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Abstract  23 

For the wine industry, ensuring quality and authenticity hinges on the precise determination of wine 24 

origin. In our study, we developed a fast semi-quantitative method to analyse 41 chemical elements 25 

in wine, employing Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This methodology 26 

characterises what we term the Mineral Wine Profile (MWP). In contrast to an organic molecular 27 

profile, the mineral composition of a wine remains constant from the moment it is bottled. Mineral 28 

elements play a crucial role in the terroir of wine: they pass primarily from soil to grape and are then 29 



 

 

influenced by various vinification techniques. Indeed, it is widely recognised that the original soil 30 

characteristics are altered by a multitude of winemaking procedures, presenting a considerable 31 

challenge when endeavouring to extract origin-related information in a typical scenario. Our study 32 

demonstrates that statistical analyses and artificial intelligence (AI) could be a tool for accurately 33 

deciphering origin information within the MWP, provided sufficient mineral elements are measured 34 

and a comprehensive database of wine samples is employed to establish effective learning. In this 35 

study, a dataset comprising 12966 MWPs was created in just over a year. The first analysis revealed 36 

correlations between the elements in wine, especially between rare earth elements, between 37 

macronutrients and between micronutrients. A machine learning method was then developed to 38 

assess wine origin and principal grape variety. Six models were tested by comparing the area under 39 

the receiver operating characteristic curve (AUC), with Extreme Gradient Boosting as the chosen 40 

model. Mean accuracies of 92% for country classification, 91% for the French wine region, and 85% 41 

for the main grape variety were obtained, and mean AUC scores of 0.964 for country classification, 42 

0.961 for the French wine region and 0.914 for the main grape variety. This study represents the first 43 

comprehensive investigation at this scale on wine samples, and underscores the importance of using 44 

a comprehensive MWP dataset for AI applications when verifying wine origin. The authentication 45 

of a wine with over 99% specificity could be routinely achievable through this approach. 46 

 47 

Wine, ICP-MS, Elemental composition, Geographical origin, Machine learning, Extreme Gradient 48 

Boosting, Mineral Wine Profile 49 

 50 

Introduction 51 

 52 

Each wine possesses a distinct character, primarily shaped by the intricate interplay between its 53 

terroir and the winemaking process. Terroir, closely linked to the unique combination of vine-soil 54 

dynamics, climatic conditions and the topography of a wine-producing region, exerts a profound 55 

influence on the final product (Leeuwen, 2020). The different stages of winemaking, from the 56 

harvesting of the grapes to bottling, constitute another pivotal factor in defining a wine's identity 57 

(Castiñeira, 2004). Today, wine authenticity and unique expression are matters of debate between 58 

specialists, and the lack of chemical characterisation to ensure its origin can lead to counterfeiting.  59 

Three approaches to addressing these challenges are frequently reported in the literature: DNA 60 

analysis (Baleiras-Couto, 2006), determination of wine organic compounds (i.e., polyphenols and 61 

volatile compounds) and mineral profiling (Popîrdă, 2021), which can all be considered the 62 



 

 

fingerprint of a wine sample. The first technique is applied to the identification of grape variety, 63 

relying on the recovery of DNA from the beverage following the identification of a suitable sequence 64 

which characterises the species (Villano, 2017). However, this approach is only suitable for young 65 

wines, because DNA degradation over time gradually hinders the identification of a wine sample 66 

(Villano, 2017; Zambianchi, 2022).  67 

Nuclear magnetic resonance (NMR), which has commonly been used in food sciences for several 68 

decades (Hatzakis, 2019), has gained in popularity in recent years as a tool for wine organic 69 

compound screening and analysis (Le Mao, 2023). Another technique that is used is the combination 70 

of gas chromatography (GC) and mass spectrometry (MS) to establish the organic profile (Schartner, 71 

2023). Both methodologies rely on organic component analysis, but because these molecules are 72 

sensitive to natural evolution (ageing) or premature changes (oxidation, impacts of storage 73 

conditions) to the wine (Zhang, 2023), it is challenging to compare the same sample over time.  74 

The measurement of isotopes can be carried out to quantify both organic and inorganic profiles, 75 

playing a significant role in determining the origin of wines. Among the commonly used techniques 76 

is the analysis of hydrogen and oxygen isotopes by isotope ratio mass spectrometry (IRMS) (Li, 77 

2023) and the analysis of carbon isotopes by liquid chromatography coupled with IRMS (LC-IRMS) 78 

(Perini & Bontempo, 2022). Isotopes of heavy elements, which can be analysed by Inductively 79 

Coupled Plasma Mass Spectrometry (ICP-MS), such as lead or strontium, have proven to be suitable 80 

for tracing the origin of food products (Drivelos, 2012), including wine (Cellier, 2021; Su, 2023). 81 

However, sample preparation is time-consuming and costly, as it involves multiple steps, such as dry 82 

evaporation, purification, and extraction, which acts as a barrier to constructing a rich and 83 

comprehensive database. 84 

To overcome the limitations posed by the evolution of organic compounds, determining elementary 85 

inorganic content in wines is an alternative way of assessing the fingerprint of wines. This mineral 86 

fingerprint is the Mineral Wine Profile (MWP). The concentration of different elements is influenced 87 

by the terroir and winemaking processes, as schematised in Figure 1, and can be analysed using ICP-88 

MS, a robust and reliable technique (Lima, 2021). When coupled with multivariate statistical data 89 

analysis methods, a classification of the origin of this food product has been shown to be possible 90 

(Ellis, 2012; Giaccio, 2008). The most popular statistical methods are usually principal component 91 

analysis (Bentlin, 2011; Lima, 2023) and discriminant analysis (Griboff, 2021; Pasvanka, 2021), 92 

which can be employed alongside machine learning classification algorithms (Astray, 2021; Da 93 

Costa, 2020).  94 

Despite these numerous attempts to develop authentication methods, existing studies are constrained 95 

by their focus on specific parameters, such as individual countries (Pasvanka, 2021), regions (Alonso 96 



 

 

Gonzalez, 2021), wine appellations (Astray, 2021), and grape varieties (Da Costa, 2020; Tanabe, 97 

2020). This often comes at the cost of restricted sample collection size, as the aforementioned studies 98 

are based on a range of 14 to 113 samples, limiting the statistical significance and the broader 99 

applicability of the findings.  100 

In order to conciliate the need for a cost-efficient and reliable method of wine analysis with the need 101 

for an extensive database, we developed a fast semi-quantitative (SQ) analytical method. This 102 

method uses ICP-MS, which is capable of quantifying around forty mineral elements significantly 103 

present in wines that constitute the MWP. Our approach stands out from existing solutions due to 104 

the creation of an “oenotheque” and database comprising several thousand international wines. 105 

Through statistical analysis and using the extreme gradient boosting algorithm, which was trained 106 

on the thousands of MWP from our database, our goal was to establish timeless traceability of wine 107 

blends and to be able to determine the origin of an unknown wine after ICP-MS analysis of a 108 

collected 30 mL sample. 109 

  110 

Figure 1. Description of different factors that can influence the concentration of major, minor 111 

and trace mineral elements in bottled wine, namely terroir and viticulture, wine production, 112 

additives and contamination.  113 

Materials and methods 114 

1. Reagents and materials  115 

All utilised reagents were of analytical grade. Ultrapure water (MilliQ®, 18.2 mΩ.cm) and nitric acid 116 

Suprapur® grade (69% (v/v), Roth) were used for sample dilution and standard preparation. Certified 117 



 

 

metal-free tubes (VWR®) were employed for collecting and preparing both samples and standards. 118 

A semi-quantitative calibration standard was prepared by diluting the multi-element standard 119 

(Reference 85006.186), purchased from VWR, with 100 mg/L of Al, Ag, As, B, Ba, Be, Bi, Ca, Cd, 120 

Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, Ti, Tl, V and Zn, in 5% HNO3 (v/v). ICP-121 

MS tuning solution, containing 1 μg/L of Ce, Co, Li, Tl and Y in 2% HNO3 (v/v) (Agilent 122 

Technologies), was used to optimise the ICP-MS signal intensities. The use of these solutions is 123 

described below. Moreover, a commercial red wine was used as a final control to ensure reproducible 124 

results (i.e., not exceeding 15% variations) over time. An indium solution, used as an internal 125 

standard to ensure good sample conservation, was prepared by diluting the 1000 mg/L indium 126 

standard in 4% HNO3 (v/v) (purchased from SCP Science) and then added to each sample. 127 

2. Sample preparation 128 

Wine samples were collected from wine contests organised in France and their descriptive data was 129 

provided by the organisers. Their origin and grape variety are assured by the French decree NOR: 130 

ESSC1303876A. This decree obliges contest organisers to verify the authenticity of wines entered 131 

in the competition and winemakers to declare the varieties employed during vinification. 132 

Samples of approximately 30 mL of wine were put in metal-free tubes. Direct wine dilution was 133 

found to provide optimal balance in terms of user-friendliness, result accuracy and precision 134 

(Godshaw, 2017). Samples were diluted 1:3 using 1% HNO3 (v/v) and 10 µg/L of indium standard 135 

solution. This initial dilution provides sample storage in acidic conditions, ensuring the preservation 136 

of elemental composition over time and limiting mineral precipitation and adsorption onto the metal-137 

free tube walls. A second dilution of 1:5 using 1% HNO3 (v/v) was performed just before the 138 

analysis. The total dilution factor (1:15) was fine-tuned to minimise matrix effects, which can occur 139 

due to the presence of alcohol or other organic matter when performing trace element quantification 140 

(Catarino, 2006).  141 

3. ICP-MS analysis  142 

The ICP-MS measurements were made between June 2022 and October 2023 at the Université Lyon 143 

1, Institut des Sciences Analytiques, using different quadrupole-ICP-MS equipment. The majority of 144 

the multi-element determination was conducted using a simple quadrupole-ICP-MS 7850 from 145 

Agilent Technologies, equipped with an integrated autosampler SPS 4. A micromist nebuliser was 146 

used for all measurements. The collision cell was set to helium mode for all elements, at a flow rate 147 

of 5 mL/min, to minimise polyatomic interferences. The operating conditions were as follows: 148 

1550 W forward power, 15 L/min plasma gas flow, 1 L/min carrier gas flow and 1 L/min auxiliary 149 



 

 

gas flow. The remaining parameters were adjusted daily using a tuning solution to optimise the 150 

signal. 151 

Elemental concentrations were obtained through SQ analysis using the 28-element standard at a 152 

concentration of 20 µg/L and 1% HNO3 as the blank. SQ approach was performed for 42 elements, 153 

with 100 sweeps and one replicate: 11B, 23Na, 24Mg, 27Al, 28Si, 31P, 34S, 35Cl, 39K, 43Ca, 45Sc, 47Ti, 154 
51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 75As, 79Br, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 111Cd, 115In, 118Sn, 155 
127I, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 182W, 205Tl, 208Pb and 238U. These 41 elements, 156 

except for In used as internal standard, constitute the mineral wine profile (MWP). The following 157 

elements were absent from the calibration standard: 28Si, 31P, 34S, 35Cl, 45Sc, 79Br, 85Rb, 89Y, 90Zr, 158 
93Nb, 115In, 118Sn, 127I, 133Cs, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 182W and 238U. Their concentrations 159 

are interpolated between elements present in the calibration standard, applying response factors, 160 

which depend on their isotopic mass, isotopic abundance and ionisation energy. 161 

The analytical procedure is summarised in Figure S1. The determined concentrations then served as 162 

input for the machine learning algorithms. 163 

4. Statistical analysis 164 

Statistical analyses were performed with the libraries scipy.stats, (Virtanen, 2020) and scikit-learn 165 

(Pedregosa, 2012) compatible to Python version 3.9.19.  166 

Values below the limit of quantification, determined by the Agilent MassHunter 5.2 software version 167 

D.01.02 during each analysis, were imputed as 10-4 (ppb). Elemental concentration results were 168 

summarised using mean, median, and interquartile range (IQR). Histograms of the Box-Cox 169 

transformed data were calculated.  170 

The raw database was normalised via Z-score transformation and samples, taking out the under-171 

represented labels in colour and the category. Spearman correlation coefficients were computed and 172 

correlations were considered significant when p-value < 0.05. Cluster analysis was conducted using 173 

Ward’s method and Euclidean distance. 174 

An exploratory analysis employing Principal Component Analysis (PCA) was carried out to identify 175 

underlying patterns in the dataset, and its first 10 principal components were visualised using the t-176 

Stochastic Neighbour Embedding (t-SNE) technique. t-SNE is utilised to reduce data dimensionality 177 

to two dimensions, preserving both local and global structures, thus facilitating cluster visualisation 178 

(van der Maaten, 2008). 179 



 

 

5. Sample classification 180 

5.1.Selection of machine learning model 181 

For model selection, the dataset underwent 80:20 stratified random split, to compose the train and 182 

the test set, respectively. The test set was used to verify the trained model performance, as it had not 183 

been previously seen by the model. All samples with unknown label values were taken out of the 184 

dataset before the stratified split was done. Both sets were composed of all 39 elements (B, Na, Mg, 185 

Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, Nb, Cd, Sn, I, Cs, Ba, 186 

La, Ce, Pr, Nd, Sm, W, Tl, Pb and U). 187 

Six machine learning models were benchmarked: Random Forest, k-nearest neighbours (k-NN), 188 

support vector machine (SVM), Logistic Regression implemented in scikit-learn, extreme gradient 189 

boosting (XGB) implemented in the XGBoost library (Chen, 2016) and an artificial neural network 190 

model (ANN) created using the TensorFlow library (Abadi, 2015). No optimisation of the models’ 191 

functions was done for their comparison. The metric chosen for their comparison was the area under 192 

the receiver operating characteristic (ROC) curve. This curve is a graphic representation of the trade-193 

off between specificity and sensitivity of a model (Fawcett, 2006). The area under this curve (AUC) 194 

is an important metric when evaluating a model, it represents the probability that a classifier will 195 

correctly rank a randomly selected positive instance higher than a randomly chosen negative 196 

instance. An AUC of 0.5 reflects random guessing, while a perfect classifier achieves an AUC of 1.0 197 

(Fawcett, 2006).  198 

The chosen classes were country, French region and principal grape variety. Only labels with more 199 

than 50 samples were classified. The model was trained and tested for 10 iterations. The AUC score 200 

was computed for each iteration and its mean was then calculated. 201 

5.2.Application of XGB in Sample Classification 202 

The XGB was found to be the best performing technique (as explained the Results and Discussion 203 

section). XGB is a boosting ensemble learning algorithm, which uses many decision trees whose 204 

predictions are combined in order to obtain the final classification (Chen, 2016). This machine 205 

learning method has been applied in several domains, such as disease and stock prediction (Chen, 206 

2016; Ma, 2021), with very good results when distinguishing the geographical origin of food 207 

products (Kang, 2023; Wen, 2023).  208 

In order to improve the model predictions after selection, a grid search was employed to optimise 209 

the model’s parameters: number of estimators were set to 500, maximum tree depth to five, learning 210 

rate to 0.1, gamma to zero and the regularisation parameter lambda to one. The model parameter 211 

“objective” was binary:logistic. The metrics chosen to evaluate the classifier performance were 212 



 

 

sensitivity, specificity, accuracy and the AUC. The first metric was the probability of a positive 213 

individual being correctly classified as positive and the second the probability of a negative 214 

individual being correctly classified as negative. Accuracy was the ratio of correctly classified 215 

samples to the total number of samples present in the evaluation dataset (Hicks, 2022). 216 

The same classes and labels were classified in the optimised XGB model. It was repeated 10 times 217 

and the means of the metrics were calculated. 218 

Results and discussion  219 

1. Determining the elemental composition of the wine samples 220 

For this study, the MWP of 12966 wines of commercial origin as well as from international 221 

competitions were obtained. The wines originated from a wide variety of countries (more than 45), 222 

with France being the most represented (9473 wines), as well as several regions (more than 200) and 223 

grape varieties (more than 200). Figure 2 illustrates the distribution of the analysed wines in the 224 

database. A more detailed description is given in Tables S1, S2 and S3. 225 

 226 



 

 

Figure 2. Distribution of the 12966 analysed wines based on the wine type (a), country (b), 227 

grape variety (c), and French wine region (d). The category "Others" contains labels with 228 

fewer than 150 samples. A more detailed description of each category is given in Tables S1, S2 229 

and S3. 230 

Semi-quantitative analysis is an interesting alternative to full-quantitative analysis and is particularly 231 

valuable for rapidly screening the elemental composition of samples, since it enables fast 232 

determination of the approximate elemental composition in unknown samples. In semi-quantitative 233 

mode, the entire mass range is scanned, thereby recording a signal for every possible element or 234 

isotope. Moreover, SQ analysis involves estimating the relative concentrations of elements without 235 

relying on the multi-standard calibration necessary for quantitative analysis. It also eliminates the 236 

need for multiple calibration curves due to incompatibility of the simultaneous presence of certain 237 

elements (i.e., Zr in the presence of an excess of Na). As a consequence, this mode has high 238 

economical advantages both in time and reagents. 239 

The accuracy was not determined, but several papers have reported high accuracy (bias < 20%) 240 

(Catarino, 2006; Chen, 2008). While it is associated with lower accuracy compared to quantitative 241 

analysis, this method is suitable for creating a comprehensive database of mineral profiles that can 242 

be exploited in multivariate data analysis and machine learning algorithms. Indeed, the aim of the 243 

analysis is not to ascertain the concentrations of the different elements present in wine but to provide 244 

values that can be considered characteristic of a given wine. Reproducibility was determined via the 245 

analysis of the control wine over a 15 day-period and was found to not exceed 15% for all the 246 

elements. 247 

The developed SQ method enabled analysis of more than 200 samples per day, with each sample 248 

being analysed for seven minutes. To prevent any potential signal variation over time, several control 249 

points were implemented: analysis of the control wine at the start, midpoint and end of each 250 

sequence; analysis of blanks and 28-element standard every 40 analyses; monitoring of indium 251 

concentration in each sample. It was used to determine the MWP of the wines of this study. 252 

Comprehensive statistical summaries, including the mean, median and interquartile range (IQR) of 253 

mineral element concentrations, are provided in Table 1. The concentration distributions across the 254 

database using Box-cox transformation are depicted in Figure 3. Lambda values are given in Table 255 

S4. Visual inspection of the histograms suggests multimodal distributions of data. Consequently, the 256 

Spearman correlation coefficient was adopted to evaluate the relationships between variables, given 257 

its non-parametric nature as a measure of rank correlation. 258 



 

 

Table 1. Mean, median and interquartile range (IQR) for the 39 concentrations of mineral 259 

elements measured by ICP-MS. 260 

 Mean (ppb) Median (ppb) IQR (ppb) 

B 5075 4692 2768 

Na 2542.101 2040.101 1937.101 

Mg 1090.102 1025.102 4234.101 

Al 646.8 504.6 476.6 

P 5325.102 4889.102 2893.102 

S 1586.102 1450.102 7804.101 

Cl 3102.101 2286.101 1968.101 

K 1017.103 9814.102 5655.102 

Ca 7202.101 6784.101 2730.101 

Ti 21.62 12.55 14.03 

V 35.84 2.99 19.77 

Cr 18.88 15.33 11.77 

Mn 2458 1420 2323 

Fe 2236 1675 2232 

Co 5.30 4.08 3.47 

Ni 34.86 27.44 23.97 

Cu 142.6 69.66 123.1 

Zn 954 856.8 558.4 

As 5.57 3.49 4.69 



 

 

Br 287.88 223.4 239.5 

Rb 1665 1439 1159 

Sr 516.3 404.4 364 

Y 0.73 0.29 0.67 

Zr 5.17 1.87 4.57 

Nb 0.43 0.14 0.38 

Cd 0.32 0.24 0.23 

Sn 1.74 0.97 1.32 

I 4.09 3.41 3.44 

Cs 10.43 4.13 5.53 

Ba 279.3 164 263.6 

La 0.59 0.12 0.42 

Ce 1.16 0.27 0.81 

Pr 0.12 0.03 0.10 

Nd 0.51 0.12 0.44 

Sm 0.10 0.00 0.09 

W 0.73 0.25 0.56 

Tl 0.37 0.27 0.28 

Pb 14.02 9.88 9.48 

U 0.46 0.16 0.37 

 261 

Figure 3 illustrates the noticeable dispersion of elemental content in wine. This phenomenon is 262 

documented in existing literature across various contexts, including comparisons between wines 263 



 

 

from different countries (Bentlin, 2011; Griboff, 2021), within the same country (Kment, 2005), 264 

across different types (Griboff, 2021), and even when examining different vintages from the same 265 

vineyard (Tanabe, 2020). This variability in elemental content underscores the intricate interplay of 266 

factors shaping wine composition, such as geographical origin, vinification techniques and 267 

environmental influences.  268 

Given this complexity, establishing a comprehensive wine database that accounts for these diverse 269 

factors is indispensable for advancing our understanding of the relationships between elements and 270 

the broader context of wine production. In the subsequent sections, we delve more deeply into the 271 

examination of elemental correlations and their potential applications in wine traceability. 272 

  273 
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Figure 3. Element concentration distribution in the database. Concentration (x-axis) is 275 

transformed using the Box-Cox power transformation. If the concentration value was under 276 

the limit of quantification, the data was not plotted. The concentration and frequency scales 277 

have been adapted for each element. The Lambda values for each element are given in Table 278 

S4. 279 

2. Statistical analysis 280 

2.1. Correlation analysis 281 

To investigate potential relationships between element concentrations, a Spearman correlation test 282 

was conducted at a 95% confidence level. The correlation coefficients (ρ) are depicted in the 283 

correlation matrix plot, in Figure 4a. Positive (red shading) and negative (blue shading) correlations 284 

were found amid the pairs of elements, with the most significant being positive correlations between 285 

rare earth elements, Y, La, Ce, Pr, Nd and Sm (ρ varying from 0.93 to 0.79) and Zr-Y (ρ 0.71). 286 

Rare earth elements are a group with similar chemical behaviour, thus their correlation is expected 287 

and has been reported elsewhere (Alonso Gonzalez, 2021; Pasvanka, 2021). They are associated with 288 

soil content and bentonite treatment (Catarino, 2008; Pohl, 2007). The correlation between Zr and Y 289 

may also be explained by this clarification agent, as well as by the use of Yttria-stabilised zirconia 290 

for wine stabilisation and/or filtration (Catarino, 2008; Salazar, 2006; Silva-Barbieri, 2022).  291 

 292 



 

 293 



 

 

Figure 4. (a) Correlation matrix plot illustrating the relationships between 39 pairs of element 294 

concentrations across all samples of the database. The colour gradient reflects the Spearman 295 

correlation coefficient (ρ), with statistically significant correlations (p-value < 0.05) indicated 296 

in red (positive correlation) or blue (negative correlation). Non-significant correlations are in 297 

white cells. (b) Hierarchical cluster dendrogram generated using Ward's method and 298 

Euclidean distance for the 39 elements. Distances indicate the degree of correlation between 299 

different elements. Three clusters are identifiable: C1 (Ba, Mn, Co, Fe, Cr, Zn, Pb, Cu, Ni, Cd, 300 

Sn, Tl, Rb and Cs), C2 (K, Mg, P, I, Ca, S, Sr, B, Br, Cl and Na) and C3 (Zr, Al, U, As, V, W, 301 

Nb, Ti, Ce, La, Nd, Pr, Sm and Y). 302 

 303 

2.2. Cluster analysis 304 

To further elucidate metal concentration relationships, a cluster analysis was performed utilising the 305 

Ward method and Euclidean distance. The resulting dendrogram, depicted in Figure 4b, reveals three 306 

distinct clusters which are in agreement with the correlations found in Figure 4a. The first cluster 307 

(C1) comprises Ba, Mn, Co, Fe, Cr, Zn, Pb, Cu, Ni, Cd, Sn, Tl, Rb and Cs, which are predominantly 308 

micronutrients. These elements are essential to plant health and some (e.g., iron and copper) also 309 

impact the colour and oxidative stability of wine (Pohl, 2007). 310 

The second cluster (C2) comprises plant macronutrients K, Mg, P, Ca and S, which have major roles 311 

in plant metabolism. Additionally, this cluster includes supplementary elements, such as I, Sr, B, Br, 312 

Cl and Na, whose presence in wine warrants further exploration. The third cluster (C3) encompasses 313 

rare earth elements alongside Zr, Al, U, As, V, W, Nb and Ti, their presence in wine originating from 314 

various sources, including soil composition and winemaking techniques (Catarino, 2008; Pohl, 315 

2007), as illustrated in Figure 1. 316 

 317 

2.3. Principal Component Analysis 318 

Building on the insights gleaned from the correlation coefficients and cluster analysis, principal 319 

component analysis (PCA) was subsequently employed to further explore the intricate relationships 320 

within the dataset. Due to its high dimensionality, visualisation was not possible. Therefore, a 321 

dimensionality reduction technique t-SNE was applied to the first ten principal components, which 322 

accounted for 70% of total variance.  323 

Initially, the grouping of all the samples was studied, as shown in Figure 5 and Figure S2. In terms 324 

of wine type, red wines are well separated from rosé and white wines, which is expected due to the 325 



 

 

differences in winemaking processes. This is consistent with other studies (M. Gajek, 2021), which 326 

have also shown – albeit using a limited number of samples - differences in mineral wine profiles 327 

for red, rosé and white wines. For the distribution of data based on the country of origin, French 328 

wines constitute the majority and are represented in the large (blue) cluster. Smaller groups of 329 

Spanish and Italian wines are visible. Lastly, grape variety grouping was also studied, for which the 330 

samples containing unknown varieties were taken out in order to better illustrate the existing clusters. 331 

These grape variety clusterings were attributed to the interaction of two different factors: the unique 332 

composition of each variety and its region of origin. Therefore, the assessment of wine region clusters 333 

was carried out for French wines, as most of their regions are well represented in the database, which 334 

resulted in the t-SNE representations in Figure c and Figure S2b. 335 

For French wine type, the separation of red wines from white and rosés is clear. For the French wine 336 

regions and principal grape variety, all the categories with more than 50 samples have been 337 

represented and only French samples with known categories have been plotted. Clusters are evident 338 

for the Beaujolais, Vallée du Rhône, Bordeaux and Champagne regions. The separation of the former 339 

three regions may be due to the typicity of their soils, as well as the typical varieties that are used in 340 

the production of the respective wines. This is supported by the separation of the principal grape 341 

varieties, as the clusters of Gamay, Grenache noir and Merlot correspond to those of Beaujolais, 342 

Vallée du Rhône and Bordeaux, respectively.  343 

For the Champagne region separation there is an additional explanation to that involving principal 344 

variety (Chardonnay) and soil. Most of the sparkling wines in the dataset come from this region, thus 345 

the chemical difference between a white still wine and a white sparkling wine may artificially play 346 

a role in this difference. 347 

The promising patterns observed in both the data grouping and a rich database containing more than 348 

12000 samples have motivated the development of machine learning techniques tailored to sample 349 

classification.  350 



 

 

 351 



 

 

Figure 5. (a-c) t-SNE representation of international MWP samples according to country (a), 352 

international main grape variety (b) and French region (c) of the 10 first principal components 353 

(67% of total variance). Only samples with known labels are represented in the images. For 354 

complementary images (type and French varieties), see Figure S2. Figure 5c and Figure S2b 355 

have similarities, showing that the typicity of the wine producing region is related to the grape 356 

variety. A clear separation for red and white/rosé is illustrated for international samples in 357 

Figure S2a. 358 



 

 

3. Sample classification 359 

3.1.Selecting the machine learning model 360 

Various supervised learning algorithms have been employed in the literature to determine and 361 

differentiate the origin of wines. These include the support vector machine (Astray, 2021; Da Costa, 362 

2020), stepwise linear discriminant analyses (Pérez-Magariño, 2004), random forest (Astray, 2021; 363 

Da Costa, 2020) and artificial neural networks (Astray, 2021; Da Costa, 2020; Pérez-Magariño, 364 

2004; Wu, 2021). Renaweera et al. were also able to identify blending percentages using 365 

spectrofluorimetric analysis with another machine learning algorithm, the extreme gradient boosting 366 

discriminant analysis (Ranaweera, 2022).   367 

Given the extensive array of machine learning techniques prevalent in the literature, an initial 368 

performance assessment was conducted to determine the optimal model for sample classification. 369 

The models were trained and tested ten times, using 80:20 random stratified split, and the mean AUC 370 

score was computed after classification of test samples. The results are given in Table 2. The model 371 

with the best performance was Extreme Gradient Boosting (XGB), and was thus chosen to be 372 

developed in this study. 373 

Table 2. Mean AUC comparison for the six machine learning models tested in the classification 374 

of wine origin and grape variety. The highest score achieved for each class is highlighted in 375 

bold 376 

Model 
Mean AUC 

Country French Wine Region Grape Variety 

Random Forest 0.952 0.953 0.872 

k-NN 0.836 0.871 0.759 

SVM 0.964 0.946 0.893 

Logistic Regression 0.939 0.913 0.875 

Extreme Gradient Boosting 0.977 0.967 0.919 

ANN 0.925 0.897 0.851 



 

 

3.2.Application of XGB in Sample Classification 377 

The performance metrics of the classifier for countries, French region and principal grape varieties 378 

of the wines are given in Table 3. When assessing the classifier performance in terms of country 379 

prediction, it is evident that the models can accurately predict a wine's country. The AUC surpasses 380 

0.9 across all of the countries, indicating the models' high reliability when distinguishing between 381 

different samples. Furthermore, the accuracy metrics show remarkable values, with at least 83% 382 

correctly classified samples across all countries. Particularly noteworthy are the results for Brazil 383 

and Australia, with accuracy levels exceeding 96%. 384 

French wines constitute the predominant country; this facilitates the comprehensive coverage of 385 

various French wine regions within the database, which enables the development of classifiers to 386 

predict the origin of these wines within their respective territory. The developed models showed high 387 

predictive ability, with their AUCs varying from 0.906 to 0.996. Their best performance, as 388 

illustrated by the AUC, was for Bordeaux, Beaujolais and Champagne regions. This is in agreement 389 

with their natural separation in the set, as presented in Table 3 and led to accurate predictions, varying 390 

from 95.2% to 97.8%.  391 

These results are promising as they indicate that the MWP is a robust tool for verifying the origin of 392 

a wine. Further avenues of research include the exploration of its use when tracing a wine to sub-393 

regional level, thereby providing insights into the unique terroir characteristics within a larger wine-394 

producing region. Additionally, this tool can be applied in further research to explore the differences 395 

between the mineral signatures of wine-producing regions, as it translates not only the fingerprint of 396 

the soil but also viticultural practices and winemaking techniques, as illustrated in Figure 1. 397 

When distinguishing grape varieties, XGB demonstrates reliability when distinguishing the principal 398 

wine varieties, with an AUC exceeding 0.8 for all of the labels. The classification of the  principal 399 

wine varieties proves more complex than country or region due to the prevalence of multivarietal 400 

wines in certain regions, as well as the use of rootstocks. Moreover, the International Organisation 401 

of Vine and Wine’s labelling rules (International Organisation of Vine and Wine, 2024) do not 402 

require varietal names and their percentages to be mentioned, which increases the difficulty of the 403 

classification. 404 

These factors may explain the separation shown in Table 3 with clustering remarkable only to the 405 

Gamay variety. However, the model showed high overall performance for the classification of 406 

principal wine varieties with accuracy ranging from 73.7% to 98.0%. Two possible avenues of 407 

improvement are possible: training the model exclusively on monovarietal wines and enriching the 408 

database with the rootstock used for each variety in a wine. Even though this is a possibility, the 409 



 

 

models performed remarkably well without these options, showing their potential for grape variety 410 

classification.411 



 

 

Table 3. Mean (Niteration = 10) performance metrics for predicting a wine’s country, French region and principal grape variety. Only labels with 412 

more than 50 samples were classified 413 

Country Samples AUC Sensitivity Specificity Accuracy Country Samples AUC Sensitivity Specificity Accuracy 

France 9454 0.981 0.938 0.932 0.936 Canada 152 0.985 0.937 0.959 0.958 

Italy 568 0.968 0.914 0.903 0.904 Moldova 103 0.988 0.943 0.943 0.943 

Spain 495 0.962 0.885 0.916 0.915 Greece 92 0.945 0.872 0.873 0.873 

Portugal 228 0.968 0.893 0.928 0.928 Hungary 90 0.954 0.878 0.895 0.895 

South Africa 216 0.983 0.916 0.947 0.946 Bulgaria 83 0.929 0.724 0.949 0.948 

Switzerland 213 0.985 0.930 0.957 0.957 Austria 82 0.943 0.881 0.834 0.834 

Australia 184 0.992 0.957 0.962 0.962 Slovakia 71 0.959 0.900 0.872 0.872 

Brazil 160 0.996 0.950 0.982 0.982 

Germany 68 0.907 0.707 0.899 0.898 
Romania 158 0.948 0.863 0.925 0.924 

French region Samples AUC Sensitivity Specificity Accuracy French region Samples AUC Sensitivity Specificity Accuracy 

Bordeaux 2303 0.987 0.950 0.952 0.952 Bourgogne 429 0.959 0.891 0.908 0.907 

Languedoc- 1372 0.957 0.895 0.895 0.895 Sud-Ouest 412 0.906 0.806 0.852 0.850 



 

 

Roussillon 

Beaujolais 1340 0.996 0.969 0.980 0.978 
Vallée de la 

Loire 
318 0.930 0.864 0.845 0.846 

Vallée du 

Rhône 
833 0.946 0.880 0.872 0.873 Champagne 295 0.982 0.934 0.972 0.971 

Provence 665 0.957 0.899 0.890 0.891 Savoie 69 0.968 0.871 0.936 0.936 

Alsace 447 0.980 0.921 0.949 0.947 Corse 62 0.964 0.858 0.907 0.907 

Principal grape 

variety 
Samples AUC Sensitivity Specificity Accuracy 

Principal grape 

variety 
Samples AUC Sensitivity Specificity Accuracy 

Chardonnay 2344 0.967 0.908 0.893 0.896 Riesling 98 0.932 0.835 0.878 0.877 

Merlot 1747 0.960 0.903 0.918 0.916 Malbec 94 0.847 0.716 0.833 0.832 

Gamay 1379 0.992 0.956 0.983 0.980 Tempranillo 89 0.941 0.828 0.926 0.925 

Syrah 1000 0.934 0.871 0.863 0.864 Pinot gris 83 0.910 0.812 0.830 0.830 

Grenache noir 762 0.952 0.911 0.866 0.867 Viognier 81 0.874 0.819 0.785 0.786 

Cabernet 

Sauvignon 
422 0.828 0.777 0.743 0.744 Grenache blanc 81 0.851 0.769 0.780 0.780 



 

 

Muscat 384 0.959 0.892 0.883 0.883 Sémillon 75 0.918 0.840 0.822 0.822 

Sauvignon 

blanc 
311 0.938 0.868 0.869 0.869 

Gewurztramine

r 
71 0.952 0.907 0.871 0.871 

Pinot noir 297 0.860 0.785 0.801 0.800 Cinsault noir 65 0.807 0.731 0.737 0.737 

Cabernet Franc 199 0.861 0.823 0.763 0.764 Carignan noir 62 0.899 0.767 0.882 0.882 

Cinsault 198 0.959 0.905 0.891 0.891 
Pinot blanc 51 0.932 0.830 0.861 0.861 

Grenache 139 0.952 0.911 0.866 0.867 

414 



 

 

In order to further adapt the model to wine authentication, the type of wine can be taken into account 415 

when segmenting the dataset. To this end, red wines were used to carry out a binary classification of 416 

French, Italian and Spanish wines and thus evaluate how the metrics would change. The results are 417 

presented in Table 4. It can be seen that model performance for all three countries displays an AUC 418 

higher than 0.9. The same behaviour was found in terms of the model’s accuracy, which reached at 419 

least 94% of correct classifications for France and Spain. This performance warrants further 420 

exploitation of the data, and it reinforces the need for a polyvalent database that can be refined as 421 

required.  422 

Table 4. Mean (Niteration = 10) performance metrics when classifying the countries of French, 423 

Italian and Spanish red wines.  424 

Country Number of samples AUC Sensitivity Specificity 
Accurac

y 

France 4799 0.989 0.947 0.960 0.949 

Italy 131 0.965 0.908 0.903 0.903 

Spain 109 0.980 0.927 0.948 0.947 

The differentiation between the previously classified categories relies exclusively on the features 425 

available within the database, consisting of 39 elements in the MWP. When differentiating 426 

distinguishing between these categories, their significance is evaluated through the mean importance 427 

feature, as depicted in Figure 6 for the three countries. This metric has positive and negative values, 428 

depending on how the presence (positive, black shading) or absence (negative, blue shading) of a 429 

feature helps in distinguishing each category. In the differentiation of French wines, the absence of 430 

strontium is the most important feature that ifferentiates them from all the other wines, while for 431 

Spanish, the presence of this element helps in their classification. 432 

Fifteen elements contribute to the differentiation of the wines originating from Italy. The variation 433 

in the features influencing the model highlights the necessity of conducting a comprehensive MWP 434 

assessment of each wine, as different categories can be differentiated by various features; this is 435 

further illustrated for the three main regions and grape varieties in Figures S3 and S4. 436 



 

 

 437 

Figure 6. Element Mean Feature Importance for the three major countries. Values are 438 

presented in decreasing order of importance. Values in black indicate positive correlations and 439 

values in blue, negative correlations between the element’s concentration and the wine 440 

category. These values for the three main regions and three main grape varieties are shown in 441 

Figures S2 and S3 442 

The segmentation of the dataset previously carried out for the country classifications is not the only 443 

strategy that can be used to adapt the model to sample classification. The decision threshold of the 444 

model can be tuned in order to achieve higher values of specificity or sensitivity, which could be 445 

used to better determine whether the sample is from the target category or not. A specificity of over 446 

99% can be thereby be obtained, increasing the reliability of the classification as non-belonging to a 447 



 

 

category. This optimisation was conducted for the three major countries, French regions and grape 448 

variety, producing the metrics presented in Table 5. 449 

Table 5. Mean (Niteration = 10) performance metrics for classifying the three major categories of 450 

country, French region and grape variety. Specificity is set to 0.99. 451 

Country Number of samples Specificity Sensitivity Accuracy 

France 9454 0.991 0.747 0.813 

Italy 568 0.991 0.617 0.974 

Spain 495 0.991 0.607 0.976 

French region Number of samples Specificity Sensitivity Accuracy 

Bordeaux 2303 0.991 0.734 0.922 

Languedoc-Roussillon 1370 0.990 0.464 0.906 

Beaujolais 1340 0.991 0.935 0.982 

Principal grape variety Number of samples Specificity Sensitivity Accuracy 

Chardonnay 2344 0.991 0.578 0.905 

Merlot 1747 0.990 0.386 0.897 

Gamay 1379 0.991 0.938 0.985 

When comparing the models described in this study with others in the literature, similar 452 

performances were found. Tanabe et al. (2020) analysed 62 elements to differentiate neighbouring 453 

American viticultural regions, with an accuracy of over 94%. In terms of grape variety, their study 454 

was limited to Pinot noir with a limited number of samples (n=53) (Tanabe, 2020). As a comparison, 455 

the model developed in this study obtained a region classification accuracy of up to 98% using more 456 

samples and a more diverse dataset. 457 

Griboff et al. analysed 18 elements by ICP-MS and 2 isotopes by isotope ratio mass spectrometry of 458 

62 wine samples from Argentina and Australia (Griboff , 2021). As already explained in the 459 

Introduction, sample preparation for isotope ratio analysis is time-consuming and hinders the 460 

acquisition of data for a large and comprehensive dataset. The method developed in this study 461 



 

 

provides a more time-efficient analysis, as well as a more comprehensive database to be exploited 462 

via machine learning methods. 463 

Forina et al. analysed a dataset extracted from the European Wine Databank. It was composed of 58 464 

selected organic and inorganic analytical parameters of 1188 wine samples that were available in the 465 

databank (Forina, 2009). This was the most comprehensive study found in the literature, but it was 466 

still limited to four countries and the methods of data acquisition were costly and time-consuming.  467 

When distinguishing varieties, other studies have explored the elemental content of wine as a 468 

fingerprint (Feher, 2019; Temerdashev, 2019), using chemometric or machine learning approaches. 469 

This study achieved comparable results with a larger and more origin-diverse dataset. As this profile 470 

is usually only associated with a wine’s origin, being able to differentiate varieties in a multiple-471 

origin set is promising for the future of wine authentication. Recently Temerdashev et al. (2024) 472 

have shown that, using chemometric analysis and 153 samples, it is possible to distinguish between 473 

three grape varieties (Chardonnay, Riesling and Muscat) and four regions of the Krasnodar territory: 474 

this therefore also validates our ICP/MS mineral analysis methodology for classifying wines. 475 

While previous studies have obtained good results for wine classification, no other existing research 476 

has used the same number of samples and representation of countries, wine regions and varieties as 477 

in the present study. Such a large database is essential for creating a polyvalent model that can verify 478 

the origin of an unknown wine by exploiting exclusively its Mineral Wine Profile.  479 

To the best of our knowledge, this study is the first that involves the analysis of over twelve thousand 480 

wine samples and their corresponding MWP. The extensive dataset opens up numerous avenues for 481 

further research. For example, MWP could be used as a tool for studying various ecological 482 

phenomena over time and to support necessary adaptations to climate change and modifications in 483 

viticultural practices. For instance, elements like potassium are already closely monitored by 484 

winegrowers, as potassium nutrition is directly correlated with grapevine growth and ultimately with 485 

wine quality (Villette, 2020). Interestingly, potassium levels in berries have been steadily increasing 486 

over the past few decades and serve as a reliable indicator of climate change, which is linked to a 487 

decline in wine quality (Nistor, 2022). Similarly, an increase in calcium levels in wine has been 488 

observed, attributed to global warming-induced water stress in plants, which is also linked to changes 489 

in wine quality (Fioschi, 2024). In addition to these well-known minerals associated with global 490 

warming, MWP, when integrated with large datasets, may be used in the future to identify new 491 

indicators related to subtle climate changes in specific regions. 492 



 

 

Conclusion 493 

The findings of this study demonstrate the remarkable capabilities of MWP in determining the 494 

country and region of wine production. It is noteworthy that contemporary consumers increasingly 495 

seek detailed information regarding authenticity that goes beyond just the region of origin. The 496 

concept of terroir, ranging from MACRO-terroir to MICRO-terroir via MESO-terroir (Marre et al., 497 

2012), underscores the intricate interplay of factors shaping wine characteristics. Regions like 498 

Bourgogne, Bordeaux, and Champagne boast diverse soils, microclimates, grape varieties and 499 

cultivation methods. 500 

Analysing the mineral composition of wines and leveraging AI to process this data unlocks the 501 

potential of authenticating wines at a granular geographical level. This necessitates working within 502 

specific regions with hundreds of wines sourced from geologically homogeneous plots to ensure 503 

precise metadata. In the medium-term, correlating this metadata with sensory profiles of wines 504 

promises a deeper understanding of their origins and thus quality. The combination of Mineral Wine 505 

Profile and Artificial Intelligence could thus be an indispensable tool for such investigations. 506 

This study pioneers the development of a semi-quantitative method that enables rapid and robust 507 

screening of 41 elements present in wines (about 200 samples can be analysed in just one day), 508 

leading to the creation of a database of over 12000 Mineral Wine Profiles in just over a year. Here, 509 

correlations between metal traces, rare earth elements, macro and micronutrients were initially 510 

analysed, and their further exploration could be an intriguing avenue for future research endeavours. 511 

By leveraging a large and diverse dataset, the present study developed an Extreme Gradient Boosting 512 

model, which achieved mean accuracies of 92% for country classification, 91% for French wine 513 

region and 85% for grape variety. Additionally, the initial specialisation of the dataset to assess the 514 

performance of the model separating countries for red wines produced promising results, with an 515 

increase in AUC scores (>0.9) and accuracy (>90%) for the classification of the three countries 516 

tested. These findings have practical implications for the wine industry in that this comprehensive 517 

dataset serves as a robust foundation for a versatile AI model capable of identifying a wine’s origin 518 

with over 99% specificity solely based on its Mineral Wine Profile. 519 

 520 

Future research should focus on correlating the MWP and geological data to explore terroir signature, 521 

as well as correlating the MWP and sensory profiles to delve more deeply into association of MWP 522 

with the quality of wine. In conclusion, combining MWP and AI is indispensable for the wine 523 

industry, which needs to cater to the ever-evolving demands of consumers for detailed origin 524 

authentication beyond mere geographical regions. 525 
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