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Hybrid multi-observer for improving estimation
performance

E. Petri, R. Postoyan, D. Astolfi, D. Nešić and V. Andrieu

Abstract— Various methods are nowadays available to
design observers for broad classes of systems, where the
primary focus is on establishing the convergence of the
estimated states. Nevertheless, the question of the tuning
of the observer to achieve satisfactory estimation perfor-
mance remains largely open. In this context, we present
a general design framework for the online tuning of the
observer gains. Our starting point is a robust nominal ob-
server designed for a general nonlinear system, for which
an input-to-state stability property can be established. Our
goal is then to improve the performance of this nominal
observer. We present for this purpose a new hybrid multi-
observer scheme, whose flexibility can be exploited to
enforce various desirable properties, e.g., fast convergence
and good sensitivity to measurement noise. We prove that
an input-to-state stability property also holds for the pro-
posed scheme and, importantly, we ensure that the estima-
tion performance in terms of a quadratic cost is (strictly)
improved. We illustrate the efficiency of the approach in im-
proving the performance of given nominal observers in two
numerical examples (Van der Pol oscillator and Lithium-Ion
(Li-Ion) battery model).

I. INTRODUCTION

State estimation of dynamical systems is a central theme in
control theory, whereby an observer is designed to estimate
the unmeasured system states exploiting the knowledge of
the system model and input and output measurements. Many
techniques are available in the literature for the observer design
of linear and nonlinear systems, see [1] and the references
therein. The vast majority of these works focuses on designing
the observer so that the origin of the associated estimation
error system is (robustly) asymptotically stable. A critical and
largely open question is how to tune the observer to obtain de-
sirable performance (e.g. convergence speed and overshoot in
the transient response) in the presence of model uncertainties,
measurement noise and disturbances. This question obviously
also arises in the context of control.

This work was funded by Lorraine Université d’Excellence LUE, the
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One of the challenges in observer tuning is that there exist
different trade-offs between the desired properties. Indeed, a
standard approach to observer design consists in using a copy
of the plant (in some coordinates that may be different from
the original ones) and then adding a correction term, often
denoted as the output injection term. This term is designed
by multiplying the difference between the measured output
and the estimated one by a (possibly nonlinear) gain, whose
tuning produces different estimation performance. Typically,
the output injection term with small gains produces an ob-
server robust to measurement noise, but its convergence is
very slow. On the contrary, an observer with a large gain
usually has a fast convergence, but is more sensitive to noise.
An answer to the question on how to tune the observer gain
in the special context of linear systems affected by additive
Gaussian noise impacting the dynamics and the output is the
celebrated Kalman filter [2]. For general nonlinear systems and
noise/disturbances, optimal observer design with global stabil-
ity guarantees is notoriously hard. For instance, in the context
of nonlinear systems, optimal state estimation requires solving
challenging partial differential equations [3]. An alternative
consists in aiming at improving the estimation performance
of a given observer. To the best of the authors’ knowledge,
existing works in this direction either concentrate on specific
classes of systems (see, e.g., [4]–[7] for linear systems or,
e.g., [8]–[12] in the context of high-gain observers), specific
observers, e.g., [13], [14] or specific properties like robustness
to measurement noise (see, e.g., [15], [16]) or the reduction
of the undesired effect of the peaking phenomenon (see, e.g.,
[17] for a general approach and [9], [11] for specific solutions
in the context of high-gain observer). An exception is [18],
where two observers designed for a general nonlinear system
are “united” to exploit the good properties of each. However,
the design in [18] is not always easy to implement as it requires
knowledge of various properties of the observers (basin of
attraction, ultimate bound), which may be difficult to obtain.
Alternative methods proposed in the literature are particle
filters and unscented Kalman filters, see, e.g., [19], which
combine observers to obtain good estimation performance, but
are not endowed with robust stability guarantees in general.
Recently, in [20], [21] suboptimal moving horizon estimation
schemes have been proposed for general discrete-time non-
linear systems, where the performance of a given auxiliary
observer is improved. There is thus a need for performant
estimation schemes with convergence guarantees that are both
easy to design and applicable to general nonlinear systems.

In this work we present a new, flexible and general observer
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design methodology based on supervisory multi-observer ideas
that can be used to address various trade-offs between ro-
bustness to modeling errors and measurement noise, and
convergence speed. A multi-observer consists of a bank of
observers that run in parallel. It has been used in the literature
in a range of different contexts, including improvement of
the sensitivity to measurement noise and/or reduction of the
undesired overshoot during the transient (e.g., [10], [11] for
high-gain observer and [22] for KKL observer), joint state-
parameter estimation (e.g., [23]–[26]) or distributed observers
(e.g., [27], [28]). In this paper, we propose a new problem
formulation that we believe has not yet been addressed in the
literature. Our starting point is the knowledge of a nominal ob-
server, which ensures that the associated state estimation error
system satisfies an input-to-state stability property with respect
to measurement noise and disturbances. Various methods from
the literature can be used to design the nominal observer,
see [15], [29] and the references therein. Then, we construct
a multi-observer, composed of the nominal observer and
additional dynamical systems, all together called modes, that
have the same structure as the nominal observer, but different
gains. It is important to emphasize that the number of modes
and the associated gains can be freely assigned (no specific
stability/convergence property is required). Because the gains
are different, each mode exhibits different properties in terms
of speed of convergence and robustness to measurement noise.
The latter point is relevant as we can heuristically design
the extra modes for the application at hand without having
to worry about the proof of their convergence. For instance,
we can select one of these modes to have a zero gain, which
is advantageous when measurement noise is an issue, as we
illustrate on simulations. We will provide more general guide-
lines for the design of the extra modes. We run all modes in
parallel and we evaluate their estimation performance in terms
of a quadratic cost using monitoring variables, inspired by
supervisory control and estimation techniques, see, e.g., [23],
[26], [30]–[33]. Based on these running costs (i.e., monitoring
variables), we design a switching rule that selects, at any time
instant, the mode which is providing the best performance.
When a new mode is selected, the other ones may reset or not
their current state estimate (and their monitoring variable) to
it.

We model the overall system as a hybrid system using the
formalism of [34]. We prove that the proposed hybrid estima-
tion scheme satisfies an input-to-state stability property with
respect to disturbance and measurement noise. Note that such
a property is not obvious as we do not require any convergence
guarantee on the additional modes, but only for the nominal
one. We also guarantee the existence of a (semiglobal uniform)
average dwell-time thereby ruling out Zeno phenomenon. The
performance of the proposed hybrid multi-observer in terms
of the cost associated with the designed monitoring variables
is guaranteed to be, at least, as good as the performance of
the nominal observer by design. Moreover, we provide extra
conditions under which the proposed hybrid multi-observer
produces a strict performance improvement compared to the
nominal one in terms of an integral cost. The efficiency of the
proposed technique is illustrated on two numerical examples.

In the first one, the proposed approach is used to improve
the estimation performance of a high-gain observer used to
estimate the state of a Van der Pol oscillator. In the second
example, we consider an equivalent circuit model for an Li-
Ion battery, whose state is estimated with an observer designed
using a polytopic approach and we implement the hybrid
estimation scheme to improve its performance. Another ex-
ample is given in [35], where a previous version of the hybrid
estimation scheme [36] is applied for the state estimation of a
more advanced Li-Ion battery model, namely a single-particle
electrochemical model.

To summarize, the main contributions are: (i) a general
and flexible design methodology to improve the performance
of a nominal observer; (ii) the guarantee that the obtained
state estimate ensures an input-to-state stability property; (iii)
the proof of the existence of an average dwell-time, which
excludes the Zeno phenomenon; and (iv) the performance
analysis of the proposed hybrid scheme and the conditions
under which strict performance improvement occurs. Items
(iii)-(iv) are new compared to the preliminary version in [36].
Notation and Preliminaries. R stands for the set of real
numbers, R¥0 :� r0,�8q, Z is the set of integers, Z¥0 :�
t0, 1, 2, ...u and Z¡0 :� t1, 2, ...u. For a vector x P Rn, |x|
denotes its Euclidean norm. For a matrix A P Rn�m, }A}
stands for its 2-induced norm. For a signal v : R¥0 Ñ Rnv

with nv P Z¡0, and t1, t2 P R¥0 Y t8u with t1 ¤ t2,
}v}rt1,t2s :� ess. suptPrt1,t2s |vptq|. Given a real, symmetric
matrix P , its maximum and minimum eigenvalues are denoted
by λmaxpP q and λminpP q respectively. The notation IN stands
for the identity matrix of dimension N P Z¡0, while 0N�M

stands for the null matrix of dimension N �M , with N,M P
Z¡0. We use SN¡0 (SN¥0) to denote the set of real symmetric
positive definite (semidefinite) matrices of dimension N . The
notation δi,j , with i, j P Z¡0 denotes the Kronecker delta
defined as δi,j � 0 if i � j and δi,j � 1 if i � j. A
continuous function α : r0,8q Ñ r0,8q is of class K if
αp0q � 0 and it is strictly increasing. Moreover, α is of class
K8 if α P K and limrÑ8 αprq � 8. A continuous function
β : r0,8q � r0,8q Ñ r0,8q is of class KL if, for any fixed
s P R¥0, βp�, sq P K and, for each fixed r P R¥0, βpr, �q
is non-increasing and satisfies limsÑ8 βpr, sq � 0. Given a
function f : S1 Ñ S2 with sets S1, S2, dom f :� tz P S1 :
fpzq � Hu. Based on the formalism of [34], we will model
the proposed estimation scheme together with the plant as a
hybrid system with inputs of the form

H :

"
9x � F px, uq, x P C,

x� P Gpx, uq, x P D, (1)

where C � Rnx is the flow set, D � Rnx is the jump set, F
is the flow map and G is the jump map. We consider hybrid
time domains as defined in [34]. The notation pt, jq ¥ pt�, j�q
means that t ¥ t� and j ¥ j�, where pt, jq, pt�, j�q P
R¥0 � Z¥0. We use the notion of solution for system (1) as
given in [37, Definition 4]. Given a set U � Rnu , LU is the set
of all functions from R¥0 to U that are Lebesgue measurable
and locally essentially bounded. Given a set C � Rnx , the
tangent cone to the set C at a point x P Rnx , denoted TCpxq,
is the set of all vectors v P Rnx for which there exist xi P C,
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τi ¡ 0, with xi Ñ x, τi Ñ 0, and v � limiÑ8
xi�x
τi

.
Given a solution q for system (1) and its hybrid time domain
dom q, Ij :� tt : pt, jq P dom qu is the flow interval for
each j P Z¥0 and int Ij denotes its interior. Finally, we
use U�px; vq :� lim suphÑ0�,yÑx

Upy�hvq�Upyq
h to denote

the Clarke generalized directional derivative of a Lipschitz
function U at x in the direction v [38], which reduces to
the standard directional derivative x∇Upxq, vy when U is
continuously differentiable.

II. PROBLEM STATEMENT

The aim of this work is to improve the estimation perfor-
mance of a given nonlinear nominal observer by exploiting a
novel hybrid estimation scheme that is presented in the next
section. We consider the plant model

9x � fppx, u, vq

y � hpx,wq,
(2)

where x P Rnx is the state to be estimated, u P Rnu is the
measured input, y P Rny is the measured output, v P Rnv is
an unknown disturbance input and w P Rnw is an unknown
measurement noise, with nx, ny P Z¡0 and nu, nv, nw P Z¥0.
The input signal u : R¥0 Ñ Rnu , the unknown disturbance
input v : R¥0 Ñ Rnv and the measurement noise w : R¥0 Ñ
Rnw are such that u P LU , v P LV and w P LW for closed
sets U � Rnu , V � Rnv and W � Rnw .

We consider a so-called nominal observer for system (2) of
the form

9x̂1 � fopx̂1, u, L1py � ŷ1qq

ŷ1 � hpx̂1, 0q,
(3)

where x̂1 P Rnx is the state estimate, ŷ1 P Rny is the output
estimate and L1 P RnL1

�ny is the observer output injection
gain with nL1

P Z¡0. We define the estimation error as e1 :�
x � x̂1 P Rnx and introduce a perturbed version of the error
dynamics, following from (2) and (3), as

9e1 � fppx, u, vq � fopx̂1, u, L1py � ŷ1q � dq

�: f̃pe1, x, u, v, w, dq
(4)

where d P RnL1 represents an additive perturbation on the
output injection term L1py� ŷ1q. We assume that observer (3)
is designed such that system (4) is input-to-state stable with
respect to v, w and d, uniformly in u and x, as formalized
next.

Assumption 1. There exist α,α,ψ1, ψ2 P K8, α P R¡0, γ P
R¥0 and V : Rnx Ñ R¥0 continuously differentiable, such
that for all x P Rnx , e1 P Rnx , d P RnL1 , u P U , v P V ,
w P W ,

αp|e1|q ¤ V pe1q ¤ αp|e1|q (5)A
∇V pe1q, f̃pe1, x, u, v, w, dq

E
¤ �αV pe1q � ψ1p|v|q

�ψ2p|w|q � γ|d|2.
(6)

A large number of observers in the literature have the form
of (3) and satisfy Assumption 1, possibly after a change of
coordinates, see [15], [17], [29] and the references therein
for more details. Examples are also provided in Section VIII.

Assumption 1 implies that there exist β P KL and ρ P K8

such that, for any u P LU , v P LV , w P LW and d P LRnL1 ,
any corresponding solution px, e1q to systems (2) and (4)
verifies, for all t P dom px, e1q,

|e1ptq| ¤ βp|e1p0q|, tq � ρp}v}r0,ts � }w}r0,ts � }d}r0,tsq. (7)

Inequality (7) provides a desirable robust stability property of
the estimation error associated with observer (3). However, this
property may not be satisfactory in terms of performance, like
convergence speed and noise/disturbance rejection. To tune L1

to obtain desirable performance properties is highly challeng-
ing in general and even impossible in some cases when the
desired properties are conflicting like high convergence speed
and efficient noise rejection, see, e.g., [39]. To address this
challenge, we propose a hybrid redesign of observer (3), which
aims at improving its performance, in a sense made precise
in the following, while preserving an input-to-state stability
property for the obtained estimation error system.

Remark 1. The results of the paper apply mutatis mutandis to
the case where Assumption 1 holds semiglobally or when the
Lyapunov function V depends on both x and e1, which allow
to cover an even broader class of observers [1, Section V].
We do not consider these in this paper to not over-complicate
the exposition and to not blur the main message of the work.

In the following we also need the next technical assumption
on the output map h in (2).

Assumption 2. There exist δ1, δ2 P R¡0 such that for all
x, x1 P Rnx , w,w1 P W ,

|hpx,wq � hpx1, w1q|2 ¤ δ1V px� x1q � δ2|w � w1|2, (8)

where V comes from Assumption 1.

Assumption 2 holds in the common case where V in As-
sumption 1 is quadratic and h is globally Lipschitz. Indeed, in
this case, V px�x1q :� px�x1qJP px�x1q, with P P Rnx�nx

symmetric, positive definite, and |hpx,wq � hpx1, w1q| ¤
K|px�x1, w�w1q| for any x, x1 P Rnx , w,w1 P W and some
K P R¥0, then (8) holds with δ1 � K2

λminpP q
and δ2 � K2.

Note that h globally Lispchitz covers the common case where
hpx,wq � Cx�Dw with C P Rny�nx and D P Rny�nw .

III. HYBRID ESTIMATION SCHEME

The hybrid estimation scheme we propose consists of the
following elements, see Fig. 1:

 nominal observer given in (3);

 N additional dynamical systems of the form (3) but with

a different output injection gain, where N P Z¡0. Each of
these systems, as well as the nominal observer, is called
mode for the sake of convenience;


 N+1 monitoring variables used to evaluate the perfor-
mance of each mode of the multi-observer;


 a selection criterion, that switches between the state
estimates produced by the different modes exploiting the
performance knowledge given by the monitoring variables;


 a reset rule, that defines how the estimation scheme may
be updated when the selected mode switches.
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Plant
pxq

u

v, w

y

Nominal Observer
Mode 1

Mode 2

Mode N � 1

...

x̂1

Monitoring
variable 1

ŷ1
y

η1

x̂2

Monitoring
variable 2

ŷ2
y

η2

x̂N�1

Monitoring
variable N � 1

ŷN�1

y
ηN�1

...

η σ P argmin
kPt1,...,N�1u

ηk

Selection Criterion

x̂

x̂1

x̂2

x̂N�1

...

σ

ησ

x̂σ
ησ

ησ

x̂σ

x̂σ

Fig. 1. Block diagram representing the system architecture with η :� pη1, . . . ηN�1q, x̂ :� px̂1, . . . , x̂N�1q.

All these elements together form the hybrid multi-observer.
We describe each component in the sequel.

A. Additional modes

We consider N additional dynamical systems, where the
integer N P Z¡0 is arbitrarily selected by the user. These N
extra systems are of the form of (3) but with a different output
injection gain, i.e., for any k P t2, . . . , N � 1u, the kth mode
of the multi-observer is given by

9x̂k � fopx̂k, u, Lkpy � ŷkqq

ŷk � hpx̂k, 0q,
(9)

where x̂k P Rnx is the kth mode state estimate, ŷk P Rny

is the kth mode output and Lk P RnL1
�ny is its gain. It is

important to emphasize that we make no assumptions on the
convergence properties of the solution to system (9) contrary to
observer (3). There is thus full freedom for selecting the gains
Lk P RnL1

�ny , with k P t2, . . . , N � 1u. We will elaborate
more on the choice of the Lk’s in Section IV.

Remark 2. There is also full freedom in the choice of the
initial conditions of all modes in (3) and (9). We can therefore
select all of them equal, but this is not necessary for the
stability results in Section V to hold. See Remark 4 in the
sequel for more details.

Remark 3. The nominal observer (3) and the additional
modes (9) have constant gains Lk, but it is also possible
to consider time-varying gains Lkptq. In this case, if all the
gains are uniformly bounded, i.e., there exists M ¡ 0 such
that |Lkptq| ¤ M for all t ¥ 0 and all k P t1, . . . , N � 1u,
then the results in this paper hold mutatis mutandis. In the
numerical example in Section VIII-B one of the modes is an
extended Kalman filter, which thus has a time-varying gain.
We recall that, in general, the extended Kalman filter does not
ensure a global convergence property of the estimation error.
However, this is not an issue since no stability guarantee is
required for the additional modes.

B. Monitoring variables
Given the N � 1 modes, our goal is now to find a way

to select the “best” between them, namely the one providing
a better estimate, possibly improving the estimation given by
the nominal observer (3). Ideally, the criterion used to evaluate
the performance of each mode would depend on the estimation
errors ek � x� x̂k, with k P t1, . . . , N � 1u. However, since
the state x is unknown, ek is unknown and any performance
criterion involving ek would not be implementable. As a
consequence, as done in other contexts, see, e.g., [40], [41],
we rely on the knowledge of the output y and the estimated
outputs ŷk for k P t1, . . . , N � 1u. In particular, inspired by
[40], in order to evaluate the performance of each mode, we
introduce the N � 1 monitoring variables ηk P R¥0 for any
k P t1, . . . , N � 1u, with dynamics given by

9ηk � �νηk � py � ŷkq
JpΛ1 � LJkΛ2Lkqpy � ŷkq

�: gpηk, Lk, y, ŷkq,
(10)

with Λ1 P Sny

¥0 and Λ2 P Snx
¥0 with at least one of them

positive definite and ν P p0, αs a design parameter, where
α comes from Assumption 1. The term py � ŷkq

JΛ1py �
ŷkq in (10) is related to the output estimation error, while
py � ŷkq

JLJkΛ2Lkpy � ŷkq takes into account the correction
effort of the observer, also called latency in [40]. Note that
the monitoring variable ηk in (10) for all k P t1 . . . , N � 1u
is implementable since we have access to the output y and all
the estimated outputs ŷk at all time instants. The monitoring
variables ηk, with k P t1, . . . , N � 1u, provide evaluations
of the performance of all the modes of the multi-observer.
Indeed, by integrating (10) between time 0 and t P R¥0, we
obtain that for any k P t1, . . . , N�1u, for any initial condition
ηkp0q P R¥0, for any y, ŷk P LRny , and any t ¥ 0,

ηkptq � e�νtηkp0q �

» t

0

e�νpt�τq
�
pypτq � ŷkpτqq

JpΛ1

� LJkΛ2Lkqpypτq � ŷkpτqq
�
dτ.

(11)
Equation (11) is a finite-horizon discounted cost, which de-
pends on the output estimation error.
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The results we will show in this paper apply for any Λ1 P
Sny

¥0 and Λ2 P Snx
¥0 with at least one of them being positive

definite. However, their tuning impacts when a switch of the
selected mode occurs and which mode is chosen. Indeed, Λ1

and Λ2 are the weights of the two terms in (10) and thus
their values reflect how much we take into account the output
estimation error and the correction effort of the observer in the
monitoring variables. In particular, selecting Λ1 with a norm
bigger than Λ2 implies that we weight more the term related
to the output estimation error compared to the term related
to the correction effort of the observer in the design of the
monitoring variables and vice-versa. In addition, note that, Λ2

multiplies the mode gains Lk and thus it implicitly considers
also the effect of the measurement noise in the estimation
error.

C. Selection criterion

Based on the monitoring variables ηk, with k P t1, . . . , N�
1u, we define a criterion to select the state estimate to look at.
We use a variable σ : R¥0 Ñ t1, . . . , N�1u for this purpose,
and we denote the selected state estimate mode x̂σ and the
associated monitoring variable ησ . The criterion consists in
selecting the mode with the minimal monitoring variable,
which implies minimizing the cost (11) over the modes k P
t1, . . . , N � 1u. When several modes produce the same mini-
mum monitoring variable at a given time, we select the mode,
between the ones with the minimum monitoring variables, with
the smaller derivative of ηk (which is given by gpηk, Lk, y, ŷkq
from (10)). Moreover, if two or more modes have the same
minimum monitoring variable and the same minimum deriva-
tive of the monitoring variable, then the proposed technique
selects randomly one of them and this is not an issue to
obtain the results in Sections V, VI and VII. Thus, we switch
the selected mode only when there exists k P t1, . . . , N �
1uztσu such that1 ηk ¤ ησ . In that way, at the initial time
t0 � 0, we take σp0q P argmin

kPΠ
pgpηkp0q, Lk, yp0q, ŷkp0qqq,

where η :� tη1, . . . , ηN�1u and Πpηq :� argmin
kPt1,...,N�1uztσu

ηk,

for all η P RN�1
¥0 . Then, σ is kept constant, i.e., 9σptq �

0 for all t P p0, t1q, with t1 :� inftt ¥ 0 : Dk P
t1, . . . , N � 1uztσptqu such that ηkptq ¤ ησptqptqu. At time
t1, we switch the selected mode according to σpt�1 q P
argmin

kPΠ
pgpηkpt1q, Lk, ypt1q, ŷkpt1qqq. We repeat these steps

iteratively and we denote with ti P R¥0, i P Z¡0 the ith

time when the selected mode changes (if it exists), i.e., ti :�
inftt ¥ ti�1 : Dk P t1, . . . , N � 1uztσptqu such that ηkptq ¤
ησptqptqu. Consequently, for all i P Z¡0, 9σptq � 0 for all
t P pti�1, tiq and

σpt�i q P argmin
kPΠ

pgpηkptiq, Lk, yptiq, ŷkptiqqq, (12)

1In [36] a switch of the selected mode occurs when there exists k P
t1, . . . , N�1uztσu such that ηk ¤ eησ , where the parameter e P p0, 1s was
introduced to mitigate the occurrence of infinitely fast switching. However,
this does not allow to rule out the Zeno phenomenon. To solve this issue, we
propose a different jump map in this work, which does not require introducing
parameter e in the switching criterion as in [36].

where we recall that η � tη1, . . . , ηN�1u and Πpηq �
argmin

kPt1,...,N�1uztσu

ηk, for all η P RN�1
¥0 . We also argue that,

implementing (12) online, which requires the knowledge of
the derivative of the monitoring variables, is not an issue.

Remark 4. The scheme proposed in this paper works for any
initial condition ηkp0q P R¥0, for all k P t1, . . . , N � 1u,
which corresponds to the initial cost of each mode of the
multi-observer. Consequently, the choice of ηkp0q is an extra
degree of freedom that can be used to initially penalize the
modes when there is a prior knowledge of which mode should
be initially selected, as done in [35]. Conversely, in the case
where there is no prior knowledge on which mode should be
chosen at the beginning, all ηk, with k P t1, . . . , N � 1u, can
be initialized at the same value such that the term e�νtηkp0q
in (11) is irrelevant for the minimization.

Remark 5. The results in Sections V and VI also apply with
σpt�i q P argmin

kPt1,...,N�1uztσu

ηk instead of (12), as in [36]. To

select the mode with the minimum derivative of the monitoring
variable, among those with the minimum ηk, allows us to prove
a strict performance improvement in Section VII.

D. Reset rule

When a switching occurs, i.e., when a different mode is
selected, we propose two different options to update the hybrid
estimation scheme. The first one, called without resets, consists
in only updating σ, and consequently, we only update the state
estimate based on the new value of σ. Conversely, the second
option, called with resets, consists in not only switching the
mode that is considered, but also resetting the state estimates
and the monitoring variables of all the modes k P t2, . . . , N�
1u to the updated x̂σ and ησ , respectively. The state estimate
and the monitoring variable of the nominal observer (3),
corresponding to mode 1, are never reset. Since the reset option
re-initializes the modes states at each switching time, it can be
useful when one or more modes are local observers, and thus
they guarantee a convergence property of the estimation error
only if they are initialized sufficiently close to the origin, or
when the null gain is selected for one of the additional modes.
However, the reset case requires communication between the
modes, which may not be always implementable in practice.

To avoid infinitely fast switching, we introduce a regular-
ization parameter ε P R¡0. In particular, when a switch of
the selected mode occurs, the value of monitoring variables
ηk, with k P t2, . . . , N � 1uztσu, is increased by ε, both in
the case without and with resets. The idea is to penalize the
unselected modes and to allow the selected one to run for some
amount of time before a new switch occurs. The analysis of the
properties of the hybrid time domains of the overall solutions
and the existence of a uniform semiglobal average dwell-time
are presented Section VI.

We use the parameter r P t0, 1u to determine which option
is selected, where r � 0 corresponds to the case without
resets, while r � 1 corresponds to the case where the resets
are implemented. Note that, the parameter r needs to be
chosen off-line and it is fixed for each considered observation
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process. When a switch of the considered mode occurs, the
state estimate x̂k of the kth mode is defined as, at a switching
time ti P R¥0,

x̂1pt
�
i q :� x̂1ptiq (13)

and, for all k P t2, . . . , N � 1u,

x̂kpt
�
i q P tp1� rqx̂kptiq � rx̂k�ptiq : k

� P argmin
jPΠ

pgpηjptiq,

Lj , yptiq, ŷjptiqqqu

�: ℓ̂kpx̂ptiq, ηptiq, L, yptiq, ŷptiqq,
(14)

where x̂ :� px̂1, . . . , x̂N�1q, η � pη1, . . . , ηN�1q, L :�
pL1, . . . , LN�1q and ŷ :� pŷ1, . . . ŷN�1q. Similarly, at a
switching time ti P R¥0, the monitoring variables are defined
as,

η1pt
�
i q :� η1ptiq, (15)

ησpt
�
i q :� ησptiq (16)

and, for all k P t2, . . . , N � 1uztσu,

ηkpt
�
i q � p1� rqηk � rηk� � ε (17)

where ε P R¡0 and ηk� � min
jPt1,...,N�1uztσu

ηj . Note that, if the

monitoring variables of more than one mode have the same
value and it is the minimum between all the ηk, with k P
t1, . . . , N � 1u, then, from (14), the modes may be reset with
different state estimates. Merging (16) and (17) and using the
Kronecker delta definition, we obtain, at a switching time ti P
R¥0, for all k P t2, . . . , N � 1u,

ηkpt
�
i q � δk,σηk � p1� δk,σqpp1� rqηk � rηk� � εq

�: pkpηptiqq,
(18)

where ε P R¡0 and ηk� � min
jPt1,...,N�1uztσu

ηj .

We can already note that, with the proposed technique,
ησptqptq ¤ η1ptq for all t ¥ 0, both in the case without
and with resets. Therefore, the estimation performance of the
proposed hybrid multi-observer is always not worse than the
performance of the nominal one according to the monitoring
variables that we consider. We will study the performance of
the estimation scheme in more depth in Section VII.

E. Hybrid model
To proceed with the analysis of the hybrid estimation

scheme presented so far, we model the overall system as a
hybrid system of the form of [34], where a jump corresponds
to a switch of the selected mode and a possible reset as
explained in Section III-D. We define the overall state as
q :� px, x̂1, . . . , x̂N�1, η1, . . . , ηN�1, σq P Q :� Rnx �
RpN�1qnx�RN�1

¥0 �t1, . . . , N�1u, and we obtain the hybrid
system #

9q � F pq, u, v, wq, q P C
q� P Gpqq, q P D,

(19)

where flow map is defined as, for any q P C, u P U , v P V
and w P W , from (2), (3), (9), (10),

F :� pfp, fo,1, . . . , fo,N�1, g1, . . . , gN�1, 0q

G :� px, x̂1, ℓ̂2 . . . , ℓ̂N�1, η1, p2, . . . , pN�1, argmin
kPΠ

gkq

with the short notation fo,k � fopx̂k, u, Lkpy � ykqq, gk �
gpηk, Lk, y, ykq, ℓ̂k � ℓ̂kpx̂, η, Lk, y, ŷkq and pk � pkpηq, for
all k P t1, . . . , N � 1u, where Πpqq � argmin

kPt1,...,N�1uztσu

ηk for

all q P D. In view of Section III-C, the flow and jump sets C
and D in (19) are defined as

C :� tq P Q : @k P t1, . . . , N � 1u ηk ¥ ησu, (20)
D :� tq P Q : Dk P t1, . . . , N � 1uztσu ηk ¤ ησu. (21)

Remark 6. The state estimate x̂σ of the hybrid multi-observer
is subject to jumps, which may not be suitable in some applica-
tions. For this reason, as done in [35] for the state estimation
of Li-Ion batteries, it is possible to add a filtered version of x̂σ ,
denoted x̂f , whose dynamics between two successive switching
instants is 9x̂σ � �ζx̂f � ζx̂σ , where ζ ¡ 0 is an additional
design parameter and, x̂f does not change at switching times
ti P R¥0, i.e., x̂f pt�i q � x̂f ptiq. Note that, when the filtered
version of the hybrid multi-observer state estimate is also
considered, similar stability results can be proved, see [42,
Section 5.3.6].

IV. DESIGN GUIDELINES

We summarize the procedure to follow to design the hybrid
estimation scheme.

1) Design the nominal observer (3) such that Assumption 1
holds.

2) Select N gains L2, . . . , LN�1 for the N additional modes
in (9).

3) Implement in parallel the N � 1 modes of the multi-
observer.

4) Generate the monitoring variables ηk, with k P
t1, . . . , N � 1u.

5) Evaluate the variable σ.
6) Select ε P R¡0 and run the hybrid scheme without or

with resets.
7) x̂σ is the state estimate to be considered for estimation

purpose.
There is a lot of flexibility in the number of additional

modes N and the selection of the gains Lk, with k P
t2, . . . , N � 1u. This allows to address the different trade-
offs of the state estimation of nonlinear systems. To present
a systematic procedure to design the additional gains is very
challenging in view of the generality of the considered classes
of systems and observers. However, we can provide general
principles to be followed.

A. General guidelines for gains selection
1) Null gain: We can always select one of the additional

mode gains as the null gain, namely Lk � 0nx�ny
, for some

k P t2, . . . N � 1u. This choice will produce an open-loop
observer, which therefore typically does not have any stability
guarantee. However, it is the best gain choice to annihilate the
effect of the measurement noise on the estimation error and
thus this gain can be very useful to improve the estimation
performance, especially when the resets are implemented, as
we will show on numerical examples in Section VIII.
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2) Optimization-based design: The additional modes gains
can be designed by solving optimization problems off-line
for different possible sets of initial conditions and classes of
inputs and disturbances. Typically, the gains obtained in this
way do not guarantee any stability property of the estimation
error. However, this is not required for the proposed hybrid
estimation scheme, as testified by Theorem 1. Among the
different cost functions that can be considered to solve the
optimization problem, one possible option is described in the
following. Given x0, x̂0 P Rnx , u P U , v P V and w P W we
define, for a given t P R¥0,

J px0, x̂0, u, v, w, Lk, tq :�» t

0

e�ϑspxpsq � x̂kpsqq
JQpxpsq � x̂kpsqqds,

(22)

where ϑ P R¥0, Q P Snx
¥0 is a weight matrix, k P t2, . . . , N �

1u, and xptq, x̂kptq represent the solutions to systems (2)
and (3), with xp0q � x0 and x̂kp0q � x̂0, for all t P R¥0,
respectively. The optimization problem to be solved to obtain
the gain Lk P Rnx�ny is given by

min
LkPRnx�ny

max
vPV,wPW

J px0, x̂0, u, v, w, Lk, tq. (23)

Cost (22) is a quadratic cost of the state estimation error, which
is available off-line in simulations. By solving the optimization
problem (23), we obtain the gain Lk, k P t2, . . . , N � 1u,
that minimizes cost (22) for the worst case scenario for the
disturbance v P V and measurement noise w P W , for the
considered input u P U and initial conditions x0 and x̂0 P
Rnx for systems (2) and (3), respectively. By solving (23) for
various initial conditions, inputs u and classes of disturbances
and noises and final time t, we obtain a bank of observer gains,
which can be used in each mode of the multi-observer.

3) Adjusting L1: We can also select the additional gains in
a neighborhood of the nominal one, or to scale the nominal
gain by some factors. This gain selection will produce systems
with different behaviors and switching between them should
allow an improvement of the estimation performance.

B. Exploiting system and nominal observer structure
and/or behaviour

The gain selection can be also done by exploiting the knowl-
edge of the system and observer structures. For example, when
the nominal observer (3) is a high-gain observer, see, e.g.,
[8], [43] or, more generally, an infinite gain margin observer
[1, Section 3.4], we typically need to select a very large gain
based on a conservative bound to ensure Assumption 1, which
would result in fast convergence of the estimation error, but,
unfortunately, it will be very sensitive to measurement noise.
In this case, to overcome the conservatism of the theory,
an option is to select the Lk gains (much) smaller than the
nominal one, even though there is no convergence proof for
these choices, in order to obtain a state estimate which is more
robust to measurement noise. This is the approach followed in
Section VIII-A on an example.

Another possible approach is to select the additional gains
Lk’s considering the behavior of the nominal observer in
simulation and choose them based on the properties we want to

improve. For instance, similarly to the case where the nominal
observer is an high-gain observer, when the convergence speed
of the nominal observer is satisfactory, but its estimation error
is very sensitive to noises, the gains Lk’s should be selected
smaller than the nominal one L1. On the other hand, if the
convergence speed of the estimation error of the nominal
observer is too slow, the additional gains may be chosen bigger
than L1. This approach to select the additional gains was used
in [35], where the hybrid multi-observer presented in [36]
was implemented to improve the estimation performance of
a electrochemical Li-Ion battery model.

V. STABILITY GUARANTEES

The goal of this section is to prove that the proposed hybrid
estimation scheme satisfies an input-to-state stability property.
Even though the nominal observer satisfies an input-to-state
stability property by Assumption 1, it is not obvious that so
does system (19)-(21), as the extra modes are designed with
no convergence guarantees.

A. Input-to-state stability
In the next theorem we prove that system (19)-(21) satisfies

an input-to-state stability property.

Theorem 1. Consider system (19)-(21) and suppose Assump-
tions 1-2 hold. Then there exist βU P KL and γU P K8 such
that for any input u P LU , disturbance input v P LV and
measurement noise w P LW , any solution q satisfies

|pe1pt, jq, η1pt, jq, eσpt, jq, ησpt, jqq|

¤ βU p|pep0, 0q, ηp0, 0qq|, tq � γU p}v}r0,ts � }w}r0,tsq
(24)

for all pt, jq P dom q, with e :� pe1, . . . , eN�1q and η :�
pη1, . . . , ηN�1q.

Sketch of proof: The proof consists in exploiting the Lya-
punov properties in Proposition 1 and follows very similar
steps as [44, proof of Theorem 1]. The full proof of Theorem 1
is available in [42, proof of Theorem 5.1]. ■

Theorem 1 guarantees a two-measure input-to-state stability
property [45]. In particular, (24) ensures that e1, η1, eσ and
ησ converge to a neighborhood of the origin, whose “size”
depends on the L8 norm of v and w. Note that we do not
guarantee any stability property for the modes k � σ, but
this is not needed for the convergence of the hybrid observer
estimation error eσ . Hence, the convergence of the estimated
state vector of the selected mode is guaranteed by Theorem 1.
We would like to emphasize that (24) does not inform us about
the performance improvement of the hybrid scheme, this will
be addressed in Section VII.

B. Lyapunov properties
In this section we state the Lyapunov properties, which

are employed to prove Theorem 1. Based on Assumption 1,
we first prove an input/output-to-state stability property [46]
for the generic estimation error system e :� x � x̂ P Rnx

associated with (2) and (9), whose dynamics is defined as
9e � fppx, u, vq � fopx̂, u, Lpy � ŷqq with L P RnL1

�ny .
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Lemma 1. Suppose Assumption 1 holds. Then, for any x P
Rnx , u P U , v P V , w P W , x̂ P Rnx and any L P RnL1

�ny ,

x∇V peq, fppx, u, vq � fopx̂, u, Lpy � ŷqqy

¤ �αV peq � ψ1p|v|q � ψ2p|w|q � γ }L� L1}
2
|y � ŷ|2,

(25)
with ŷ � hpx̂, 0q P Rny and α,ψ1, ψ2, γ, V come from
Assumption 1.

Proof: Let x P Rnx , u P U , v P V , w P
W , x̂ P Rnx and L P RnL1

�ny , we have
that

@
∇V peq, fppx, u, vq � fo

�
x̂, u, Lpy � ŷq

�D
�

x∇V peq, fppx, u, vq �fo
�
x̂, u, L1py � ŷq � L1py � ŷq � L

py � ŷq
�D

� x∇V peq, fppx, u, vq �fo
�
x̂, u, L1py � ŷq

�pL� L1qpy � ŷq
�D
. Applying Assumption 1

with d � pL � L1qpy � ŷq we obtain@
∇V peq, fppx, u, vq � fo

�
x̂, u, Lpy � ŷq

�D
¤ �αV peq �

ψ1p|v|q �ψ2p|w|q � γ|pL�L1qpy� ŷq|
2, which implies (25).

We have obtained the desired result. ■
Lemma 1 implies that, for ek :� x � x̂k for any k P

t2, . . . , N � 1u, the ek-system, which follows from (2) and
(9), satisfies an input/output-to-state property [46] with the
same Lyapunov function as in Assumption 1 for any choice
for the observer gain Lk P RnL1

�ny . The major difference
between (6) and (25) is the term γ||pL�L1q||

2|y� ŷ|2 in (25),
which may have a destabilizing effect and may thus prevent the
ek-system to exhibit input-to-state stability properties similar
to (7).

In the next proposition, we state Lyapunov properties for
system (19)-(21), whose proof is postponed to Appendix A.

Proposition 1. Suppose Assumptions 1-2 hold. Given any sets
of gains Lk P RnL1

�ny , with k P t2, . . . , N � 1u, any ν P
p0, αs, any ε ¡ 0 and any Λ1 P Sny

¥0, Λ2 P Snx
¥0 with at least

one of them positive definite, there exist U : Q Ñ R¥0 locally
Lipschitz, and αU , αU P K8, α0 P R¡0, ϕ1, ϕ2 P K8, such
that the following properties hold.

(i) αU p|pe1, η1, eσ, ησq|q ¤ Upqq ¤ αU p|pe, ηq|q for any
q P Q, with e � pe1, . . . , eN�1q and η � pη1, . . . , ηN�1q.

(ii) U�pq;F pq, u, v, wqq ¤ �α0Upqq � ϕ1p|v|q � ϕ2p|w|q for
any q P C, u P U , v P V and w P W , such that
F pq, u, v, wq P TCpqq, where we recall that U� denotes the
Clarke generalized directional derivative of U , as defined
in Section I.

(iii) Upgq ¤ Upqq for any q P D and any g P Gpqq.

Proposition 1 shows the existence of a Lyapunov function U
for system (19)-(21), which is used to prove the input-to-state
stability property in Theorem 1.

VI. PROPERTIES OF THE SOLUTION DOMAINS

An input-to-state stability property is established in Theo-
rem 1 but nothing is said about the completeness and more
generally about the properties of the solutions time domains. In
this section, we address these points. In Section VI-A, we show
that maximal solutions are complete, while in Section VI-B we
ensure the existence of a uniform semiglobal average dwell-
time thereby ruling out Zeno phenomenon.

A. Completeness of maximal solutions

The goal of this section is to show that maximal solutions to
system (19)-(21) are complete, which means that their domains
are unbounded. For this purpose, we need that the system plant
(2) is complete, as stated in the next assumption.

Assumption 3. Any maximal solution to (2) with u in LU , v
in LV and w in LW is complete.

Before proving the main result of this section, we show in
the next lemma that maximal solutions to the additional modes
(9) are complete.

Lemma 2. Consider systems (2) and (9). Suppose Assump-
tions 1, 2 and 3 hold. Then, for any inputs u P LU , v P LV ,
w P LW and y P LRny , any corresponding maximal solution
to (9) is complete.

Proof: Let k P t2, . . . N � 1u and let x P Rnx , u P U , v P V ,
w P W , x̂k P Rnx and any Lk P RnL1

�ny . From Lemma 1,
we have, for all k P t2, . . . , N � 1u,@

∇V pekq, fppx, u, vq � fo
�
x̂k, u, Lkpy � ŷkq

�D
¤ �αV pekq � ψ1p|v|q � ψ2p|w|q � γ }Lk � L1}

2
|y � ŷk|

2

¤ �αV pekq � ψ1p|v|q � ψ2p|w|q � θ|y � ŷk|
2,

(26)
with θ :� γ max

kPt1,...,N�1u
}Lk � L1}

2
P R¥0. Using Assump-

tion 2 we have |y� ŷk|2 � |hpx,wq�hpx̂k, 0q|
2 ¤ δ1V pekq�

δ2|w|
2, for all k P t2, . . . , N �1u. Thus, from (26) we obtain,@

∇V pekq, fppx, u, vq � fo
�
x̂k, u, Lkpy � ŷkq

�D
¤ �αV pekq � ψ1p|v|q � ψ2p|w|q � θδ1V pekq � θδ2|w|

2

� aV pekq � ψ1p|v|q � ψ�2p|w|q,
(27)

with a :� θδ1 � α P R and ψ�2 : s ÞÑ ψ2p|s|q � θδ2|s|
2 P K8.

Let u P LU , v P LV , w P LW and x and x̂k be solutions
to systems (2) and (9) respectively, for k P t2, . . . , N � 1u.
We have, by definition, ekptq � xptq � x̂kptq, for all k P
t2, . . . , N � 1u and all t P dom px, x̂kq. Pick any k P
t2, . . . , N � 1u, for all t P r0,8q, we have from (27),

d

dt
V pekptqq ¤ aV pekptqq � ψ1p|vptq|q � ψ�2p|wptq|q. (28)

Applying the comparison principle [47, Lemma 3.4], we
obtain, for all t P r0,8q, V pekptqq ¤ eatV pekp0qq �» t

0

eapt�sqpψ1pvp|s|qq � ψ�2p|wpsq|qqds. From (5) and the last

inequality, ek cannot blow up in finite time as V is positive
definite and the right-hand side is finite for any t ¥ 0.
Moreover, from Assumption 3, x cannot blow up in finite
time. Consequently, since x̂k � x � ek and both x and ek
cannot explode in finite time, x̂k cannot as well. Thus, for
any k P t2, . . . , N � 1u, any maximal solution to system (9)
is complete. ■

We are now ready to prove the completeness of maximal
solution of system (19)-(21).

Proposition 2. Under Assumptions 1, 2 and 3, for any inputs
u P LU , v P LV , w P LW , any maximal solution to system
(19)-(21) is complete.
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Proof: We use [37, Proposition 6] to prove Proposition 2.
Let u P LU , v P LV , w P LW and q be a maximal
solution to (19)-(21). In view of the definition of the flow
and jump sets, C and D, in (20)-(21), we have that qp0, 0q P
C Y D. Suppose qp0, 0q P CzD, we want to prove that q is
not trivial, i.e., its domain contains at least two points. For
this purpose we need to show that the viability condition
in [37, Proposition 6] is satisfied. Since the flow map F
is continuous and u P LU , v P LV and w P LW , from
[48, Proposition S1] there exists ϵ ¡ 0 and an absolutely
continuous function z : r0, ϵs Ñ Q such that zp0q � qp0, 0q
and 9zptq � F pzptq, uptq, vptq, wptqq for almost all t P r0, ϵs.
We write z � pzx, zx̂1 , . . . , zx̂N�1

, zη1 , . . . , zηN�1
, zσq. Since

qp0, 0q P CzD, with CzD open, and z is absolutely continuous,
there exists ϵ1 P p0, ϵs such that, for all k P t1, . . . , N � 1u,
zηk

ptq ¥ zησ
ptq for almost all t P r0, ϵ1s. Thus, zptq P C

for almost all t P r0, ϵ1s and the viability condition in [37,
Proposition 6] holds, which implies that q is a non-trivial
solution.

To prove that q is complete we need to exclude items (b)
and (c) in [37, Proposition 6]. Item (b) in [37, Proposition
6] occurs when at least one component of q blows up in
finite time, and consequently q blows up in finite time. Hence,
to exclude (b) in [37, Proposition 6] we need to show that
each component of q must not explode in finite time. Let
q � px, x̂1, . . . x̂N�1, η1, . . . ηN�1, σq. From Assumption 3,
x cannot blow up in finite time. Moreover, x̂1 cannot do so
as well in view of Theorem 1 and since x cannot. In addition,
x̂k, for all k P t2, . . . , N � 1u cannot blow up in finite time
in view of Lemma 2 and ηk, with k P t1, . . . , N � 1u cannot
as well in view of its dynamics (10) and because y� ŷk does
not since both x and x̂k do not, for all k P t1 . . . , N � 1u.
Finally, σ is constant in C, consequently, it does not blow up
in finite time. Thus, item (b) in [37, Proposition 6] cannot
occur. On the other hand, since GpDq � C YD and the jump
set does not impose conditions on u, v and w, item (c) in
[37, Proposition 6] cannot occur. Consequently, any maximal
solution to system (19)-(21) is complete. This concludes the
proof. ■

B. Average dwell-time

Proposition 2 ensures the completeness of maximal solu-
tions under Assumptions 1-3, still, Zeno phenomenon has not
been ruled out yet. In the next proposition, we prove the
existence of a uniform semiglobal average dwell-time for the
solution to system (19)-(21), which thus excludes the Zeno
phenomenon. Its proof is given in Appendix B.

Proposition 3. Suppose Assumptions 1, 2 hold and the sets
V and W are compact. Then, system (19)-(21) has a uniform
semiglobal average dwell-time, i.e., for any M P R¡0 there
exists c ¡ 0 such that any corresponding solution q with
|qp0, 0q| ¤ M and u P LU , v P LV and w P LW , is such
that for any pt, jq, pt1, j1q P dom q with pt, jq ¤ pt1, j1q,
j1 � j ¤ 1

τ pt
1 � tq � 2 with τ :� � 1

2ν ln
�

c
ν

ε� c
ν

	
, where ν

comes from (10) and ε is the design parameter in (17).

We see the importance of the parameter ε P R¡0, used in the

jump map for the monitoring variables (17), in the expression
of τ . Indeed, if we would allow ε to be equal to 0 (which we do
not), τ would have been equal to 0. In addition, Proposition 3
shows that any solution q to (19)-(21) can exhibit at most
two instantaneous jumps. Note that to obtain the results of
Proposition 3 we do not need Assumption 3. However, in view
of Propositions 2 and 3 we have that under Assumptions 1-3,
for any inputs u P LU , v P LV , w P LW , any maximal solution
q to system (19)-(21) is t-complete, namely supt dom q �
�8.

Now that we have established robust stability properties and
the properties of the hybrid time domain of the solutions for
the hybrid estimation scheme, we focus on its performance in
the next section.

VII. PERFORMANCE IMPROVEMENT

The goal of this section is to establish the estimation
performance improvement given by the proposed hybrid multi-
observer. We recall that with the proposed technique we have
ησpt,jqpt, jq ¤ η1pt, jq for all pt, jq P dom q, for any solution
q to (19)-(21) with inputs u P LU , v P LV and w P LW , both
in the case without and with resets. Therefore, the estimation
performance of the proposed hybrid multi-observer is always
not worse than the performance of the nominal one according
to the monitoring variables we consider.

Variable ησ defined in Section III-B is a performance
variable that considers the “best” mode among the N � 1 at
any time instant: this is an instantaneous performance, which
ignores the past behavior in terms of the monitoring variable.
For this reason, to evaluate the performance of the proposed
hybrid multi-observer, we also propose the following cost, for
any solution q to (19)-(21) with inputs u P LU , v P LV and
w P LW , for all pt, jq P dom q,

Jσpt,jqpt, jq :�
j̧

i�0

�» ti�1

ti

ησps,iqps, iq ds



, (29)

with 0 � t0 ¤ t1 ¤ � � � ¤ tj�1 � t satisfying dom qXpr0, ts�

t0, 1, . . . , juq �
�j

i�0rti, ti�1s � tiu.
Similarly, we define the performance cost of the nominal

observer, for all pt, jq P dom q, as

J1pt, jq :�
j̧

i�0

�» ti�1

ti

η1ps, iq ds



, (30)

with 0 � t0 ¤ t1 ¤ � � � ¤ tj�1 � t satisfying dom qXpr0, ts�

t0, 1, . . . , juq �
�j

i�0rti, ti�1s � tiu.
In the next theorem we prove, that the hybrid scheme

in Section III strictly improves the performance J1 in (30),
under some conditions on the gain selection and on the initial
conditions of the modes of the multi-observer and monitoring
variables.

Theorem 2. Consider system (19)-(21) under Assumptions 1-
3. Let q be a maximal solution with inputs u P LU , v P LV and
w P LW and for which the initial conditions of the monitoring
variables are all the same, namely ηkp0, 0q � η0 for all k P
t1, . . . , N � 1u for some η0 P R. Then, for any pt, jq P dom q,

Jσpt,jqpt, jq ¤ J1pt, jq, (31)
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with Jσ and J1 defined in (29) and (30), respectively. More-
over, if there exists pt�, j�q P dom q such that

ησpt�,j�qpt
�, j�q   η1pt

�, j�q, (32)

then there exists j�
1

¥ j� such that

Jσpt,jqpt, jq   J1pt, jq (33)

for all pt, jq ¥ pt�, j�
1

q, with pt, jq P dom q.

Proof: Consider system (19)-(21) and let q be a maximal
solution to system (19)-(21) with inputs u P LU , v P LV and
w P LW . From (10), (15), (16), (20), (21) and ηkp0, 0q � η0 P
R for all k P t1, . . . , N � 1u, we have, for all pt, jq P dom q,

ησpt,jqpt, jq ¤ η1pt, jq. (34)

We then derive from (29) and (30) that Jσpt,jqpt, jq ¤ J1pt, jq,
for all pt, jq P dom q, which concludes the first part of the
proof.

In the second part of the theorem, we have that there exists
pt�, j�q P dom q such that

ησpt�,j�qpt
�, j�q   η1pt

�, j�q. (35)

We now consider two cases. If t� P int Ij
�

, using (29), (30),
(34), (35), since no jump occurs at pt�, j�q and η1 and ησ
are not affected by jumps, by continuity of ησ and η1 on Ij

�

,
(33) is obtained by integration of (34) for all pt, jq ¥ pt�, j�q,
with pt, jq P dom q. On the other hand, if Ij

�

is empty,
since q is maximal, it is t-complete by Propositions 2 and 3
as explained in Section VI-B and thus we have that there
exists j�

1

¡ j� such that pt�, j�
1

q P dom q and ησpt�,j�1 q ¤

ησpt�,j�q   η1pt
�, j�

1

q with Ij
�1

non empty. Following similar
step as before we have that (33) holds for all pt, jq ¥ pt�, j�

1

q,
with pt, jq P dom q. This concludes the proof. ■

Theorem 2 shows that, if the condition in (32) holds, then
the cost of the proposed hybrid multi-observer Jσ is strictly
smaller than the one of the nominal observer J1 and thus, the
estimation performance in terms of costs Jσ and J1 is strictly
improved.

In the next proposition, we give the conditions to guarantee
that (32) is satisfied and consequently, from Theorem 2, that
the estimation performance is strictly improved with the hybrid
multi-observer (19)-(21).

Proposition 4. Consider system (19)-(21) with Λ2 P Snx
¡0 and

suppose Assumptions 1-3 hold. Select the gains Lk, with k P
t2, . . . , N�1u, in (9) such that there exists k� P t2, . . . , N�1u
satisfying LJk�Λ2Lk�   LJ1 Λ2L1. Let q be a maximal solution
with inputs u P LU , v P LV and w P LW and initial condition
qp0, 0q satisfying the following properties.

(i) x̂kp0, 0q � x̂0 for all k P t1, . . . , N � 1u for some
x̂0 P Rnx .

(ii) ηkp0, 0q � η0 for all k P t1, . . . , N�1u for some η0 P R.
(iii) ŷkp0, 0q � yp0, 0q for all k P t1, . . . , N � 1u.
Then, there exists pt�, j�q P dom q such that

ησpt�,j�qpt
�, j�q   η1pt

�, j�q. (36)

Proof: Let q be a maximal solution to system (19)-(21) with
inputs u P LU , v P LV and w P LW satisfying items (i)-(iii).
We define ∆k :� y � ŷk P Rny for all k P t1, . . . , N � 1u
for the sake of convenience. Note that, thanks to item (i),
∆1p0, 0q � yp0, 0q � ŷ1p0, 0q � yp0, 0q � hpx̂1p0, 0q, 0q �
yp0, 0q � hpx̂kp0, 0q, 0q � yp0, 0q � ŷkp0, 0q � ∆kp0, 0q, for
any k P t1, . . . , N � 1u. On the other hand, from (10) we
have, for all k P t1, . . . , N � 1u,

9ηk � �νηk � py � ŷkq
JpΛ1 � LJkΛ2Lkqpy � ŷkq

� �νηk �∆J
k pΛ1 � LJkΛ2Lkq∆k.

(37)

We evaluate (37) for k � 1 at pt, jq � p0, 0q. As ∆1p0, 0q �
∆kp0, 0q, from item (ii) of Proposition 4 and since Λ2 is
positive definite, we obtain

9η1p0, 0q

� �νη1p0, 0q �∆1p0, 0q
JpΛ1 � LJ1 Λ2L1q∆1p0, 0q

� �νηk�p0, 0q �∆k�p0, 0q
JpΛ1 � LJ1 Λ2L1q∆k�p0, 0q

¡ �νηk�p0, 0q �∆k�p0, 0q
JpΛ1 � LJk�Λ2Lk�q∆k�p0, 0q

� 9ηk�p0, 0q
(38)

for any k� P t2, . . . , N � 1u such that LJk�Λ2Lk�   LJ1 Λ2L1.
The strict inequality in (38) comes from the condition
LJk�Λ2Lk�   LJ1 Λ2L1 on the observer gain selection, with
Λ2 P Snx

¡0, and ∆k�p0, 0q � 0 by item (iii) of Proposition 4.
Since q is maximal it is t-complete by Propositions 2 and 3.
Moreover, q can exhibit at most two instantaneous jumps as
explained in Section VI-B and thus there exists j� P t0, 1u
such that σp0, j�q � k̃ with k̃ P argmin

kPΠ
9ηkp0, j

�q, with

Π � argmin
kPt1,...,N�1u

ηkp0, j
�q and p0, j� � 1q R dom q. Note

that LJ
k̃
Λ2Lk̃   LJ1 Λ2L1 and 9qp0, j�q P TCpqq :� tq P Q :

9ηk ¥ 9ησ,@k P t1, . . . , N � 1uu, where 9ηk � �νηk � py �
ŷkq

JpΛ1�L
J
kΛ2Lkqpy�ŷkq and 9ησ � �νησ�py�ŷσq

JpΛ1�
LJσΛ2Lσqpy � ŷσq, for all pt, jq P dom q with some abuse of
notation, in view of [42, Lemma 2.1]. From (17) and (38), we
obtain

9ησp0,j�qp0, j
�q � 9ηk̃p0, j

�q   9η1p0, j
�q. (39)

Moreover, since q is t-complete, we have that there exists
ϵ ¡ 0 such that qpt, j�q P C for all t P r0, ϵs. Consequently,
pt�, j�q P dom q� for all t� P r0, ϵs. In addition, we have
ησp0,j�qp0, j

�q � η1p0, j
�q � η0 both when j� � 0 and

j� � 1 from (15) and (16). Using the last equation, from
(39) we obtain ησpt�,j�qpt

�, j�q   η1pt
�, j�q. This concludes

the proof. ■
Note that, the conditions in items (i) and (ii) of Proposition 4

can always be ensured by designing the same initial condition
for the state estimate and monitoring variables for all the
modes. Moreover, condition in item (iii) is verified almost
everywhere (it is a set of null measure). We also acknowledge
that we state the performance improvement with respect to
costs J1 and Jσ , and that it would be interesting to state
properties for a cost, which involves the state estimation errors
e1 and eσ . This is a challenging question, which goes beyond
the scope of this work.
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VIII. NUMERICAL CASE STUDIES

A. Van der Pol oscillator
We consider

9x � Ax�Bφpxq, y � Cx� w (40)

where x � px1, x2q P R2 is the system state to be estimated,
y P R is the measured output and w P R is the measurement
noise. The system matrices are

A �

�
0 1
0 0

�
, B �

�
0
1

�
, C �

�
1 0

�
(41)

and φpxq � satp�x1 � 0.5p1� x21qx2q for any x P R2, where
the saturation level is symmetric and equal to 10. We consider
the measurement noise w generated from a random sequence
of points, occurring at intervals of 0.01 s, with amplitude
ranging between �0.1 and 0.1 and with linear interpolation
applied between any two consecutive points.

We design a nominal high-gain observer for system (40)

9x̂1 � Ax̂1 �Bφpx̂1q � L1py � ŷ1q, ŷ1 � Cx̂1 (42)

where x̂1 is the state estimate, ŷ1 is the estimated output and
L1 P R2�1 is the output injection gain, which is defined as
L1 :� H1D, where D P R2�1, H1 � diagph1, h21q P R2�2,
with h1 P R¡0 the high-gain design parameter. To satisfy
Assumption 1, D P R2�1 is selected such that the matrix A�
DC is Hurwitz and the parameter h1 is taken sufficiently large,
i.e., h1 ¥ h�1, where h�1 is equal to 2λmaxpP qK, where P P
R2�2 is the solution of the Lyapunov equation P pA�DCq�
pA�DCqJP � �I2 and K � 58.25 is the Lipschitz constant
of the function φ. We select D such that the eigenvalues of A�
DC are equal to �1 and �2 and we obtain D � r3, 2s, while
the parameter h1 is selected equal to 200 ¡ h�1 � 152.50. With
this choice of h1, Assumption 1 is satisfied with a quadratic
Lyapunov function and α � 53.28. Furthermore, since the
output is linear, also Assumption 2 is satisfied.

We consider N � 4 additional modes, with the same
structure as the nominal one in (42). The only difference
is the output injection gain Lk P R2�1, which is defined
as Lk :� HkD, with Hk � diagphk, h2kq P R2�2, with
k P t2, . . . , 5u. We select h2 � 20, h3 � 1, h4 � 0 and
h5 � �1. Note that hk ¤ h�1, for all k P t2, . . . , 5u. Therefore,
we have no guarantees that these modes satisfy Assumption 1,
and consequently, that they converge. Simulations suggest that
the modes with L2 and L3 converge, while the ones with L4

and L5 do not. Note that, the gain L4 � 02�1 is the best
choice to annihilate the effects of the measurement noise.

We simulate the proposed estimation technique considering
the initial conditions xp0, 0q � p1, 1q, x̂kp0, 0q � p0, 0q,
ηkp0, 0q � 10 for all k P t1, . . . , 5u and σp0, 0q � 1. Both
cases, without and with resets, are simulated with ν � 5,
Λ1 � 1, λ2 � 0.1 � I2 and ε � 10�4. Note that the condition
ν P p0, αs is satisfied.

The evolution of |e1| and |eσ|, obtained with or without re-
sets, is shown in Fig. 2, together with the nominal performance
cost J1 and the costs Jσ obtained both in the case without and
with resets. Fig. 2 shows that both solutions (without resets and
with resets) improve the estimation performance compared to
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Fig. 2. Van der Pol oscillator. Norm of the estimation error |e| (top figure),
performance cost J (middle figure) and σ (bottom figure). Nominal (yellow),
without resets (red), with resets (blue).

TABLE I
VAN DER POL OSCILLATOR. AVERAGE MAE AND RMSE.

no reset reset
e1 eσ % improv. e1 eσ % improv.

MAE 3.505 0.031 99.11 3.507 0.035 98.99
RMSE 3.519 0.033 99.05 3.516 0.036 98.97

the nominal one. Zooms of the estimation error and cost plots
are also shown in Fig. 2 to highlight the difference, and thus
the performance improvement, between the nominal observer
and the hybrid multi-observer. The last plot in Fig. 2 represents
σ and indicates which mode is selected at every time instant
both in the case without and with resets. Interestingly, when
the resets are considered, the fourth mode (with L4 � r0, 0sJ),
that is not converging, is selected.

To further evaluate the performance improvement given
by the hybrid multi-observer, we run 100 simulations with
different initial conditions for the state estimate of all the
modes of the multi-observer, both in the case without and
with resets. In particular, both components of x̂kp0, 0q P R2,
for all k P t1, . . . , 5u, were selected randomly in the interval
r�2, 2s and, in each simulation, all modes of the multi-
observer were initialized with the same state estimate. The
system state, the monitoring variables and the variable σ
were always initialized at xp0, 0q � p1, 1q, ηkp0, 0q � 10,
for all k P t1, . . . , 5u, and σp0, 0q � 1. We considered
the same choice of design parameters as before. To quantify
the performance improvement, we evaluate the mean absolute
error (MAE) and the root mean square error (RMSE), averaged
over all the simulations, of the state estimation error obtained
with the nominal observer and the hybrid multi-observer both
in the case without and with resets. The obtained data are
given in Table I. Note that the data for e1 without and with
resets are slightly different because the 100 initial conditions
were randomly selected and thus they may be different in
the simulations without and with resets. Table I shows that
the proposed technique, both without and with resets, highly
improves the estimation performance compared to the nominal
one. Indeed, both the MAE and the RMSE are improved by
more than 99% both in the case without and with resets.
Moreover, in this example, the performance of the hybrid
multi-observer without and with resets are very similar, with
the case without resets that slightly outperforms the case where
the resets are implemented, both in term of MAE and RMSE.
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Fig. 3. fpSOCq(blue) with its linearization (red) and PHEV current input.

B. Electric circuit model of a lithium-ion battery

We consider an electric circuit model of 1-cell lithium-ion
battery shown in [49, Fig. 2], with a nonlinear output map.
From the circuit the following system model is derived

9x � Ax�Bu, y � Cx� fpHxq �Du� w. (43)

The state is x :� pURC,SOCq P R2, where URC is the voltage
of the RC circuit and SOC is the state of charge of the battery.
The output y is the output voltage, the input u is the current
and w is the measurement noise. The system matrices are

A �

�
� 1

τ 0

0 0

�
, B �

�
� 1

c
1
Q

�
, C �

�
�1 0

�
,

H �
�
0 1

�
, D �

�
�Rint

�
.

(44)

Considering the temperature to be constant and equal to 25�C,
the parameters values are τ � 7 s, R � 0.5 � 10�3 Ω, c �
τ
R F, Q � 25 Ah and Rint � 1 mΩ. The function f and its
linearization are shown in Fig. 3 on the interval r0, 100s% and
we consider a first order approximation outside the interval
r0, 100s%. The function f satisfies Assumption 2 since it has
bounded derivatives. The input u is given by a plug-in hybrid
electric vehicle (PHEV) current profile, see Fig. 3, and the
measurement noise is given by wptq � 0.01 sinp10tq, for all
t ¥ 0. We design the nominal observer

9x̂1 � Ax̂1 �Bu� L1py � ŷ1q, ŷ1 � Cx̂1 � fpHx̂1q �Du,
(45)

where x̂1 is the state estimate, ŷ1 is the output estimate
and L1 � r�2.07, 2.48sJ P R2�1 is the observer gain
that is designed following a polytopic approach like in [50].
Observer (45) satisfies Assumption 1 with α � 0.1.

To improve the estimation performance, we design the
hybrid multi-observer considering N � 3 additional modes.
To select L2, we linearize the output map and we design a
Luenberger observer with eigenvalues in r�0.2,�0.3s and we
obtain L2 � r0.06, 61.25sJ. Note that, since this observer is
designed for the linearized system, we have no guarantees that
it satisfies an input-to-state stability property for the nonlinear
system. Moreover, we chose L3 � r0, 0sJ and we designed an
extended Kalman filter [13], with REKF � 1, QEKF � 0.1 � I2
and αEKF � 0.01, to obtain L4, which is thus a time-varying
gain. Note that, in view of Remark 3, the results presented in
this paper hold also in this case.

We simulate the proposed hybrid multi-observer, both with-
out and with resets, considering the initial conditions xp0, 0q �
p1, 100q, x̂kp0, 0q � p0.5, 50q, ηkp0, 0q � 0 for all k P
t1, . . . , 4u and σp0, 0q � 1. The design parameters are selected

0 500 1000 1500
0

50

100

je
j

1000 1050 1100 1150 1200
0

0.05

0 500 1000 1500
0

50

100

J

0 500 1000 1500Time [s]
1

2

3

4

<

Fig. 4. Battery example. Norm of the estimation error |e| (top figure),
performance cost J (middle figure) and σ (bottom figure). Nominal (yellow),
without resets (red), with resets (blue).

TABLE II
BATTERY EXAMPLE. AVERAGE MAE AND RMSE.

no reset reset
e1 eσ % improv. e1 eσ % improv.

MAE 28.10 3.37 87.99 27.30 1.65 93.94
RMSE 30.87 8.66 71.95 29.90 5.99 79.98

ν � 0.05, Λ1 � 1, Λ2 �
�
1 0
0 10�4

�
and ε � 10�2. Note that

the condition ν P p0, αs is satisfied.
Fig. 4 shows the norm of the nominal estimation error,

namely |e1|, as well as |eσ|, obtained with or without resets.
Moreover, the nominal performance cost J1 and the costs Jσ
obtained both in the case without and with resets are shown
in Fig. 4, together with the variable σ, which indicates the
selected mode at every time instant. Fig. 4 shows that both
solutions (without resets and with resets) significantly improve
the estimation performance compared to the nominal one.

As in the example in Section VIII-A, we run 100 simulations
with different initial conditions for the state estimate of all
modes of the multi-observer. In particular the first component
of x̂kp0, 0q was selected randomly in the interval r0, 3s rVs,
while the second component of x̂kp0, 0q was selected ran-
domly in the interval r1, 100s r%s, for all k P t1, . . . , 4u. All
the other initial conditions and the design parameters were
selected as before. We evaluate the MAE and the RMSE as in
the example in Section VIII-A and the obtained results, given
in Table II, show the estimation performance improvement.
In this example, the case with resets outperforms the case
without resets, both in term of MAE and RMSE, according
to the average results of 100 simulations with different initial
conditions showed in Table II. However, for the specific choice
of initial conditions considered to obtain the plots in Fig. 4
the case without resets outperforms the one with resets.

IX. CONCLUSION

We have presented a novel hybrid multi-observer that can
improve the state estimation performance of a given nomi-
nal nonlinear observer. Each additional mode of the multi-
observer differs from the nominal one only in its output
injection gain, that can be freely selected as no convergence
property is required for these modes. Inspired by supervisory
control/observer approaches, we have designed a switching
criterion, based on monitoring variables, that selects one mode
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at any time instant by evaluating their performance. We have
proved an input-to-state stability property of the estimation
error and the estimation performance improvement. Finally,
numerical examples confirm the efficiency of the proposed
approach.

We believe that the flexibility of the presented framework
leads to a range of fascinating research questions among which
the off-line tuning of the additional modes gains, for which
various techniques (learning based, dynamic programming)
may be envisioned. Some first ideas are drawn in Section IV-
A.2 but more could be done in this direction. The question
of the link between the considered cost function, which
involves the output estimation error, and a cost based on
the state estimation error is also a relevant challenge to
unravel. It would also be interesting to extend the results to
more general classes of systems and observers. This might
involve investigating observability/detectability singularities or
examining observers derived through immersion techniques,
see, e.g., [51], or observers given by differential inclusions
like sliding modes observers, Levant’s observers, and super-
twisting observers, see, e.g., [1, Sections 6.3 and 6.4] and
references therein. Finally, merging the approach presented in
this work with the one in, e.g., [23], [26], addressing the case
of systems with unknown parameters is also a challenging
research question.

APPENDIX

A. Proof of Proposition 1
The Lyapunov function of Proposition 1 is defined as

Upqq :� c1paV pe1q� η1q� c2 max
kPt1,...,N�1u

tbV pekq� ηk, 0u�

c3 maxtησ�η1, 0u, for any q P Q, where c1, c2, c3, a, b P R¡0

are selected such that c2   c3   c1, a ¡ ā where ā :�
δ1pλmaxpΛ1q�λmaxpL

J
1 Λ2L1qq

α ¥ 0 and b P p0, b̄q with b̄ :� λminpΛ1q
θ ,

with θ :� γ max
kPt1,...,N�1u

}pLk � L1q}
2
P R¥0, where γ comes

from Assumption 1. Note that U is locally Lipschitz as V is
continuously differentiable.

We prove the three items of Proposition 1 separately.
Proof of item (i). We first show the upper-bound. Let
q P Q, using (5) we have Upqq ¤ c1paαp|e1|q � η1q �
c2 max

kPt1,...,N�1u
tbαp|ek|q � ηk, 0u � c3 maxtησ � η1, 0u ¤

c1paαp|e1|q � η1q � c2
N�1°
k�1

pbαp|ek|q � ηkq � c3pησ � η1q :�

αU p|pe, ηq|q, for some αU P K8.
We now prove the lower-bound of item (i) of Proposition 1.

We have that max
kPt1,...,N�1u

tbV pekq � ηk, 0u ¥ bV peσq � ησ as

σ P t1, . . . , N � 1u. Hence, since maxpησ � η1, 0q ¥ ησ � η1,
in view of (5), Upqq ¥ c1paαp|e1|q � η1q � c2pbαp|eσ|q �
ησq� c3pησ� η1q � c1aαp|e1|q� pc1� c3qη1� c2bαp|eσ|qq�
pc3 � c2qησ. Since c1 � c3 ¡ 0 and c3 � c2 ¡ 0, there exists
αU P K8 such that Upqq ¥ αU p|pe1, η1, eσ, ησq|q.
Proof of item (ii). For the sake of convenience we write
Upqq � U1pqq � U2pqq � U3pqq, for any q P C, where
U1pqq � c1paV pe1q � η1q, U2pqq � c2 max

kPt1,...,N�1u
tbV pekq �

ηk, 0u and U3pqq � c3 maxtησ � η1, 0u. We introduce here
the compact notation F

∆
� F pq, u, v, wq for the sake of

convenience. Let q P C, u P U , v P V and w P W , in
view of (6) and (10), U�

1 pq;F q ¤ �c1aαV pe1q�c1aψ1p|v|q�
c1aψ2p|w|q�c1νη1�c1pλmaxpΛ1q�λmaxpL

J
1 Λ2L1qq|y� ŷ1|

2.
Then, using Assumption 2 we have |y � ŷ1|

2 � |hpx,wq �
hpx̂1, 0q|

2 ¤ δ1V pe1q � δ2|w|
2. Thus, U�

1 pq;F q ¤ �c1paα�
λmaxpΛ1qδ1�λmaxpL

J
1 Λ2L1qδ1qV pe1q�c1νη1�c1aψ1p|v|q�

c1aψ2p|w|q � c1pλmaxpΛ1q � λmaxpL
J
1 Λ2L1qqδ2|w|

2. Since
a ¡ ā �

δ1pλmaxpΛ1q�λmaxpL
J
1 Λ2L1qq

α ¥ 0 and defining a1 :�

min
!

aα�δ1λmaxpΛ1q�δ1λmaxpL
J
1 Λ2L1q

a , ν
)
¡ 0 we obtain

U�
1 pq;F q ¤ �a1U1pqq � c1aψ1p|v|q � c1aψ2p|w|q

�c1pλmaxpΛ1q � λmaxpL
J
1 Λ2L1qqδ2|w|

2.
(46)

We now consider U2. We need to distinguish four cases.
Case a). Suppose there exists a unique j P t1, . . . , N � 1u

such that max
kPt1,...,N�1u

tbV pekq � ηk, 0u � bV pejq � ηj

and bV pejq � ηj ¡ 0. Then, by applying Lemma 1 to
the j-th dynamics, and by recalling the definition of θ
given at the beginning of the proof, we obtain U�

2 pq;F q �
c2
�
b
@
∇V pejq, fppx, u, vq � fo

�
x̂j , u, Ljpy � ŷjq

�D
�νηj

�py � ŷjq
JpΛ1 � LJj Λ2Ljqpy � ŷjq

�
¤ �c2bαV pejq �

c2bψ1p|v|q � c2bψ2p|w|q � c2bθ|y � ŷj |
2 � c2νηj �

c2py � ŷjq
JΛ1py � ŷjq � c2py � ŷjq

JLJj Λ2Ljpy � ŷjq ¤
�c2pbαV pejq�νηjq�c2bψ1p|v|q�c2bψ2p|w|q�c2pλminpΛ1q�

bθq|y�ŷj |
2.Since ν P p0, αs and b P p0, b̄q with b̄ �

λminpΛ1q

θ
,

λminpΛ1q � bθ ¡ 0 and thus, defining a2 :� c2α, we have
U�
2 pq;F q ¤ �a2U2pqq � c2bψ1p|v|q � c2bψ2p|w|q.
Case b). If for all k P t1, . . . , N � 1u, bV pekq � ηk   0,

then U2pqq � 0 and U�
2 pq;F q � 0 � �a2U2pqq.

Case c). If there exists a subset S � t1, . . . , N � 1u such
that, for all i P S, bV peiq�ηi � 0 and for all j P t1, . . . , N�
1uzS, bV pejq � ηj   0, then U2pqq � 0. Following similar
steps as in case a), we obtain U�

2 pq;F q � max
iPS

!
�a2pbV peiq�

ηiq�c2bψ1p|v|q�c2bψ2p|w|q, 0
)
¤ c2bψ1p|v|q�c2bψ2p|w|q �

�a2U2pqq � c2bψ1p|v|q � c2bψ2p|w|q.
Case d). If there exists a subset S̃ � t1, . . . , N � 1u such

that, for all i, j P S̃, max
kPt1,...,N�1u

tbV pekq�ηk, 0u � bV peiq�

ηi � bV pejq � ηj ¡ 0. Following similar steps as in case a),
we obtain U�

2 pq;F q ¤ max
iPS̃

!
�a2pbV peiq�ηiq�c2bψ1p|v|q�

c2bψ2p|w|q
)

. Then, for any i P S̃, by the definition of

S̃, we have U�
2 pq;F q ¤ �a2pbV peiq � ηiq � c2bψ1p|v|q �

c2bψ2p|w|q � �a2U2pqq � c2bψ1p|v|q � c2bψ2p|w|q. Merging
cases a), b), c) and d), we have that, for any q P C, u P U ,
v P V and w P W ,

U�
2 pq;F q ¤ �a2U2pqq � c2bψ1p|v|q � c2bψ2p|w|q. (47)

We now consider U3. Since q P C, from (20) we have that
ησ ¤ ηk for all k P t1, . . . , N�1u. Therefore, ησ ¤ η1. When
ησ   η1 we have that U3pqq � 0 and

U�
3 pq;F q � 0 � �a3U3pqq, (48)

for any a3 P R¡0. When ησ � η1, since F pq, u, v, wq P TCpqq
and TCpqq :� tq P Q : 9η1 ¥ 9ησu, where we use 9η1 � �νη1 �
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py � ŷ1q
JpΛ1 � LJ1 Λ2L1qpy � ŷ1q and 9ησ � �νησ � py �

ŷσq
JpΛ1�L

J
σΛ2Lσqpy� ŷσq for the sake of convenience, we

have

U�
3 pq;F q ¤ maxt 9ησ � 9η1, 0u � 0 � �a3U3pqq, (49)

for any a3 P R¡0. Consequently, from (48) and (49), we obtain
that,

U�
3 pq;F q ¤ 0 � �a3U3pqq, (50)

for all a3 P R¡0.
From (46), (47) and (50) we have that, for any q P C,

u P U , v P V and w P W , such that F pq, u, v, wq P
TCpqq, U�pq;F q � U�

1 pq, F q � U�
2 pq;F q � U�

3 pq;F q ¤
�a1U1pqq � c1aψ1p|v|q � c1aψ2p|w|q � c1pλmaxpΛ1q �
λmaxpL

J
1 Λ2L1qqδ2|w|

2�a2U2pqq�c2bψ1p|v|q�c2bψ2p|w|q�
a3U3pqq. Defining α0 :� minta1, a2, a3u P R¡0, we ob-
tain U�pq;F q ¤ �α0Upqq � ϕ1p|v|q � ϕ2p|w|q, where
ϕ1psq :� pc1a� c2bqψ1psq and ϕ2psq :� pc1a� c2bqψ2psq �
pc1pλmaxpΛ1q � λmaxpL

J
1 Λ2L1qqδ2qs

2, for any s ¥ 0.
Proof of item (iii). As in the proof of item (ii), for the sake
of convenience we write Upqq � U1pqq � U2pqq � U3pqq,
for any q P D, where U1pqq � c1paV pe1q � η1q, U2pqq �
c2 max

kPt1,...,N�1u
tbV pekq � ηk, 0u and U3pqq � c3 maxtησ �

η1, 0u. In addition, we use σ� to denote the selected mode
after a jump, in view of the hybrid system notation described
in the preliminaries.

Let q P D and g P Gpqq. Then, from (13) and (15) we have

U1pgq � c1paV pe1q � η1q � U1pqq. (51)

We now consider U2. We need to distinguish the case
without resets and the case with resets. We first consider the
case without resets. From (13)-(18), we obtain

U2pgq � c2 max
kPt2,...,N�1uztσ�u

tbV pe1q � η1, bV peσ�q � ησ� ,

bV pekq � ηk � ε, 0u

¤ c2 max
kPt2,...,N�1uztσ�u

tbV pe1q � η1, bV peσ�q � ησ� ,

bV pekq � ηk, 0u

� c2 max
kPt1,...,N�1u

tbV pekq � ηk, 0u � U2pqq.

(52)
On the other hand, when the resets are implemented, we

need to distinguish the case where σ� � 1 and the case when
σ� P t2, . . . , N � 1u. Suppose first that σ� � 1. Then, from
(13)-(18), we have

U2pgq � c2 maxtbV pe1q � η1, bV pek�q � ηk̃� � ε, 0u

¤ c2 maxtbV pe1q � η1, bV pek�q � ηk̃� , 0u
(53)

with k� P argmin
kPΠ

p�νηk�py�ŷkq
JpΛ1�L

J
kΛ2Lkqpy�ŷkqq

�
,

where Πpqq � argmin
kPt1,...,N�1uztσu

ηk, for all q P D and ηk̃� �

min
kPt1,...,N�1uztσu

ηk. Note that, if different observers generate

the same minimum ηk, with the same minimum derivative,
then k� may be different from σ�. However, ησ� � ηk� � η̃k� .
Consequently, from (53) and since k� P t1, . . . , N � 1u,

U2pgq ¤ c2 maxtbV pe1q � η1, bV pek�q � ηk� , 0u

¤ c2 max
kPt1,...,N�1u

tbV pekq � ηk, 0u � U2pqq.
(54)

On the contrary, when σ� P t2, . . . , N � 1u, from (13)-(18),
we have

U2pgq � c2 maxtbV pe1q � η1, bV pek�q � ησ� , bV pek�q � ηk̃�

� ε, 0u

¤ c2 maxtbV pe1q � η1, bV pek�q � ησ� , bV pek�q � ηk̃� ,

0u,
(55)

with k� P argmin
kPΠ

p�νηk�py�ŷkq
JpΛ1�L

J
kΛ2Lkqpy�ŷkqq

�
,

where Πpqq � argmin
kPt1,...,N�1uztσu

ηk, for all q P D and ηk̃� �

min
kPt1,...,N�1uztσu

ηk. Note that, if different observers generate

the same minimum ηk, with the same minimum derivative,
then k� may be different from σ�. However, ησ� � ηk� �
η̃k� . Consequently, from (55) and since k� P t1, . . . , N �
1u, U2pgq ¤ c2 maxtbV pe1q � η1, bV pek�q � ηk� , 0u ¤
c2 max

kPt1,...,N�1u
tbV pekq � ηk, 0u � U2pqq. As a result, from

(52), (54) and the last inequality we have, for any q P D and
any g P Gpqq,

U2pgq ¤ U2pqq. (56)

We now consider U3. From (15) and (16) we have U3pgq �
c3 maxtησ� � η1, 0u � c3 maxtησ � η1, 0u � U3pqq.

Merging (51), (56) and the last equation we obtain, for any
q P D and any g P Gpqq, Upgq ¤ Upqq, which concludes the
proof of item (iii) of Proposition 1. This complete the proof.

B. Proof of Proposition 3

Let u P LU and v P LV , w P LW with V and W
compact set. Let M ¥ M such that such that }v}8 ¤ M
and }w}8 ¤ M . Let q be a solution to system (19) with
|qp0, 0q| ¤M ¤M . Pick any pt, jq P dom q and let 0 � t0 ¤
t1 ¤ � � � ¤ tj�1 � t satisfy dom q X pr0, ts � t0, 1, . . . , juq ��j

i�0rti, ti�1s � tiu. For each i P t0, . . . , ju and almost all
s P rti, ti�1s, qps, iq P C. Then, from (10), for all k P
t1, . . . , N�1u, for all s P pti, ti�1q, (we omit the dependency
on ps, iq below), 9ηk � 9ησ � �νpηk � ησq � py � ŷkq

JpΛ1 �
LJkΛ2Lkqpy � ŷkq � py � ŷσq

JpΛ1 � LJσΛ2Lσqpy � ŷσq ¥
�νpηk�ησq�py� ŷσq

JpΛ1�L
J
σΛ2Lσqpy� ŷσq ¥ �νpηk�

ησq � pλmaxpΛ1q � λmaxpL
J
σΛ2Lσqq|y � ŷσ|

2. Then, using
Assumption 2 we have |y � ŷσ|

2 � |hpx,wq � hpx̂σ, 0q|
2 ¤

δ1V peσq � δ2|w|
2. Thus, we obtain, for all s P pti, ti � 1q,

9ηk � 9ησ ¥ �νpηk � ησq � pλmaxpΛ1q � λmaxpL
J
σΛ2Lσqq

pδ1V peσq � δ2|w|
2q.

(57)
Using (24), from Theorem 1, we obtain, for all pt, jq P
dom q, |eσpt, jq| ¤ βU p|qp0, 0q|, tq � γU p}v}8 � }w}8q, with
βU P KL and γU P K8. Then, using |qp0, 0q| ¤ M ,
}v}8 ¤ M and }w}8 ¤ M we obtain, for all pt, jq P dom q,
|eσpt, jq| ¤ βU pM, tq � γU p2Mq ¤ βU pM, 0q � γU p2Mq.
From Assumption 1, for all eσ P Rnx , V peσq ¤ αp|eσ|q,
where α P K8 comes from Assumption 1. From the last two
inequalities we have, for all pt, jq P dom q,

V peσpt, jqq ¤ αpβU pM, tq � γU p2Mqq

¤ β̌U pM, 0q � γ̌U p2Mq,
(58)
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where β̌U :� α�βU P KL and γ̌U :� α�γU P K8. Combining
(57) with (58) we obtain, for all k P t1, . . . , N � 1u, for all
s P rti, ti�1s,

9ηk � 9ησ ¥ �νpηk � ησq � pλmaxpΛ1q � λmaxpL
J
σΛ2Lσqq

pδ1pβ̌U pM, 0q � γ̌U p2Mqq � δ2M
2q

¥ �νpηk � ησq � c,
(59)

with c :� pλmaxpΛ1q � max
kPt1,...,N�1u

λmaxpL
J
kΛ2Lkqqpδ1pβ̌U p

M, 0q � γ̌U p2Mqq � δ2M
2q P R¡0. Integrating (59) and

applying the comparison principle [47, Lemma 3.4] we obtain,
for all s P rti, ti�1s, for all k P t1, . . . , N � 1u,

ηkps, iq � ησps, iq ¥ e�νps�tiqpηkpti, iq � ησpti, iqq

�
c

ν
p1� e�νps�tiqq.

(60)

On the other hand, from (21), we have

ti�1 :� inftt ¥ ti : min
kPt1,...,N�1uztσu

ηkpt, iq � ησpt, iqu.

(61)
We define k� :� σpti�1, i� 1q P argmin

kPΠ
p�νηkpti�1, i� 1q �

pypti�1, i� 1q� ŷkpti�1, i� 1qqJpΛ1�L
J
kΛ2Lkqpypti�1, i�

1q � ŷkpti�1, i � 1qqq
�
, where Πpqq � argmin

kPt1,...,N�1uztσu

ηk.

Evaluating (60) for s � ti�1 and k � k�, from (61), we
have
0 � ηk�pti�1, iq � ησpti�1, iq

¥ e�νpti�1�tiqpηk�pti, iq � ησpti, iqq �
c

ν
p1� e�νpti�1�tiqq.

(62)
We first consider the case where k� � 1. Note that σps, iq �

k� by the definition of k�, for all s P rti, ti�1s. We now
consider the cases without and with resets separately. From
(16), (17) and (21) we have in the case without resets, for
all i P Z¡0, ηk�pti, iq � ηk�pti, i � 1q � ε ¥ ησpti, iq � ε,
while in the case with resets, ηk�pti, iq � ησpti, iq � ε. As
a result, ηk�pti, iq ¥ ησpti, iq � ε, both in the case without
and with resets. Thus, ηk�pti, iq�ησpti, iq ¥ ε and from (62),
0 ¥ e�νpti�1�tiqε� c

ν p1�e
�νpti�1�tiqq, which can be rewritten

as e�νpti�1�tiq
�
ε� c

ν

�
¤ c

ν , that implies

ti�1 � ti ¥ �
1

ν
ln

� c
ν

ε� c
ν



P R¡0. (63)

On the other hand, when k� � 1 � σps, i � 1q,
for all s P rti�1, ti�2s, we have that σpti�2, i � 2q �

argmin
kPt2,...,N�1u

ηkpti�1, iqq � 1. Therefore, from (63), we obtain

ti�2 � ti�1 ¥ � 1
ν ln

�
c
ν

ε� c
ν

	
P R¡0. Consequently, for

all switching times pti, iq P dom q, we have ti�2 � ti ¥

� 1
ν ln

�
c
ν

ε� c
ν

	
P R¡0. Pick any pt, jq, pt1, j1q P dom q such

that pt, jq ¤ pt1, j1q, from the last inequality and using τ �

� 1
2ν ln

�
c
ν

ε� c
ν

	
we obtain j1 � j ¤

1

τ
pt1 � tq � 2, which

concludes the proof.
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[23] M. S. Chong, D. Nešić, R. Postoyan, and L. Kuhlmann, “Parameter
and state estimation of nonlinear systems using a multi-observer under
the supervisory framework,” IEEE Transactions on Automatic Control,
vol. 60, no. 9, pp. 2336–2349, 2015.

[24] A. P. Aguiar, M. Athans, and A. M. Pascoal, “Convergence properties of
a continuous-time multiple-model adaptive estimator,” European Control
Conference, Kos, Greece, pp. 1530–1536, 2007.

[25] T. J. Meijer, V. S. Dolk, M. S. Chong, R. Postoyan, B. de Jager,
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“State estimation of an electrochemical lithium-ion battery model:
improved observer performance by hybrid redesign,” European Control
Conference, Bucharest, Romania, pp. 2151–2156, 2023.

[36] E. Petri, R. Postoyan, D. Astolfi, D. Nešić, and V. Andrieu, “Towards
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