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Trajectory tracking of unicycles under sampling and discrete-time
Passivity-Based Control

M. Mattioni†, S. Monaco† and D. Normand-Cyrot⋆

Abstract— The paper provides a new sampled-data and
single-rate control law for trajectory tracking of unicycles under
sampling. Assuming the reference generated by a continuous-
time input sequence that is persistently exciting the design
consists of two phases: first a new discrete-time generator is
proposed; then, asymptotic tracking is achieved via a discrete-
time IDA-PBC strategy. Simulations illustrate the result of
enhancing the efficiency of the proposed control law.

Index Terms— Sampled-data control; Lyapunov methods;
Nonholonomic systems.

I. INTRODUCTION

Tracking a desired Cartesian trajectory with an arbitrary
orientation profile represents one of the most common yet
challenging control problems [1]. Two major classes of
approaches have been proposed so far: the one relying on
time-varying control (e.g., [2], [3]), dynamic feedback (e.g.,
[4]) and time-discontinuous feedback (e.g., [5]).

Among the former, the works in [2], [3] invoke cascaded
arguments to design the control law from a leader-follower
perspective. It is assumed that the reference is generated by a
virtual leader whose dynamics is generated by an exosystem
fed by a suitable input sequence. Uniform asymptotic conver-
gence to the desired profile is ensured via simple proportional
feedback on the tracking error if the reference inputs of the
leader are persistently exciting (PE).

Despite the simplicity and efficiency of this approach, it
is only intended for continuous-time control, with natural
limitations arising in sampled-data implementation. Roughly
speaking, as control laws are typically implemented via
digital (sampling and hold) devices, the nominal performance
certificates deduced by the continuous design are generally
lost, even when the sampling period is small [6]. Despite this,
most control laws typically used in practice are emulation-
based with the design uniquely addressed in continuous time
while neglecting the effect of the actuation devices, usually
employed for the implementation [7], [8]. Thus, redesigning
the feedback law while taking into account and possibly
compensating the effects of sampling is essential.

This paper aims to address this issue and provide a new
sampled-data and single-rate control law ensuring trajectory
tracking of mobile robots from a leader-follower perspective.
Specifically, given a continuous-time reference generated by
the corresponding leader, the aim is to define a piecewise
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constant control law ensuring tracking of the desired pro-
file at all sampling instants. In this context, two questions
naturally arise: (i) are samples of the input-to-state leader
dynamics enough to asymptotically reproduce the desired
tracking profile at the sampling instants? (ii) how to compute
the actual sampled-data control law forcing the desired
behavior while compensating the effect of sampling? This
paper provides a solution to the problem stemming from
those questions. Preliminary work in this direction was done
in [9] when dealing with steering only at a desired constant
configuration. Hence, the solution proposed there does not
encounter the main challenges above.

As far as the answer to (i) is concerned, the major
issues associated with the sampled-data leader dynamics are
linked to the corresponding reference inputs. As well known,
feeding a sampled-data system with samples of a continuous-
time input sequence does not generate, in general, the same
trajectory as the original continuous-time one. This prevents
using the same leader dynamics as in continuous time. In ad-
dition, even if in general the continuous-time input reference
is PE, the discrete-time reference deduced from samples of
its loses such a property in general, for all sampling instants.
This makes the re-design of suitable sampled-data leader
dynamics unavoidable. To overcome such a problem, the first
contribution of this work stands in the definition of a new
discrete-time generator that guarantees, under a suitable input
sequence to be defined, exact matching of the continuous-
time reference profile. This is done by solving a multi-
rate input-to-state matching problem, at specific sampling
instants; a suitable discrete sequence of inputs is computed
to guarantee the exact matching of the state evolutions over a
fixed time horizon of length 2δ, with δ the sampling period.
Despite similar to the one in [10], the definition of the
exosystem we propose requires no preliminary continuous-
time feedback (not implementable in practice) and is fully
designed in the discrete-time context. This is done based
on multi-rate of order two over the linear reference velocity
and one over the angular component. As a byproduct, by
matching, the new multi-rate discrete reference is shown
to be PE, provided that the continuous-time counterpart
associated with the desired profile is such.

Once the new reference is well defined in discrete time, as
far as (ii) is concerned, we settle the design, for the first time,
in a discrete-time Interconnection and Damping Assignment
(IDA) Passivity-Based-Control (PBC) framework over the
sampled-data equivalent model associated to the unicycle
[11]. Roughly speaking, we define the digital control law
to assign a dissipative discrete-time port-Hamiltonian (pH)



structure to the sampled-data error dynamics [12]. In this
respect, the energy shaping component is responsible for
injecting the internal model of the exosystem into the plant,
whereas damping is introduced to guarantee convergence.
As typical under sampling, the control law is defined as
the solution to a nonlinear equality with exact forms not
computable in practice. Accordingly, computational facilities
for deducing approximations of those solutions are presented.

The paper is organized as follows. The problem is formu-
lated in Section II. The design of the discrete-time gener-
ator is addressed and motivated in Section III whereas the
definition of the actual control law is given in Section IV.
A simulation illustrates the results in Section V whereas
conclusions and perspectives are drawn in Section VI.

Notations. R and N denote the set of real and natural
numbers including 0 respectively. The symbol ≻ (⪰) denotes
positive (semi) definite matrices. In denotes the identity
matrix of dimension n ≥ 1 whereas 0 is the zero-matrix
of suitable dimensions. Given B ∈ Rn×m, B⊥ and B†

denote the orthogonal complement and pseudoinverse re-
spectively. Given m column vectors gj ∈ Rn with j =
1, . . . ,m we denote by diag{g1, . . . , gm} ∈ Rmn×m the
block-diagonal matrix with gj in the main diagonal whereas
col{g1, . . . , gm} = (g⊤1 . . . g⊤m)⊤ ∈ Rnm. Given a discrete-
time signal zk : N → Rn, we denote zk+i = z+i with,
for simplicity, z+ = z+1. Given a real-valued function
V (·) : Rn → R assumed differentiable, ∇V (·) represents the
gradient. For v, w ∈ Rn, the discrete gradient is ∇̄V (v)|wv =∫ 1

0
∇V (v + s(w − v))ds and satisfies V (w) − V (v) =

(w− v)⊤∇̄V (v)|wv with ∇̄V (v)|vv = ∇V (v). When V (v) =
1
2ν

⊤Pv with P = P⊤, one gets ∇̄V (v)|wv = 1
2P (v+w). In

the following, we’ll extensively use the following notations
b1 = col{1, 0}, b2 = col{0, 1} and, for ϑ ∈ R

R(ϑ) =

(
cosϑ sinϑ
− sinϑ cosϑ

)
, S =

(
0 1
−1 0

)
. (1)

Time dependencies are omitted when clear from the context.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Problem statement

Consider the unicycle kinematics

ż = vr, ϑ̇ = ω (2)

with z := (x y)⊤ ∈ R2 the planar coordinates, ϑ ∈ R the
angle described by the chassis with respect to the horizontal
axis, v, ω the linear and angular velocities and r = r(ϑ) =
col{cosϑ, sinϑ}. The problem we solve is stated below.

Problem 1 (Tracking under sampling). Consider the
kinematics of the unicycle (2) and let zr(t) : R≥0 → R2,
ϑr(t) : R≥0 → R be a trajectory generated by a continuous-
time exosystem of the form

żr = vrrr, ϑ̇r = ωr (3)

under some suitable reference inputs vr, ωr : R≥0 → R
assumed jointly PE [3]; namely, there exist T ∈ R≥0 and

µ > 0 such that for all t ≥ 0 the following inequality holds∫ t+T

t

(
v2r(ℓ) + ω2

r(ℓ)
)
dℓ > µ. (4)

Let the input signals of (2) be piecewise constant over
the sampling period of length δ, i.e., ω(t) = ωk, v(t) =
vk for t ∈ [kδ, (k + 1)δ[ for k ∈ N. Assume sam-
ples of the reference (3) available at all sampling instants,
i.e., zrk = zr(kδ), ϑrk = ϑr(kδ), vrk = vr(kδ) and
ωrk = ωr(kδ). Compute, if any, a piecewise constant
state-feedback vk = vδ(zk, zrk , ϑk, ϑrk , vrk , ωrk), ωk =
ωδ(zk, zrk , ϑk, ϑrk , vrk , ωrk) guaranteeing asymptotic track-
ing to the trajectory (zr, ϑr) generated by (3) at all sampling
instants, i.e., zk → zrk and ϑk → ϑrk as k → ∞. □

B. Sampled-data modeling

The dynamics of the unicycle at the sampling instants t =
kδ, k ∈ N, is described by the sampled equivalent model [9]

z+ = z − δv∆s, ϑ+ = ϑ+ δω (5)

with z = z(kδ), ϑ = ϑ(kδ), v = vk, ω = ωk and

s =s(ϑ) = r⊥(ϑ) = col{− sinϑ, cosϑ}

∆s :=
s(ϑ+)− s(ϑ)

ϑ+ − ϑ
=

s(ϑ+ δω)− s(ϑ)

δω
.

The solution we propose to Problem 1 is based on a
suitable regulation-based discrete-time IDA-PBC problem
and relies on internal model matching of the sampled-data
equivalent model of (3). Accordingly, along with samples
of the reference trajectories generated by (2), new discrete-
time reference inputs vr, ωr : N → R must be computed
so to guarantee that: (i) when initialized at the same value
the corresponding discrete generator reproduces the same
reference as (3), at all sampling instants; (ii) such inputs
are jointly PE discrete-time signals, i.e., there exist k̄ ∈ N
and µδ > 0 such that for all k ≥ 0 the following holds

k+k̄−1∑
j=k

(
v2rj + ω2

rj

)
> µδ. (6)

Thus, the sampled-data controller we propose works on the
basis of a new discrete-time exosystem of the form

z+r = zr − δvr∆sr, ϑ+
r = ϑr + δωr (7)

with sr := s(ϑr) and ∆sr =
1

δωr

(
s(ϑ+

r )− s(ϑr)
)

fed by the
aforementioned designed inputs.

III. A NEW DISCRETE-TIME REFERENCE

The necessity of defining a new sequence of reference
inputs for (7) is because samples of the continuous-time vr,
ωr do not guarantee, for all δ > 0, that (7) reproduces the
same reference as (3) at all sampling instants. To see this and
for simplicity, let us focus on the orientation component of
the kinematics (for the cartesian position things go along the
same lines) and let us fix, for tk = kδ, ϑr = ϑrk . Then, for



t ∈ [kδ, (k+ 1)δ) and the reference angular velocity ωr(t) ,
the continuous-time reference (3) provides the new sample

ϑ+
r = ϑr +

∫ (k+1)δ

kδ

ωr(ℓ)dℓ. (8)

The value above does not correspond, in general, to the one
generated by the discrete reference (7) under the sample of
the continuous-time input ωr = ωr(kδ) when ϑr = ϑr(kδ);
the latter is indeed given by

ϑ+
r =ϑr + δωr(kδ). (9)

As one might expect, (8) and (9) differ by the term

ϑ+
r − ϑ+

r =

∫ (k+1)δ

kδ

ωr(ℓ)dℓ− δωr(kδ).

With this in mind, the design of the discrete reference
inputs sequence (and thus of the reference) is based on the
solution, at specific time instants t2k = 2kδ, of a suitably
defined discrete-time model matching problem throughout a
period of length 2δ in the input sequences generated by

vr,1 = vr2k , vr,2 = vr2k+1
, ωrk = ωr2k+1

. (10)

The signals above are computed at the time instants t2k =
2kδ and t2k+1 = (2k + 1)δ and based on the samples
generated by the continuous-time reference (3) at all t = 2kδ
and t = 2(k + 1)δ respectively.

Proposition 3.1: Consider the continuous and discrete-
time exosystems (3) and (7) with col{zr0 , ϑr0} =
col{zr(0), ϑr(0)} and fed by input signals vr(t), ωr(t) :
R≥0 → R and vrk , ωrk : N → R, respectively. Then, the
following holds true:

(a) the discrete signals (10) computed as

ωr =
1

2δ

(
ϑr(t2(k+1))− ϑr

)
(11a)

vr =− 1

δ

(
∆s(ϑr) ∆s(ϑ+

r )
)−1 (

z+2
r − zr

)
(11b)

with vr = col{vr,1, vr,2}, ωr = ωrk = ωrk+1

guarantee exact matching of the trajectories of (3)
and (7) at all t2k = 2kδ, i.e., col{zr2k , ϑr2k} =
col{zr(2kδ), ϑr(2kδ)};

(b) if vr and ωr satisfy the PE condition (4) with T = 2k̄δ
for some k̄ ∈ N then, the discrete signals vrk , ωrk :
N → R satisfy the discrete PE condition in (6)
Proof: The proof of (a) follows showing that

col{zr2k , ϑr2k} = col{zr(2kδ), ϑr(2kδ)} implies
col{zr2(k+1)

, ϑr2(k+1)
} = col{zr(2(k+1)δ), ϑr(2(k+1)δ)}.

To this end, we notice that the discrete reference dynamics
for t ∈ [2kδ, 2(k + 1)δ[ is governed by

ϑ+2
r =ϑr + 2δωr, z+2

r = zr − δ
(
∆s(ϑr) ∆s(ϑ+

r )
)
vr.

At this point, substituting (11) into the expression above
and exploiting col{zr, ϑr} = col{zr, ϑr} yield θ+2

r = θ+2
r ,

z+2
r = z+2

r and thus the result. The proof of (b) follows by
considering that, vr and ωr verify

ωr =
1

δ

∫ 2(k+1)δ

2kδ

ωr(ℓ)dℓ

(
∆s(ϑr) ∆s(ϑ+

r )
)
vr = −1

δ

∫ 2(k+1)δ

2kδ

r(ϑr(ℓ))vr(ℓ)dℓ.

Accordingly, one gets

∥vr∥2 + 2ω2
r =

1

δ2

∫ 2(k+1)δ

2kδ

(
2ω2

r(ℓ)

+ ∥
(
∆s(ϑr) ∆s(ϑ+

r )
)−1

r(ϑr(ℓ))∥2v2r(ℓ)
)
dℓ

≥ νδ

∫ 2(k+1)δ

2kδ

(
v2r(ℓ) + ω2

r(ℓ)
)
dℓ

with the term

νδ = 2min
{ 1

δ2
,

∫ 2(k+1)δ

2kδ

∥
(
∆s(ϑr) ∆s(ϑ+

r )
)−1

r(ϑr(ℓ))∥2dℓ
}

being well-defined and bounded by definition of ∆s(·)
and s(·). Accordingly, the fact that vr and ωr are PE in
continuous time with T = 2k̄δ yields

k+k̄−1∑
j=k

(
∥vr∥2 + 2ω2

r

)
≥

k+k̄−1∑
j=k

∫ 2(k+1)δ

2kδ

(
v2r(ℓ) + ω2

r(ℓ)
)
dℓ

≥νδ

∫ 2k+Tδ

2kδ

(
v2r(ℓ) + ω2

r(ℓ)
)
dℓ

>νδµ = µδ

and thus (6) so proving the result.

IV. TRACKING VIA DISCRETE IDA-PBC

For solving Problem 1, we define the tracking error

e =

(
ez
eϑ

)
:=

(
R(ϑ)

(
z − zr

)
ϑ− ϑr

)
, ez =

(
ex
ey

)
(12)

with R(ϑ) in (1).The corresponding sampled-data error dy-
namics is described by the discrete-time model

e+z =R(δω)ez + δvB(δω)− δvrD(eϑ, δω, δωr) (13a)

e+ϑ =eϑ + δ
(
ω − ωr

)
(13b)

with

B(δω) =
1

δω
(R(δω)− I) b2

D(eϑ, δω, δωr) =
1

δωr

(
R(eϑ + δω)−R(e+ϑ )

)
b2.

Remark 4.1: In this setting, solving Problem 1 is equiv-
alent to making the error dynamics (13) uniformly asymp-
totically stable at the origin. From now on, all properties are
meant to hold uniformly even if not explicitly specified.

The goal now is to design a piecewise constant control
law assigning a discrete-time dissipative pH structure to
the error-dynamics (13) with a suitable Hamiltonian H :
R3 → R≥0 such that ∇H(0) = 0 and H(0) = 0. The
instrumental result below proves that (13) admits discrete-
time pH representation [12].



Lemma 4.1: The sampled-data error dynamics (13) admits
the implicit port-Hamiltonian structure below

e+z =ez +
δ

2
J(δω)

(
e+z + ez

)
+ δvB̃(δω) (14a)

− δvrD̃(eϑ, δω, δωr)

e+ϑ =eϑ + δ(ω − ωr) (14b)

with

H(ez, eϑ) =
1

2

(
e⊤z ez +

1

κy
e2ϑ
)
, κy > 0

δ

2
J(δω) =

sin δω

1 + cos δω
S, B̃(δω) =

2 sin δω

δω(1 + cos δω)
b1

D̃(eϑ, δω, δωr) = 2
(
R(δω) + I

)−1
D(eϑ, δω, δωr).

Proof: To prove the result one must show that (13)
solves the implicit pH representation (14) in the variable
e+ = col{e+z , e+ϑ }. This can be readily verified by substi-
tuting (13) in both sides of the pH representation (14).

In the following, it is useful to compactly rewrite (14) as

e+ =e+
δ

2
J(δω)Pe+ δvB̃(δω) (15)

− δvrD̃(eϑ, δω, δωr) + δ(ω − ωr)b2

with B̃(δω) = col{B̃(δω), 0}, D̃(eϑ, δω, δωr) =
col{D̃(eϑ, δω, δωr), 0}, P = diag{I, κ−1

y }, J(δω) =
diag{J(δω), 0}, and the one-step-ahead increment

∆H =
δ

2

( v

ω
B̃(δω)− vr

ωr

D̃(eϑ, δω, δωr)
)⊤

(e+z + ez)

+
δ

2κy
(ω − ωr)(e

+
ϑ + eϑ). (16)

Accordingly, a suitable PBC can be designed as composed
of two parts: the first one aimed at removing the effect of
the exogenous inputs vr, ωr from (16) (so making the corre-
sponding dynamics conservative); the second one assigning
a suitable dissipation guaranteeing asymptotic stability of
the origin. This corresponds to assigning to (14) a new
dissipative pcH structure based on IDA-PBC.

Proposition 4.1: The feedback law solution to

v=vrB̃
†(δω)D̃(eϑ, δω, δωr)−

κx

2
B̃⊤(δω)(e+z + ez) (17a)

ω =ωr −
κϑ

2
(e+ϑ + eϑ) (17b)

+κyvr

(
B̃†

⊥(δω)B̃⊥(δω)D̃(eϑ, δω, δωr)
)⊤

e+ϑ + eϑ
(e+z + ez)

with κx, κϑ > 0, B̃⊥(δω) = δω(1+cos δω)
2 sin δω b⊤2 assigns to the

sampled-data error dynamics (13) (equivalently, (14)) the
discrete pH structure

e+=e+
δ

2

(
Jd(eϑ, δω, δωr, δvr)−Rd(δω)

)
P (e++ e) (18)

with interconnection and damping matrices given by

Jd(eϑ, δω, δωr, δvr) = J(δω) + Ja(eϑ, δω, ωr, δvr)

δ

2
Ja(eϑ, δω, δωr, δvr) =

Je

κyvr
(
B̃†

⊥(δω)B̃⊥(δω)D̃(eϑ, δω, δωr)
)⊤

e+ϑ + eϑ

δ

2
Rd(δω) =

(
κxB̃(δω)B̃⊤(δω) 0

0 κϑ

)
⪰ 0

B̃(δω)B̃⊤(δω) =
4(1− cos δω)

δ2ω2(1 + cos δω)
diag{1, 0}

Je = diag{0,−S}.
Proof: The proof follows substituting (17) into (14).

The expressions (17) explicitly reveal the energy-shaping
and damping components of the IDA-PBC feedback, i.e.,

v =vδes(eϑ, ω, ωr, vr) + vδin(ez, ω) (19a)

ω =ωδ
es(ez, eϑ, ω, ωr, vr) + ωδ

in(ez) (19b)

with

vδes(eϑ, ω, ωr, vr) = vrB̃
†(δω)D̃(eϑ, δω, δωr)

vδin(ez, ω) = −κx

2
B̃⊤(δω)(e+z + ez)

ωδ
es(ez, eϑ, ω, ωr, vr) = ωr

+ κyvr

(
B̃†

⊥(δω)B̃⊥(δω)D̃(eϑ, δω, δωr)
)⊤

e+ϑ + eϑ
(e+z + ez)

ωδ
in(ez) = −κϑ

2
(e+ϑ + eϑ).

Accordingly, the IDA-PBC design yields a controller with
an energy-shaping component responsible for making the
energy variation along the error dynamics (14) independent
from the external references vr and ωr. This corresponds
to limiting their effects onto the interconnection matrix Jd,
defining the energy-conservative part of the structure with
hence, no influence over ∆H . In particular, when the damp-
ing components are zero, one gets a conservative system
independent on the external inputs, that is vδdi = ωδ

di = 0
implies ∆H = 0, for all ωr, vr ∈ R.

A. Main result

Theorem 4.1: Consider the unicycle kinematics (2) and
the corresponding sampled model (5) with the exosystem (7)
under the reference inputs in (11). The IDA-PBC feedback
defined as the solution to (17) solves Problem 1.

Proof: One has to show that the origin is asymptotically
stable for the error dynamics (13) in closed loop. To this end,
by construction, the proposed feedback law guarantees

∆H =− δκxω
2(

δ + κx(1− cos δω)
)2 ∥ (sin δω 1− cos δω

)
ez∥2

− δ

κy

κϑ

(1 + δ
2κϑ)2

e2ϑ ≤ 0.



and thus attractiveness of the largest invariant set contained
in {(ez, eϑ) ∈ R2 × R s.t. ∆H = 0}. This yields

∆H ≡ 0 ⇐⇒ eϑ ≡ 0 and
(
sin δω 1− cos δω

)
ez ≡ 0

=⇒ e+ϑ ≡ 0 =⇒ ω ≡ ωr.

As by Proposition 3.1 ωr is PE, then ez ≡ 0 and the result.

Remark 4.2: The PE condition (6) ensures that eϑ ≡ 0
only if ez ≡ 0 for all κy > 0. When such an assumption
fails and vr ≡ 0, one would get

eϑ ≡ 0 =⇒ ω = ωr =⇒ ez = a
(
cos δωr − 1 sin δωr

)⊤
for some constant a ∈ R. If vr ∈ R is not PE the error would
converge to a periodic trajectory depending on ωr.

B. Computational aspects

One can easily check that equality (17a) admits a solution
that can be explicitly and exactly computed as proved below.

Corollary 4.1: The solution to (17a) is given by

v =− κx

2

(
1 +

δκx

2
B̃⊤(δω)B(δω)

)−1

B̃⊤(δω)
(
I

+R(δω)
)
ez + vr

(
1 +

δκx

2
B̃⊤(δω)B(δω)

)−1

(21)

×
(
B̃†(δω)D̃(eϑ, δω, δωr) +

δκx

2
B̃⊤(δω)D(eϑ, δω, δωr)

)
.

Proof: The proof follows by substituting (14a) into
(17a) yielding a linear equality in v. The result follows
noticing that because κx > 0 1+ δκx

2 B̃⊤(δω)B(δω) ̸= 0.
It is a matter of computations to rewrite (21) as(
1 + kx(1−cos δω)

δω2

)
v = −κx

δω

(
sin δω 1− cos δω

)
ez

+
δvrω

4ωr sin(δω)

(
sin eϑ − sin (eϑ − δωr)

)
+

δvrω

4ωr sin δω

(
1 + 4κx(1−cos δω)

δ2ω2

) (
sin (eϑ + δω)− sin (e+ϑ )

)
so getting, as δ → 0, that v → −κxex.

Contrarily to the linear velocity component, analytic (and
exact) forms for the solution to (17b) are hard to find.
However, it can be easily proved that (17b) (equivalently
(22)) admits a unique solution in the form of a formal series
expansion in powers of δ as proved here below. To this end,
it is instrumental to rewrite (17b) as(

1 + δ
2κϑ

)
(ω − ωr) = −κϑeϑ (22)

+ κyvr

(
B̃†

⊥(δω)B̃⊥(δω)D̃(eϑ, δω, δωr)
)⊤

e+ϑ + eϑ
(e+z + ez)

with, setting for simplicity B̃⊥(δω) =
δω(1+cos δω)

2 sin δω b⊤2

B̃†
⊥(δω)B̃⊥(δω)D̃(eϑ, δω, δωr)

=
cos eϑ − cos e+ϑ + cos (eϑ + δω)− cos (eϑ − δωr)

δωr

(
1 + cos δω

) b2.

This is stated in the result below whose proof is omitted as
similar to [9, Corollary 3.1].
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Fig. 1: The continuous-time input reference signals.

Corollary 4.2: There exists δ⋆ > 0 such that for all
δ ∈ [0, δ⋆[, quality (17b) admits a unique solution ω =
ωδ(e, vr, ωr) of the form

ω(e, vr, ωr)=ω0(e, vr, ωr)+
∑
i>0

δi

(i+ 1)!
ωi(e, vr, ωr). (23)

Although exact solutions to (17b) cannot be easily com-
puted, approximations are naturally defined. All terms of
the series expansion (23) are exactly computable via a
constructive and iterative algorithm solving, at each step, a
suitably defined linear equality. For the first terms, one gets

ω0 =ωr − κyvrey
sin eϑ
eϑ

− κϑeϑ

ω1 =− κϑ(ω0 − ωr)− κyvr

( sin eϑ
eϑ

(
vr sin eϑ

− exω0 − ey
ω0 − ωr

eϑ

)
+ ey(ω0 − ωr) cos eϑ

)
.

One can define approximate solutions to (17b) as the trun-
cation of (23) at all finite order p ∈ N, that is

ωδ
[p](e, vr, ωr) = ω0(e, vr, ωr) +

p∑
i=1

δiωi(e, vr, ωr)

(i+ 1)!
. (24)

Such approximations guarantee, in general, practical asymp-
totic stability at the origin for the closed loop error dynamics
(13), as proved in [13]; namely, the sampled-data controller
is ensured to steer the unicycle to a neighborhood of the
desired configuration of radius in O(δp+1).

V. AN EXAMPLE

We provide one simulation of the proposed strategy to
illustrate the control law in Theorem 4.1, based on the
new discrete generator in (7) (Proposition 3.1) and when
approximating the angular velocity component as in (24)
with p = 2 (referred to as DT IDA-PBC + DT Reference).
Comparisons are then performed concerning: (i) the discrete-
time IDA-PBC control law implemented considering samples
of the continuous-time reference (2), i.e., when setting vr =
vr, ωr = ωr, zr = zr and ϑr = ϑr in (17) (referred to as DT
IDA-PBC + CT Reference); (ii) the digital implementation
of the control law [3, Eqn (8)] via sample-and-hold devices
(referred to as emulation). In all scenarios, the control gains
are all unitary, the initial condition is fixed to z0 = col{1, 1},
ϑ0 = −π while, for a fair comparison, the input references



Fig. 2: Simulation with δ = 0.8 seconds, κx = κy = κϑ = 1.

are set as in [3] and reported in Fig. 1. The corresponding
target continuous-time reference (defining the desired trajec-
tory zr(t), ϑr(t)) is reported in dashed light blue in Fig 2.
The sampling period is fixed as δ = 0.8 and corresponds
to the maximum allowed value emulation tolerates before
failure and instability. First of all, Fig. 2 highlights that
the proposed controller (embedded with the new genera-
tor and reported in red line) is the only one capable of
guaranteeing tracking of the desired profile, at the sampling
instants with very good performances in general. The results
achieved by (i) (red line in Fig. 2) enforce the importance
of the discrete-time reference for fully achieving tracking at
the sampling instants. The discrete-time controller directly
embedded with samples of the continuous-time trajectory
ensures tracking with a generally non zero offset ε1. Still,
the discrete-time IDA-PBC component guarantees improved
performances with respect to mere emulation. In the latter,
the corresponding performances are not satisfactory as it fails
in tracking the desired profile in general (yellow lines in Fig.
2) with a non-zero offset ε2 > ε1. The latter aspect shows a
performance improvement enhanced by the discrete design
with respect to the continuous-time control.

VI. CONCLUSIONS AND PERSPECTIVES

A new sampled-data control law for ensuring asymptotic
tracking of unicycles has been proposed. Assuming samples
of the desired profile available at all sampling instants, the
solution we propose relies on a revisited multi-rate plan-
ning strategy to re-design the discrete reference generator
and IDA-PBC for guaranteeing asymptotic tracking. Further
work is currently addressing the use of this approach to cope
with cooperative tracking in a multi-agent perspective.
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