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BACKGROUND: Estimates suggest that approximatively 25% of the world population will be overweight in 2025. Better

understanding of the pathophysiology of obesity will help to develop future therapeutics. Serotonin subtype 6 receptors (5-HTg)
have been shown to be critically involved in appetite reduction and weight loss. However, it is not known if the pathological
cascade triggered by obesity modifies the density of 5-HTg receptors in the brain.

METHODS: Influence of diet-induced obesity (DIO) in Wistar rats was explored using MRI (whole-body fat) and PET (("®F12FNQ1P as
a specific 5-HTg radiotracer). The primary goal was to monitor the 5-HTg receptor density before and after a 10-week diet (DIO
group). The secondary goal was to compare 5-HTg receptor densities between DIO group, Wistar control diet group, Zucker rats
(with genetic obesity) and Zucker lean strain rats.

RESULTS: Wistar rats fed with high-fat diet showed higher body fat gain than Wistar control diet rats on MRI. ['®F]2FNQ1P PET
analysis highlighted significant clusters of voxels (located in hippocampus, striatum, cingulate, temporal cortex and brainstem) with
increased binding after high-fat diet (p < 0.05, FWE corrected).

CONCLUSION: This study sheds a new light on the influence of high-fat diet on 5-HTg receptors. This study also positions ['2F]

2FNQ1P PET as an innovative tool to explore neuronal consequences of obesity or eating disorder pathophysiology.
International Journal of Obesity; https://doi.org/10.1038/541366-024-01644-x

INTRODUCTION

According to the World Health Organization (WHO), worldwide
obesity rates have almost tripled since 1975. The WHO estimates
that in 2016, the number of people with obesity reached over 650
million, or 13% of the adult population. Obesity is associated with
higher risks of cardiovascular disease [1], diabetic renal or hepatic
disorders [2], cancers [3] and mental disorders [4], leading to a
higher risk of overall mortality [2]. European guidelines advocate
reducing weight, body mass index and waist circumference, using
three approaches: lifestyle modification, pharmacotherapy, and
bariatric surgery [5]. The role of serotonin (5-HT) in eating behavior
is clear and based on translational observations [6]. Stimulation of
central 5-HT signaling emerged as a therapeutic target for obesity
over a decade ago [7]. Unfortunately, the success of serotonergic
drugs in the treatment of obesity has so far been limited by
peripheral side effects due to the stimulation of serotonin
receptors in peripheral tissues. For example, the 5-HT,¢ receptor
agonist, lorcaserin, has been shown to be effective in reducing
food intake and body weight, but higher cancer risk and other
complications led medical agencies (FDA and EMA) to withdraw it

from the market [8, 9. In this context, the recently discovered
serotonin subtype 6 receptors (5-HTs) have emerged as a new
potential target for obesity management. These receptors are
almost exclusively located in the central nervous system: mainly in
striatum, prefrontal cortex and hippocampus [10]. These receptors
were shown to be involved in appetite regulation and weight
variation [11]. Firstly, preclinical studies using 5-HTs receptor-
directed antisense oligodeoxynucleotides reported decrease in
food consumption leading to lower body weight [12]. Secondly,
treatment with 5-HTg receptor antagonists resulted in similar
effects [13-16]. Finally, a mouse model expressing a non-
functional mutant of 5-HTg receptor (C57BL/6) appeared to be
resistant to diet-induced obesity (DIO) [17], and this was also
observed in 5-HTg receptor knock-out mice [18]. Several seroto-
nergic drugs targeting 5-HTg receptor have shown promising
results with obesity, but more research is needed to determine
whether this system can be safely targeted in this pathology
[19, 20].

In this context, a 5-HTg PET radiotracer could be an interesting
tool for such purpose in obesity. ['®FI12FNQ1P is the first
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fluorinated radiotracer with high affinity and selectivity for 5-HTg
receptors [21], enabling cerebral 5-HTs receptor changes to be
tracked in vivo via radiotracer uptake in the brain. We aimed at
exploring the influence of a DIO model and of genetic obesity on
5-HTg receptor density, using the PET radiotracer ['®F]2FNQ1P [22].
The main goal was to detect a modification of 5-HTg receptor
density in Wistar triggered by high-fat diet.

METHODS

Pre-registration

This study was preregistered [23]. Results of a pilot study, along with
justification and deviations from the experimental plan are summarized in
the Supplementary.

Study design, animals and diet

All experiments were carried out under a protocol approved by the local
review board (“Comité d’éthique pour I'Expérimentation Animale Neuros-
ciences Lyon”, registration code: C2EA—42), authorized by the French
Ministry of Higher Education and Research (no. 25505-
2020052514313066V6, and were in accordance with European directives
on the protection and use of laboratory animals (Council Directive 2010/
63/UE; French decree 2013-118). Animals were housed in standard
temperature and humidity conditions with a 12h/12h light/dark cycle,
with environmental enrichment and 2-5 animals per cage. Four groups of
rats were followed up for 10 weeks: (1) male Wistar rats (Crl:WI, Charles
River Laboratories”; 5-6 weeks old, 175-200 g) fed with high-fat diet (SAFE®
U8955 pellets, 246HF), as “Wistar DIO group” (n=13); (2) control male
Wistar rats fed with normal diet as “Wistar control diet group” (n =7); (3)
male Zucker rats with obesity (CrI:ZUC(OrI)-Lep/“, Charles River Labora-
tories”; 5-6 weeks old, 175-200 g) fed with normal diet but developing
genetic obesity (n = 7); and (4) male Zucker lean strain rats (Crl:ZUC-Lepr™,
Charles River Laboratories”; 5-6 weeks old, 175-200 g) fed with normal diet
considered as genetic control (n = 4). Diet composition and duration were
chosen in the light of the literature [24] and were validated together with
the rat strain in a pilot study, as described in the preregistration document
[23]. Food (and energy) intake was measured by weighing the food each
time it was replenished. At the end of the experiment, the total weight of
the consumed food was divided by the number of days in the experiment
and the number of rats in the cage. Day 1 of the study protocol was
defined by the day of starting diet. Weight and food consumption were
recorded twice a week. 7T magnetic resonance imaging (MRI) was
performed to track whole-body fat increase at baseline and once the
animals reached a ceiling of 500 g (after 5 weeks of experiment), beyond
which they cannot fit into the MRI scanner. ['®F12FNQ1P PET/CT (computed
tomography) was performed at baseline and after 10 weeks, to assess
5-HT, density before and after experiment. A flow-chart resuming study
design is presented in Supplementary. The study was designed to detect a
20% difference in radiotracer uptake before and after experiment with
10-20% variability, 5% alpha risk and 80% power (primary outcome). The
study was not powered for comparisons between Wistar DIO rats, Zucker
with obesity, Wistar control diet rats and Zucker lean strain (secondary,
exploratory outcomes). A permeability test with Evans blue dye in a subset
of three rats each for the DIO, control and Zucker groups was performed to
assess blood-brain barrier (BBB) integrity (results shown as Supplementary)
[25].

Radiosynthesis of the 5-HT, receptor radiopharmaceutical and
quality controls

The chemical nitro-precursor of our 5-HTg PET radiotracer, ['®F]2FNQ1P, was
synthesized as described previously [22]. Radiolabeling with '8F was
performed extemporaneously, on the days of experiments, according to our
published protocol [21]. Briefly, radiosynthesis used an automated Neptis®
fluorination module (ORA Neptis’, Belgium). ['®F]2FNQ1P quality control
determined radiochemical purity and molar activity on analytical HPLC
assay at the end of each production run, guaranteeing the radio-
pharmaceutical quality of the radiotracer used for the in vivo experiments:
i.e,, molar activity >75 GBg/pumol and radiochemical purity >98%.

Imaging protocol
All imaging sessions were performed under isoflurane anesthesia
(induction with 4% and maintenance at 2%), delivered in air by approved
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systems (TEM Sega). Rectal temperature was continuously measured and
maintained at 37 + 1 °C.

MRI

The MRI experiments were conducted on a 7T small animal Bruker system
(Bruker, Germany) equipped with a 12-cm actively shielded bore and 440 mT/
m gradient set. The animals were placed in prone position on a dedicated
plastic bed (Bruker Biospec Animal Handling Systems, Germany), adapted with
a stereotactic system for immobilization. A respiratory sensor was placed on
the animal’'s abdomen to constantly monitor respiration. MRI acquisitions
were made using a whole-body emission-reception body coil (72 mm). First, a
reference scan in 3 directions was acquired to adjust shim and frequency
parameters over the entire body and to position the coronal stack for whole-
body subcutaneous and visceral fat analysis. For the water image, a 2D T1-
weighted respiratory gated spin-echo sequence (MSME) with fat suppression
was acquired with the following parameters: TR/TE =6164/8.1 msec, and
matrix size 256 x 128 for voxel size 586 x 625 x 1000 um?>. Fat images were
acquired using the cloned MSME sequence of the water image with a B1 shift
frequency of 1050 Hz corresponding to the water-fat frequency gap at 7T
(300 MHz2). Total intra-abdominal and subcutaneous fat volume was measured
under ImageJ software by binarizing the fat images, and then extracted using
a dedicated volume quantification plugin and expressed in cm?.

PET/CT

Hydration with 2 mL physiologic serum i.p. was performed after the start of
anesthesia. Tariquidar (8 mg/kg) was administered in the caudal vein to block
PgP activity and enhance brain delivery of the radiotracer. Thirty minutes later,
' F12FNQ1P (37 kBq/g) was administered in the caudal vein. Static brain PET
acquisitions were then made 40 min after radiotracer injection and for 20 min
on a Inveon PET/CT scanner (Siemens), with animals in prone position, head
centered in the field of view, and monitoring of respiratory rate. CT scanning
was performed to correct attenuation and scatter. Images were reconstructed
with attenuation and scatter correction by 3D ordinary Poisson ordered
subsets expectation-maximization (OP-OSEM3D) with 4 iterations and a zoom
factor of 2. The reconstructed volume was constituted of 159 slices of
128 x 128 voxels, in a bounding box of 49.7 x 49.7 X 126 mm? and with voxel
size 0.388x 0388 x0.796 mm>. Images were analyzed with the Inveon
Research Workplace (IRW, Siemens) for region of interest (ROI) analysis and
SPM12 (Wellcome Trust Center for Neuroimaging, London, UK) for voxel-
based analysis. The efficiency of tariquidar in enhancing radiotracer delivery to
the brain and ability to quantify uptake from static acquisitions were validated
on test-retest dynamic scans performed in Wistar rats, as previously reported
in a pilot study described in the preregistration document [23].

Uptake, expressed in Bg, was normalized for injected dose (corrected for
radioactive decay) and for weight to obtain standardized uptake values (SUV).
To obtain a SUV ratio (SUVr), SUV in each voxel was normalized to whole brain
SUV. Thus, parametric images of SUVr were obtain at baseline and week 10
after diet. Individual CT images of each time point were realigned and then
spatially normalized on a MRI template with automatic and elastic correction.
These CT-based transformations were then applied to the corresponding PET
images. Two different MRI templates were used: the SIGMA MRI template for
Wistar rats and a home-made MRI template, realigned on SIGMA MRI
template, for Zucker rats since no specific template has been published yet for
this strain. Brain MRI template was obtained from 4 Zucker rats with obesity. A
visual check of the template with the Zucker lean strain was performed to
validate its use. All images were then visually checked in order to verify the
quality of the coregistration.

Parametric images were smoothed using an isotropic Gaussian filter
(1.0x 1.0 x 1.0 mm) and then used for both ROI analysis and voxel-based
analysis.

For pre-specified ROl analysis, a limited number of ROIs involved in food
intake for which we had an a-priori hypothesis were used to perform
multiple comparisons: striatum, hypothalamus, hippocampus, amygdala
and frontal cortex. Small ROIs were manually drawn, within each of these
regions, on the SIGMA atlas [26] and then used to extract regional SUVr in
both Wistar and Zucker rats. A flow-chart has been added in the
Supplementary to explain the analysis process in detail.

Statistical analyses

All results are reported as mean + standard deviation. Statistical analyses,
with the p value threshold set at 0.05, were performed as follows to
respond to the pre-specified hypotheses. Considering size samples, non-
parametric tests were performed. Kruskal-Wallis test with Mann-Whitney
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Table 1.
Groups Starting weight Final weight (g)

(9) (%)
Wistar DIO 272+55 596+ 75 125+47
Wistar control 259+ 23 560 + 46 118 £ 32
Zucker with 259+ 51 529+ 29 110+38
obesity
Zucker lean 269+ 15 451+16 68+4
strain

Results expressed as mean + SD.
®Highlight group significantly different from others (p = 0.0002).

bilateral post-hoc tests were performed to assess weight, food consump-
tion and MRI-related changes between groups. The primary outcome (PET
changes before and after diet) was assessed with the following analyzes.

(1) ROI analysis: Wilcoxon paired comparison tests were performed to
assess differences in ['®FI2FNQ1P uptake before and after experi-
ment (10 weeks). Due to multiple comparison for the 5 regions
tested, Bonferroni correction was applied to consider p <0.01 as
significant.

(2) Voxel-based analysis: SPM12 was used to compare groups long-
itudinally (baseline vs. 10 weeks) using the statistical parametric
mapping approach. Parametric images were compared between the
two time-points voxel by voxel on paired t-test. The cluster-forming
threshold was set at p <0.05 (family-wise error (FWE) corrected).
Clusters with an extent of =60 voxels (thus matching the raw voxel
size of PET) and with p<0.05 FWE corrected were considered
significant.

Secondary outcomes were assessed with the following. Kruskal-Wallis
test with Mann-Whitney bilateral post hoc tests were performed to assess
["®F12FNQ1P binding between the Wistar DIO, Wistar control diet, Zucker
with obesity and Zucker lean strain groups.

RESULTS

Weight and food consumption

Mean weights and food consumption results are reported in Table
1. Statistical tests showed no differences in mean weights
between groups at beginning and end of experiment (p > 0.05).
Food consumption expressed in quantity of pellets (g/day/rat)
showed no differences between groups. Energy absorbed per day
in the Wistar DIO group was significantly higher than in the other
groups (p = 0.0002, with a higher mean ranging of 43%, 67% and
95% compared to Wistar control diet, Zucker with obesity and
Zucker lean strain groups, respectively).

MRI analysis

MRI was limited to 5 weeks, because, after that time, animals with
obesity couldn’t be adequately positioned in the MRI tunnel.
Figure 1 shows representative images for each group, highlighting
marked subcutaneous and abdominal changes over this 5-week
period. Fat volume differences between Wistar DIO group, Wistar
control diet group, Zucker rats with obesity and Zucker lean strain
rats are summarized in Fig. 2A. Statistical tests showed significant
differences between groups both at baseline (H=16.87, 3 DF,
p=0.0008) and after experiment (H=22.48, 3 DF, p <0.0001).
Figure 2B shows the individual evolution of the fat volume over
the 5 weeks of experiment. The Wistar DIO group showed the
most important variation (p<0.0001), with a 557% +160%
increase in body fat volume, while Wistar control diet, Zucker
with obesity and Zucker lean strain groups showed a
240% +120%, 127% +41% and 104% +43% increase in fat
volume, respectively. Results of fat volume quantification is
presented in Supplementary Table S1.

International Journal of Obesity

Weight increase

Mean weights before and after experiment and mean food consumption (weight and nutritional content) for the four different groups.

Food consumption (g/day/ Energy intake (kJ/

rat) day/rat)
22+4 448 + 792
24+3 314 +£38
21+£2 268 + 21
18+1 230£13

Wistar DIO

Wistar
control diet

Zucker
with obesity

Zucker
lean strain

Fig. 1 7T MRI images of body-fat gain at baseline and 5 weeks
later for each group. Fat volume is represented in white and water
in dark. Bars point fat volume in subcutaneous (red) and abdominal
(yellow). Subcutaneous bars sizes were 0.78cm, 0.45cm, 1.00cm
and 0.34 cm for DIO rat, Wistar control diet, Zucker with obesity and
Zucker lean strain, respectively. Abdominal bars sizes were 3.76 cm,
3.50 cm, 3.97 cm and 3.50 cm for DIO rat, Wistar control diet, Zucker
with obesity and Zucker lean strain, respectively.

PET analysis

Intra-group differences. Intra-group analysis using voxel-based
showed six clusters of uptake differences in the Wistar DIO
group (n=13) comparing baseline and 10-week values, spread
across different focal sub-regions: hippocampus, striatum,
cingulate, temporal cortex and brainstem (p<0.05 FWE
corrected, statistics of each cluster are presented in

SPRINGER NATURE
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Fig.2 Evolution of fat volume in groups from baseline to week 5.
A Mean MRI measurements of fat volume (in cm®) and comparison
between groups at baseline and 5 weeks after experiment. Bar plots
express mean = SD. B Evolution per rat of each group of the fat
volume between baseline and after 5 weeks of experiment.

Supplementary Table S3). Cluster volumes of increased 5-HTg
receptor density after diet ranged from 2 to 35 mm?®. Figure 3
shows cluster differences projected onto an MRI template in the
Wistar DIO group. The ROI-based analysis partially confirmed
these results, by identifying pre/post-diet differences in the DIO
group in striatum. Finally, additional exploratory analyses
showed no cluster differences in the Wistar control diet
(n=7), Zucker with obesity (n=7) and Zucker lean strain
(n=4) groups (p>0.05, FWE corrected).

Inter-group differences. Mean SUVr values extracted from manual
ROI delineation for baseline and after experiment (week 10) are
shown in Supplementary Table S2. The results of inter-group
comparisons are summarized in Fig. S1. Briefly, Zucker rats with
obesity showed higher uptake in hypothalamus (at 10-week) and
amygdala (at baseline and 10-week) compared to Wistar DIO
group and Wistar control group. Both Zucker rat strains showed
lower uptake in striatum compared to Wistar DIO and control
group at baseline. At 10-week, only Zucker with obesity showed
lower uptake in striatum compared to Wistar DIO and control
group. Importantly, these differences were related to small effect
size (mean differences <15%).

DISCUSSION

In this study, we performed longitudinal MRI and PET in 4
experimental groups to assess the influence of high-fat diet and
genetic obesity on the density of cerebral 5-HT, receptors. The
main finding, based on voxel analysis, was that high-fat diet
increased 5-HTg expression in several focal regions: striatum,
hippocampus, cingulate, temporal cortex and brainstem.

SPRINGER NATURE

Fig. 3 Cluster differences in DIO rats between baseline and after
high-fat diet (p <0.05 FWE corrected). Cluster differences are
projected on MRI templates. Differences were located in different
regions: hippocampus, striatum, cingulate, temporal cortex and
brainstem. Color bar represents Z score.

Body-fat MRI images to decipher DIO models

MRI was performed to assess body-fat gain and validate the
models of DIO and genetic obesity. Interestingly, all groups of rats
showed similar weight progression and final weight was not a
discriminating factor to assess obesity differences between
groups. MRI imaging discriminated groups based on body-fat
gain using fat volume measurement. We showed the relevance of
MRI-based monitoring of diet-induced obesity, which could be
very useful in identifying some rat strains failing to show a DIO
pattern when fed with a high-fat diet [27].

High-fat diet increase 5-HT¢ expression in brain

In the Wistar DIO group, a 10-week high-fat diet was able to
trigger 5-HTg receptor changes in various brain regions: hippo-
campus, striatum, cingulate, temporal cortex, and brainstem.
These results are in accordance with 5-HTg receptor expression in
these regions [28, 29] and their involvement in food intake
regulation [30]. The serotoninergic signaling pathway in feeding
behavior can be divided in two: reward and homeostatic
pathways [6].

The hippocampus, striatum, cingulate and temporal cortex are
part of the reward system, while the brainstem and especially the
raphe is part of the homeostatic pathway. In hippocampus, 5-HTg
receptors have been largely described [31]. In preclinical studies,
obesity due to high-fat diet, showed a deterioration of hippo-
campus in rats by affecting hippocampal proteome and neuro-
genesis [32]. Obesity have been identified as a risk factors for
hippocampus impairment which could led to neurodegeneration
disease [33]. The striatum is known to express relatively high levels
of 5-HT¢ receptor [10]. It is part of the reward circuit, thought to be
involved in food consumption regulation [34] and pharmacologi-
cal response to 5-HTg agonist in food intake [35]. More precisely,
striatum have been shown to be implicated in food craving and
weight gain in patients with obesity [36, 37]. The cingulate is well
described in the reward system [38]. Anterior cingulate cortex has
shown to be involved in food craving. A negative correlation have
been shown between anterior cingulate cortex and body mass
index during food-inhibition task [39]. Also, anterior cingulate
cortex showed hyperactivation to food-cue in patients with binge
eating disorders [40]. In posterior cingulate cortex activation
during high-calorie food anticipation was highly correlated to
body mass index [36]. Finally, in PET studies, temporal cortex
showed to be associated with hunger and satiety [41, 42]. This
mechanism might implicate 5-HTg receptor since antagonist, and
agonist drugs induced satiety [19]. In obesity, gray matter volume
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was found to be negatively correlated to body mass index in
humans [43, 44]. Moreover, preclinical studies showed that
alterations of temporal cortex led to hyperphagia and obesity [45].

In the homeostatic system, the brainstem is known to possess a
high density of serotonin receptors. Although 5-HTg receptor
expression is low in brainstem [46], our results suggest a role of
this receptor in these mechanisms. Brainstem can be dived in
several nuclei: raphe nuclei, nucleus tractus solitarius and
parabrachial nucleus. Raphe nuclei are involved in orexigenic
effects by inhibiting serotoninergic projections, while nucleus
tractus solitarius and parabrachial nucleus are involved in
anorexigenic effects [6]. Overall, to our knowledge, this is the first
study to demonstrate 5-HT, alterations resulting from high-fat
diet. However, our study does not speculate on the mechanism
involved in these 5-HTs modifications. Further mechanistic studies
are required to elucidate them.

Interestingly, no significant differences were found in the Wistar
control diet group, Zucker rats with obesity or Zucker lean strain
rats between baseline and 10-week values. This suggests that the
differences in the Wistar DIO group were not due to brain
development but specifically to the high-fat diet. Furthermore, the
Evans-blue dye test in Wistar DIO group and Wistar control diet
group did not show brain permeability, suggesting that there was
no disruption of the BBB due to the high-fat diet (see
Supplementary).

Comparison between groups, based on ROI analysis, showed
contrasted results over brain regions. Overall, Zucker rats with
obesity had significant increased uptake in the hypothalamus and
amygdala, but decreased uptake in the striatum, when compared
to Wistar groups, and, importantly, most comparisons were
unaffected by the 10-week high-fat diet. Given the low number
of animals enrolled for these exploratory comparisons, we believe
that these small differences (in the range of 10-15%) should be
interpreted with great caution.

Zucker rats with obesity are deficient for the gene coding for
the leptin receptor. Leptin receptor is expressed in the brain, with
high levels in the hypothalamus, which is important for regulation
of body weight, and leptin binds to the receptor to inhibit food
intake [47]. High expression of 5-HTg receptor could then be
implicated in obesity development or susceptibility. In support to
this idea, hypophagia induced by 5-HTg antagonists has been
shown to be mediated by the paraventricular nuclei of the
hypothalamus [48]. In the amygdala, the leptin receptor was also
reported but to a lesser extent [49, 50] and 5-HTg receptor are
expressed in moderate levels [51]. Colocalization of leptin and
5-HTg receptors suggest an interaction between the two. Thus,
increases of 5-HTg receptor density in Zucker rats with obesity
could be a consequence of the lack of leptin receptors.

Finally, the fact that high-fat diet showed increase 5-HT, density
in the striatum while in Zucker rats with genetic obesity showed a
decrease is intriguing and suggest a constitutive difference in the
transgenic animals which needs to be further explored using
animals of different ages.

Several limitations could be considered. Firstly, our results
pertain exclusively to male rats. The hormonal cycle in females has
a significant impact on neuroplasticity and serotonin production.
Furthermore, males are more susceptible to weight gain than
females. Additionally, there are gender-based differences in
response to a high-fat diet, which could potentially confound
our results [52]. Moreover, while interaction between different
serotonin receptors (5-HT,¢, 5-HTg) and leptin remain unclear,
further studies are also required to explore the potential
interaction with 5-HTg receptors [53]. In this regard, it is important
to note that rats were not fasting before PET images, which might
influence ['®F12FNQ1P distribution. To address this concern, we
conducted additional, separate experiments to assess the
influence of fasting on radiotracer distribution. Four different rats
underwent two randomized PET scans using ['®FI2FNQ1P, one
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with a 4 h fasting period before imaging and the other under the
same conditions as described in our study (no fasting). The images
were analyzed using SPM analysis, as described in our study (with
the operator blinded) and did not reveal significant differences
suggesting no influence of fasting on radiotracer distribution.
Finally, in PET exploration, we were unable to formally differ-
entiate whether the increased binding is likely due to an increase
in expression or a decrease in serotonin levels reducing
competition with the radiotracer. However, an effect on receptors
availability seems unlikely given the high affinity of the radiotracer
vs. moderate affinity and concentration of the endogenous
serotonin [54, 55].

In conclusion, we performed, for the first time, a PET study in
rats, which highlighted the ability to track changes in the density
of 5-HTg receptors using the radiotracer ['®F]2FNQ1P. More
generally, brain 5-HTg receptor density could be an interesting
biomarker to investigate obesity or eating disorders. Although
previous studies reported the implication of 5-HTg in these
pathologies, the mechanisms underlying low 5-HTgR-mediated
signal pathway involved in these functions remain unclear. ['®F]
2FNQ1P could also be an interesting tool to monitor suscept-
ibility for these pathologies to assess the neurological impact of
diet on brain changes. The study reinforces the hypothesis that
the 5-HTg receptor could be targeted to treat obesity since it
showed 5-HTg receptor changes in rats with obesity. Some drugs
targeting 5-HTg receptors in obesity have been reported [19, 20]
and ["8F]2FNQ1P could be a reliable tool to assess in-vivo target
engagement of the 5-HTg receptor in obesity. Furthermore, new
medications arriving on the market such as GLP-1 agonists have
been reported to affect serotoninergic system [56, 57]. Further
studies using ['®F12FNQ1P could investigate potential 5-HTg
brain changes under these medications. The challenge will now
be to evaluate 5-HTg density in human brain in different
population of patients with obesity or eating disorders, to
confirm these results.
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