
HAL Id: hal-04793178
https://hal.science/hal-04793178v1

Submitted on 20 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Stylometry for real-world expert coders: a zero-shot
approach

Andrea Gurioli, Maurizio Gabbrielli, Stefano Zacchiroli

To cite this version:
Andrea Gurioli, Maurizio Gabbrielli, Stefano Zacchiroli. Stylometry for real-world expert coders:
a zero-shot approach. PeerJ Computer Science, 2024, 10, pp.e2429. �10.7717/peerj-cs.2429�. �hal-
04793178�

https://hal.science/hal-04793178v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Submitted 2 July 2024
Accepted 26 September 2024
Published 20 November 2024

Corresponding author
Andrea Gurioli,
andrea.gurioli5@unibo.it

Academic editor
Stefan Wagner

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.2429

Copyright
2024 Gurioli et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Stylometry for real-world expert coders: a
zero-shot approach
Andrea Gurioli1, Maurizio Gabbrielli1 and Stefano Zacchiroli2

1Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

ABSTRACT
Code stylometry is the application of stylometry techniques to determine the authorship
of software source code snippets. It is used in the industry to address use cases like
plagiarism detection, code audits, and code review assignments. Most works in the
code stylometry literature use machine learning techniques and (1) rely on datasets
coming from in vitro coding competition for training, and (2) only attempt to recognize
authors present in the training dataset (in-distribution authors). In this work we give a
fresh look at code stylometry and challenge both these assumptions: (1) we recognize
expert authors who contribute to real-world open-source projects, and (2) we show
how to accurately recognize authors not present in the training set (out-distribution
authors). We assemble a novel open dataset of code snippets for code stylometry tasks
consisting of 114,400 code snippets, authored by 104 authors having contributed 1,100
snippets each. We develop a K-nearest neighbors algorithm (k-NN) classifier for the
code stylometry task and train it on the dataset. Our system achieves a top accuracy of
69% among five randomly selected in-distribution authors, thus improving state of the
art by more than 20%. We also show that when moving from in-distribution to out-
distribution authors, the classification performances of the k-NN classifier remain the
same, achieving a top accuracy of 71% among five randomly-selected out-distribution
authors.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Software Engineering
Keywords Code stylometry, Code authorship attribution, Machine learning, Deep learning, Data
mining, Code snippet, Source code, Zero shot, Metric learning

INTRODUCTION
Code stylometry1 is the application of stylometry techniques to determine the authorship
of software source code snippets (Oman & Cook, 1989). Code authorship originates from
forensics applications and is an important task in tackling issues such as (de)anonymization
and is helpful in various application domains such as forensics techniques and
plagiarism (Oman & Cook, 1989). In the state of the art, the problem is addressed mainly
by using machine learning methodologies (Bogomolov et al., 2021; Kovalenko et al., 2020),
focusing on the training of classifiers, starting from an existing dataset of code examples
whose authors are known.

Since the emergence of the concept of author’s fingerprint presence in code (Oman &
Cook, 1989), which emphasized the potential for disambiguating authors based on their
programming style, the feature extraction phase for code vectorization has become a pivotal

How to cite this article Gurioli A, Gabbrielli M, Zacchiroli S. 2024. Stylometry for real-world expert coders: a zero-shot approach. PeerJ
Comput. Sci. 10:e2429 http://doi.org/10.7717/peerj-cs.2429

https://peerj.com/computer-science
mailto:andrea.gurioli5@unibo.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2429
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2429

1Also referred to in the literature as code
authorship attribution and code author
recognition.

juncture for recognizing authors, highlighting two distinct approaches. One approach
involves leveraging Abstract Syntax Tree (AST) as the primary source of the author’s
fingerprint representation (Caliskan-Islam et al., 2015; Dauber et al., 2018; Hozhabrierdi,
Hitos & Mohan, 2020; Alsulami et al., 2017), while the other approach does not (Oman
& Cook, 1989; Kurtukova, Romanov & Shelupanov, 2020), relying solely upon features
extracted directly from the source code. Presently, the majority of studies in this field
rely on the Google Code Jam dataset (GCJ) (Caliskan-Islam et al., 2015; Bogomolov et al.,
2021; Alsulami et al., 2017), which is a collection of data labeled with author information
obtained from the algorithm competition of the same name. This choice ensures that the
model acquires disambiguation capabilities related to the style of the author rather than
the specific problem considered in the code snippet (Caliskan-Islam et al., 2015).

Considering this approach, it is possible to develop a tool that operates effectively in
an ideal scenario but falls short in a realistic setting. Dauber et al. (2018) addressed this
issue by mining a dataset from GitHub’s repositories and examining how different code
characteristics, such as the character count of the input, could influence the model’s
overall accuracy. In a similar vein, Kurtukova, Romanov & Shelupanov (2020) introduced
the concept of ‘‘expert users’’, i.e., programmers following coding standards for software
development, emphasizing how adhering to specific programming writing patterns—as
expert users do—could unify the style of the authors, negatively impacting on the accuracy
of stylometric tools.

Several use cases beyond conventional classification methods have emerged
with advancements in disambiguation techniques. In particular, the ‘‘zero-shot’’
paradigm (Chang et al., 2008) has permitted the possibility of classifying classes not seen
during the training phase. Achieving a zero-shot setup for code authorship attribution
offers enhanced flexibility, improving the usability of the model while eliminating the need
for fine-tuning phases that require experienced users (Bogdanova, 2021;Hozhabrierdi, Hitos
& Mohan, 2020). Currently, the existingmodels tailored for zero-shot setups for authorship
attribution are trained and evaluated using the GCJ dataset (Hozhabrierdi, Hitos & Mohan,
2020; Bogdanova, 2021). The use of this dataset makes the obtained models not very reliable
when it comes to developing an author disambiguation tool for real-world scenarios, as
the GCJ dataset is somehow ‘‘artificial’’ and does not reflect the real practice of expert
programming.

In light of this, our primary objective in this paper is to obtain an authorship attribution
classifier that works well on code snippets from real-world open-source projects. This
means that we consider multiple-authored source code projects with authors adhering to
established quality-of-code standards, such as those typically used by expert programmers.
The approach is influenced by the findings presented in Dauber et al. (2018), which
demonstrate an inverse relationship between the length of the code snippet and the ability
of the tool to disambiguate authors. Moreover, we are interested both in known authors,
that is, authors whose code fragments are known and contained in the available dataset
(so-called in-distribution authors), and in authors who are not present in the dataset
(out-distribution authors). Our main research question can then be stated as follows:

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

• RQ: Is it possible to devise a code stylometry technique, based on machine learning, that
allows to recognize expert authors of real-world open-source code, with high accuracy
for both authors present in the training set (in-distribution authors) and authors not
present in it (out-distribution authors)?

Paper contributions
Our first contribution is the construction of a novel open dataset of code snippets for code
stylometry tasks, which wasmined fromGitHub’s public repositories, focusing the authors’
lookup on highly skilled developers by using as a seed page search the libraries.io ranking.
We have partitioned the raw dataset into two main subsets: (1) the in-distribution dataset,
composed by 104 different authors with 1,100 snippets of code each, used for training and
testing; (2) the out-distribution dataset, composed by other 104 authors with 110 snippets
each, exclusively used for testing purposes and comprising authors distinct from those in
the training set.

As a second contribution, we have then trained and evaluated on our dataset, three
AST-base code stylometry classifiers based on code2seq and differentiated by attention
mechanism and training objective. The evaluation phase yielded positive evidence in
response to the research question. Specifically, the self-attention code2seq model (pruned
by the classification head and used to generate snippet embeddings for subsequent k-NN
classification) achieved accuracies of 69.10% (±10.30) on the in-distribution dataset and
71.40% (±8.40) on the out-distribution dataset, both involving five different ‘‘expert’’
authors, thus improving state of the art by more than 20%.

Paper structure
The work presented in this paper commences with an in-depth analysis of the existing
literature, providing a comprehensive overview of the current state of the art in the field
of code stylometry. Subsequently, ‘Methodology’ delineates the techniques employed,
comprising two primary components: the data mining phase and the development of the
stylometric model. The obtained results are then presented in ‘Results’ and discussed in
‘Discussion’. ‘Conclusions’ summarizes the work and also highlights directions for future
work.

RELATED WORK
Code stylometry with in vitro datasets
The work developed by Oman & Cook (1989) pioneered the concept of identifying
the human fingerprint in code. By leveraging human-driven classification, that work
demonstrated the possibility of attributing source code to its author by identifying common
writing patterns present in the code. This experiment influenced the adoption of cluster-
based classification, introducing an unsupervised technique for inferring the code author.
Notably, a key distinction between the work of Oman & Cook (1989) and succeeding
studies lies in the absence of AST features in Oman & Cook (1989), while these represent
an important aspect in current state-of-the-art models.

Caliskan-Islam et al. (2015) made significant contributions to the field of authorship
attribution by incorporating AST features and using snippet vectorization with syntactical

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

features derived from AST. This work addressed the authorship problem from various
perspectives and demonstrated that syntactical features are less susceptible to obfuscation
processes; thus, their use results in a more reliable model. Both syntactical and lexical
features (stream of tokens in the source code) were used in this work, together with a
random forest classifier. Moreover, Caliskan-Islam et al. (2015) were the first to use the
GCJ dataset for the training procedure.

With the emergence of word embeddings (Mikolov et al., 2013), new techniques for code
representation have evolved, which exploited advanced vectorization approaches such as
code2vec (Alon et al., 2019) in addition to previous methods like LSTM and RF (Alsulami et
al., 2017; Bogomolov et al., 2021;Kovalenko et al., 2020). These advancements have achieved
remarkable accuracies up to 95.90% (Bogomolov et al., 2021) on the GCJ dataset with 70
different authors.

Recently, by adopting a novel methodology, Hozhabrierdi, Hitos & Mohan (2020)
approached the problem by using embeddings and cosine similarities in the classification
process. This approach enabled the exploration of zero-shot authorship scenarios, leading
to new research areas. Various training objectives were employed, includingmetric learning
techniques such as triplet loss and cross-entropy losses. These techniques yielded distinct
representations in the latent space, with cross-entropy trained models (Horiguchi, Ikami
& Aizawa, 2020) demonstrating superior performance, particularly when coupled with a
k-NN classifier.

Our work leverages AST-based models, working with embeddings in order to obtain
zero-shot capabilities. However, we use a different approach from the works discussed
above since we avoid ‘‘in vitro’’ datasets that contain programs—developed by different
authors—that address the same problems. We use a newly defined dataset mined from the
public repositories of GitHub, thus obtaining reliable outcomes when classifying authors
from real-world case scenarios.

From GCJ to the real world
The work presented by Dauber et al. (2018) brought about a significant paradigm shift by
transitioning from the GCJ dataset to a real-world use-case scenario, wherein data was
extracted directly from GitHub. This study examined the relationship between model
accuracy and snippet size, revealing an inverse correlation between these two variables.
Moreover, shifting from an ‘‘in vitro’’ corpus, based on algorithmic competitions, to a
real-world scenario resulted in a noticeable decrease in overall accuracy, dropping from
53.91% with 229 authors (Caliskan-Islam et al., 2015) to 48.80% with 104 authors (Dauber
et al., 2018). This finding showed the increased difficulty of the stylometry task in real-world
applications and emphasized the importance of focusing on performance metrics relevant
to practical use cases.

Kurtukova, Romanov & Shelupanov (2020) extended the analysis to real-world use cases
and examined the impact of various factors on the model’s performance. Specifically, they
investigated the influence of the author’s experience, snippet length, obfuscation processes,
and different programming languages. Furthermore, they introduced the concept of
an ‘‘expert’’ author, an experienced programmer adhering to specific coding standards

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

and styles that facilitate collaboration with other developers. Interestingly, their findings
revealed that the performance of the model was negatively affected by programming
experience: while an average accuracy of 95% was achieved when recognizing randomly
inexperienced authors with different coding styles, the accuracy dropped below 50% when
inferring ‘‘expert’’ authors from snippets of code up to 1,000 characters per file (Kurtukova,
Romanov & Shelupanov, 2020). This result highlights the challenges associated with
accurately identifying authors who employ standards and code guidelines, highlighting
how the standardization process leads to less variability and prominent unification in terms
of coding style fading the ‘‘fingerprint’’ of the author, clearly indicating the need for robust
models capable of handling such scenarios.

Our work targets explicitly ‘‘expert’’ authors, shifting the focus from a single project
authorship task (Kurtukova, Romanov & Shelupanov, 2020) to authors belonging to
several real-world open-source projects and analyzing short segments of code (less than
1,000 characters per file). We employ distinct models and classification techniques
w.r.t. Kurtukova, Romanov & Shelupanov (2020) and Dauber et al. (2018), and we
emphasize the identification of authors who are absent from the training data (out-
distribution authors). Our work will be thus compared with Kurtukova, Romanov &
Shelupanov (2020)’s work over five ‘‘expert’’ authors (keeping therefore the same number of
authors for comparison), leveragingmethodologies that enable out-distribution capabilities
(k-NN classifier), observing if these techniques can lead to effective and more flexible
outcomes without accuracy degradation. Our results will also be compared with Dauber
et al. (2018) for the whole in-distribution dataset (104 different authors) with both k-NN
classifier and architectures with classification head, taking into account the possible increase
of difficulty in the disambiguation process given by the dataset design (authors experience
and snippet length).

METHODOLOGY
In the following, we describe the corpus used during the training and testing phases
(‘Dataset construction’), including details on its mining process, as well as designs and
training techniques employed for the code stylometry model (‘Stylometric models’).

Dataset construction
Collecting a robust corpus is crucial in order to achieve a high-performing model for
our task. Caliskan-Islam et al. (2015) provided some indications on how the corpus for
code stylometry related tasks should be designed. Here we follow their approach, thus
our first focus is to recognise the need to have a wide range of projects per author,
for the data mining phase. As discussed later, this approach allows us to train a model
capable of author disambiguation based on coding style rather than project-specific
characteristics. Our second focus is identifying and representing experienced authors who
follow specific coding standards. To achieve this, we need first to mine a set of seed projects
in terms of good quality of code and the presence of software engineering practices (as
defined, for example, in Munaiah et al. (2017), thus we consider projects that have good
documentation, testing, and project management. To maximize the stylometric model’s

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 5/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 1 Data gathering process executed to assemble the experimental dataset.
Full-size DOI: 10.7717/peerjcs.2429/fig-1

usability and flexibility, we represent the source code of large projects as fragments rather
than complete files, attributing each fragment to its respective author. Thus, we recognize
the unique contributions made by individual authors within the project.

Considering the objectivesmentioned above, we divide the datamining phase into the six
steps shown in Fig. 1. Note that we will use several hyperparameters that are defined in this
section and will be instantiated in ‘Dataset’. The process begins with an initial Repository
mining, which involves creating a seed list comprising high-quality repositories. This seed
list is generated by extracting the results from the top-ranked (i.e., P = 11) pages obtained
from Libraries.io (2022) extracted from PyPI. We apply an initial filtering step, focusing
only on the GitHub hosting service. Thus, we ease the subsequent mining processes (such
as repositories per author lookup) using only one API service. We filter the list, focusing
the lookup on repositories containing Python source code. As a second step, we proceed by
mining the set of the most collaborative authors (with A = 10, as a maximum amount of
different authors threshold) based on the number of commits, representing our population.

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 6/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-1
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 2 Data mining process used to extract code snippets from code repositories (detailed view of
Step 5 in Fig. 1).

Full-size DOI: 10.7717/peerjcs.2429/fig-2

Given the initial list of repositories and seed authors, the third step allows us to extend
the initial list of repositories. We proceed thus by mining at most R= 4 repositories, sorted
by using GitHub stars, for each author and joining the mined list to the initial seed one.

In the fourth step, we clone the repositories for the following data mining process,
keeping track of URLs and timestamps, obtaining a local source code archive and a filtered
updated list of the valid previously mined repositories.

Figure 2 zooms into the fifth step, which highlights the key phases of the data mining
process. The main goal of this step is to extract code fragments associated with a single
author, ensuring an accurate representation of the author’s ‘‘fingerprint’’. We traversed
in temporal order the commits using Pydriller (Spadini, Aniche & Bacchelli, 2018), filtered
files by language (Python), and extracted the respective git diff. In order to obtain a dataset
centered on code snippets, each source code was divided by looking for function definitions
using regular expressions with the def keyword as a primary criterion.

For each def statement, the algorithm moves incrementally through subsequent lines
of code, added in the commit (Fig. 3, ‘‘Git diff outcome’’) and addressable to one author
through the meta-data related to the commit, by appending each line to a temporary
list of code lines addressed to the current lookup. The algorithm sets the definition as
terminated when another definition statement occurs or the further git diff added lines are
not contiguous, thus joining the temporary list to a unique string by examining the validity
of the code’s snippet for parseability to verify syntactical correctness. The fragments of code
related to a commit, after checking whether the overall length is greater than or equal to
three lines of code, are aggregated into a list and finally linked with their respective author
(taken from the meta-data related to the commit), thereby obtaining the corresponding
labels (Fig. 3, ‘Unique author functioning listing’). In the final phase of the fifth stage,
these labeled fragments are stored locally. To ensure uniqueness within the dataset, the
SHA1 hashing algorithm is utilized to generate filenames based on the content of each code
snippet. This prevents the occurrence of duplicates in the dataset (Fig. 3, ‘labeled data’).

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 7/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-2
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 3 Extraction of code snippets from ‘‘diffs’’ recorded by code repositories.
Full-size DOI: 10.7717/peerjcs.2429/fig-3

We then apply an initial noise reduction before the RAW dataset creation, keeping only
authors with at least IN = 100 code snippets.

In the sixth step, we conducted a ‘‘top authors’’ selection, wherein developers with fewer
than F = 1,100 code fragments are pruned from the dataset. However, we retain a RAW
version of the dataset for further analysis. The sixth step is repeated on the RAW dataset to
create a second dataset specifically for out-distribution tests. This is achieved by filtering
the RAW dataset to extract authors with an overall snippet count lower than the previously
mentioned threshold F = 1,100 but higher than FZ = 800.

Stylometric models
Model design
Due to their superior accuracy performance in stylometric tasks (Alsulami et al., 2017;
Bogomolov et al., 2021), AST-based models have been widely adopted. In our study, we
have chosen the code2seq (Alon, Levy & Yahav, 2018) snippet embedding structure as a
common base for developing three different designs differentiated primarily by means of
the attention technique, learning objective and the technique used to handle the vocabulary.
We initially discuss the common part (Fig. 4) of the three architectures, an advancement
of the Alon et al. (2019) model that encodes snippets by extracting stream tokens (leaves)
and their ancestors from the Abstract Syntax Tree.

The pre-processing needed to extract the AST from the input code snippets is conducted
using the Tree Sitter library (TreeSitter, 2022): This provides a parser generator tool capable
of retrieving a representation of the snippet’s Concrete Syntax Tree which will be then
simplified (e.g., by pruning redundant syntactical elements as brackets or punctuation
nodes) to an Abstract Syntax Tree. In such an AST each node corresponds to one or more
nodes in the concrete syntax tree as follows: the leaves correspond to the ‘‘stream tokens’’
(i.e., terminal nodes) while their ancestors are the non-terminal nodes. Following Alon et
al. (2019) we define the AST as follows:

Definition 1 (Abstract Syntax Tree (AST)) An Abstract Syntax Tree (AST) for a code
snippet C is a tuple 〈N ,T ,X ,s,δ,φ〉 where: N is a set of non-terminal nodes, T is a set of

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 8/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-3
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 4 Common architecture of the three proposed models.
Full-size DOI: 10.7717/peerjcs.2429/fig-4

terminal nodes, X is a set of values, s∈N is the root node, δ :N→ (N ∪T)∗ is a function
that maps a non-terminal node to a list of its children, φ : T→ X is a function that maps a
terminal node to an associated value. Every node, except the AST root, appears exactly once in
all the lists of children.

The architecture uses, as a primary source of input, triplets of elements extracted from
the AST, composed by random pairs of terminal nodes which will be split into subtokens,
and their channeling path, an ordered list of the terminal nodes’ ancestors (non-terminal
nodes) extracted by ascending the AST until finding the lowest common ancestor.

To split the terminal nodes into subtokens, we introduce a mixed usage of regular
expression (splitting the terminal nodes’ tokens bymeans of camel notation or underscores,
e.g., from arraySplitter to array, Splitter), which was already adopted in the original
code2seq design, and a subsequent lower-cased SentencePiece encoding (see Kudo &
Richardson (2018), pruned by the space inclusive underscore character in order to maintain
a stream token representation in line with Alon, Levy & Yahav (2018). In this paper, we
introduce a novel use of this technique in order to try to overcome the open-vocabulary
problem caused by variable names, thus gaining capabilities of unknown and rare words
encoding and therefore using more effectively the code2seq subtoken architecture, which
sums the subtokens embedding representation.

Having the aim to disambiguate authors by means of coding style, we decided to strip
comments into a common ‘comment’ token that emphasizes only the decision of the author
of commenting on the code, eliminating thus biases in the inference phase given by the
potential presence of Natural language.

We now discuss how the architectures that we use in this work handle the previously
defined AST representation of code snippets. Given as input a predefined set of triples
L={L1,...,Ln}, let us consider the ith path whereXsTi ∈R|XsTi|×d = [t1,...,tm] is the starting
sequence of subtokens (with an embedding dimensionality d which defines the number
of parameters used), while and XeTi ∈R|XeTi|×d is the ending sequence of subtokens. The
subtokens are encoded with an element-wise summation in the embedded representation

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 9/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-4
http://dx.doi.org/10.7717/peerj-cs.2429

to obtain the following:

TSi=
∑

t∈XsTi
t

TEi=
∑

t∈XeTi
t

The AST path input, corresponding to a set of non-terminal tokens defined as
XASTi ∈R|XASTi|×d , is encoded by means of a bidirectional LSTM as follows:

h1i,...,hli= LSTM (XAST1i,....,XASTli)

where hli corresponds to the lth LSTM’s hidden state representation of the ith triple.
We denote by

ASTrepri= [h→li ,h
←

1i]

where ASTrepr ∈R1×2d , the result of the concatenation of the final hidden states of the
bidirectional LSTM.

To combine the triplet in a context vector, we first use aWast ∈R2d×d projection matrix
to reduce the dimensionality of ASTrepr to the dimension d , thus obtaining:

ASTredi=ASTrepri ·Wast .

The next step is then mapping the concatenated encoding of the two stream tokens and
the AST representation [TSi,ASTred,TEi] to the context vector. In order to achieve this
we first reduce the dimension by using the (multiplication by the) Wctx ∈R3d×d context
projection matrix and then we use the ReLU activation function:

ContextVectori=ReLU ([TSi,ASTred,TEi] ·Wctx)

It is worth noting that differently from the original code2seq and code2vec architectures
(Alon, Levy & Yahav, 2018; Alon et al., 2019), we have chosen to use the ReLU activation
function rather than the tanh, maintaining the tanh function exclusively in the soft
attention based classification model. This choice is motivated by the fact that using the
tanh activation function we experienced a much longer time for the convergence of the
model in the training procedure.

So far, we have described the part of the architecture that is common to the three models
we have considered. Next, we describe the parts that differentiate the models, namely the
attention mechanism, the learning objective, the dropout presence, and the use of the
SentencePiece technique.

The model named as softAttn-classifier (Fig. 5) relies on the SentencePiece technique
with a compressed vocabulary of 64,000 different tokens for the terminal nodes and
non-terminal nodes related vocabulary of 174 different tokens (without any term of
compression). The absence of the SentencePiece technique on the non-terminal nodes
pre-processing phase is common to the three architectures. This is due to the strict
closed-vocabulary use case, which implies the absence of out-of-vocabulary tokens (OoV).
This model uses the soft-attention mechanism introduced by code2vec (Alon et al., 2019),

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 5 Machine learning model with soft attentionmechanism.
Full-size DOI: 10.7717/peerjcs.2429/fig-5

creating thus a hybrid version between the advancements of code2seq in terms of sparseness-
related issues with the code2vec-shaped output. After the attention mechanism, we have
applied an M.L.P. layer with a ReLU activation function (512→ReLU→ 512→ReLU
→256) gaining non-linearity advantages (Appalaraju et al., 2020) for the final vectorial
representation, useful for a k-NN classification (see ‘Classification process’). We then have
a final classification head with A = 104 nodes as the overall number of authors obtained
from the in-distribution dataset in the former mining process. We have conducted the
training process with the Cross-Entropy loss. The model has respectively an embedding
(previously referred to as d) and LSTM hidden representation of 256 units. We have then
exploited Dropout as a data regularization factor (0.25 right after the context embedding
concatenation).

The second model, referred to as selfAttn-classifier (Fig. 6) shares the same vocabulary
compression algorithm as the previously depicted model for the terminal nodes, having the
SentencePiece techniquewith a compressed vocabulary of 64,000 tokens and a non-terminal
nodes related vocabulary of 174 different tokens. This model replaces the soft attention
technique with a self-attention mechanism (transformer architecture (Vaswani et al.,
2017) inspired by the design used in the work of Radford et al. (2021). Since the code2seq
model utilizes random pairs, no positional encoding and no autoregressive masking are
added, preserving the core random representation concept of code2seq by leveraging
the positional invariance properties of the architecture. The output of the transformer is
subsequently normalized with a Layer normalization technique, flattened, re-projected to
a lower dimensionality of 512 units using a ReLU activation function, and then passed to
the classification head (with A= 104 nodes). We have conducted the training process with
a Cross-Entropy loss. The model consists of an embedding (previously referred to as d)
and Bi-LSTM hidden representation of 512 units, along with a transformer architecture

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 11/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-5
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 6 Machine learning model with self-attentionmechanism.
Full-size DOI: 10.7717/peerjcs.2429/fig-6

comprising a 12-layer, 512-wide model with 8 attention heads, as described by Radford et
al. (2021).

The third model, named MLmodel (like Fig. 5, but without the final classification
head), as we experienced better performances, does not rely on the SentencePiece
algorithm, having thus a vocabulary of 147,967 tokens for the terminal nodes and, like
the preceding architectures, encompasses 174 different values for the non-terminal ones.
This model relies on the soft-attention mechanism as Alon et al. (2019). After the attention
mechanism, we have then applied an M.L.P. layer with a ReLU activation function (512
→ReLU→ 512→ReLU→256) gaining non-linearity advantages (Appalaraju et al., 2020).
The training process, in this case, is conducted with the infoNCE loss (further training
details on ‘Training’) introduced by van den Oord, Li & Vinyals (2018). The model relies
on an embedding d and LSTM hidden representation of 256 units and uses a dropout
regularization of 0.25 after the context embedding concatenation.

Training
We trained the first two classification models (softAttn-classifier and selfAttn-classifier)
using a stochastic gradient descent optimizer with a learning rate scheduler. We set the
initial learning rate to 0.01, and the scheduler followed a step size of 50 epochs with a gamma
value of 0.95. Each training batch had a dimension of 64 elements. The softAttn-classifier
model incorporates input boundaries, following the approach described by Bogomolov et al.
(2021). Specifically, we used AST boundaries of four units regarding the distance between
leaves and a maximum path length (composed of non-terminal tokens) of seven elements.
The two models were trained for 1200 epochs, and the best checkpoint, determined by the
best results in terms of validation loss, was saved and used for testing purposes.

The ML model, trained with the infoNCE loss proposed by van den Oord, Li & Vinyals
(2018), modified by Zhang et al. (2022) operates on N pairs of distinct snippets from the
same class. We obtain batches of dimensions N 2, where the matrix diagonal of the batch

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 12/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-6
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 7 Representation of the batch-making process.
Full-size DOI: 10.7717/peerjcs.2429/fig-7

represents the ground truth over the snippets representations on the latent space (vi,ui) as
the i-th pair (Fig. 7). To measure the distance between embeddings, we employ the cosine
similarity with the L2 norm:

〈vi,ui〉=
vTi ui
||vi||||ui||

We then apply the cosine similarity in the following loss function:

`
(v→u)
i =−log

exp(〈vi,ui〉/τ)∑N
k=1exp(〈vi,uk〉/τ)

`
(u→v)
i =−log

exp(〈ui,vi〉/τ)∑N
k=1exp(〈ui,vk〉/τ)

Loss=
1
N

∑N

i=1
(`(v→u)

i +`
(u→v)
i)/2

The final loss is calculated as the mean of the two previously derived losses, following the
approach established by Radford et al. (2021). The parameter τ denotes the temperature
parameter that governs the range of logits in the softmax function; we fixed it at 0.1.

Given that the batch determines the negative and positive samples, it is imperative
to customize the sampler to ensure that only distinct classes are selected to prevent the
divergence in the latent space of elements belonging to the same class. Consequently, this
introduces a limitation on batch dimensionality during training, where the total number
of classes present in the dataset determines the maximum batch size.

We have trained the metric learning-based model (ML model) for 1,200 epochs with
Adam optimizer, an initial learning rate of 0.01, applying a scheduler with a step size of 50
epochs and a gamma value of 0.95. Each training batch had a dimension of 642 elements.
As the softAttn-classifier model, we incorporated input boundaries, using AST boundaries

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 13/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-7
http://dx.doi.org/10.7717/peerj-cs.2429

of 4 units regarding the distance between leaves and a maximum path length of 7 elements.
As the former models, we kept the best checkpoint in terms of validation loss.

Classification process
We utilized the latent space representations obtained from the code snippets for the
classification task to calculate similarities using a k-NN classifier. We employed the cosine
similarity metric to measure similarity, aligning with the ML model for consistency. This
choice of similarity metric, as highlighted by Horiguchi, Ikami & Aizawa (2020), resulted
in improved embedding representations even for the cross-entropy trained models.

To obtain the latent space representation, we removed the classification head from both
the softAttn-classifier and selfAttn-classifier models, resulting in a dimensionality of 256
for the softAttn-classifier model and 512 for the selfAttn-classifier model. The ML model
retained a dimensionality of 256 units. We have settled the k-NN classifier to work as a
1-NN classifier, using the closest representation as the inferred outcome.We have processed
the data for the NN classifier by projecting in the latent space and computing similarities
of each snippet of code from the testing set when it comes to evaluating the in-distribution
properties, and zero-shot test set for the out-distribution properties; discarding then the
first result as it would always be the querying snippet representation. To provide a basis
for comparison with previous work by Dauber et al. (2018) and Kurtukova, Romanov &
Shelupanov (2020), we have conducted the experiments with author subsets consisting of
five, 10, 20, and 104 authors. To ensure randomness, a random author picker was employed.
We have performed five experiment iterations, and the results were reported with the mean
and standard deviation, considering the significant source of variance introduced by the
random author selection.

RESULTS
We present below our main results: the novel curated dataset for code stylometry of expert
coders in ‘Dataset’ and the different code authorship attribution models in ‘Stylometric
models’.

Dataset
The raw dataset we consider is the outcome of the first six phases described in ‘Dataset
construction’ and contains snippets of code labeled by author emails as unique identifiers.
We instantiated the hyperparameters with respectively P = 11 ranked pages for the first
step—obtaining 1,060 repositories’ URLs–and A= 10 different authors per project for the
second step—thus forming an authors’ list of 10,326 different entities. As for the third step,
we have set R= 4 repositories per author, finalizing the repositories’ URL list with a total
amount of 22,266 elements. In the cloning phase (phase four), we have cloned the whole
repositories’ URL list, thus producing 22,246 repositories stored locally. The difference in
terms of number of elements between the third and fourth phases is attributed to URLs
that are either invalid or no longer accessible.

The noise reduction in the fifth step is settled by taking only authors with IN= 100 code
snippets, thus obtaining a RAW dataset of 3,733 authors. The RAW dataset is then pruned

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

Table 1 Dataset dimensionality after the splitting and under-sampling phases.

Subset Authors Dataset share (%) Fragments per author

Training (in-distribution) 104 80 880
Validation (in-distribution) 104 10 110
Test (in-distribution) 104 10 110
Zero-shot (out-distribution) 104 NA 110

Table 2 Analysis of mean andmedian character’s (symbols) values in the datasets.

Subset Mean symbols Median symbols

Training-val-test (in-distribution) 785 301
test set (in-distribution) 566 298
Zero-shot (out-distribution) 600 281

Table 3 1-NN accuracies over the test set dataset (in-distribution). The best results are highlighted in
bold.

Model 5 authors (%) 10 authors (%) 20 authors (%) 104 authors (%)

softAttn-classifier 67.2 (±8.9) 61.8 (±3.3) 49.60 (±6.0) 35.2 (±0.1)
selfAttn-classifier 69.1 (±10.3) 52.0 (±6.7) 43.4 (±6.0) 31.6 (±0.1)
ML model 62.0 (±7.8) 61.6 (±6.0) 51.0 (±6.7) 35.5 (±0.1)

by all the authors having less than F = 1,100 code snippets for the in-distribution set. As for
the out-distribution zero-shot set, we took from the RAW dataset authors having between
FZ = 800 and F = 1,100 (1,100 excluded) code snippets. This allows us to obtain a list of
authors with a high level of variance in terms of data while making sure that authors do
not coexist in the two datasets.

After the pruning phase, authors from both the in-distribution and out-distribution
sets are randomly picked, thus obtaining 104 overall different classes. The resulting sets are
then randomly under-sampled to 1,100 snippets for the in-distribution set, which will be
split into train-set, val-set, and test set, respectively, with 880, 110 and 110 snippets of code
(Table 1). We also obtain 110 snippets for the out-distribution test set. We then tested
the mean and the median values for the number of symbols. Given the inverse correlation
between the snippet length and model performances, as shown in Table 2, we obtain
two main datasets, which, according to the results in Dauber et al. (2018) and Kurtukova,
Romanov & Shelupanov (2020) could be defined as difficult to infer.

Stylometric models
All experiments were conducted using the PyTorch framework (Paszke et al., 2019),
utilizing the NVIDIA A100-40GB graphics card for the training process. The validation
set was exclusively used during training to select the best model checkpoint based on
validation loss. The results presented below were obtained using the testing sets from the
in-distribution (Table 3) and out-distribution (Table 4) datasets. Visual representations
shown below (Fig. 8) are obtained using the t-SNE algorithm (Maaten & Hinton, 2008).

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 15/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

Table 4 1-NN accuracies over the Zero-shot dataset (out-distribution). The best results are highlighted
in bold.

Model 5 authors (%) 10 authors (%) 20 authors (%) 104 authors (%)

softAttn-classifier 65.6 (±5.6) 54.5 (±4.6) 46.4 (±2.9) 31.6 (±0.1)
selfAttn-classifier 71.4 (±8.4) 59.1 (±6.9) 45.8 (±4.9) 36.9 (±0.1)
MLmodel 51.4 (±5.2) 44.2 (±1.8) 34.2 (±1.3) 22.9 (±0.1)

The performances of the stylometric models reported in Tables 3 and 4 were calculated
in terms of overall accuracy, defined as the ratio between the number of correct classified
snippets (most similar snippet belonging to the same class of the snippet to classify) with
respect to the total number of snippets to classify. The classification process is obtained
by computing the cosine similarity (‘Training’) between all the snippets’ vectorized
representations present in the test set. Each snippet is thus classified as the label of the most
similar snippet in the latent space.

We report the softAttn-classifier and selfAttn-classifier performances with their
respective classification heads (Table 5), which outputs a probability distribution over
the number of existing classes, taking the most probable class as the output class. We define
the accuracy for the classification-headed models as the ratio between the overall amount
of correctly classified snippets with respect to the total number of snippets to classify.

Table 3 presents the outcomes obtained from the in-distribution data, revealing
an inverse correlation between the number of authors and the model performances.
In comparison to the findings of Kurtukova, Romanov & Shelupanov (2020), our work
demonstrates a substantial improvement, with a general top accuracy of 69.1% (selfAttn-
classifier) for five distinct authors. In contrast, Kurtukova’s accuracy is lower than 50%. It
is important to note that this comparison is based on the ‘‘expert’’ authors’ results from
their work, which utilized files with less than 1,000 symbols, whereas our study focused
on expert users with a test-set median of 298 symbols and a mean of 785 symbols (in
the in-distribution dataset), examining thus a dataset which, according to the results of
Kurtukova, Romanov & Shelupanov (2020), is potentially more difficult to classify.

Moreover, the performance deterioration (−3.6%) with the 1-NN classifier for 104
in-distribution different authors between the selfAttn-classifier and the softAttn-classifier
highlights that better outcomes with the classification head do not imply better embedding
representations.

The out-distribution results presented in Table 4 demonstrate the superior
representation capabilities of the selfAttn-classifier model. While the in-distribution
results did not reveal a clear performance advantage among different architectures, the
out-distribution results indicate a significant negative disparity (e.g., −8.7% for the 104
authors between softAttn-classifier and the ML model with 104 different authors) between
theMLmodel and themodels trainedwith the classification head. This discrepancy could be
attributed to the absence of the SentencePiece technique in the ML model. This technique
offers the classification head-trained models enhanced word embedding representations
for unknown out-of-vocabulary words and could positively impact out-distribution

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

Figure 8 Embeddings latent space representations for five different in-distribution authors (depicted
in the legend as userIn) and five different out-distribution authors (userOut). From top to bottom, the
embeddings are derived from the softAttn-classifier, selfAttn-classifier, and ML model. In the left column,
we display embeddings for the in-distribution authors, while the right column showcases embeddings for
out-distribution authors.

Full-size DOI: 10.7717/peerjcs.2429/fig-8

performance. These results emphasize the necessity of conducting an ablation study in
future work.

It is worth noting that comparing the results of the in-distribution and out-distribution
selfAttn-classifiermodel, the out-distribution results did not compromise its representation

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 17/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2429/fig-8
http://dx.doi.org/10.7717/peerj-cs.2429

Table 5 Classification accuracies for the in-distribution dataset for the two classification-trained
models. The best results are highlighted in bold.

Model 104 authors (%)

softAttn-classifier 42.5 (±0.1)
selfAttn-classifier 44.8 (±0.1)

Table 6 Time of convergence compared to models’ dimensionality.

Model # Parameters Time per epoch (s) Time convergence (hours)

softAttn-classifier ≈18M 245.1 (±4.8) ≈76
selfAttn-classifier ≈114M 1526.4 (±37.3) ≈295

properties, obtaining even better performances. This observation suggests that self-attention
mechanisms could imply greater resilience and generalization properties to unknown
authors’ recognition (out-distribution data).

The accuracies achieved using the classification head are shown inTable 5, demonstrating
higher performance compared to the 1-NN classifiers. However, it is important to note
that the standard setup, which utilizes the classification head, lacks flexibility and cannot
be used for zero-shot classification tasks.

In addition to basic accuracy measures, we conducted a comparative analysis of the
two softAttn-classifier and selfAttn-classifier models (Table 6) to gain deeper insights
regarding models’ dimension and training time. Despite exhibiting superior performance,
the selfAttn-classifier relies on an architecture 6 times larger, resulting in slower training
times and highermemory consumption due to the scaling number of parameters. However,
it proved to be more effective overall as the selfAttn-classifier model reached the softAttn-
classifier best performances (44.8% in terms of accuracy with the classification head) in 21
epochs (≈ 9 h of training time). In contrast, the softAttn-classifier model reached these
performances in 1,080 epochs (≈ 73 h of training time).

DISCUSSION
Based on the experimental outcomes, we can positively answer the stated research question:
it is possible to devise a code stylometry machine learning technique that recognizes
expert authors of real-world open-source code with remarkable accuracy compared to the
results ofKurtukova, Romanov & Shelupanov (2020), keeping consistent outcomes between
in-distribution and out-distribution authors.

By considering their style, we created a model that disambiguates ‘‘expert authors’’
of real-world open-source projects. We reached a high level of accuracy on both in-
distribution and out-distribution authors. Our model outperformed the results of previous
models (Kurtukova, Romanov & Shelupanov, 2020) by 20% for both in-distribution and
out-distribution authors (results obtained with the selfAttn-classifier model over five
different authors).

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

When considering the results in Dauber et al. (2018) we obtain worse performances:
−13.3% with 1-NN classifier ML model and −4% with the classification headed selfAttn-
classifier model, both on 104 different authors. However, the results obtained byKurtukova,
Romanov & Shelupanov (2020) suggest that this degradation can be attributed to the fact
that Dauber et al. (2018) considered inexperienced authors rather than expert authors as
we do. We can state that worse accuracies regarding models tested on experienced authors
could be attributed to a faded fingerprint induced by following coding standards and
guidelines, thus obtaining a unified coding style.

The absence of performance degradation observed when transitioning from in-
distribution to out-distribution authors underscores the robustness of the models in
fulfilling out-distribution tasks, thereby confirming an essential aspect of our research
question about their high accuracy regarding out-distribution authors.

This property is mainly present with the selfAttn-classifier model, highlighting how a
self-attention-based architecture can be crucial to achieving this flexibility. As Caliskan-
Islam et al. (2015) stated, having a dataset with few projects per author can lead to models
disambiguating authors by means of the project and not by coding style; obtaining models
resilient to unknown authors (with zero-shot capabilities) emphasizes thus the quality of
the dataset in terms of different projects per author.

In Fig. 8, we have visualized author snippets over the latent space, thus showing how
different training techniques lead to different representations. In the in-distribution
representation, the ML model trained with the infoNCE loss displays greater confidence
in tightening and driving away authors’ clusters. In the out-distribution results, superior
snippets representation can be spotted by considering the classification-based models,
following the outcomes of Table 4. All the visual results show the presence of hard
recognizable snippets that can be blamed on the presence of highly commonly used coding
standards, possibly leading to a less identifiable fingerprint of the author.

We also introduced two main novelties in the code2seq architecture: the usage of
the SentencePiece technique and the model’s output representation. Since the original
code2seq model was designed to output a sequence, we developed a hybrid architecture
between code2vec and code2seq, introducing two different attention mechanisms. The
selfAttn-classifier was capable of capturing the style of the author without boundaries,
effectively, achieving better performances than the bounded model (+2.3% in classification
setup compared to softAttn-classifier). This improvement could be due to the self-attention
capabilities that allow for effective representation of long-termdependencies between paths.
However, we need to note that our dataset is based on fragmented source codes, which
probably avoids the overfitting problem described by Bogomolov et al. (2021). An ablation
study should be conducted to address the strengths and weaknesses of these models more
precisely.

The new dataset obtained from the mining process designed by us tackles the data
sparseness problem indicated by Alon et al. (2019). It enables us to obtain a training set
with 880 unique snippets of code for 104 different authors, thus increasing the data
volume obtained by Dauber et al. (2018) from 150 to 1,100 snippets of code per author.
In comparison, the work of Kurtukova, Romanov & Shelupanov (2020) on expert authors

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

relies on a training set of 30 files per author, constraining the usage to models that do not
suffer from data hungriness.

It is also worth emphasizing that our dataset differs from the one mined by Kurtukova,
Romanov & Shelupanov (2020), depicting a domain shift in terms of the considered
‘‘experience’’ of the authors to obtain a broader impact on the code authorship task.
Kurtukova, Romanov & Shelupanov (2020) defines the ‘‘expert’’ author as one who follows
coding standards focusing on a single open-source project (Linux kernel). Our work
instead considers authors from several different projects, defining expertise as the feature
deriving from following coding guidelines when producing open-source code. Our work
addressed this change of perspective in considering ‘‘expertise’’ by developing a model
capable of disambiguating authors through different projects despite similarity elements
that can deteriorate the specific fingerprint of the author.

Furthermore, the code snippets are labeled using the addressed author in the commit.
As in the commit procedure, the author can be revised or encompass multiple hidden
collaborators, which could lead to a weak representation of the developers’ style who
contributed to the code. We can highlight this as a possible noise source for our stylometric
models, which could cause incorrect disambiguation. Thus, we outline an open-source
based dataset that is structurally more challenging to disambiguate than an ‘‘in vitro’’
dataset. Aiming to comprehend these difficulties, we can initially address them to both the
‘‘expertise’’ of the authors that homologates the coding style to a similar fingerprint and the
possibility of having mislabeled snippets of code, leaving room for further investigations.

CONCLUSIONS
We have investigated whether it is possible to achieve good performance on code
stylometry for ‘‘expert’’ coders contributing to real-world open-source projects. We
leverage techniques suitable for recognizing both in-distribution and out-distribution
authors, allowing use independent of the authors seen in the learning phase. We have
obtained remarkable results (20% better accuracy with respect to Kurtukova, Romanov &
Shelupanov (2020), for both in- and out-distribution authors) on a novel open dataset of
experienced authors and short code snippets authored by them.

We have furthermore introduced a hybrid architecture between AST-based models and
the transformer design. Our architecture shows how self-attention algorithms, aided by a
scaled model, can improve accuracy performances (+2.2% in classification setup) and do
not degrade from in-distribution to out-distribution inference.

Future work
We plan to conduct an ablation study to examine the model dimensionality and the
presence of SentencePiece and bounded inputs. We expect this to provide evidence-based
explanations for some of the observed strengths and weaknesses of the models we have
developed.

We have considered all output tokens from the transformer as feature representations
as we have an arbitrary pre-determined number of input triplets. This choice results in
a scaled number of parameters over the first layer of the final M.L.P. layer. The model

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

could work more efficiently by introducing a special token ((CLS) classification token) in
the vocabulary and using such token as the sole source of feature representation for the
subsequent M.L.P. layer as in Devlin et al. (2018).

It is also worth noting that the architectures described rely on randomly selected input
triplets, avoiding any form of positional information. We want to further explore this, as
the incorporation of positionality into the input source code could potentially serve as a
valuable source of characterization regarding the author’s style, impacting the performances
of the models.

Finally, exploring the resilience of thesemodels to code obfuscation techniques represents
an intriguing area for further investigation.

Data availability
A complete replication package for this work is available for download from Zenodo at
https://doi.org/10.5281/zenodo.10796494 in which datasets and checkpoints can also be
found.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Andrea Gurioli conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• MaurizioGabbrielli conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.
• Stefano Zacchiroli conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

A complete replication package for this work is available at Zenodo: Gurioli, A.,
Gabbrielli, M., & Zacchiroli, S. (2024). Stylometry for Real-World Expert Coders: a
Zero-shot Approach - Replication Package. https://doi.org/10.5281/zenodo.10796494.

REFERENCES
Alon U, Levy O, Yahav E. 2018. code2seq: generating Sequences from Structured

Representations of Code. DOI 10.48550/arXiv.1808.01400.

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 21/24

https://peerj.com
https://doi.org/10.5281/zenodo.10796494
https://doi.org/10.5281/zenodo.10796494
http://dx.doi.org/10.48550/arXiv.1808.01400
http://dx.doi.org/10.7717/peerj-cs.2429

Alon U, Zilberstein M, Levy O, Yahav E. 2019. code2vec: learning distributed represen-
tations of code. Proceedings of the ACM on Programming Languages 3(POPL):40
DOI 10.1145/3290353.

Alsulami B, Dauber E, Harang R, Mancoridis S, Greenstadt R. 2017. Source code
authorship attribution using long short-term memory based networks. In: Foley SN,
Gollmann D, Snekkenes E, eds. Computer security—ESORICS 2017. Cham: Springer
International Publishing, 65–82.

Appalaraju S, Zhu Y, Xie Y, Fehérvári I. 2020. Towards good practices in self-supervised
representation learning. DOI 10.48550/arXiv.2012.00868.

Bogdanova A. 2021. Source code authorship attribution using file embeddings. In:
Companion proceedings of the 2021 ACM SIGPLAN international conference on
systems, programming, languages, and applications: software for humanity, SPLASH
companion 2021. New York, NY, USA: Association for Computing Machinery,
31–33 DOI 10.1145/3484271.3484981.

Bogomolov E, Kovalenko V, Rebryk Y, Bacchelli A, Bryksin T. 2021. Authorship attri-
bution of source code: a language-agnostic approach and applicability in software
engineering. In: Proceedings of the 29th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering,
ESEC/FSE 2021. New York, NY, USA: Association for Computing Machinery,
932–944 DOI 10.1145/3468264.3468606.

Caliskan-Islam A, Harang R, Liu A, Narayanan A, Voss C, Yamaguchi F, Greenstadt R.
2015. De-anonymizing programmers via code stylometry. In: 24th USENIX security
symposium (USENIX Security 15). Washington, D.C.: USENIX Association, 255–270.

ChangM-W, Ratinov L, Roth D, Srikumar V. 2008. Importance of semantic representa-
tion: dataless classification. In: Proceedings of the 23rd national conference on artificial
intelligence. Washington, D.C.: AAAI Press, 830–835.

Dauber E, Caliskan A, Harang R, Greenstadt R. 2018. Git blame who? stylistic au-
thorship attribution of small, incomplete source code fragments. In: Proceedings of
the 40th international conference on software engineering: companion proceeedings,
ICSE ’18. New York, NY, USA: Association for Computing Machinery, 356–357
DOI 10.1145/3183440.3195007.

Devlin J, ChangM, Lee K, Toutanova K. 2018. BERT: pre-training of deep bidirectional
transformers for language understanding. DOI 10.48550/arXiv.1810.04805.

Horiguchi S, Ikami D, Aizawa K. 2020. Significance of softmax-based features in
comparison to distance metric learning-based features. IEEE Transactions on Pattern
Analysis and Machine Intelligence 42(5):1279–1285 DOI 10.1109/TPAMI.2019.2911075.

Hozhabrierdi P, Hitos DF, Mohan CK. 2020. Zero-shot source code author identifica-
tion: a lexicon and layout independent approach. In: 2020 international joint confer-
ence on neural networks (IJCNN). 1–8 DOI 10.1109/IJCNN48605.2020.9207647.

Kovalenko V, Bogomolov E, Bryksin T, Bacchelli A. 2020. Building implicit vector
representations of individual coding style. In: Proceedings of the IEEE/ACM 42nd
international conference on software engineering workshops, ICSEW’20. New York, NY,

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 22/24

https://peerj.com
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.48550/arXiv.2012.00868
http://dx.doi.org/10.1145/3484271.3484981
http://dx.doi.org/10.1145/3468264.3468606
http://dx.doi.org/10.1145/3183440.3195007
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.1109/TPAMI.2019.2911075
http://dx.doi.org/10.1109/IJCNN48605.2020.9207647
http://dx.doi.org/10.7717/peerj-cs.2429

USA: Association for Computing Machinery, 117–124
DOI 10.1145/3387940.3391494.

Kudo T, Richardson J. 2018. SentencePiece: a simple and language independent subword
tokenizer and detokenizer for neural text processing. DOI 10.48550/arXiv.1808.06226.

Kurtukova A, Romanov A, Shelupanov A. 2020. Source code authorship identification
using deep neural networks. Symmetry 12(12):2044 DOI 10.3390/sym12122044.

Libraries.io. 2022. Libraries.io—the open source discovery service. Available at https:
//libraries.io/ (accessed on 6 June 2023).

Maaten Lvd, Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning
Research 9(86):2579–2605.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representa-
tions in vector space. DOI 10.48550/arXiv.1301.3781.

Munaiah N, Kroh S, Cabrey C, NagappanM. 2017. Curating GitHub for engi-
neered software projects. Empirical Software Engineering 22(6):3219–3253
DOI 10.1007/s10664-017-9512-6.

Oman PW, Cook CR. 1989. Programming style authorship analysis. In: Proceed-
ings of the 17th conference on ACM annual computer science conference, CSC
’89. New York, NY, USA: Association for Computing Machinery, 320–326
DOI 10.1007/s10664-017-9512-6.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, RaisonM, Tejani
A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. 2019. PyTorch: an imper-
ative style, high-performance deep learning library. In: Wallach H, Larochelle H,
Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, eds. Advances in neural information
processing systems, vol. 32. Red Hook: Curran Associates, Inc,.

Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A,
Mishkin P, Clark J, Krueger G, Sutskever I. 2021. Learning transferable visual
models from natural language supervision. In: Meila M, Zhang T, eds. Proceedings of
machine learning research. Proceedings of the 38th international conference on machine
learning, vol. 139. Westminster: PMLR, 8748–8763.

Spadini D, AnicheM, Bacchelli A. 2018. PyDriller: python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM joint meeting on european
software engineering conference and symposium on the foundations of software engineer-
ing, ESEC/FSE 2018. New York, NY, USA: Association for Computing Machinery,
908–911.

TreeSitter. 2022. An incremental parsing system for programming tools. GitHub.
Available at https://tree-sitter.github.io/tree-sitter/.

Van den Oord A, Li Y, Vinyals O. 2018. Representation learning with contrastive
predictive coding. DOI 10.48550/arXiv.1807.03748.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Lu,
Polosukhin I. 2017. Attention is all you need. In: Advances in neural information
processing systems, vol. 30. Red Hook: Curran Associates, Inc.

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 23/24

https://peerj.com
http://dx.doi.org/10.1145/3387940.3391494
http://dx.doi.org/10.48550/arXiv.1808.06226
http://dx.doi.org/10.3390/sym12122044
https://libraries.io/
https://libraries.io/
http://dx.doi.org/10.48550/arXiv.1301.3781
http://dx.doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.1007/s10664-017-9512-6
https://tree-sitter.github.io/tree-sitter/
http://dx.doi.org/10.48550/arXiv.1807.03748
http://dx.doi.org/10.7717/peerj-cs.2429

Zhang Y, Jiang H, Miura Y, Manning CD, Langlotz CP. 2022. Contrastive learning of
medical visual representations from paired images and text. In: Lipton Z, Ranganath
R, Sendak M, Sjoding M, Yeung S, eds. Proceedings of machine learning research. Pro-
ceedings of the 7th machine learning for healthcare conference, vol. 182. Westminster:
PMLR, 2–25.

Gurioli et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2429 24/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2429

