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ABSTRACT
We consider the problem of dispatching and scheduling an
infinite stream of multiple classes of jobs to a set of single-
server parallel queues. Each job requires the simultaneous
utilization of multiple servers. Our objective is to identify
a dispatching algorithm (used by a central dispatcher) and
a scheduling discipline (used by each server) that induces
throughput optimality, i.e., the mean response time of jobs
is finite whenever the system load is less than one. It is
known that this problem is not trivial even in the case where
all servers share a centralized queue, i.e., no job dispatch-
ing. We show that throughput optimality can be obtained
by dispatching jobs to queues according to probabilities pro-
vided that i) jobs of a given class respect some constraint on
the server geometry and ii) the scheduling discipline priori-
tizes jobs with the largest server need. Due to a connection
with the M/G/1 priority queue, we provide an exact analyt-
ical expression for the mean response time of jobs. Finally,
we discuss the connection of our model with redundancy sys-
tems, where jobs do not necessarily require the simultaneous
utilization of servers.

1. INTRODUCTION
In the multiserver job model, incoming jobs occupy mul-

tiple servers simultaneously for the entire job duration. The
number of servers a job requires is usually referred to as
server need of that job. Recently, the interest for this type
of concurrent jobs in the context of queueing systems has
increased significantly due to a recent trace of Google Borg
scheduler [16], where it is shown that server needs can vary
by five orders of magnitude across jobs. In existing mul-
tiserver job queueing models, jobs wait in a central queue
before being processed and then leave the system perma-
nently upon service completion. The primary challenge is
to design simple scheduling policies that ensure throughput
optimality. Roughly speaking, this means that the mean re-
sponse time of jobs is finite when the system load is less than
one. For instance, First-Come-First-Served is not through-
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put optimal in general. To see this, assume that a job that
requires the utilization of one server arrives when the sys-
tem is empty and, immediately after, a job that requires
the utilization of all the servers arrives; all the servers ex-
cept for one will be idle while the first job is in service.
Within First-Come-First-Served, a sufficient condition for
stability is given in [19]. In these references, the authors
also show that throughput optimality is achieved in a lim-
iting regime where the number of servers grows to infinity.
More recently, other throughput optimal scheduling policies
have been proposed. Examples are the family of BackFill-
ing policies, Max-Weight and ServerFilling; see, e.g., [7, 8].
A further challenging problem related to the multiserver job
model is the development of simple analytical formulas for
the mean response time [9], though this objective is often
out of reach. Consequently, existing analyses only focus
on mean response time within practically relevant limiting
regimes. These regimes offer not only approximations of
mean response time in prelimit settings but also reveal struc-
tural properties, such as asymptotic optimality. In this re-
spect, [7,8] derive simple asymptotic formulas for ServerFill-
ing and ServerFilling-SRPT in a heavy-traffic regime, where
the arrival rate approaches its nominal value while all other
parameters remain constant. Also, [10] examines mean wait-
ing times under FCFS and the Smallest-Need-First policy in
the many-server heavy-traffic limit.

In this work, we address the aforementioned challenges
by considering a system with parallel queues. Specifically,
instead of assuming a centralized queue, we assume that
each server has its own queue. This decentralized version
of the multiserver job model yields the additional prob-
lem of deciding which queue a job should join upon its ar-
rival. The authors in [15] consider that the servers have
finite buffer size and incoming jobs are placed to one of the
servers with enough place. They provide an algorithm that
achieves throughput optimality. In this work, we assume
that servers have infinite buffer size (i.e., the number of
waiting customers in the queue is unbounded) and we pro-
vide a job dispatching and scheduling scheme that is able to
achieve not only throughput optimality, but also mean re-
sponse time characterization. Within the proposed model,
each job is placed by a central dispatcher to servers upon
arrival according to probabilities that depend on the server
need of the incoming job, and each server simply prioritizes
jobs with the largest server need.

The remainder of the article is organized as follows. In
Section 2 we describe the model under investigation. In Sec-
tion 3, we present our dispatching and scheduling scheme as



well as our main results. In Section 4, we discuss the con-
nection of our work with redundancy and bandwidth shar-
ing systems. Finally, we draw the conclusions if this work
in Section 5.

2. MODEL DESCRIPTION
We consider a queueing system where an infinite stream

of jobs needs to be processed by N parallel servers.

2.1 Jobs
Jobs arrive in the system following a Poisson process with

rate λ and can be partitioned into C classes. A job is of
class i with probability αi, for all i = 1, . . . , C. Class-i jobs
require the simultaneous possession of ni ≤ N servers for a
random amount of time equal in distribution to the random
variable Di, for all i = 1, . . . , C. After being processed, each
job leaves the system.

In the following, ni (a constant) and Di will be respec-
tively referred to as“server need”and“service time”of class-i
jobs. Without loss of generality, we assume that server needs
are decreasing.

2.2 Servers
Let S := {1, . . . , N} denote the server set. Each server

works at unitary speed and has its own queue. For this rea-
son, the terms server and queue will be used interchange-
ably. For now, servers are free to process jobs according
to any scheduling discipline provided that they somehow
coordinate among themselves in order to respect the con-
straint that jobs hold the simultaneous possession of multi-
ple servers.

2.3 Dispatcher
Upon the arrival of a class-i job, a central dispatcher se-

lects ni servers and immediately routes it to such servers for
processing – the server selection procedure is specified later.
Dispatching decisions are taken instantly at job arrival times
and are irrevocable.

2.4 Technical assumptions
We assume that the stochastic sequences of job inter-

arrivals, service times, and classes are i.i.d. and indepen-
dent.

Let di := E[Di], ρi := λαinidi/N and ρ :=
∑C

i=1 ρi. For
the system load ρ, we assume that

ρ < 1, (1)

which is necessary to ensure the stability of the underlying
Markov process, in the sense of positive Harris recurrence.
Note that (1) is the usual stability condition “the overall
arrival rate is less than the overall service rate”.

Though it restricts the applicability of our results, we as-
sume that the overall number of servers and all server needs
are powers of some integer k ≥ 2. This assumption has been
also considered in [8] and, furthermore, it has been observed
that the specific scenario where k = 2 occurs in several real
workloads, e.g., [1].

Assumption 1. The number of servers N and the server
needs ni, for all i = 1, . . . , C, are all powers of some positive
integer k ≥ 2.

2.5 Problem statement
Within the setting described above, a dispatching algo-

rithm is a rule employed by the central dispatcher that se-
lects the servers that will process each job, and a scheduling
discipline is a rule employed by each server that selects a
job in its queue to process at any point in time. A Dispatch-
ing and Scheduling (D&S) scheme is the combination of a
dispatching algorithm and a scheduling discipline. In this
paper, our primary objective is to identify a D&S scheme
that ensures throughput optimality.

Definition 1. We say that a D&S scheme is throughput opti-
mal if the resulting mean response time, i.e., the mean time
spent by jobs in the system, is finite whenever (1) holds true.

For illustration purposes, let us consider two natural ex-
amples of D&S schemes and show that they are not through-
put optimal. In both examples, we assume 4 servers and 3
classes. In the following illustrations, jobs of class 1, 2 and
3 are represented in green, red and blue, respectively. Also,
we assume that ni = 23−i, for i = 1, 2, 3 and that the system
is initially empty.

Example 1 (First-Come-First-Served scheduling). Assume
that the first arriving job is of class 3 and needs to be routed
to Server 3. Immediately after, assume that a class-1 job ar-
rives, which is sent to all servers. We represent in Figure 1a
the behavior of this system when the scheduling First-Come-
First-Served is applied. As it can be seen, jobs of class 1 do
not start service before the completion of the job at Server
3. This situation clearly leads to a waste of capacity and
throughput optimality cannot be guaranteed.

Example 2 (Random dispatching). Assume that a class-2
job arrives and, immediately after, another one of the same
class. Under a probabilistic routing, the first job can be
placed in Server 1 and Server 2, whereas the second one
can be placed in Server 2 and Server 3. In Figure 1a, we
represent the behavior of this system when this occurs. As it
can be seen, the job in Server 3 will not start service until
the previous job finishes being served at Server 1 and Server
2. This also leads to a waste of the capacity of the system,
which implies that a D&S scheme with a randomized dis-
patching is not throughput optimal.

3. OUR APPROACH
We define a particular D&S scheme.

3.1 Dispatching and scheduling scheme
For each job class i = 1, . . . , C, let

Si := {{1, . . . , ni}, {ni + 1, . . . , 2ni}, . . . ,
{N − ni, . . . , N}},

denote a partition of the server set S. Note that each el-
ement of the partition contains exactly ni servers, i.e., the
server need of class-i jobs. Then, the proposed scheme works
as follows:

1. (Dispatching rule) Upon arrival of a class-i job, choose
randomly s ∈ Si and send the job to the servers in s;

2. (Scheduling rule) Process jobs with the largest server
needs first (smallest job class index), preemptively and
breaking ties following the order of their arrival.
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(a) The scheduling FCFS does not provide a D&S scheme that is
throughput optimal.
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(b) The random dispatching does not provide a D&S scheme that
is throughput optimal.

Figure 1: Examples of natural dispatching and scheduling schemes.
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Figure 2: Our D&S scheme for the instance of Example 1.

The dispatching rule above ensures that jobs are processed
by specific blocks of servers and that all servers are equally
loaded. If we endow servers with a notion of distance among
them, then servers inside each block are close to each other.
In serverless computing terminology, one can think of these
blocks as containers (or pods) and servers as replicas [2, 3].

The performance of our D&S scheme for the instance con-
sidered in Example 1 is represented in Figure 2. Under our
scheme, we remark that S2 = {(1, 2), (3, 4)}. Therefore,
since (2, 3) /∈ S2, we have that a job of class 2 cannot be
routed to Server 2 and Server 3 and, as a consequence, the
behavior described in Example 2 cannot be given under our
D&S scheme.

Within Assumption 1, the D&S scheme above ensures that
each job holds the simultaneous possession of a number of
servers that corresponds to its server need. This happens

naturally without the servers having to communicate with
each other. Also, the proposed scheme ensures that no pro-
cessing capacity is lost whenever a job needs to be processed.

3.2 Main result
Since our scheme ensures full capacity usage at all times,

each queue is work-conserving, and throughput optimality is
obtained. In fact, letting R denote the mean response time
induced by the above D&S scheme, we have the following
more general result.

Theorem 1. Let Assumption 1 hold. If ρ < 1, then

R =

C∑
i=1

αiRi,

where

Ri :=

( ∑i
j=1 ρjrj

1−
∑i

j=1 ρj
+ di

)
1

1−
∑i−1

j=1 ρj
, (2)

and

rj :=
λ

2

j∑
k=1

αkE[D2
k].

Proof. The key observation is that the proposed D&S
scheme ensures that each queue is an M/GI/1 queue with
the preemptive-resume priority rule. This holds by Assump-
tion 1, which allows for a “perfect nesting” of jobs inside
servers. In this queue, there are C job classes. Class-1 jobs
have the highest priority, class-2 jobs the second highest
priority and so on. Because of the probabilistic dispatch-
ing, class-i jobs have arrival rate λαi

ni
N

and service times
distributed as Di. Therefore, the load of class-i jobs is ρi.
This queueing system has been widely studied in the litera-
ture [12]. It is well known that the mean response time of
class-i jobs is given by the formula in (2) whenever ρ < 1.
Note that rj is the residual service time (upon arrival) of a
class-j job, j = 1, . . . , C.



4. RELATION WITH REDUNDANCY AND
BANDWIDTH SHARING MODELS

The proposed model admits an interpretation in the con-
text of redundancy (or replication) systems and the band-
width-sharing model proposed in [13]. In this section, we
discuss such a relationship.

4.1 Redundancy systems
It is well-known that redundancy is a powerful technique

used in computer and communication systems to decrease
latency. Under this approach, upon arrival of a job, mul-
tiple replicas (or copies, clones, etc.) of the job itself are
placed at different servers. The number of copies of a job is
usually called the redundancy level. The service time across
replicated jobs can be i.i.d. or equal. In the former case, it is
said that copies are i.i.d. whereas in the latter the copies are
identical. Redundant replicas may be canceled when the first
replica completes service (cancel-on-completion) or when the
first replica initiates service (cancel-on-start). Within some
architectures and load conditions, replicas are not canceled
at all as the cost of sending cancellation messages may not
pay off [17]. Many researchers have been interested in ana-
lyzing the stability of redundant systems and we point to [4]
for a recent survey.

Multiserver job and redundancy systems share the prop-
erty that each job requires the utilization of multiple servers.
However, the main difference between these models is that
redundancy systems do not require to use these servers si-
multaneously. Under the proposed scheme, we observe that
both the redundancy with identical copies and multiserver
job models are identical. As a consequence, the results
of this work extend to redundancy systems with identical
copies, i.e., our results show that, for a redundancy sys-
tem with identical copies, we can provide a dispatching and
scheduling scheme that is throughput optimal and such that
the mean response time of jobs is known.

The D&S scheme proposed in this work is called Most-
Redundant-First and First-Come-First-Served (MRF-FCFS)
in the context of redundancy systems. In [5], the authors
provide partial results about the stability and performance
optimality of MRF-FCFS with identical copies and a nested
topology, which is a generalization of the topology consid-
ered in our work. Given the double interpretation of our
work in terms of multiserver jobs and redundancy systems,
we conclude that the result of Theorem 1 characterizes the
stability condition and provides the expression of the mean
response time of jobs of the MRF-FCFS policy with iden-
tical copies and a nested topology when the condition of
Assumption 1 is verified.

4.2 Bandwidth sharing model
The proposed model is closely related to the well-known

bandwidth-sharing model for elastic traffic introduced in
[13]. To illustrate this connection, consider fixing the dis-
patching rule to a uniformly random policy. In this case,
the model presented here becomes a special instance of the
bandwidth-sharing model, where each server represents a
link in a network and each multi-server job functions as a
flow occupying multiple links simultaneously.

Over the past decades, extensive research has explored
the performance of the bandwidth-sharing model, including
throughput optimality, mean response time, and other met-

rics. For example, [14] demonstrates that the bandwidth-
sharing model with general job-size distributions under an
alpha-fair scheduling policy achieves maximal stability at
the fluid scale. Additionally, studies on heavy-traffic mo-
ments and the job count distribution for this model, un-
der proportionally fair scheduling, have been conducted in
[11,18], though they often assume phase-type service times.
A notable feature of the proportionally fair policy is its in-
sensitivity to job size distribution variance in the heavy-
traffic regime, a feature not typically seen in policies like
FCFS or Largest-Need-First. For more details, we point the
reader to [6, 18].

The above studies focus on network capacity allocations
within the class of weighted α-fair allocations, aiming to
extend the behavior of Processor Sharing to a network con-
text. In our model, however, network capacity is not shared;
each job occupies the full capacity of required resources dur-
ing processing. This distinction makes our model struc-
turally different. Additionally, a significant limitation of the
bandwidth-sharing model is the lack of an exact formula for
mean response time, contrasting with our approach. On the
other hand, a limitation of the proposed approach is that
insensitivity does not hold, as it is clear from Theorem 1.

5. CONCLUDING REMARKS AND FUTURE
WORK

We have investigated job dispatching and scheduling in
a parallel queueing system where jobs require the simulta-
neous possession of multiple servers. For this scheme, we
show that it achieves throughput optimality and we provide
an analytical expression of the mean response time of jobs.
As observed in Section 4, the proposed model has a double
interpretation, for which we have the following concluding
remarks:

• Within the multiserver job interpretation, to the best
of our knowledge, our model is the first to consider
the decentralized case where each server has its own
queue, which opposes to the more common case where
all jobs share a central queue [8, 9].

• Within the job replication interpretation, the proposed
scheme does not need the exchange of control messages
between servers. Also, it should be clear that Theo-
rem 1 provides an upper bound on the mean response
time obtained if the underlying system would imple-
ment the cancel-on-start replica-cancellation policy.

As future work, we would like to explore the optimal D&S
scheme in the multiserver job model. Another interesting is
to analyze under which conditions the performance of re-
dundancy systems and the multiserver job model coincide.
Finally, we believe that an interesting research line consists
of studying the performance of load-balancing techniques in
parallel server systems for the multiserver job model.
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