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Digital & Artificial Intelligence

Two related but distinct concepts
AI: Different Definitions
1956 Any algorithm / program

1960-2012 Expert systems and logical reasoning
2012- Data & neural networks

Digital

AI

Data
Machine-Learning

Deep L.
Neural Net.

Computer
A. Turing

1941 1986 2012

Y. Lecun

Neural Networks

G. Hinton

Deep-learning
1956

Computer-
Sciences 

AI: wide variety of algorithms
Mainly : Expert System + Reasonning AI= Neural Networks
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Artificial Intelligence & Machine Learning

AI: computer programs that engage in
tasks which are, for now, performed
more satisfactorily by human beings
because they require high-level mental
processes.

Marvin Lee Minsky, 1956

N-AI (Narrow Artificial Intelligence),
dedicated to a single task

̸= G-AI (General AI), which replaces
humans in complex systems.

Andrew Ng, 2015
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Machine Learning definition

1 Collecting labeled dataset

2 Training classifier

3 Exploiting the model
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Neural Networks: tackling raw/complex data

1 Complex modular architecture

2 Random initilization

3 (Slow) Training by backpropagation

4 Faster inference
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Gradient Backpropagation(1986)

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536. 5/56
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Neural Networks: tackling raw/complex data

1 Complex modular architecture

2 Random initilization

3 (Slow) Training by backpropagation

4 Faster inference

...
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Deep learning &
Representation Learning
[Application to textual data]
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AI + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in AI

Linguistics [1960-2010]

Rule-based Systems:

*
{like, love, 

 appreciate} * #product

*
{like, love, 

 appreciate} * #product{didn't, not,  
doesn't, don't}

*
{hate, loathe,

detest} * #product

Requires expert knowledge

Rule extraction ⇔
very clean data

Very high precision

Low recall

Interpretable system
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AI + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in AI

Machine Learning [1990-2015]
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AI + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in AI

Linguistics [1960-2010] Machine Learning [1990-2015]

Requires expert knowledge

Rule extraction ⇔
very clean data

+ Interpretable system

+ Very high precision

− Low recall

Little expert knowledge needed

Statistical extraction ⇔
robust to noisy data

≈ Less interpretable system

− Lower precision

+ Better recall

Precision = criterion for acceptance by industry

→ Link to metrics
6/56
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Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations [2008, 2013, 2016]
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LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
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Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations [2008, 2013, 2016]

...

The fluffy cat napped lazily in the sunbeam.
I adopted a stray cat from the shelter last week.
My cat loves to chase after toy mice.
The black cat stealthily crept through the dark alley.
I often find my cat perched on the windowsill, watching birds.
She gently stroked her cat's fur as it purred contentedly.
Our neighbor's cat frequently visits our backyard.
My cat has a preference for fish flavored cat food.
The cat stealthily stalked a mouse in the garden.
My grandmother has a collection of porcelain cat figurines.
The cat napped peacefully in the warm sunlight.
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Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations [2008, 2013, 2016]

cat
dog

cats
dogs

good

bad better

worse

Italy France
Germany

Roma Paris
Berlin

man

woman
actor

actress he

she his

her

you

yourking

queen

best

worst

Semantic Space:

similar meaning
⇔

close position

Structured Space:
grammatical regularities,
basic knowledge, ...

Distributed representations of words and phrases and their compositionality, Mikolov et al. NeurIPS 2013
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Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations [2008, 2013, 2016]

From Words to Tokens

Machine-Learning

Continuous Vector Space

Word Piece statistical split

token
Representation of
unknown words

Adaptation to technical
domains

Resistance to spelling
errors

Enriching word vectors with subword information. Bojanowski et al. TACL 2017.
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Aggregating word representations: towards generative AI

Generation & Representation
New way of learning word positions

The fluffy cat napped lazily in the sunbeam.

Representation
Layer

Hidden
Layer

Prediction
Layer
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0.1
0.6
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Loss wrt
Ground Truth
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The fluffy cat napped lazily in the sunbeam.
I adopted a stray cat from the shelter last week.
My cat loves to chase after toy mice.
The black cat stealthily crept through the dark alley.
I often find my cat perched on the windowsill, watching birds.
She gently stroked her cat's fur as it purred contentedly.
Our neighbor's cat frequently visits our backyard.
The playful cat swatted at the dangling string with its paw.
My cat has a preference for fish flavored cat food.
The cat stealthily stalked a mouse in the garden.
My grandmother has a collection of porcelain cat figurines.

Corpus

Sequence to Sequence Learning with Neural Networks, Sutskever et al. NeurIPS 2014 8/56
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Use-Case: Machine Translation

Il tombe des cordes Criterion 1: regenerating the sentence

Beyond word-for-word translation, multilingual representation of sentences
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Use-Case: Machine Translation

Il tombe des cordes

It's raining cats and dogs

Criterion 1: regenerating the sentence

Criterion 1

Criterion 2:
Aligning sentence representations

Beyond word-for-word translation, multilingual representation of sentences
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Use-Case: Machine Translation

Il tombe des cordes

It's raining cats and dogs

Criterion 1: regenerating the sentence

Criterion 1

Criterion 2:
Aligning sentence representations

Es regnet Bindfäden

Beyond word-for-word translation, multilingual representation of sentences
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Transformer architecture: state-of-the-art aggregation

Recurrent Neural Network: Transformer:

ht+1 = htW1 + xt+1W2

It's raining cats and dogs

it's raining cats and dogs

Self-attention
Matrix

Fully Connected

Tr
an

sf
or

m
er

 L
ay

er

Token
embeddings

Attention is all you need, Vaswani et al. NeurIPS 2017
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Recurrent Neural Network: Transformer:

ht+1 = htW1 + xt+1W2

It's raining cats and dogs

it's raining cats and MASK
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Attention is all you need, Vaswani et al. NeurIPS 2017
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Transformer architecture: state-of-the-art aggregation

Recurrent Neural Network: Transformer:
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A new developpement paradigm since 2015

Huge dataset + huge archi. ⇒ unreasonable training cost
Pre-trained architecture + 0-shot / finetuning

cat dog

Encoder

Pretraining

text

Decoder

words & text
representations

Word prediction; sentence completion; ...

Pretrained Language Model Finetuned Model

Language Model

your
(small)
data

expected
target+

Adapted Language
Model

Massive corpus

= 3% 

   of the corpus

It's raining MASK and PRED
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Different steps / different jobs

Raw data

Formated/cleaned
data

Gathering,
Scrapping, Reading

Relevant feature,
constraints,
architecture

Dialog

Model 
Construction

External tools,
Pre-trained models

Industrialization

GUI, deployment,
optimization

API

Computing cluster /
GPU

...
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chatGPT
November 30, 2022

1 million users in 5 days
100 million by the end of January 2023
1.16 billion by March 2023
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The Ingredients of chatGPT

0. Transformer + massive data (GPT)

Massive corpus

= 3%
   of the corpus

Transformer
block

Transformer
block
...

Causal pretraining

JFK died in 

GPT

1963, he was was assassinated in Dallas ...

What is the color of the sun?

GPT

Most answer yellow, but orange or red ...

Huge
Transformer
architecture

Huge 
+Filtered
dataset

Grammatical skills: singular/plural agreement, tense concordance
Knowledges

Language Models are Few-Shot Learners, Brown et al. 2020
13/56
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The Ingredients of chatGPT

1. More is better! (GPT)

+ more input words [500 ⇒ 2k, 32k, 100k]

+ more dimensions in the word space [500-2k ⇒ 12k]

+ more attention heads [12 ⇒ 96]

+ more blocks/layers [5-12 ⇒ 96]

175 Billion parameters... What does it mean?

1.75 · 1011 ⇒ 300 GB + 100 GB (data storage for
inference) ≈ 400GB

NVidia A100 GPU = 80GB of memory (=20k€)

Cost for (1) training: 4.6 Million €
It's raining cats and dogs

word

representation
dimension

Transformer

block

Transformer

block

...

Attn word

cross-attn

head

nb
transf.
blocks
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The Ingredients of chatGPT

2. Dialogue Tracking

Dialog corpus

GPT

Specific training

Dialog follow-up
Coreference resolution
Way of speaking

Very clean data Data generated/validated/ranked by humans

15/56



Introduction Deep learning & NLP chatGPT Gen-AI Conclusion

The Ingredients of chatGPT

3. Fine-tuning on different (±) complex reasoning tasks

Scaling Instruction-Finetuned Language Models
Hyung Won Chung� Le Hou� Shayne Longpre� Barret Zoph† Yi Tay†

William Fedus† Yunxuan Li Xuezhi Wang Mostafa Dehghani Siddhartha Brahma
Albert Webson Shixiang Shane Gu Zhuyun Dai Mirac Suzgun Xinyun Chen

Aakanksha Chowdhery Alex Castro-Ros Marie Pellat Kevin Robinson
Dasha Valter Sharan Narang Gaurav Mishra Adams Yu Vincent Zhao

Yanping Huang Andrew Dai Hongkun Yu Slav Petrov Ed H. Chi
Je� Dean Jacob Devlin Adam Roberts Denny Zhou Quoc V. Le

Jason Wei⇤

Google

Abstract

Finetuning language models on a collection of datasets phrased as instructions has been shown to improve
model performance and generalization to unseen tasks. In this paper we explore instruction finetuning
with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on
chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves
performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT),
and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation, RealToxicityPrompts).
For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PaLM 540B by a large margin
(+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as
75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot
performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a
general method for improving the performance and usability of pretrained language models.
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Figure 1: We finetune various language models on 1.8K tasks phrased as instructions, and evaluate them on unseen tasks.
We finetune both with and without exemplars (i.e., zero-shot and few-shot) and with and without chain-of-thought,
enabling generalization across a range of evaluation scenarios.

�Equal contribution. Correspondence: lehou@google.com.
†Core contributor.
1Public checkpoints: https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints.
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The Ingredients of chatGPT

3. Fine-tuning on different (±) complex reasoning tasks

�Ϋм~8
�ĐĉĉĐĊİÖĊİÖњĬÖ²İĐĊòĊê
yļÖİķòĐĊњêÖĊÖĬ²ķòĐĊ
�ĄĐİÖÒмËĐĐāњy�
�ÒŏÖĬİ²Ĭò²Ąњy�
&ŕķĬ²ÌķòŏÖњy�
�òķĄÖЫÌĐĊķÖŕķњêÖĊÖĬ²ķòĐĊ
�ĐĩòÌњÌĄ²İİòűÌ²ķòĐĊ
~ķĬļÌķмķĐмķÖŕķ
К

εεџ"²ķ²İÖķİМџαδџ�²ķÖêĐĬòÖİМџ
αιγџ�²İāİ

WļūĊ
X²ķļĬ²ĄњĄ²Ċêļ²êÖњòĊéÖĬÖĊÌÖњњњњњњњњњњњњњњњњ�ĄĐİÖÒмËĐĐāњy�
�ĐÒÖњòĊİķĬļÌķòĐĊњêÖĊЖњњњњњњњњњњњњњњњњњњњњњњњњњњ�ĐĊŏÖĬİ²ķòĐĊ²Ąњy�њњњњњњњњ
wĬĐêĬ²ĉњİŖĊķïÖİòİњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњ�ĐÒÖњĬÖĩ²òĬњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњ
"ò²ĄĐêњÌĐĊķÖŕķњêÖĊÖĬ²ķòĐĊњњњњњњњњњњњњњњњњњњКњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњњ

ζιџ"²ķ²İÖķİМџβηџ�²ķÖêĐĬòÖİМџθΰџ�²İāİ

�Đ�њжzÖ²İĐĊòĊêз
�ĬòķïĉÖķòÌњĬÖ²İĐĊòĊêњњњњњњњњњњњњњњњњњ&ŕĩĄ²Ċ²ķòĐĊњêÖĊÖĬ²ķòĐĊ
�ĐĉĉĐĊİÖĊİÖњzÖ²İĐĊòĊêњњњњњњњњ~ÖĊķÖĊÌÖњÌĐĉĩĐİòķòĐĊ њњњњњњњњњњњ
AĉĩĄòÌòķњĬÖ²İĐĊòĊêњњњњњњњњњњњњњњњњњњњњњњњК

ιџ"²ķ²İÖķİМџαџ�²ķÖêĐĬŖМџιџ�²İāİ

X²ķļĬ²Ą
AĊİķĬļÌķòĐĊİњŏέ

�²ļİÖњÖŨÖÌķњÌĄ²İİòűÌ²ķòĐĊ
�ĐĉĉĐĊİÖĊİÖњĬÖ²İĐĊòĊê
X²ĉÖÒњÖĊķòķŖњĬÖÌĐêĊòķòĐĊ
�ĐŕòÌњĄ²Ċêļ²êÖњÒÖķÖÌķòĐĊ
yļÖİķòĐĊњ²ĊİŐÖĬòĊê
yļÖİķòĐĊњêÖĊÖĬ²ķòĐĊ
wĬĐêĬ²ĉњÖŕÖÌļķòĐĊ
�ÖŕķњÌ²ķÖêĐĬòŞ²ķòĐĊ
К
γηβџ"²ķ²İÖķİМџαΰθџ�²ķÖêĐĬòÖİМџ

αεεδџ�²İāİ

䙜 �њ"²ķ²İÖķњòİњ²ĊњĐĬòêòĊ²ĄњÒ²ķ²њİĐļĬÌÖњжÖЖêЖњ~yļ�"зЖ
䙜 �њ�²İāњ�²ķÖêĐĬŖњòİњļĊòīļÖњķ²İāњİÖķļĩњжÖЖêЖњķïÖњ~yļ�"њÒ²ķ²İÖķњòİњÌĐĊűêļĬ²ËĄÖњéĐĬњĉļĄķòĩĄÖњķ²İāњÌ²ķÖêĐĬòÖİњİļÌïњ²İњ

ÖŕķĬ²ÌķòŏÖњīļÖİķòĐĊњ²ĊİŐÖĬòĊêЗњīļÖĬŖњêÖĊÖĬ²ķòĐĊЗњ²ĊÒњÌĐĊķÖŕķњêÖĊÖĬ²ķòĐĊзЖ
䙜 �њ�²İāњòİњ²њļĊòīļÖњҏÒ²ķ²İÖķЗњķ²İāњÌ²ķÖêĐĬŖҎњĩ²òĬЗњŐòķïњ²ĊŖњĊļĉËÖĬњĐéњķÖĉĩĄ²ķÖİњŐïòÌïњĩĬÖİÖĬŏÖњķïÖњķ²İāњÌ²ķÖêĐĬŖњжÖЖêЖњ

īļÖĬŖњêÖĊÖĬ²ķòĐĊњĐĊњķïÖњ~yļ�"њÒ²ķ²İÖķЖз

8òĊÖķļĊòĊêњķ²İāİ

>ÖĄÒмĐļķњķ²İāİ

WWQ�
�ËİķĬ²Ìķњ²ĄêÖËĬ²њњњњњњњњњњњњњњњњ~ĐÌòĐĄĐêŖ
�ĐĄĄÖêÖњĉÖÒòÌòĊÖњњњњњњњњњњњњњњњwïòĄĐİĐĩïŖ
wĬĐéÖİİòĐĊ²ĄњĄ²ŐњњњњњњњњњњњњњњњњњК

εηџķ²İāİ

��>
�ĐĐĄÖ²ĊњÖŕĩĬÖİİòĐĊİњњњњњњњњњњњњњњњX²ŏòê²ķÖ
�Ĭ²ÌāòĊêњİïļŮÖÒњĐËþÖÌķİњњњњњњњ�ĐĬÒњİĐŸòĊêњњњњњњњњњњњњњњњњњњњњњњњњњњњњњ
"ŖÌāњĄ²Ċêļ²êÖİњњњњњњњњњњњњњњњњњњњњњњњњК

βηџķ²İāİ

�Ŗ"òy�
AĊéĐĬĉ²ķòĐĊњ
İÖÖāòĊêњy�

θџĄ²Ċêļ²êÖİ

W9~W
9Ĭ²ÒÖњİÌïĐĐĄњ
ĉ²ķïњĩĬĐËĄÖĉİ

αΰџĄ²Ċêļ²êÖİ

Figure 2: Our finetuning data comprises 473 datasets, 146 task categories, and 1,836 total tasks. Details for
the tasks used in this paper is given in Appendix F.

2 Flan Finetuning
We instruction-finetune on a collection of data sources (Figure 2) with a variety of instruction template
types (Figure 3). We call this finetuning procedure Flan (Finetuning language models; Wei et al., 2021) and
prepend “Flan” to the resulting finetuned models (e.g., Flan-PaLM).2 We show that Flan works across several
model sizes and architectures (Table 2).

2.1 Finetuning Data
Task mixtures. Prior literature has shown that increasing the number of tasks in finetuning with instructions
improves generalization to unseen tasks (Wei et al., 2021; Sanh et al., 2021, inter alia). In this paper we scale
to 1,836 finetuning tasks by combining four mixtures from prior work: Mu�n, T0-SF, NIV2, and CoT, as
summarized in Figure 2. Mu�n3 (80 tasks) comprises 62 tasks from Wei et al. (2021) and 26 new tasks that
we added in this work, including dialog data (Byrne et al., 2019; Anantha et al., 2021; Dai et al., 2022) and
program synthesis data (Yasunaga and Liang, 2020; Li et al., 2022). T0-SF (193 tasks) comprises tasks from
T0 (Sanh et al., 2021) that do not overlap with the data used in Mu�n (SF stands for “sans Flan”). NIV2
(1554 tasks) comprises tasks from Wang et al. (2022c).4

2We use “Flan” to refer to our finetuning procedure. “FLAN” is a model in Wei et al. (2021).
3Multi-task finetuning with instructions.
4We removed 44 tasks related to MMLU (Hendrycks et al., 2020), since MMLU is used for evaluation.
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Figure 2: Our finetuning data comprises 473 datasets, 146 task categories, and 1,836 total tasks. Details for
the tasks used in this paper is given in Appendix F.

2 Flan Finetuning
We instruction-finetune on a collection of data sources (Figure 2) with a variety of instruction template
types (Figure 3). We call this finetuning procedure Flan (Finetuning language models; Wei et al., 2021) and
prepend “Flan” to the resulting finetuned models (e.g., Flan-PaLM).2 We show that Flan works across several
model sizes and architectures (Table 2).

2.1 Finetuning Data
Task mixtures. Prior literature has shown that increasing the number of tasks in finetuning with instructions
improves generalization to unseen tasks (Wei et al., 2021; Sanh et al., 2021, inter alia). In this paper we scale
to 1,836 finetuning tasks by combining four mixtures from prior work: Mu�n, T0-SF, NIV2, and CoT, as
summarized in Figure 2. Mu�n3 (80 tasks) comprises 62 tasks from Wei et al. (2021) and 26 new tasks that
we added in this work, including dialog data (Byrne et al., 2019; Anantha et al., 2021; Dai et al., 2022) and
program synthesis data (Yasunaga and Liang, 2020; Li et al., 2022). T0-SF (193 tasks) comprises tasks from
T0 (Sanh et al., 2021) that do not overlap with the data used in Mu�n (SF stands for “sans Flan”). NIV2
(1554 tasks) comprises tasks from Wang et al. (2022c).4

2We use “Flan” to refer to our finetuning procedure. “FLAN” is a model in Wei et al. (2021).
3Multi-task finetuning with instructions.
4We removed 44 tasks related to MMLU (Hendrycks et al., 2020), since MMLU is used for evaluation.
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(15.5% for 8B vs. 9.4% for 540B), the relative reduction in error rate was larger for the 540B
model (18.4% for 540B vs. 16.6% for 8B).

Plotting such scaling curves provides insights into how scaling the model size and the
number of tasks even further might improve performance. Scaling model size by another
order of magnitude (though challenging) is expected to provide substantial performance gain.
Scaling number of finetuning tasks should also improve performance, although likely only
incrementally. Overall, the scaling curves plotted indicate that future work should continue
scaling instruction finetuning.
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Figure 4: Scaling behavior of multi-task instruction finetuning with respect to model size (#
parameters) and number of finetuning tasks. The x-axes are log scale. The benchmark suites
are MMLU (57 tasks), BBH (23 tasks), TyDiQA (8 languages), and MGSM (10 languages).
The evaluation metric on all four benchmark suites is few-shot prompted accuracy (exact
match), where we take an unweighted average over all tasks. As an aggregate metric we report
the normalized average of MMLU-direct, MMLU-CoT, BBH-direct, BBH-CoT, TyDiQA,
and MGSM. These evaluation benchmarks are held-out (not included in the finetuning data).

Note that the task scaling experiment cannot be used to directly compare the relative
benefit of each mixture, as task order and mixture sizes may impact the sequential evaluation.
Instead, we only hope to observe the general scaling effects of parameters and tasks. More
recent work (Lima) also suggests that fewer, higher quality instruction data is sufficient
for strong results (Zhou et al., 2023). However, both Lima and this work emphasize the
importance of scaling task diversity, which appears to be the common denominator. Our
experiments (including Section 4) suggest that it is best to finetune on the widest variety of
tasks, where high-quality and complex/challenging tasks are best, whereas simple tasks like
sentiment analysis are least beneficial Wei et al. (2021).

4. Finetuning with chain-of-thought annotations

The goal of Flan finetuning is to produce an improved checkpoint across a range of evaluations,
which includes multi-step reasoning ability in addition to traditional NLP tasks. In this
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zero-shot CoT on PaLM without finetuning were only shown for math word problems, which
differ substantially from the types of problems in BBH.
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Figure 6: Zero-shot performance of PaLM and Flan-PaLM on a set of 23 challenging BIG-
Bench tasks (BBH). Flan-PaLM benefits from chain-of-thought (CoT) generation activated
via “let’s think step-by-step.”

5. Putting it all together

Given the prior results on scaling the number of tasks and including chain-of-thought data,
we now show the generality of instruction finetuning by applying it to several models of
different sizes, architectures, and training objectives. In addition to the PaLM family of
models, we instruction-finetune T5 models which have an encoder-decoder architecture, as
opposed to PaLM’s decoder-only architecture. As an extended version of the PaLM 62B
model, we instruction-finetune cont-PaLM, which is a 62B PaLM-model initialized from
PaLM-62B and then pretrained for 500B more tokens (Chowdhery et al., 2022). Finally, we
instruction-finetune U-PaLM, which is a 540B PaLM model initialized from PaLM-540B
and then pretrained with an UL2 objective for 20k additional steps (Tay et al., 2022a,b).

These evaluation results are shown in Table 5. Instruction finetuning improves normalized
average performance by a large margin for all model types. For T5 models without instruction
finetuning, we use LM-adapted models, which were produced by training T5 on 100B
additional tokens from C4 on a standard language modeling objective (Lester et al., 2021).
Given the difficulty of our evaluation benchmarks and the fact that T5 is not multilingual,
T5 models benefited the most from instruction finetuning compared with their non-finetuned
models. These results were quite strong for some benchmarks—for example, Flan-T5-XL
is only 3B parameters and achieves a MMLU score of 52.4%, surpassing GPT-3 175B’s
score of 43.9%. As another highlight, the strongest overall model we achieve in this paper
combines instruction finetuning with UL2 continued pre-training that was used in the U-
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The Ingredients of chatGPT

4. Instructions + answer ranking
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Usage of chatGPT & Prompting

Asking chatGPT = skill to acquire ⇒ prompting

Asking a question well: ... in detail, ... step by step
Specify number of elements e.g. : 3 qualities for ...
Provide context : cell for a biologist / legal assistant

Don’t stop at the first question

Detail specific points
Redirect the research
Dialogue

Rephrasing

Explain like I’m 5, like a scientific article, bro style, ...
Summarize, extend
Add mistakes (!)

https://chatgptprompts.guru/what-makes-a-good-chatgpt-prompt/

⇒ Need for practice [1 to 2 hours], discuss with colleagues

18/56
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Towards few-shot learning

Learning without modifying the model = examples in the prompt

19/56
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GPT4 & Multimodality

Merging information from text & image. Learning to exploit information jointly

The example of VQA: visual question answering

⇒ Backpropagate the error ⇒ modify word representations + image analysis
VQA: Visual Question Answering , arXiv, 2016 , A. Agrawal et al.
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At the origin of statistical modeling

1 Observing data (and context)

2 Modeling = Choosing probabilistic model / bayesian network

3 Optimize parameters (Max Lik., EM, ...)

4 Sampling / Inference + Evaluate distances : existing vs sampled

Observations

4 3 2 1 0 1 2 3
2

1

0

1

2

3

4

5
Modeling: choice+optim.

3 2 1 0 1 2

1

0

1

2

3

4

Sampling / eval.

4 3 2 1 0 1 2 3
2

1

0

1

2

3

4

5
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At the origin of statistical modeling

1 Observing data (and context)

2 Modeling = Choosing probabilistic model / bayesian network

3 Optimize parameters (Max Lik., EM, ...)

4 Sampling / Inference + Evaluate distances : existing vs sampled

Different modeling options / different traps

3 2 1 0 1 2

1

0

1

2

3

4

4 3 2 1 0 1 2 3
2

1

0

1

2

3

4

5

3 2 1 0 1 2

1

0

1

2

3

4

4 3 2 1 0 1 2 3
2
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0

1

2

3

4

5
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At the origin of deep learning

Gradient vanishing issue in deep architecture

Auto-Encoder architecture / facing unsupervised dataset with NN
Stacked Denoising Auto-Encoder : iterative training / pretraining

...

Ground
Truth

Loss

Gradient backpropagation

Gradient weakening => vanishing

da
ta
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At the origin of deep learning

Gradient vanishing issue in deep architecture
Auto-Encoder architecture / facing unsupervised dataset with NN

Stacked Denoising Auto-Encoder : iterative training / pretraining

...

da
ta

...

noise
Ground
Truth

Loss

Denoising

Low dimensional
representation learning
(/ PCA, SVD)

Auto-association by multilayer perceptrons and singular value decomposition, Biological Cybernetics, 1988
H. Bourlard & Y. Kamp
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At the origin of deep learning

Gradient vanishing issue in deep architecture

Auto-Encoder architecture / facing unsupervised dataset with NN

Stacked Denoising Auto-Encoder : iterative training / pretraining

...

...

da
ta

... ...

,

Ground
Truth

Loss

The difficulty of training deep architectures and the effect of unsupervised pre-training , AIS, PMLR 2009
Erhan, D., Manzagol, P. A., Bengio, Y., Bengio, S., & Vincent, P.

22/56



Introduction Deep learning & NLP chatGPT Gen-AI Conclusion

Different Forms of Generative AI

Input

Encoder

Compact
Vector

Representation

D
ec
od
er

Output

1 Encode an input = construct a vector

2 Decode a vector = generate an output

23/56
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Different Media / Different Architectures

Texts: classification problem

Images: multivariate regression problem
Physical processes
Complex structures / 3D / graphs: sequential problem

It's raining cats and dogs

Encoder

RNN/

Trans

Token
prediction

Il

Il

pleut

RNN/

Trans

24/56
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Different Media / Different Architectures

Texts: classification problem
Images: multivariate regression problem

Physical processes
Complex structures / 3D / graphs: sequential problem

NVidia Lab.
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Different Media / Different Architectures

Texts: classification problem
Images: multivariate regression problem
Physical processes

Complex structures / 3D / graphs: sequential problem

Mix mechanistic and data-driven approaches

e.g. Model differential
equations in a neural
network

EU Horizon, MSCA PERSEVERE 24/56
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Different Media / Different Architectures

Texts: classification problem
Images: multivariate regression problem
Physical processes
Complex structures / 3D / graphs: sequential problem

De
cis
io
n

Decision Decision

Reward

Apprentissage par
renforcement

Reinforcement learning: action/reward

Highly accurate protein structure prediction with AlphaFold , Nature, 2021
Jumper et al.
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Multi-Modality

Construction of multimodal representation spaces = grounding

Image ⇒ Text: Captioning, Visual Question Answering

Text ⇒ Image: mid-journey, dall-e, ...

Encoder
Encoder

Question
Answering

Word
Prediction

mask

Image
Inpainting

mask

Alignment of representation
spaces
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Multi-Modality

Construction of multimodal representation spaces = grounding
Image ⇒ Text: Captioning, Visual Question Answering
Text ⇒ Image: mid-journey, dall-e, ...

Encoder D
ec
od
er

Show and Tell: image captioning open sourced in TensorFlow , Chris Shallue , Google Research, 2016
25/56
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Multi-Modality

Construction of multimodal representation spaces = grounding
Image ⇒ Text: Captioning, Visual Question Answering
Text ⇒ Image: mid-journey, dall-e, ...

Where is the woman?

On the elephant

Visual encoder

Text encoder

decoder

Vqa: Visual question answering , ICCV, 2015
Antol et al. 25/56
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Multi-Modality

Construction of multimodal representation spaces = grounding

Image ⇒ Text: Captioning, Visual Question Answering

Text ⇒ Image: mid-journey, dall-e, ...

Encoder D
ec
od
er
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Multi-Modality

Construction of multimodal representation spaces = grounding
Image ⇒ Text: Captioning, Visual Question Answering
Text ⇒ Image: mid-journey, dall-e, ...

Hierarchical Text-Conditional
Image Generation with CLIP
Latents, arXiv, 2022
Ramesh et al.
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Towards Larger Foundation Models?

Let the modalities enrich each other
6 Center for Research on Foundation Models (CRFM)

Fig. 2. A foundation model can centralize the information from all the data from various modalities. This
one model can then be adapted to a wide range of downstream tasks.

Homogenization and emergence interact in a potentially unsettling way. Homogenization could
potentially provide enormous gains for many domains where task-speci�c data is quite limited — see
the opportunities presented in several such domains (e.g., §3.1: ����������, §3.2: ���, §3.3: ����
������); on the other hand, any �aws in the model are blindly inherited by all adapted models
(§5.1: ��������, §5.6: ������). Since the power of foundation models comes from their emergent
qualities rather than their explicit construction, existing foundation models are hard to understand
(§4.4: ����������, §4.10: ������, §4.11: ����������������) and they have unexpected failure
modes (§4.7: ��������, §4.8: ����������). Since emergence generates substantial uncertainty over
the capabilities and �aws of foundation models, aggressive homogenization through these models is
risky business. Derisking is the central challenge in the further development of foundation models
from an ethical (§5.6: ������) and AI safety (§4.9: ���������) perspective.

1.1.1 Naming.

We introduce the term foundation models to �ll a void in describing the paradigm shift we are
witnessing; we brie�y recount some of our reasoning for this decision. Existing terms (e.g., pretrained
model, self-supervised model) partially capture the technical dimension of these models, but fail to
capture the signi�cance of the paradigm shift in an accessible manner for those beyond machine
learning. In particular, foundation model designates a model class that are distinctive in their
sociological impact and how they have conferred a broad shift in AI research and deployment.
In contrast, forms of pretraining and self-supervision that technically foreshadowed foundation
models fail to clarify the shift in practices we hope to highlight.

On the Opportunities and Risks of Foundation Models, Tech. Report, Stanford, 2021
Bommasani et al. 26/56
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Conclusion

The main challenges of multimodality

New applications

at the interface between text, image,
music, voice, ...

Performance improvement

Better encoding, disambiguation, context
encoding

Explainability (through dialogue)

IoT / RecSys / Intelligent Vehicle / ... Dall-e

27/56
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Why So Much Controversy?

New tool [December 2022]

+ Unprecedented adoption speed [1M users in 5 days]

Strengths and weaknesses... Poorly understood by users
Significant productivity gains
Surprising / sometimes absurd uses

Misinterpreted feedback
Anthropomorphization of the algorithm and its errors

Prohibitive cost: what economic, ecological, and societal model?

Dall-e generated images 28/56
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chatGPT and the relationship with truth

1 Plausibility = grammar, agreement,
tense concordance, logical sequences...

⇒ Repeated knowledge

2 Predict the most plausible word...
⇒ produces hallucinations

3 Offline functioning

4 chatGPT ̸= knowledge graphs

5 Brilliant answers...
And silly mistakes!

+ we cannot predict the errors

JFK died in 

GPT

1963, he was was assassinated in Dallas ...

Example: producing a bibliography

29/56
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Generative AI: how to evaluate performance?

The critical point today

How to evaluate against ground truth?

How to evaluate system confidence / plausibility of generation?

The Ultimate Performance Metric in NLP, J. Briggs, Medium 2021

30/56
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Generative AI: how to evaluate performance?

The critical point today

How to evaluate against ground truth?
How to evaluate system confidence / plausibility of generation?

Published as a conference paper at ICLR 2019

(a) Train on FashionMNIST, Test on MNIST (b) Train on CIFAR-10, Test on SVHN

(c) Train on CelebA, Test on SVHN (d) Train on ImageNet,
Test on CIFAR-10 / CIFAR-100 / SVHN

Figure 2: Histogram of Glow log-likelihoods for FashionMNIST vs MNIST (a), CIFAR-10 vs SVHN
(b), CelebA vs SVHN (c), and ImageNet vs CIFAR-10 / CIFAR-100 / SVHN (d).

for these results. We report results only for Glow, but we observed the same behavior for RNVP
transforms (Dinh et al., 2017).

We next tested if the phenomenon occurs for other common deep generative models: PixelCNNs
and VAEs. We do not include GANs in the comparison since evaluating their likelihood is an open
problem. Figure 3 reports the same histograms as above for these models, showing the distribution of
log p(x) evaluations for FashionMNIST vs MNIST (a, b) and CIFAR-10 vs SVHN (c, d). The training
splits are again denoted with black bars, and the test splits with blue, and the out-of-distribution splits
with red. The red bars are shifted to the right in all four plots, signifying the behavior exists in spite
of the differences between model classes.

4 DIGGING DEEPER INTO THE FLOW-BASED MODEL

While we observed the out-of-distribution phenomenon for PixelCNN, VAE, and Glow, now we
narrow our investigation to just the class of invertible generative models. The rationale is that
they allow for better experimental control as, firstly, they can compute exact marginal likelihoods
(unlike VAEs), and secondly, the transforms used in flow-based models have Jacobian constraints
that simplify the analysis we present in Section 5. To further analyze the high likelihood of the
out-of-distribution (non-training) samples, we next report the contributions to the likelihood of each
term in the change-of-variables formula. At first this suggested the volume element was the primary
cause of SVHN’s high likelihood, but further experiments with constant-volume flows show the
problem exists with them as well.

Decomposing the change-of-variables objective. To further examine this curious phenomenon,
we inspect the change-of-variables objective itself, investigating if one or both terms give the out-
of-distribution data a higher value. We report the constituent log p(z) and log |@f�/@x| terms for
NVP-Glow in Figure 4, showing histograms for log p(z) in subfigure (a) and for log |@f�/@x| in
subfigure (b). We see that p(z) behaves mostly as expected. The red bars (SVHN) are clearly shifted
to the left, representing lower likelihoods under the latent distribution. Moving on to the volume
element, this term seems to cause SVHN’s higher likelihood. Subfigure (b) shows that all of the

5

Plausibility

Published as a conference paper at ICLR 2019

J SAMPLES

(a) MNIST samples (b) FashionMNIST samples

(c) CIFAR-10 samples (d) SVHN samples

Figure 13: Samples. Samples from CV-Glow models used for analysis.

19

Train

Published as a conference paper at ICLR 2019

J SAMPLES

(a) MNIST samples (b) FashionMNIST samples

(c) CIFAR-10 samples (d) SVHN samples

Figure 13: Samples. Samples from CV-Glow models used for analysis.

19

Test

Do Large Language Models Know What They Don’t Know? , Yin et al. , ACL, 2023

Do Deep Generative Models Know What They Don’t Know? , Nalisnick et al. , ICLR, 2019
30/56
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Stability/predictability

Difficult to bound a behavior

Impossible to predict good/bad answers

⇒ Little/no use in video games
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⇒ Little/no use in video games
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Stability, explainability... And complexity

Sensor 1

Simple
rules

Sensor 2

Sensor d

Up/Down

Flashing
light

0

...

Vocabulary (huge)

Word sequence 

(= combination)

Aggregation

Word prediction

it's raining cats and dogs

Simple system

Exhaustive testing of
inputs/outputs

Predictable & explainable

Large dimension

Complex non-linear combinations

Non-predictable &
non-explainable 32/56
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Stability, explainability... And complexity

Interpretability vs Post-hoc Explanation

Neural networks = non-interpretable (almost always)
too many combinations to anticipate

Neural networks = explainable a posteriori (almost always)

[Uber Accident, 2018]

Simple system

Exhaustive testing of
inputs/outputs

Predictable & explainable

Large dimension

Complex non-linear combinations

Non-predictable &
non-explainable 32/56
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Transparency

Model weights (open-weight)... ⇒ but not just the weights
Training data (BLOOM) + distribution + instructions
Learning techniques
Evaluation

The Foundation Model Transparency Index
Rishi Bommasani*1 Kevin Klyman*1

Shayne Longpre2 Sayash Kapoor3 Nestor Maslej1 Betty Xiong1 Daniel Zhang1

Percy Liang1

1Stanford University
2Massachusetts Institute of Technology

3Princeton University

Stanford Center for Research on Foundation Models (CRFM)
Stanford Institute for Human-Centered Arti�cial Intelligence (HAI)

Foundation models have rapidly permeated society, catalyzing a wave of generative AI applications
spanning enterprise and consumer-facing contexts. While the societal impact of foundation models is
growing, transparency is on the decline, mirroring the opacity that has plagued past digital technologies
(e.g. social media). Reversing this trend is essential: transparency is a vital precondition for public
accountability, scienti�c innovation, and e�ective governance. To assess the transparency of the founda-
tion model ecosystem and help improve transparency over time, we introduce the Foundation Model
Transparency Index. The 2023 Foundation Model Transparency Index speci�es 100 �ne-grained
indicators that comprehensively codify transparency for foundation models, spanning the upstream
resources used to build a foundation model (e.g. data, labor, compute), details about the model itself
(e.g. size, capabilities, risks), and the downstream use (e.g. distribution channels, usage policies, a�ected
geographies). We score 10 major foundation model developers (e.g. OpenAI, Google, Meta) against the
100 indicators to assess their transparency. To facilitate and standardize assessment, we score developers
in relation to their practices for their �agship foundation model (e.g. GPT-4 for OpenAI, PaLM 2 for
Google, Llama 2 for Meta). We present 10 top-level �ndings about the foundation model ecosystem: for
example, no developer currently discloses signi�cant information about the downstream impact of its
�agship model, such as the number of users, a�ected market sectors, or how users can seek redress for
harm. Overall, the Foundation Model Transparency Index establishes the level of transparency today to
drive progress on foundation model governance via industry standards and regulatory intervention.
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Information access: from word index to RAG

Internet

Indexation

Request
Sourced Results

Indexing process
Dynamical updates 1

2

Knowledge Graph (>2013)
Verified Info.

34/56
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Information access: from word index to RAG

Asking for information from ChatGPT... A surprising use!
But is it reasonnable? [Real Open Question (!)]

LLM

Request

Offline model,
no index/no sourcing

Most answer yellow, but orange or red ...

What is the color of the sun?

Word-by-word Generation

Internet

No Guarantee,
No Sourcing

34/56
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Information access: from word index to RAG

LLM Request

Most answer yellow, but orange or red ...

What is the color of the sun?

+ Documents to analyse
( = context )

Extracted answer

Web query + analysis, automatic summary, rephrasing, meeting reports...
(Current) limit on input size (2k then 32k tokens)
= pre chatGPT use of LLM for question answering

34/56



Limits Uses Risks Conclusion

Information access: from word index to RAG

LLM

Request

Most answer yellow, but orange or red ...

What is the color of the sun?

Mix Extraction/Generation

Intranet /
Internet

+ sourcing as in QA

1

2

RAG: Retrieval Augmented Generation
(Current) limit on input size (2k then 32k tokens)

34/56
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Information access: from word index to RAG

LLM

Request

Most answer yellow, but orange or red ...

What is the color of the sun?

Mix Extraction/Generation

Intranet /
Internet

+ sourcing as in QA

Indexing / QueryingScaling

Generation controle + Evaluation 
 hallucination

Domain Adaptation

Request

LLM

Continuous 
embedding 

indexing ...

cosine
similarity

Document or
Paragraph level

Paragraph / document selection for QA

1

2

3

An introduction to neural information retrieval , IR, 2018
Mitra, B., & Craswell, N.

1 Specific indexing process, relying on (L)Language Model
Lewis et al (2020) Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

2 Very large context given to the LLM
Borgeaud et al (2022) Improving Language Models by Retrieving from Trillions of Tokens

3 Generation controle: hallucination
LeBronnec et al. 2024, SCOPE: A Preference Fine-tuning Framework for Faithful Data-to-text

4 Domain Adaptation (Biology, Medecine, Technical field...)
34/56
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Other Uses of Generative AIs

A fantastic tool for

formatting

Formatting, language, ...

No new ideas

Personal assistant

Standard letters, recommendation letters, cover letters, termination letters
Translations

Meeting reports

Formatting notes

Writing scientific articles

Writing ideas, in French, in English

35/56
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Other Uses of Generative AIs

And a tool for reflection!

Brainstorming

Argument development, contradiction search

Assistant for software development

Code generation, error search, ...
Documentation

Educational assistant

Wikipedia ++, proposal of outlines for essays,
Code explanation / correction proposals

Document analysis

Information extraction, question-answering, ...

35/56
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Using Language Models in a Pipeline

Data-scientist requested...
... but it could be a small project anyway

Adapting to new domain (biology, legal domain,
technical field)

New words, new meaning, new contexts
⇒ (few-shot), mainly fine-tuning

Specific task

Information extraction, Technological Watch, Question
answering

⇒ (zero/few-shot), mainly fine-tuning

Finetuning

Few iterations
Specific layers / light approximate gradient...

It's raining cats and dogs

Transformer
block

Transformer
block

...

Attn

MLP

word
prediction

36/56
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Typology of AI Risks in NLP (L. Weidinger)

37/56
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Access to Information

Access to dangerous/forbidden information

+Personal data
Right to digital oblivion

Information authorities

Nature: unconsciously, image = truth
Source: newspapers, social media, ...
Volume: number of variants, citations
(pagerank)

Text generation: harassment...

Risk of anthropomorphizing the algorithm

Distinguishing human from machine

38/56
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Machine Learning & Bias

Mustache, Triangular Ears, Fur
Texture

Cat

Over 40 years old, white,
clean-shaven, suit

Senior Executive

Bias in the data ⇒ bias in the responses
Machine learning is based on extracting statistical biases...

⇒ Fighting bias = manually adjusting the algorithm
39/56
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Machine Learning & Bias

Sterreotypes from Pleated Jeans

Gender choice

Skin color

Posture

...

Bias in the data ⇒ bias in the responses
Machine learning is based on extracting statistical biases...

⇒ Fighting bias = manually adjusting the algorithm

39/56
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Bias Correction & Editorial Line

Bias Correction:

Selection of specific data, rebalancing

Censorship of certain information

Censorship of algorithm results

⇒ Editorial work... Done by whom?

Domain experts / specifications

Engineers, during algorithm design

Ethics group, during result validation

Communication group / user response

⇒ What legitimacy? What transparency? What
effectiveness?

40/56



Limits Uses Risks Conclusion

Machine learning is never neutral

1 Data selection

Sources, balance, filtering

2 Data transformation

Information selection, combination

3 Prior knowledge

Balance, loss, a priori, operator choices...

4 Output filtering

Post processing

⇒ Choices that influence algorithm results

41/56
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Data Leak(s)

chatGPT

Query (& documents)

Recording
Query + documents +

user feedback

Most answer yellow, but orange or red ...

What is the color of the sun?US Server

Future Optimization

Transfer of sensitive data

Exploitation of data by OpenAI (or others)

Data leakage in future models

42/56
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Security Issues

Plug-ins ⇒ Often significant security vulnerabilities
for users

Email access / transfer of sensitive information etc...

Management issues for companies

Securing (very) large files

Increased opportunities for malware signatures

≈ software rephrasing

New problems!

Direct malware generation

plugin

Aswer
proposition

Malware
Direct access to the
core of the system

Malware = signature

Reformulation

D
iff

er
en

t s
ig

na
tu

re
s

Query

Malware
generation !
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Legal Risks/Questions

Reading, collection,
formatting

Storage
(temporary ou permanent)

Documents,
personal data,

medicine data, ...

Training model Trained model = 
Math function

Generate commands,
diagnostics, texts,

image, codes

Inference

Responsibility for
errors

Reproductions of
untraceable

extracts
Right to use data in

an algorithm
Optout

Usage regulation

Right to collect, 
right to copy,

consent

Model = 
emanation of data?

Copyright and 
database law
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Economic Questions

Funding/Advertising ⇔ visits by internet users

Google knowledge graph (2012) ⇒ fewer visits, less revenue

chatGPT = encoding web information... ⇒ much fewer visits?

⇒ What business model for information sources with chatGPT?

⇒ Who does benefit from the feedback? [StackOverFlow]
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Risks of AI Generalization

AI everywhere =
loss of meaning?

In the educational domain

Transposition to HR

To project-based funding
systems

Writing,
reflection,

outline, ideas

Automated
evaluation,

summary, ...

Outline, quiz,
illustrations

AI usage
verification
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Detection of texts generated by chatGPT
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Detection of texts generated by chatGPT

Text classifier (like for any author)
Detection of biases in word choice / phrasing

Characterization of text plausibility (OpenAI, GPTZero)
Hyper-fluency of sentences, over-abundance of logical connectors
Language model = statistical ⇒ measurement between distributions
(perplexity)

δ-plausibility on perturbed texts (DetectGPT)
chatGPT should quickly integrate fingerprints in generated texts

Detectors ⇒ < 100% detection

+ confidence level in detection

− depends on text length and modifications made

≈ detects pieces of Wikipedia (chatGPT = stochastic parrot)
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Detection of texts used by chatGPT

LLM
Word

Sequence

Likelihood

Closed corpora ⇒ challenge of detection of texts used in training

Detection of likelihood/surprise of observed word sequences
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How to approach the ethics question?

Medicine Artificial Intelligence

1 Autonomy: the patient must be able to make
informed decisions.

2 Beneficence: obligation to do good, in the
interest of patients.

3 Non-maleficence: avoid causing harm, assess
risks and benefits.

4 Justice: fairness in the distribution of health
resources and care.

5 Confidentiality: confidentiality of patient
information.

6 Truth and transparency: provide honest,
complete, and understandable information.

7 Informed consent: obtain the free and
informed consent of patients.

8 Respect for human dignity: treat all
patients with respect and dignity.

1 Autonomy: Humans control the process

2 Beneficence: including the environment?

3 Non-maleficence: Humans + environment /
sustainability / malicious uses

4 Justice: access to AI and equal opportunities

5 Confidentiality: what about the
Google/Facebook business model?

6 Truth and transparency: the tragedy of
modern AI

7 Informed consent: from cookies to
algorithms, knowing when interacting with an AI

8 Respect for human dignity:
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Tools and Questions

New tools:

New ways to handle existing problems

Address new problems

... But obviously, it doesn’t always work!

AI often makes mistakes (assistant vs replacement)
Learning to use an AI system

AI not suited for many problems

AI = part of the problem (+interface, usage, acceptance...)
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Maturity of Tools & Environments

(More) mature tools

Environments: Jupyter, Visual Studio Code, ...

Machine Learning Scikit-Learn: blocks to assemble

Training: 1 week
Project completion: few hours to few days

Deep Learning pytorch, tensorflow: building blocks... but more
complex

Training: 2-5 weeks
Project completion: few days to few months
Mandatory for text and image

A data project = 10 or 100 times less time / 2005

Developing a project is accessible to non-computer scientists
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Levels of Access to Artificial Intelligence

1 User via an interface: chatGPT

WARNING: some training is still required (2-4h)

2 Using Python libraries

Basics on protocols
Standard processing chains
Training: 1 week-3 months (ML/DL)

3 Tool developer

Adapt tools to a specific case
Integrate business constraints
Build hybrid systems (mechanistic/symbolic)
Mix text and images
Training: ≥ 1 year
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Digital Sovereignty: the Entire Chain

Massive corpus

= 3%
   of the corpus JFK died in $

LLM

Pre-trained model construction

Data Mastery
- Collection/balance
- Cleaning

Training
- Computation power 

(x1000 GPU)
- Architecture ML

LLM

Question?

 A1
 A2

 A3

...

Structuration

Hard
question?

Dialogue
Tracking

Model Fine-Tuning

Data Mastery & Construction
- Human interactions +++
- Dataset cost
- Domain adaptation

LLM

Model exploitation

    Optimization / Cost reduction
- MLOps skills
- Local deployment

Industrialization

Deployment

53/56



Limits Uses Risks Conclusion

A Multitude of Professions

• Data management & hardware devices (storage, network, …)

Data architect / manager

• Update & Query on the data

Data Engineer

• Data visualization (chart, indicators, …)
• Statistical trends

Data Analyst

• Query on LM/foundation models with "prompts"

Prompt Engineer

• Query the data / critical selection & balance
• Algorithm development / adaptation / evaluation
• Advanced data visualization

Data Scientist

• Algorithm optimization
• Industrialize software solutions

MLOps Engineer

+ DPO :
Data Protection Officer
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A Multitude of Professions

Algorithm
publication

Program
publication[2006-2010]

Pre-trained
model

publication
[>2013]

...

And data
somtimes

[>2020] API / operating
models

CD/HD +
fees
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Factors of Acceptability for Generative AI

1 Utilitarianism:

Performance (acceptance factor of chatGPT)
Reliability / Self-assessment

2 Non-dangerousness:

Bias / Correction
Transparency (editorial line, human/machine
confusion)
Reliable Implementation
Sovereignty (?)
Regulation (AI act)

Avoid dangerous applications

3 Know-how:

Training (usage/development)
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chatGPT: A Simple Step

Training & Tuning Costs
4-5 Million Euros / training ⇒ chatGPT is poorly trained!

Data Efficiency
chatGPT > 1000x a human’s lifetime reading

Identify Entities, Cite Sources
Anchoring responses in knowledge bases

Anchoring responses in sources

L’IA dans notre pédagogie ・Université Paris-Saclay

Accélération de la diffusion au grand public

11

Multiplication of initiatives: GPT,
LaMBDA, PaLM, BARD, BLOOM,
Gopher, Megatron, OPT, Ernie,
Galactica...

Public involvement,
impact on information access
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