.06±1.70 10.22±0.92
tpi 23.57±4.17 22.90±2.97 22.86±8.13 21.42±5.96 9.36±3.77 11.64±5.54 8.31±8.07 8.48±4.78
AVG 24.65 21.25 22.06 22.19 16.47 12.29 13.82 13.45

Table 3: Relation Classification performance measured by macro F1 score on English validation (dev)
set and Creole test sets. AVG shows the overall performance per setup across all Creole languages.
Bold indicates the best performance for each sentence encoder setting. Sent. Enc.: sentence encoder.
Rel. Enc.: relation encoder.

approach projects both sentences and their associ-
ated relation descriptions into a shared embedding
space, minimizing distances between them while
performing classification. For training, we use
the UKP dataset (Sorokin and Gurevych, 2017),
which contains 108 Properties (i.e., relations in
Wikidata). In contrast, our Creole datasets feature
just 13 Properties, four of which are not present
in the UKP dataset. Five relations are separated
for validation. We fine-tune multilingual mBERT
and XLM-R (Conneau et al., 2020) models us-
ing multilingual sentence transformers (Reimers
and Gurevych, 2019). The sentence encoder em-
ploys mBERT and XLM-R,9 while the relation
encoder uses one of four alternative models, de-
noted as Bb-nli, Bl-nli, Xr-b, and Xr-10010 here, as
sentence embeddings of the relation descriptions
from Wikidata.

Results and Analysis Table 3 shows the perfor-
mance of RC in each setting. We observe worse
performance in the Creoles than English. This
highlights the particular challenge of leveraging
pretrained LMs for zero-shot cross-lingual transfer
for RC for Creoles, due to the lack of representa-
tion of Creoles in the LM training data. In addition,
the choice of the sentence encoder is a primary
determinant of performance of Creole RC. When
using mBERT as the sentence encoder, the perfor-
mance of Creole RC tends to be slightly better than
XLMR. Under the same sentence encoder, differ-
ent relation encoders exhibit slight variations in
performance. We speculate that mBERT may per-
form better due to its pre-training over Wikipedia,

9Respectively,bert-base-multilingual-cased,
xlm-roberta-base.

10Respectively,bert-base-nli-mean-tokens,
bert-large-nli-mean-tokens,
xlm-r-bert-base-nli-mean-tokens,
xlm-r-100langs-bert-base-nli-mean-tokens.

in contrast to XLMR, which is pre-trained over
a wider variety of domains. Previous works on
multilingual factuality also observe mBERT out-
performing XLMR (Jiang et al., 2020; Fierro and
Søgaard, 2022).

3.3 Prior NLU Benchmarks
In addition to the datasets that we introduce, there
are a handful of pre-existing, labeled datasets for
Creole languages in the space of NLU. In order
to facilitate concentrated efforts on Creole NLP,
we have gathered these tasks and packaged the
baseline experiments for them with the CreoleVal
repository. For each of these prior benchmarks,
we provide code to run baseline experiments with
three multilingual LMs (mBERT, XLM-R and
mT5). In contrast with the brand new datasets
presented in CREOLEVAL, the majority of prior
benchmarks allow for supervised learning. Thus,
in order to ascertain the expected performance for
these tasks given the data available, we train and
evaluate fully supervised models, where training
data exists (UDPoS, NER, and sentiment analy-
sis). For JamPatoisNLI (Armstrong et al., 2022),
we reproduce the authors’ results by following the
reported methodology: First we fine-tune on En-
glish MNLI (Williams et al., 2018), before doing
few-shot learning on 250 samples of Jamaican Pa-
tois. The sentence-matching Tatoeba task (Artetxe
and Schwenk, 2019) is the only without dedicated
training or few-shot data, and thus is the only
task where we evaluate the zero-shot performance
of the pertinent LMs. The performance on the
test set for each task and LM in Table 4. Un-
surprisingly, performance is best when training
data is available, though few-shot learning shows
promising results in the case of JamPatoisNLI.
However, previous work has noted that a high
token overlap is needed to successfully achieve
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Task Language Dataset Metric mBERT XLM-R mT5

UDPoS (supervised) pcm UD Naija-NSC (Caron et al., 2019) Acc 0.98 0.98 0.98
singlish Singlish Treebank (Wang et al., 2017) Acc 0.91 0.93 0.91

NER (supervised)

pcm MasakhaNER (Adelani et al., 2021) Span-F1 0.89 0.89 0.90
bis

WikiAnn (Pan et al., 2017) Span-F1

0.94 0.90 0.72
cbk-zam 0.96 0.96 0.94
hat 0.78 0.84 0.48
pih 0.90 0.88 0.61
sag 0.89 0.93 0.79
tpi 0.91 0.89 0.75
pap 0.90 0.89 0.85

SA (supervised) pcm AfriSenti (Muhammad et al., 2023) Acc 0.66 0.68 0.67
pcm Naija VADER (Oyewusi et al., 2020) Acc 0.71 0.72 0.72

NLI (few-shot) jam JamPatoisNLI (Armstrong et al., 2022) Acc 0.74 0.76 0.66

Sentence Matching

cbk-eng

Tatoeba (Artetxe and Schwenk, 2019) Acc

15.9 3.9 6.5
gcf-eng 12.8 4.9 6.9
hat-eng 23.9 18.5 37.9
jam-eng 19.9 9.6 10.3

(zero-shot) pap-eng 22.4 6.1 15.9
sag-eng 5.7 2.1 7.3
tpi-eng 7.2 3.3 7.6

Table 4: Baseline scores for pre-existing NLU tasks for Creoles: dependency parsing (UDPoS), named
entity recognition (NER), sentiment analysis (SA), natural language inference (NLI), and sentence
matching. Additional experiments, results, and analysis are included in the CreoleVal repository’s
documentation.

cross-lingual transfer for languages unseen by a
pre-trained LM (Winata et al., 2022). As spelling
conventions for many Creoles have greatly di-
verged from those of ancestor languages (e.g.,
‘‘Pwofesè’’ in Haitian Creole to ‘‘Professeure’’
in French), subword token overlap between Cre-
oles and related languages will likely be low,
and therefore few-shot learning may not help in
such scenarios. As additional samples for few-shot
learning are not available for most Creoles, there
is an outstanding need for improved zero-shot
performance via transfer learning, until further
data can be curated.

4 Natural Language Generation
of Creoles

Unlike NLU, where the model aims to predict an
accurate label, natural language generation (NLG)
is arguably a more challenging task as models
should generate output that is adequate as well
as fluent. A lack of data—both in terms of size
and domain—further complicates NLG for Creole
languages. In this paper, we introduce 2 new
machine translation (MT) datasets for Creoles.
The first covers 26 Creoles with text drawn from
the religious domain, and the second is a small,
but very high-quality, Hatian Creole dataset in the
educational domain. We also conduct experiments

and evaluate performance on a pre-existing MT
dataset for Mauritian Creole.

4.1 CreoleM2M MT

As the world’s most translated text, the Bible is a
typical starting point for gathering language data
in a low-resource scenario. While Bible data has
a number of limitations (e.g., fixed domain, ar-
chaic language, and translationese [Mielke et al.,
2019]), notable benefits include its size and par-
allelism with other languages, which lends itself
aptly to MT. We gathered parallel corpora for 26
Creole Bibles from Mayer and Cysouw (2014),11

along with additional texts from the JW300 corpus
(Agić and Vulić, 2019). In total, our parallel MT
corpus contains 3.4M sentences and 71.3M and
56.3M Creole and English words, respectively,
making it the largest Creole parallel corpus to
date. Furthermore, we split 1,000 and 2,000 sen-
tences for each Creole and English Bible and use
them for development and testing, respectively.
Note that the development and test sets are N-way
parallel (N = 27: 26 Creoles and English). We
ensured that there is no overlap between the train-
ing, development, and test data. See Appendix B
for exact details on dataset sizes.

11To access the raw Bible corpora, one must request the
authors due to copyright issues.
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Figure 2: chrF (blue) BLEU (red) scores obtained using baseline models (scratch; square points) and fine-tuned
models (mBART-50-MT-FT; circle points) on the Bible corpus for XX-En (left) and En-XX (right) language
pairs, where XX represents Creole languages. The language pairs are ordered from left to right in increasing sizes
of parallel corpora from 4,366 pairs to 583,746 pairs.

4.1.1 Experiments

We fine-tune mBART-50-MT (Tang et al., 2020)
and also train models mBART from scratch, over
the parallel Bible text.

Vocabulary For models trained from scratch,
we use the training data and create a shared
tokenizer of 64,000 subwords for all 26 Cre-
oles and English using sentencepiece (Kudo and
Richardson, 2018). Due to the large number of lan-
guages, we only train bilingual models and leave
multilingual models for future work. While we
could have created separate vocabularies for bilin-
gual models, a shared tokenizer will be helpful in
ensuring consistency with future planned mul-
tilingual model experiments. For the fine-tuned
models, we use the mBART-50 tokenizer contain-
ing 250,000 subwords. Although this tokenizer’s
vocabulary was not explicitly trained on Cre-
oles, we expect the subwords from related parent
languages to be sufficient.

Training We trained our models using the
YANMTT toolkit12 (Dabre and Sumita, 2021),
which supports training models from scratch as
well as by fine-tuning mBART models. Here, we
train models from scratch as well as by fine-tuning
the mBART-50-MT model13 following Dabre and
Sukhoo (2022). The training utilizes the Adam op-
timizer (Kingma and Ba, 2014), and trains until
convergence. We evaluate the training perfor-
mance on the development set using BLEU score

12https://github.com/prajdabre/yanmtt.
13https://huggingface.co/facebook/mbart

-large-50-many-to-many-mmt.

after every 1,000 training steps. The training pro-
cess determines convergence when BLEU scores
do not improve for 20 consecutive evaluations.14

Decoding We perform decoding using beam
search with a beam of size 4 and a length penalty
of 0.8. Due to the large number of language
pairs, we do not tune these parameters for each
language pair.

Results and Analysis Figure 2 shows the per-
formance in terms of chrF and BLEU scores for
Creole to English and English to Creole translation
for the test set of the CreoleM2M benchmark. For
models trained from scratch, performance appears
correlated with the size of the parallel corpus.
Therefore, fine-tuning the mBART-50-MT model
leads to significant improvements in translation
quality by up to 19.2 BLEU and 17.3 chrF for
Creole to English translation and up to 16.9 BLEU
and 13.5 chrF for English to Creole translation.
We noted that both BLEU and chrF scores are cor-
related15 with each other. We note that fine-tuning
is not always a good idea for the Creoles with more
training data available. In most larger-resourced
settings, we observed a drop in translation qual-
ity, indicating that the fine-tuned model converges
too quickly, and is unable to learn well from the
training data.

14Note that we anneal the learning rate by half when the
BLEU scores don’t improve for 10 consecutive evaluations
and then again by half if the scores don’t improve for 15
consecutive evaluations. Therefore, after cutting the learning
rate by half (each time) for the final convergence decision,
we wait for 20 consecutive evaluations to declare model
convergence.

15We calculated a Pearson correlation score of 0.98.
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4.2 MIT-Haiti MT

While Bible translations can provide initial data
for training MT systems, this domain is markedly
limited, highlighting a need for MT datasets for
Creoles originating from other, more generaliz-
able domains. To this end, we introduce the BANK

DONE MIT-AYITI, or in English, the MIT-Haiti Cor-
pus: a manually verified, high-quality collection
of parallel Haitian Creole sentences with English,
French, and Spanish translations. This data comes
from Platform MIT-Haiti,16 a learning platform
with educational material for students in Haitian
Creole. We scrape the entire website, including
the web text and PDFs. The parallel sentences for
this MT corpus come from 60 multilingual stories
(the PDFs and their converted plain text transcrip-
tions); these stories were each manually cleaned
and corrected (i.e., in cases where the PDF reader
made mistakes in transcribing, these were manu-
ally corrected), aligned, and verified by a subset
of the authors, who have qualifications in both lin-
guistics and NLP. For the remaining monolingual
Haitian text without direct parallel translations,
we manually clean and verify these sentences
with the same process, and release a small set of
monolingual examples (∼8200 utterances), which
could potentially be useful for few-shot continued
pre-training of a language model. Although this
dataset is relatively small, we would like to stress
that it is high quality, as it comes directly from
a community that actively fosters education and
writing in Haitian Creole.

OPUS for MIT-Haiti To establish the baseline
performance on the MIT-Haiti Corpus, we lever-
age pre-trained OPUS-MT models (Tiedemann
and Thottingal, 2020). In Table 5, we show the
performance of pre-trained OPUS-MT models on
the MIT-Haiti benchmarks. These models were
previously benchmarked on the Tatoeba and/or
JW300 corpus, which are limited in complexity
and domain, respectively. By extending this to the
MIT-Haiti Corpus, we can gain an insight into the
performance of these models on more diverse us-
age of Haitian Creole. We translate from Spanish,
French, and English into Haitian Creole, because
this translation direction has the potential to be
useful for (monolingual) speakers of Haitian Cre-
ole, as it provides increased information access.
Notably, the scores on the MIT-Haiti benchmarks

16https://mit-ayiti.net/.

Model Source Target # Lines BLEU chrF

OPUS
es ht 102 12.1 32.9
fr ht 1,503 11.8 33.5
en ht 1,559 14.7 35.8

CreoleM2M en ht 1,559 22.0 43.9
ht en 18.6 38.1

Table 5: Performance of OPUS models
(opus-mt-en-ht, opus-mt-es-ht, opus-mt-fr-ht) on
our MIT-Haiti Corpus benchmarks, as well as
the results of decoding the MIT-Haiti benchmarks
using the fine-tuned CreoleM2M Haitian Creole
models.

are considerably lower than those on previous
benchmarks. For instance, the English to Haitian
Creole model scores 45.2 BLEU and 59.2 chrF on
the Tatoeba test set,17 while it retrieves only 14.7
BLEU and 35.8 chrF on the MIT-Haiti Corpus.
This suggests that previous benchmarks are likely
to be overly optimistic.

CreoleM2M for MIT-Haiti Table 5 contains
the results for the fine-tuned CreoleM2M mod-
els on the MIT-Haiti Corpus. We can see that the
BLEU and chrF scores are 18.6/38.1 and 22.0/43.9
for Haitian Creole to English and English to
Haitian Creole, respectively. Despite the domain
differences between CreoleM2M’s training data
(religion) and the MIT-Haiti benchmarks (educa-
tion), a brief manual inspection revealed that the
translation quality is not particularly bad, however
the generated translations tend to contain spurious
religious content. Extensive human evaluation of
these translations will help in better understanding
of the limitations of our CreoleM2M models in a
cross-domain setting.

4.3 Prior NLG Benchmarks

KreolMorisienMT (Dabre and Sukhoo, 2022)
is a dataset for machine translation of Mauritian
Creole (i.e., Kreol Morisien) to and from English
and French. The dataset spans multiple domains
spanning the Bible, children’s stories, commonly
used expressions, and some books. We refer the
reader to Dabre and Sukhoo (2022) for further
details. In this paper, we focus only on translation
to/from English. We combine the training data
from the Kreol Morisien part of the CreoleM2M

17https://huggingface.co/Helsinki-NLP
/opus-mt-en-ht.
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Data Model BLEU chrF
mfe-eng eng-mfe mfe-eng eng-mfe

Dabre and Sukhoo (2022) Scratch 11.1 11.5 – –
Dabre and Sukhoo (2022) mBART-50-MT-FT 24.9 22.8 – –

CreoleM2M Scratch 16.1 11.5 38.0 37.1
CreoleM2M+KreolMorisienMT Scratch 20.5 16.9 42.8 41.1
CreoleM2M mBART-50-MT-FT 22.1 18.9 44.6 44.4
CreoleM2M+KreolMorisienMT mBART-50-MT-FT 25.7 24.7 47.8 48.2

Table 6: Results on the KreolMorisienMT test sets by using CreoleM2M training data, in addition with
the training data in KreolMorisienMT.

dataset with KreolMorisienMT’s training data and
then train MT models to show the impact of our
newly mined data. We filter out those sentences
from CreoleM2M, which are present in the de-
velopment and test sets of KreolMorisienMT, for
clean evaluation. This gives us 188,820 sentence
pairs, which is almost an order of magnitude
larger than the 21,810 sentence pairs in Kreol-
MorisienMT. As a baseline, we only train models
with the CreoleM2M data containing 167,010 sen-
tence pairs after removing the development and
test set sentences of KreolMorisienMT.

For the KreolMorisienMT test set, since it is
standalone, we focus on standalone bilingual mod-
els and hence create a filtered version of the Kreol
Morisien part18 of CreoleM2M’s training data.
We use this to train separate tokenizers of 16,000
subwords for Kreol Morisien and English. One
tokenizer is with this filtered version alone, and
one is with a combination of the filtered version
and the training data of KreolMorisienMT.

Table 6 contains results for the test set of Kreol-
MorisienMT. We compare our models trained
from scratch and fine-tuning against those of
Dabre and Sukhoo (2022). The most important
thing to note is that our scratch models are
overwhelmingly better than corresponding mod-
els by Dabre and Sukhoo (2022). In fact, we
see gains of up to 9.4 BLEU. On the other
hand, the filtered CreoleM2M data when used
for fine-tuning, despite its size, does not lead to a
model that surpasses Dabre and Sukhoo’s (2022)
corresponding model that is fine-tuned on a much
smaller KreolMorisienMT training dataset. How-
ever, by combining both the filtered CreoleM2M

18As mentioned in Section 4.3, we filter to remove the
KreolMorisienMT test set sentences from CreoleM2M’s train-
ing data.

and KreolMorisienMT training datasets, we fi-
nally surpass Dabre and Sukhoo’s (2022) best
results.19

Other We exclude PidginUNMT (Ogueji and
Ahia, 2019), as this unlabeled dataset pertains to
unsupervised machine translation, and thus cannot
be used as gold-standard evaluation data. We also
exclude WMT11 (Callison-Burch et al., 2011),
as it was created to help victims of the 2010
earthquake in Haiti, and thus contains sensitive
data.

5 Discussion and Recommendations

Implications for Transfer Learning The in-
troduction of CREOLEVAL marks a significant step
forward in bridging the technological divide for
Creole languages, in the context of NLP. Prior
to this work, the scarcity of resources for Cre-
oles made progression of NLP tailored for Creole
speakers close to impossible. Now, as shown
in Figure 1, 28 Creole languages are part of a
unified platform, despite previously having lim-
ited or no NLP datasets. This platform enables
researchers and developers to easily include Cre-
oles in pre-existing pipelines, introducing a novel
and unique low-resource scenario to NLP. Given
the genealogical ties of many Creoles to (typ-
ically) higher-resourced languages,20 we expect
this to allow for nuanced experimentation in trans-
fer learning. In particular, the complex picture

19Dabre and Sukhoo (2022) do not give chrF scores in
their paper and do not release their translations, making it
impossible for us to compare chrF scores.

20Some Creoles have strong genealogical ties to
lower-resourced languages, such as the Niger-Congo Cre-
oles Lingala, Kikongo-Kituba, Fanakalo, which are related
to Bantu languages, and Sango, which is related to Ngbandi.
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of Creoles, including both horizontal and ver-
tical transfer between diverse languages, may
offer the key to developing transfer learning
techniques which are tuned to encapsulate spe-
cific pieces of cross-linguistic knowledge. While
vocabulary might be transferred from a parent
language, syntactic and semantic structures may
diverge, challenging conventional transfer learn-
ing methods. Indeed, previous work has shown
the difficulties of straightforward transfer learning
techniques from ancestor languages (Lent et al.,
2022a). We suggest that the success of transfer
learning in this new domain relies on in-depth
understanding of the structural and contextual
intricacies of each individual Creole language,
rather than a simplistic reliance on their parent
languages. Moreover, we believe that work to this
end has the potential to improve transfer learning
methodology, as it will help researchers gain a
broader understanding of the capabilities and lim-
itations of transfer learning. Finally, beyond strict
transfer learning, we also expect cultural adapta-
tion to be a significant challenge for the future, for
which CREOLEVAL provides a benchmark.

Further Resource Development While CREOLE-
VAL opens for straightforward inclusion of a set
of Creole languages in NLP pipelines, we are still
limited to textual data. While this is an impor-
tant contribution which may lead to a more even
playing field in terms of language technologies, it
is not enough to focus on this modality. Consid-
ering the fact that many Creoles are exclusively
spoken languages indicates that a focus on speech
resource development is an important next step.

Recommendations For future work on Creole
languages, be it in the context of experimen-
tation on CREOLEVAL, or on further resource
development, we recommend the following:

1. Engage with language communities. When
languages are limited in resources, it is
critical that any new additional resources
are allocated to efforts that will benefit the
communities using the language in question
(Bird, 2021). For Creoles, a concrete starting
point is to reach out to experts, as discussed
by Lent et al. (2022b).

2. Keep in mind contextual factors such as
domain and culture. Direct translations in
narrow domains are likely to introduce

cultural biases, which may render lan-
guage technology less relevant to potential
end-users (Hershcovich et al., 2022). When
it is not possible to gather naturally occurring
language data, we echo similar recommen-
dations by others for culturally sensitive
translations (Roemmele et al., 2011).

6 Conclusion

In this work, we have addressed the absence of
Creole languages from contemporary NLP re-
search by introducing benchmarks and baselines
for a total of 28 Creole languages. We argue
that this omission in previous work has hin-
dered the progress of NLP technologies tailored to
Creole-speaking populations, in addition to pre-
venting research communities from exploring the
unique linguistic situations of this diverse group of
languages. With the introduction of CREOLEVAL,
we have made a significant step towards bridg-
ing the gap between Creole languages and other
low-resource languages in NLP. We hope that the
public release of our datasets and trained models
will serve as an invitation to further research in
this relatively unexplored domain, and expect that
NLP and computational linguistics research stand
to gain significantly from embracing the linguistic
and cultural diversity embodied in this group of
languages.

Limitations

Although we are the first to create NLU and NLG
benchmarks for up to 28 Creoles, we note the
following limitations.

Limited Domain Diversity While we were able
to collect reasonably large parallel corpora for
Creole MT, the data itself belongs to the religious
domain and thus might not be extremely useful in
a general purpose MT setting. Controversially, the
Bible and other religious texts may be considered
colonialist by some communities, as these texts
may be used to ‘‘provoke a culture change in
these communities’’ (Mager et al., 2023). How-
ever, works in domain adaptation (Chu et al.,
2017; Imankulova et al., 2019) have shown that
even a small amount of in-domain corpus may be
sufficient for adaptation to other domains.

Mixture of Data Quality In this work, we put
forth and experiment with a combination of higher
and lower quality data, the latter coming from the
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religious domain. Works in NLP have long relied
on religious texts for truly low-resource languages,
which often have no other available data (Agić
et al., 2015, 2016). However, the use of such data
comes with concerns over data quality, as such
texts are often written by foreign missionaries,
they cannot be considered strictly representative
of the language as used by native speakers (Nida,
1945). While the inclusion of religious data is still
a common necessity in the realm low-resource
NLP, the addition of our higher quality data for
Creoles ensures that future works will have a wider
variety of resources to evaluate their systems, than
previously available. Moreover, when sourcing
data from domains like Wikipedia, we involve
speakers and cross-reference linguistic grammars,
leading us to exclude several languages due to
quality issues, such as Pitkern.

Lack of Reliable Monolingual Corpora Sources
Unlike resource-rich languages like English,
French, and Hindi, finding monolingual corpora
for Creoles is extremely difficult. One reason for
this is the historic lack of interest in research on
Creoles in NLP. The lack of monolingual corpora
also inhibits the development of LLMs for Cre-
oles, however even a tiny amount may be helpful
for expanding existing LLMs, as shown by Yong
et al. (2023).

Language Identification Tools A possible rea-
son for the difficulty in obtaining Creole corpora
from the web is that there are extremely lim-
ited language identification (LID) (Baldwin and
Lui, 2010) tools for Creoles, and thus identifying
Creole content in CommonCrawl21 is also very
difficult. Developing LID tools for Creoles will
be an important future work (Kargaran et al.,
2023).

Modality Many Creoles are spoken and not
written, therefore text-based NLP might not be
suited for them. This motivates branching out
into speech-to-text (automatic speech recogni-
tion, speech translation) and speech-to-speech
(translation) research.
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Željko Agić, Dirk Hovy, and Anders Søgaard.
2015. If all you have is a bit of the Bible:
Learning POS taggers for truly low-resource
languages. In Proceedings of the 53rd Annual
Meeting of the Association for Computational

Linguistics and the 7th International Joint
Conference on Natural Language Processing
(Volume 2: Short Papers), pages 268–272,
Beijing, China. Association for Computational
Linguistics. https://doi.org/10.3115
/v1/P15-2044

Željko Agić, Anders Johannsen, Barbara Plank,
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Tórshavn, Faroe Islands. University of Tartu
Library.

Daniil Sorokin and Iryna Gurevych. 2017.
Context-aware representations for knowledge
base relation extraction. In Proceedings of the
2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1784–1789,
Copenhagen, Denmark. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/D17-1188
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A Relation Classification

Here, we thoroughly describe our steps to cre-
ate the relation classification datasets, from data
collection, to annotation and verification. This
discussion is intended to provide details for exact
replication of the work described in the paper,
for creating these datasets. For an overview, our
methodology consisted of the following steps:

1. Collecting and cleaning data from Wikipedia
dumps, and performing automatic entity
linking.

2. Clustering sentences which belong to the
same latent template (i.e., the sentences ex-
press the same relation, as evidenced by an
exact or near-exact overlap in the text, with
the only differences being the entities; more
details are provided in Appendix A.2).

3. Manually verifying and correcting any
mistakes from the automatic entity-linking.

4. Manually annotating the relation expressed
in the sets of utterances (as grouped by the
latent templates) and its associated Property
in Wikidata.

5. Validating that the annotated triples indeed
exist in Wikidata; sentences where the triples
did not exist in Wikidata (due to gaps in the
knowledge base) were thrown out.

6. Manually checking the correcting the an-
notated sentences to ensure that the samples
truly reflect real-world usage of the language.

(a) A manual verification of each dataset
was performed by a speaker of each
Creole. Each sentence was assessed,
and speakers made corrections to the
grammar or spelling, as they saw
fit. Whenever possible, an additional
speaker was asked to double-check these
changes.

(b) Complementing the above step, a man-
ual verification of the datasets is
conducted using published linguistic
grammars for the relevant language, to
help identify potential issues in the data.

(c) A final re-verification of the entity tag-
ging and property labels was conducted,
to ensure that any corrected sentences
were still properly annotated.

For steps 1–4, we produced datasets for:
Bislama, Chavacano, Haitian Creole, Jamaican
Patois, and Pitkern, and Tok Pisin. However at
step 5, the triples for Haitian Creole were not val-
idated by the Wikidata and thus this dataset was
discarded. Here, simple triples like (apple, is a,
fruit) were missing from the knowledge graph.
Additionally at step 6, the Pitkern samples failed
to conform with the description of the language
detailed in the grammar, and was also excluded
from this work. Ultimately, this resulted in high-
quality relation classification evaluation data for
4 of the 9 Creole Wikipedias we started with:
Bislama, Chavacano, Jamaican Patois, and Tok
Pisin.

A.1 Data Collection and Annotation

We first clean the data and perform automatic en-
tity linking and filtering, in order to facilitate the
process of manual annotation. First, we preprocess
the Wikipedia dumps by removing unnecessary
HTML with Beautifulsoup and tokenization with
Spacy. We then automatically label entities and
link them to Wikidata, a process known as en-
tity linking, first by linking tokens with existing
Wikipedia hyperlinks within the text, and then
attempt to label any remaining entities without
hyperlinks by leveraging OpenTapioca. Before
any manual annotation over these examples, we
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then attempt to automatically group sentences by
latent templates, so that sentences can be an-
notated in groups, allowing us to identify and
annotate the correct relationship between the en-
tities, as expressed in the sentences (see ‘‘Latent
Templates’’, below). To this end, we perform au-
tomatic clustering over the sentences using first
fuzzy string matching with partial token sort ratio,
and thereafter affinity propagation, in hopes that
utterances sharing templatic spans of text will be
clustered together. The result is a large set of clus-
ters, each containing a number of utterances that
are at least somewhat similar. In order to refine
these clusters further, we first rank the clusters
by the longest common string therein, and we
then discard clusters below a certain threshold of
similarity, as we can assume the sentences do not
belong to the same latent template. Finally, with
the highest-scoring clusters of entity-linked sen-
tences, the authors perform a manual annotation
of entities and relations.

A.2 Latent Templates

In Section 3.2, we mention the latent templates
that the sentences belong to, and how these tem-
plates enable more confident manual annotation.
To clarify this, we will show some examples of
latent templates, and how we map this to Wikidata
Properties (i.e., relations) and entities. Note that
samples were clustered by latent templates before
validation and correction by the Creole language
speakers, so the provided examples below do
not represent the finalized dataset. Consider the
following entity-tagged sentences in Bislama:

• Mongolia i kaontri long Esia.

• Fiji hem i wan kaontri long Pasifik.

• Jemani i kaontri long Yurop.

• Bukina Faso i kaontri long Afrika.

• Kanada i wan kaontri blong Not Amerika.

When we look at these sentences as a group (i.e.,
a cluster), we can see there is a latent template of
[[ABC]] (hem) i (wan) kaontri (b)long [[XYZ]].
All sentences in the cluster belong to this latent
template, albeit with some minor variations, which
are later inspected and assessed in detail during
the validation stage by a speaker of Bislama,

and additional with a cross-reference against a
linguistics grammar documenting the language.

Moving on, for the entities themselves, we can
identify the Wikidata Qcode in 2 ways:

1. The entities (e.g., Mongolia, Pasifik) were
already hyperlinked in the Wikipedia article,
which means we have a URL, from which
we can get the gold entity Q-code.

2. The entities are Named Entities with spelling
clearly influenced by English, and we can
make an educated guess about the meaning.

Thus from the template and entities, we can
now consider the relation between the entities:

(Mongolia is to Asia) as (Fiji is to Pacific) as
(Germany is to Europe) as (Canada is to North
America) and (Burkina Faso is to Africa).

For all of these entity pairs, to a human
annotator, it is clear that the relationship is
[[COUNTRY]] is in [[CONTINENT]]. Thus we
can annotate the Wikidata Property as P30:
‘‘continent of which the subject is a part’’.

Finally, we can automatically verify our triples
(entity1, Property, entity2) against the Wikidata
knowledge graph. We remove any sentences
where the triple was not in the knowledge graph.
This unfortunately removes correct data points,
where there is simply a gap in the knowledge
graph; for example, the Haitian dataset was re-
moved for this reason, as Wikidata missed simple
cases like (apple, is a, fruit). But importantly, it
also is a sanity measure of our annotation method
performed by the authors, which at times re-
quired educated guesswork about the meaning of
an entity, as non-native speakers, when the en-
tity was not already hyper-linked. Presumably, if
we incorrectly annotated an entity, the triple will
not exist in the knowledge graph, and thus be
removed. Imagine that we had incorrectly anno-
tated [[Kanada]] (from the sentence [[Kanada]] i
wan kaontri blong [[Not Amerika]].) to be the lan-
guage Kannada (Q33673)), rather than the country
Canada (Q16). The triple (Kannada language,
‘‘continent of which the subject is a part’’, North
America) would certainly not exist in Wikidata,
and thus the entire annotated example would be
removed. Yet (Canada, ‘‘continent of which the
subject is a part’’, North America) is indeed in the
knowledge base, so we can be confident in our
annotation. Again, having samples listed together

975



in groups by latent templates also makes us more
certain of the meaning.

Here are some more examples of latent tem-
plates in the data, and the expressed relations:

Chavacano
Latent template: [[PERSON]] is a [[SINGER]].
Property P106: ‘‘occupation of a person’’
Examples:

• Billie Eilish es un cantante

• Sopho Khalvashi es un cantante

• Juanes es un cantante de Colombia de pop.

• Nina Sublatti (Sulaberidze) es un cantante

• Nini Shermadini es un cantante

Jamaican Patois
Latent template: [[CITY]] is the capital of
[[COUNTRY]]
Property P1376: ‘‘capital of’’
Examples:

• Sofiya a di kiapital fi Bulgieria.

• Broslz a di kiapital fi Beljiom.

• Ruom a di kyapital fi Itali.

• Masko a di kyapital fi Rosha.

• Atenz a di kyapital fi Griis.

A.3 Validation and Corrections

The samples were corrected by six speakers and
then further validated by one speaker in order
to reflect diverse spelling conventions (Kreutzer
et al., 2022). In conjunction with the validation
performed by speakers, we also check published
linguistic grammars for these languages, to en-
sure that our published datasets constitute the up-
most quality.

Validation and Corrections by Speakers For
Bislama, Chavacano, Jamaican Patois, and Tok
Pisin, we collaborated with at least one speaker
of the language to validate and correct the an-
notated samples. Here, our speakers are either
semi-native speakers (i.e., they grew up using the
language), or professional linguists who live in
the pertinent community and speak the language

on a daily basis. Indeed, as many Creoles exist as
a lingua-franca in multilingual communities, there
are not always ‘‘native speakers’’, in the sense
that the Creole will be their mother tongue (Lent
et al., 2022b). We provide details and discussion
on the validation and corrections made for each
language below:

• Bislama: The samples were corrected by one
speaker. Overall, the speaker found that some
sentences were completely correct, fluent
Bislama, with minor spelling errors. Al-
most all sentences were understandable, but
many contained specific grammatical errors
or contained many spelling errors. Only a few
sentences were completely wrong, and cor-
rected accordingly, to capture the meaning
of the annotated triple. The major gram-
matical errors involved missing prepositions,
incorrect usage of articles, or incorrect verb
tense.

• Chavacano: The samples were corrected by
one speaker, and further validated by a sec-
ond. Here, the sentences in Wikipedia were
determined not to be Chavacano, but rather
an approximation of Spanish. As the in-
tended meaning of the utterances was still
clear, the speaker produced new utterances
in Chavacano, to correctly capture the in-
tended meaning with the tagged entities and
labeled relation.

• Jamaican: The samples were corrected by
one speaker, and further validated by six
others. The spelling and grammar of the
Wikipedia sentences was found to be greatly
divergent from real-world Jamaican, and thus
not representative of the language. Specifi-
cally the orthography did not match what is
used by Jamaican speakers, and there were
a number of grammatical constructions that
would not be used by native speakers. To
remedy this, the speaker produced new utter-
ances in Jamaican, to correctly capture the
intended meaning with the tagged entities
and labeled relation.

• Tok Pisin: The samples were validated by
two speakers, who noted that while the data
is correct, it is distinctly representative of
the urban variety of the language (Tok Pisin
bilong taun), which can vary greatly from the
rural variety (Tok Pisin bilong ples). Thus
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Pair Creole Ancestor(s) #Lines #Words-Source #Words-Target

hwc-eng Hawaiian Pidgin English 4,366 144,281 102,794
acf-eng Saint Lucian Creole French 4,889 135,006 115,176
gul-eng Gullah English 4,889 153,823 115,176
icr-eng San Andrés–Providencia Creole English 4,889 151,372 115,176
mbf-eng Malay Baba Malay 4,889 107,234 115,176
ktu-eng Kituba Kikongo 4,889 103,577 115,176
jam-eng Jamaican Creole English 5,012 206,692 168,134
tcs-eng Torres Strait Creole English 6,350 198,593 152,642
mkn-eng Kupang Malay 6,422 214,390 153,596
cbk-eng Chavacano Creole Spanish 7,071 182,859 127,090
bzj-eng Belizean English 12,085 262,496 218,526
rop-eng Australian Kriol English 27,617 832,308 703,888
pcm-eng Nigerian Pidgin English 28,267 523,916 459,266
srm-eng Saramaccan Language English, Portuguese 39,640 973,176 627,273
kri-eng Sierra Leonean Creole English 47,673 1,039,743 760,699
djk-eng Aukan English 58,108 1,487,156 1,015,311
tdt-eng Tetun Dili Portuguese 118,461 2,209,118 1,923,333
mfe-eng Mauritian Creole French 189,877 3,549,493 3,014,530
hat-eng Haitian Creole French 208,772 4,132,691 3,322,288
crs-eng Seychellois Creole French 220,861 3,984,410 3,750,620
sag-eng Sango Ngabandi, French 260,853 6,089,066 4,246,373
pis-eng Pijin English 277,378 4,783,222 4,458,132
pap-eng Papiamento Spanish 396,092 7,297,575 6,384,282
tpi-eng Tok Pisin English 399,486 8,365,958 6,334,237
bis-eng Bislama English 488,393 10,751,097 7,903,431
srn-eng Sranan Tongo English 583,746 13,450,377 9,911,997

Total – – 3,410,975 71,329,629 56,314,322

Table 7: Statistics of the training set of the CreoleM2M dataset.

Task Dataset Language (ISO-638-3) Metric License Domain Total Sent. Total words

MC CreoleVal MC
hat-dir, hat-loc, mfe Acc Microsoft License Education 3894 32068

RC CreoleVal RC
bis, cbk, jam, tpi F1 CC0 WikiDump 785 4106

MT CreoleVal Religious MT

bzj, bis, cbk, gul, hat,
hwc, jam, ktu, kri, mkn,
mbf, mfe, djk, pcm, pap,
pis, acf, icr, sag, srm,
crs, srn, tdt, tpi, tcs Bleu, chrF Copyrighted Religion 64394 811741

MT CreoleVal MIT-Haiti hat Bleu, chrF CC 4.0 Education 3164 36281
Pretraining data CreoleVal MIT-Haiti hat N/A CC 4.0 Education 8281 116444

UDPoS
Singlish Treebank� (Wang et al., 2017) singlish Acc MIT Web Scrape 1200 10989
UD Naija-NSC� (Caron et al., 2019) pcm Acc CC 4.0 Dialog 9621 150000

NER
MasakhaNER� (Adelani et al., 2021) pcm Span-F1 Apache 2.0 BBC News 3000 76063
WikiAnn� (Pan et al., 2017) bis cbk hat, pih, sgg, tpi,

pap
Span-F1 Unspecified WikiDump 5877 74867

SA
AfriSenti� (Muhammad et al., 2023) pcm Acc CC BY 4.0 Twitter 10559 235679
Naija VADER� (Oyewusi et al., 2020) pcm Acc Unspecified Twitter 9576 101057

NLI JamPatoisNLI� (Armstrong et al., 2022) jam Acc Unspecified Twitter, web 650 2612

SM Tatoeba� (Artetxe and Schwenk, 2019)
cbk, gcf, hat, jam, pap,
sag, tpi Acc CC-BY 2.0 General web 49192 319719

MT KreolMorisienMT� (Dabre and Sukhoo, 2022) mfe Bleu, chrF MIT License Varied 6628 23554

New: 80518 1000640
Total: 176821 1995180

Table 8: Overview of the datasets included in CREOLEVAL. Newly introduced datasets are prefixed
with ‘‘CreoleVal’’; � indicates modified and further denoised datasets based on previous works; �
indicates inclusion within our benchmark where we provide download and experiment scripts as part
of our Github repository, but do not re-package the data itself. Task abbreviations: MC (machine
reading comprehension); RC (relation classification); MT (machine translation); UDPoS (universal
dependencies part-of-speech tagging); NER (named entity recognition); SA (sentiment analysis); NLI
(natural language inference); SM (sentence matching). Note that for SM task, the language format is
XXX-eng. For WikiAnn, NaijaVADER and JamPatoisNLI datasets, the licenses were not explicitly
stated in corresponding repositories.
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for future work, collecting and annotating
samples that capture a wider spectrum of
Tok Pisin will be key for expanding language
technology to this language.

After all manual corrections were made, we
conduct an additional round of manual validation,
to ensure that the entity tagging and relation labels
were still correct.

One common thread across all languages in-
volved spelling, as many Creoles do not have
strictly observed orthography. For example, for
lesser-known named entities, there is likely to be
great variation across speakers, in whether they
default to English spelling, or rather attempt to
represent the word according to their pronuncia-
tion. This issue highlights an area of future work,
for extending Creole language datasets to capture a
wider variety of voices and approaches to spelling.
To this point, some speakers chose to add limita-
tion variation across their corrections of the data.
For example, in the Bislama dataset, there can
be found variation in constructions combing the
third person-singular pronoun and the predicate
marker i.

Finally, while we did not have funds to pay
the speakers for their assistance in this work,
the speakers were invited to join the project as
co-authors of this work, or otherwise be thanked
by name in the Acknowledgments, per their pref-
erence. We believe no speakers were harmed in

this process, and we are deeply grateful for their
collaboration in this work.

Validation through Linguistic Grammars
Full documentation of our grammar check
has been submitted as supplementary material
alongside this manuscript, for inspection by the
reviewers. As we cite directly from published
books, copyright prevents us from making our
grammar check public. For Bislama we referred
to Crowley (2004), for Chavacano we referred
to Lipski and Santoro (2007), and for Jamaican
Patois we primarily referred to Patrick (2014), but
also referenced others (Durrleman, 2008; Patrick,
2004; Bailey, 1966). For Pitkern we referred to
Mühlhäusler (2020), and finally for Tok Pisin
we referred to Eberl (2019). Among all of these
languages, Pitkern was the only case where the
Wikipedia data failed to meet the description of
language, and was thus removed.

B Machine Translation: Creole M2M

B.1 Dataset Statistics
Table 7 shows the statistics of the training set
of the CreoleM2M dataset, spanning 26 Creoles
originating from one or more of 8 parent (ancestor)
languages. We give the number of lines, and
number of words on the source (Creole) and target
(English) sides.

C Overview
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