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Steering and Formation Control of Unicycles Under
Single-Rate Sampling

Mattia Mattioni, Member, IEEE, Alessio Moreschini, Member, IEEE, Salvatore Monaco Fellow, IEEE and
Dorothée Normand-Cyrot Fellow, IEEE

Abstract—In this paper, we propose a new digital feedback
law for controlling unicycles in a sampled-data scenario. More
in detail, two open problems are solved. First, assuming piecewise
constant control and sampled-data measures of the state, we
consider the problem of driving one unicycle toward a desired
position in the plane with a target fixed orientation. Then,
we tackle the problem of forcing a network of unicycles to
a desired formation with the same orientation when assuming
asynchronous sampled-data communication and piecewise con-
stant controls. The design relies upon discrete-time passivity-
based arguments yielding the first feedback law (within the digital
literature) that employs single-rate sampling while keeping into
account the effects of digital devices. The results are finally
illustrated through simulations aimed at showing the benefits
of the proposed controller to recover the same performances
under the continuous-time control law, whose performances are
unavoidably lost when implemented in practice.

Index Terms—Digital Control, Nonlinear Systems, Networks
of Autonomous Agents.

I. INTRODUCTION

STEERING a mobile robot to a desired position with an ar-
bitrary orientation represents one of the most common and

yet challenging control problems [1]. Because of the failure
of the Brockett condition [2], two major classes of approaches
have been proposed so far: the one relying on time-varying
control [3], [4], dynamic feedback [1] and the one based on
time-discontinuous feedback [5], [6]. In this respect, in the
former case, the design is lead to a linear time-varying passive
model deduced from the original one when considering the
angular velocity as a time-varying parameter. Accordingly, sta-
bilization is achieved via proportional feedback on the passive
output plus a persistently exciting time-varying component [3].
This approach has proven to be robust, easily implementable,
and efficient for solving a variety of control problems includ-
ing tracking, rendez-vous, and formation control in a multi-
agent perspective [7]–[11]. Nevertheless, all these methods
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are only intended for continuous-time control, with natural
limitations arising in sampled-data implementation. Roughly
speaking, because controllers are typically implemented via
digital (sampling and hold) devices, the nominal performance
certificates deduced by the continuous-time design are gen-
erally lost, even when sampling is small [12]. Despite this,
most control laws typically used in practice are emulation-
based with the design uniquely addressed in continuous time
while neglecting the effect of the actuation devices, usually
employed for the implementation [13]. Therefore, redesigning
the feedback law while taking into account, and possibly
compensating, the effects of sampling (and maintaining the
same performances required by the continuous-time design)
is essential. In this context, it is well-known that multi-rate
digital methods (yielding controllers that are discontinuous
in time) provide a very natural tool for handling control of
nonholonomic systems as belonging to the class of dynamics
that admit, under preliminary continuous-time feedback, a
finitely computable sampled-data model [6]. However, the
corresponding closed loop is not robust with respect to both
model uncertainties and sample-and-hold implementation due
to the preliminary continuous-time loop component aimed at
transforming the dynamics into a chained form. Also, finite-
time convergence in one step comes with a generally signif-
icant control effort that limits its practical implementation.
Finally, such control laws do not qualify for a straightforward
extension to the multi-agent case as intrinsically require a
centralized implementation [14]. A preliminary result partially
solving the issues arising in the aforementioned contexts was
made in [15] where, however, only position steering was
considered with no control at all of the orientation.

This work is contextualized in the aforementioned scenario
with the objective of designing a new static sampled-data
(single-rate) and time-varying class of controllers for steering
unicycles to a desired angular and planar configuration. With
a slight abuse of notation, we refer to sampled-data (or digital)
systems as systems with piecewise constant control inputs and
measures available intermittently over time. In this respect, we
model the dynamics at the sampling instants as a time-varying
linear system that is shown to be passive with respect to
suitably defined outputs. Based on this, a new steering control
is proposed via digital damping feedback with a further time-
varying component that is required to be persistently exciting
in the discrete-time sense. As a result, the new controller
requires neither a preliminary continuous-time feedback loop
nor multi-rate devices, which are typical of digital imple-
mentations employed in the literature. At the same time, we
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present a first approach to redesigning time-varying single-rate
controllers for digital implementation. As a further contribu-
tion, we propose a digital feedback in a multi-agent control
perspective under asynchronous sampling. In this latter case,
a new decentralized and local control is designed for ensuring
the formation of a group of unicycles under both asynchronous
sampled-data communication and piecewise constant control
inputs. The approach we propose for designing the distributed
controller relies upon robustness arguments. Modeling the
effect of asynchronicity as a distributed time delay, we deduce
upper bounds on the involved gains ensuring that consensus is
achieved over the network. Those arguments were exploited
in [16] and are strictly reminiscent of the ones in [13]. We
underline that this contribution is of interest in the context
of sampled-data multi-agent control at large in which the
sampled-data design must face several challenges involving
the necessity of implementing the control law in a distributed
and local fashion (see, for instance, [14]).

To the best of the Authors’ knowledge, no sampled-data
control laws have been proposed thus far while considering, si-
multaneously, the following features: (i) the control signals are
piecewise constant over the sampling period of fixed and not
arbitrary length; (ii) measurements of the states of each robot
are available intermittently over time; (iii) the communication
over the network is asynchronous and intermittent. Most works
on this topic (and related ones) only investigate the case of a
total continuous time scenario or intermittent communication;
in doing so, it is generally assumed the control input is
a continuous-time signal, allowed to arbitrarily change over
time. As far as purely continuous-time design, among the im-
mense available literature, we highlight the works in [17], [18]
where the design is carried out via passivity-based control and
persistence of excitation. This yields a time-varying static con-
trol defined in a scenario that is, in principle, the counterpart of
the one we adopt under sampling. In addition, the work in [19]
exploits continuous-time passivity-based control in the port-
Hamiltonian framework with the output internal model-based
regulation principle for formation keeping under matched input
disturbances. However, the aforementioned results do not hold
in the sampled-data context since passivity is not preserved
by sampling [20]. A scenario including including intermittent
communication was employed in [21]: after a preliminary
dynamical (continuous-time) control action making the closed-
loop system linear, the design of the control is based on
the assigned linear model using standard tools for formation
control of LTI systems under intermittent communication.
In [22]–[24], a more general framework was considered. In
particular, in [22], [23], the rendez-vous problem on the
cartesian positions of the unicycles was solved under ternary
control. The resulting angular velocity feedback is fully con-
tinuous whereas the linear velocity component is piecewise
constant (due to its ternary nature) but with the length of each
update interval being a degree of freedom for the designer. In
addition, in that case, the average consensus problem does not
involve the orientation of the unicycles: orientation consensus
is ensured by solving a standard regulation problem, locally,
aimed at driving all robots to an arbitrary ϑd, a priori fixed and
known by all robots. In [24], those results are then extended

to solve the formation problem under quantized information
and undirected communication topology for passive systems.
This work (and most references therein) is settled in a different
context than ours: the control input (that in the end results to be
piecewise constant) can be arbitrarily changed in time which
allows the possibility of using continuous-time arguments for
part of the analysis and design. Similar considerations hold for
[25]–[27] under intermittent communications and, also, event-
triggered control (see, for instance, [28], [29]).

The paper is organized as follows. The problem is for-
mulated in Section II for the case of single and multi-agent
systems under digital control. The main result in the case of
a single agent is given in Section III, where computational
aspects are also developed. The main result for multi-agent
systems is in Section IV, where a new digital control is
designed for the asymptotic formation of groups of unicycles
under asynchronous sampled-data communication. This opens
new perspectives as commented in Section V.

NOTATIONS AND PRELIMINARIES

R and N denote the set of real and natural numbers including
zero respectively. I denotes the identity matrix whereas 0 is
the matrix with all zero entries, both of suitable dimensions de-
pending on the context. Given m column vectors gj ∈ Rn with
j = 1, . . . ,m we denote by diag{g1, . . . , gm} ∈ Rmn×m the
block-diagonal matrix with gj in the main diagonal whereas
col{g1, . . . , gm} = (g⊤1 . . . g⊤m)⊤ ∈ Rnm. Given B ∈ Rn×m

with n > m, B⊥ be denotes the orthogonal complement
verifying B⊥B = 0 A function R(x, δ) : B × R → Rn

is said in O(δp), with p ≥ 1, if it can be written as
R(x, δ) = δp−1R̃(x, δ) for all x ∈ B and there exist δ⋆ > 0
and a function ϑ ∈ K∞ such that ∀δ ≤ δ⋆, |R̃(x, δ)| ≤ ϑ(δ).
Given two matrices A ∈ Rn1×n2 and B ∈ Rm1×m2 , the
Kronecker product is denoted by A ⊗ B ∈ Rn1m1×n2m2 .
Consider a digraph (that is an unweighted directed graph)
G = {V, E} with V being the set of vertices with cardinality
|V| = Q and E ⊆ V × V being the set of edges (i.e., the
set of ordered pairs of nodes). For all pairs of distinct notes
i, j ∈ V then (i, j) ∈ E if there exists an edge from i to j or,
equivalently, i is a neighbour of j for all i ̸= j = 1, . . . , Q.
Ni denotes the set of neighborhoods associated with i ∈ V .
The Laplacian of G is denoted by L. Time dependencies (i.e.,
·(t) or ·k) are omitted when clear from the context.

II. MODELING AND PROBLEM STATEMENT

For the sake of clarity, we first set the problem of steering a
single unicycle to a desired position with a given orientation.
Then, we formulate the formation control problem under
asynchronous sampled control.

A. The digital steering problem

Consider the unicycle kinematics modeled as

ż =vr (1a)

ϑ̇ =ω (1b)
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with z := (x y)⊤ ∈ R2 the planar coordinates of the
unicycle, ϑ ∈ R the angle described by the chassis respect
to the horizontal axis, r = r(ϑ) =

[
cosϑ sinϑ

]⊤
the

normalized velocity vector and v, ω ∈ R the linear and angular
velocities. Roughly speaking, the problem we address stands
in designing a sampled-data controller (that is, with piecewise
constant input signals and based on sampled measures of the
states) driving the unicycle to a desired Cartesian position
zd = col{xd, yd} ∈ R2 and a fixed orientation ϑd ∈ R.
For formally stating the problem, the sampled-data equiva-
lent model, describing the trajectories of (1) at all sampling
instants, is recalled here below.

Lemma 2.1: Consider the unicycle kinematics (1) and let
the inputs be piecewise constant over the sampling period of
length δ > 0, that is

ω(t) = ωk, v(t) = vk for all t ∈ [kδ, (k + 1)δ[, k ∈ N. (2)

Then, denoting zk = z(kδ), ϑk = ϑ(kδ) and

s =s(ϑ) = r⊥(ϑ) =
[
− sinϑ cosϑ

]⊤
the sampled-data equivalent model of (1) is given by the
difference equations below

zk+1 =zk −
vk
ωk

(
s(ϑk+1)− s(ϑk)

)
(3a)

ϑk+1 =ϑk + δωk. (3b)

Proof: The proof is carried out by integrating (1) over the
sampling period [kδ, (k + 1)δ[ with initial condition z(kδ) =
zk, ϑ(kδ) = ϑk. This yields

zk+1 =zk + vk

∫ (k+1)δ

kδ

r(ϑ(s))ds (4a)

ϑk+1 =ϑk + δωk (4b)

with zk+1 = z(kδ + δ) and ϑk+1 = ϑ(kδ + δ). Since the
solution of (1b) for all s ∈ [kδ, (k + 1)δ[ is given by

ϑ(s) = ϑk + (s− kδ)ωk,

the transformation s 7→ ℓ = ϑk + (s− kδ)ωk yields∫ (k+1)δ

kδ

r(ϑ(s))ds =
1

ωk

∫ ϑk+1

ϑk

r(ℓ)dℓ

=− 1

ωk

[
− sin(ϑk+1) + sin(ϑk)

cos(ϑk+1)− cos(ϑk)

]
.

Substituting the expression above into (4) one gets the result.

In this setting, we address the following problem.
Problem 1 (Single-rate digital steering): Design a suitable

sampled-data control law

vk = vδ(zk, zd, ϑk, ϑd), ωk = ωδ(zk, zd, ϑk, ϑd),

guaranteeing regulation of (1) to a desired Cartesian position
zd = col{xd, yd} ∈ R2 with orientation ϑd ∈ R. ■

In other words, solving the problem above is equivalent to
making col{zd, ϑd} uniformly globally asymptotically stable
for the closed-loop sampled-data model (3).

Remark 2.1: As already discussed in the Introduction, a
partial solution to Problem 1 has been provided in [15] while
considering cartesian steering only. In particular, the control
law in [15] is given by

vk =
κ

δωk + κ
ωk

(1− cos δωk)

(
∆ks

)⊤
(zk − zd), κ > 0 (5a)

ωk =
1

δω0

(
sin

(
(k + 1)ω0δ

)
− sin

(
kω0δ

))
(5b)

provided that ω0 > 0 is a constant satisfying for a fixed
sampling period δ > 0 and N ∈ N,

ω0Nδ = 2π, N > 2. (6)

Such a control law, however, never guarantees convergence to
a desired constant orientation as (5b) fixes the angular velocity
to a persistently exciting periodic signal.

B. The digital formation control problem

The control of groups of unicycles can be accomplished by
suitably adapting the solution to Problem 1 in the framework
of multi-agent systems. Accordingly, in a simplified setting
(i.e., when allowing collisions among unicycles), we provide
the solution to the following problem, under standard assump-
tions as in continuous time (see e.g., [30]).

Consider a group of Q > 1 unicycles each described by the
model (1) specified as

żi =rivi (7a)

ϑ̇i =ωi (7b)

with i = 1, . . . , Q and communicating, at asynchronous and
periodic sampling instants, through a given communication
digraph G = {V, E} with each node i ∈ V being a unicycle.
In particular, each unicycle is a node of the graph with δi ≥ 0
the corresponding sampling period verifying δi ∈ [δmin, δmax[
for all i = 1, . . . , Q with known bounds δmax, δmin ∈ R≥0;
namely, the input signals are piecewise constant over the
sampling period δi > 0; i.e., ωi(t) = ωi(tik), v

i(t) = vi(tik)
for t ∈ [tik, t

i
k+1[ with δi = tik+1 − tik and ∆i = {ti0, ti1, . . . }

the corresponding sampling sequence. At all sampling instants
t = tik ∈ ∆i, the unicycle i ∈ V measures the relative distance
with respect to the corresponding neighbors given by

ei,j(tik) = R(ϑi(tik))(z
i(tik)− zj(tik)), j ∈ Ni (8)

with the matrix

R(ϑ) =

[
cosϑ sinϑ

− sinϑ cosϑ

]
. (9)

Problem 2 (Formation control under sampling): Given
a communication digraph G containing a spanning tree,
design, if any, a distributed sampled-data control making all
unicycles converge to a desired formation specified by the
vector σ = col{σ1, . . . , σQ} with σi = col{σi

x, σi
y} ∈ R2

with a common orientation; i.e., as t → ∞ and for a
suitable consensual state col{zs, ϑs} ∈ R3. zi(t) − σi → zs,
ϑi(t)→ ϑs ■
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Remark 2.2: We assume that at all sampling instants, the
ith unicycle senses the position and orientation of all neigh-
bors. Such a situation occurs in practice, for instance, when
each unicycle is equipped with cameras or distance sensors.
More realistic situations (e.g., when the control frequency is
higher than the acquisition frequency from an exteroceptive
sensor) are currently under investigation.

In the following and unless differently specified, all prop-
erties are meant to hold globally (with respect to initial
conditions) and uniformly (with respect to initial time) even
if not indicated explicitly.

III. STEERING UNDER SINGLE-RATE CONTROL

For simplicity and for the sake of clarity we first provide
the result for zd = 0 and ϑd = 0.

A. Steering at the origin

For design purposes, it is worth observing that the sampled-
data kinematics (3) is passive [31, Definition 2.2] with respect
to suitably defined output mappings as detailed below. In the
following, we shall denote

∆ks := s(ϑk+1)− s(ϑk).

Lemma 3.1: Consider the unicycle kinematics (1) and the
corresponding sampled-data equivalent model (3). Then the
sampled-data kinematics (3) is passive with outputs

v 7→ hz(z, , ϑ, v, ω) := −
1

δω
(∆ks)

⊤z +
1

δω2

(
1− cos (δω)

)
v

(10a)

ω 7→ hϑ(ϑ, ω) := ϑ+
δ

2
ω (10b)

and storage function

V (z, ϑ) =
1

2

(
z⊤z + ϑ2

)
; (11)

namely, the following equality holds for all k ∈ N

∆kV =δvkhz(zk, vk, ωk) + δωkhϑ(ϑk, ωk) (12)

Proof: The proof of passivity follows by computing the
one-step increment of the storage function (11) along (3)

∆kV =− vk
ωk

(∆ks)
⊤
(
zk −

vk
2ωk

∆ks
)
+ δωk

(
ϑk +

δ

2
ωk

)
so getting, since (∆ks)

⊤∆ks = 2(1 − cos (δωk)), (12) and
thus the result.

Remark 3.1: The outputs (10) ensuring passivity under
sampling of (3) are not the same as in continuous time. It
is well-known from [20] that passivity is not preserved under
sampling with respect to the same output as in continuous time
due to the so-called relative degree zero obstruction. Roughly
speaking, if a discrete-time system is passive then it possesses
relative degree zero (i.e., a direct input-output throughput). In
this case, the sampled-data passivating outputs (10) represent

the time-average, over the sampling period, of the outputs
making the continuous-time kinematic (1) passive, that is

hz(z, ϑ, v, ω) =
1

δ

∫ (k+1)δ

kδ

r⊤(ϑ(s))z(s)ds

hϑ(ϑ, ω) =
1

δ

∫ (k+1)δ

kδ

ϑ(s)ds.

Furthermore, as δ → 0, the sampled-data outputs recover the
continuous-time ones; namely, one gets

lim
δ→0

1

δ

∫ (k+1)δ

kδ

r⊤(ϑ(s))z(s)ds = r⊤(ϑ)z

lim
δ→0

1

δ

∫ (k+1)δ

kδ

ϑ(s)ds = ϑ.

By passivity [20, Corollary 5.2], the feedback law

v =
ωκv

δω2 + κv

(
1− cos (δω)

) (∆ks)
⊤z, κv > 0 (13)

ω =− 2κω

2 + δκω
ϑ, κω > 0, (14)

that is the solution to the damping equality[
v

ω

]
= −

[
κvhz(z, ϑ, v, ω)

κωhϑ(ϑ, ω)

]
,

makes the closed-loop system

zk+1 =
(
I − κvM

δ(ωk)
)
zk (15a)

ϑk+1 =
2− δκω

2 + δκω
ϑk (15b)

with

M δ(ω) =
∆ks(∆ks)

⊤

δω2 + κv

(
1− cos (δω)

) (16)

asymptotically stable at the equilibrium z⋆ = col{1, 0} and
ϑ⋆ = ϑd = 0. However, the position component of the
stabilized equilibrium z⋆ is not zd in general. This issue
can be solved by noticing that, for all choices of ω ∈ R,
the feedback (13) guarantees asymptotic stability of all states
such that ((∆ks)

⊥)⊤z = 0 with (∆ks)
⊥ = ∆kr, ∆kr =

r(ϑk+1)−r(ϑk). On this basis, asymptotic stabilization at the
origin (thus steering to the origin with zero orientation) can
be achieved by modifying the feedback law (14) to include a
new additional term that is vanishing only if z ≡ 0; namely,
one sets

ω = − κω

2 + δκω
ϑ+

(
αk(ϑ, ω)

)⊤
z

for a suitably defined αk(ϑ, ω) ∈ R2. Rewriting the closed-
loop system as[

zk+1

ϑk+1

]
=

[
zk

ϑk

]
+

[
κvM

δ(ωk) 0(
αδ(ϑk, ωk)

)⊤ − 2κω

2+δκω

][
zk

ϑk

]
the goal is achieved under a bounded signal which makes[

Mδ(ω) 0(
αk(ϑ, ω)

)⊤ − 2
2+δ

]
(17)
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of rank three as along as z ̸= 0 and for all δ > 0. From the
previous arguments, the following result can be given.

Proposition 3.1: Problem 1 with zd = 0 and ϑd = 0 is
solved by the controller (13) and ω = ωδ(z, ϑ) solution to

ω = − 2κω

2 + δκω
ϑ+ ak

(∆kr)
⊤

δω
z, κω > 0. (18)

Such control law makes the origin asymptotically stable for
the closed loop

zk+1 =
(
I − κvM

δ(ωk)
)
zk (19a)

ϑk+1 =
2− κωδ

2 + δκω
ϑk + ak

(∆kr)
⊤

δωk
z (19b)

if ak = a(kδ) is bounded and persistently exciting for all
δ ≥ 0; i.e., there exist k̄ ∈ N and µ̄ > 0 such that

k+k̄−1∑
j=k

(ak)
2 ≥ µ̄, for all k ∈ N. (20)

Proof: First, we note that the matrix (17) is full rank 3
whenever z ̸= 0 by construction of

αk(ϑk, ωk) = ak
(∆kr)

⊤

δωk

with ak ∈ Rn and ∆kr = (∆ks)
⊥. Thus the origin is the only

equilibrium of the closed-loop system (19a). With this in mind,
the proof follows by looking at (19a) as a time-varying linear
dynamics (i.e., when setting Mδ

k = Mδ(ωk)) and considering
the overall closed-loop sampled-data kinematics (19a) as a
cascade interconnection [20]. Thus, (19) is asymptotically
stable if the separate and independent components are such
and the corresponding solutions are bounded [32], [33]. By
construction of ak as a persistently exciting signal, (1a) is
asymptotically stable at the origin; hence, its solutions are
bounded. In addition, the independent part of (19b) (i.e.,
computed for z = 0) is trivially asymptotically stable. Bound-
edness of the solutions of (19b) is easily verified noticing that
the latter is given by the sum of terms that are, by construction,
bounded for all k ∈ N. This concludes the proof.

Remark 3.2: The result above holds for all discrete signals
that are persistently exciting in the discrete-time sense in
(20). In addition, the discrete signal deduced from sampling a
continuous-time persistently exciting signal a(t) : R≥0 → R
(i.e., setting ak = a(kδ)) is not, in general, persistently
exciting in the discrete-time sense for all δ > 0.

Remark 3.3: We highlight that the feedback on the linear
velocity (13) coincides with (5a), proposed in [15] for Carte-
sian steering only. As one might expect, the overall controllers
differ in the angular velocity component only. However, in the
case we are addressing here, this term is the solution of the
nonlinear equation (18) so providing a further and not naive
difficulty in the design.

B. The general case

At this point we are able to solve the problem of steering
the unicycle to a general position zd ∈ R2 with a general

orientation ϑd ∈ R. To this end, we define the steering error

e =

[
ez

eϑ

]
:=

[
R(ϑ) 0

0 1

][
z − zd

ϑ− ϑd

]
(21)

whose sampled-data evolutions are described, at all sampling
instants, by the discrete-time model

ezk+1
=R(δωk)ezk + δB(δωk)vk

eϑk+1
=eϑk

+ δωk

with R(·) as in (9) and

B(δω) =
R(δω)− I

δω

[
0

1

]
.

Remark 3.4: The error dynamics above can be shown to be
passive with respect to the output

hez (ez, ω, v) =B⊤(δω)
(
R(δω)ez +

δ

2
B(δω)v

)
heϑ(eϑ, ω) =eϑ +

δ

2
ω.

Theorem 3.1: Problem 1 is solved by the controller

v =− δω2κv

δω2 − κv

(
1− cos (ωδ)

)B⊤(δω)R(δω)ez (22)

with κv > 0 and ω = ωδ(ez, eϑ) solution to

ω = − 2κω

2 + δκω
eϑ + ak

(
B⊥(δω)

)⊤
ez, κω > 0 (23)

B⊥(δω) =
1

δω

(
R(δω)− I

) [1
0

]
; (24)

namely, the origin is asymptotically stable for the closed-loop
error-dynamics

ezk+1
=
(
R(δωk)− δκδ(ωk)B(δωk)B

⊤(δωk)
)
ezk (25a)

eϑk+1
=
2− δκω

2 + δκω
eϑk

+ ak
(
B⊥(δωk)

)⊤
ezk (25b)

with

κδ(ω) =
δω2κv

δω2 + κv

(
1− cos (ωδ)

)
provided that ak = a(kδ) is bounded and persistently excit-
ing for all δ > 0. Equivalently (22)-(23) make col{zd, ϑd}
asymptotically stable for the sampled-data kinematics (3).

Proof: The proof follows noticing that when setting

εz = R⊤(ϑ)ez, εϑ = ϑ− ϑd

the closed-loop (25) takes the same structure as (19); namely,
it takes the form

εzk+1
=
(
I − κvM

δ(ωk)
)
εzk

εϑk+1
=
2− δκω

2 + δκω
εϑk

+ ak
(∆kr)

⊤

δωk
εzk

with Mδ(ω) as in (16). Thus, by Proposition 3.1 the error
dynamics (25) is asymptotically stable at the origin and
steering at the desired zd with orientation ϑd is guaranteed
for (3) in closed loop.
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Remark 3.5: We fix the linear error component ez as in
(21) to highlight that, for implementation purposes, exact
knowledge of zd is not necessary. In other words, it can be
assumed that the unicycle only measures the position of the
target point with respect to its own coordinate frame (i.e.,
ez = R(ϑ)(z − zd)) rather than in the global one.

Remark 3.6: We note that in the original dynamics the
controller on the linear velocity (35) gets the form

v =
ωκv

δω2 + κv

(
1− cos (δω)

) (∆ks)
⊤(z − zd) (27)

that is similar to (13) evaluated at z ← z−zd. In addition, the
component in the angular velocity is defined by the equation
(23) that, in the original coordinates, gets the form

ω = − δκω

2 + δκω
(ϑ− ϑd) + ak

(∆kr)
⊤

δω
(z − zd)

and yields (18) when z ← z − zd and ϑ← ϑ− ϑd. By virtue
of this, the same computational issues discussed in Section
III-A hold true in this situation with the same remarks and
constructive aspects.

C. Computational aspects

For simplicity, computational aspects are addressed for
the case of stabilization at the origin with a straightforward
extension to the general case.

It can be easily shown that a unique solution to (18) in the
form of a series expansion in powers of δ exists, as specified
in the next result.

Corollary 3.1: There exists T ⋆ > 0 such that for all
δ ∈ [0, T ⋆[, the equality (18) admits a unique solution
ω = ωδ(z, ϑ) of the form

ωδ(z, ϑ) = ω0(z, ϑ) +
∑
i>0

δ

(i+ 1)!
ωi(z, ϑ). (28)

Proof: The result is proved via the Implicit Function
Theorem [34] rewriting (18) as S(δ, z, ϑ, ω) = 0 with

S(δ, z, ϑ, ω) := ω +
δκω

2 + δκω
ϑ+ ak

(∆kr)
⊤

δω
z.

The result follows because limδ→0 S(δ, z, ϑ, ω) = 1 ̸= 0.

Although exact solutions to (18) cannot be easily computed,
approximations are easily defined by exploiting Theorem 3.1.
As a matter of fact, all terms of the series expansion (28) are
exactly computable via a constructive and iterative algorithm
solving, at each step, a suitably defined linear equality. To see
this, let us replace the terms ∆kr

δω and 2
2+δκω

in (18) with

∆kr

δω
=
(
1 +

∑
i>0

(−1)i (δω)2i

(2i+ 1)!

)
s

+
(∑

i>0

(−1)i (δω)
2i−1

(2i)!

)
r

2

2 + δκω
=1 +

∑
i>0

(−1)i

i!

(δκω)
i

2i

so getting

ω =− κω

(
1 +

∑
i>0

(−1)i

i!

(δκω)
i

2i

)
ϑ

+ ak

(
1 +

∑
i>0

(−1)i (δω)2i

(2i+ 1)!

)
s⊤z

+ ak

(∑
i>0

(−1)i (δω)
2i−1

(2i)!

)
r⊤z.

At this point, one substitutes (28) in both sides of the expres-
sion above and equates the terms with the same powers of δ.
Each term ωi(z, ϑ) is then the solution of the linear equation
associated with the corresponding term δi in the so-deduced
formal series equality. For the first terms, one gets

ω0(z, ϑ) =− κωϑ+ aks
⊤z

ω1(z, ϑ) =κ2
ωϑ− akω0(z, ϑ)r

⊤z.

Accordingly, one can define approximations of the solutions
to (18) as the truncation of the series expansion (28) at all
finite order p ∈ N, that is

ωδ
[p](z, ϑ) = ω0(z, ϑ) +

p∑
i=1

δi

(i+ 1)!
ωi(z, ϑ). (29)

The so-defined approximations guarantee, in general, prac-
tical asymptotic stability of the closed-loop equilibrium
col{zd, ϑd}; namely, the sampled-data controller is ensured
to steer the unicycle to a neighborhood of the desired config-
uration of radius in O(δp+1).

Remark 3.7: The proposed control law extends the
emulation-based controller associated with [3], that is the
continuous-time solution directly implemented via sample-
and-hold devices. This can be readily seen for the angular
component by fixing p = 0 in (29), so getting

ωδ
[0](z, ϑ) = −κωϑ+ aks

⊤z (30)

that is exactly the continuous-time angular component of the
controller in [3]. Similar considerations hold for the linear
velocity that can be computed, starting from (13), as

vδ[0](z, ϑ) = lim
δ→0

vδ(z, ϑ) = −κvr
⊤z. (31)

With this in mind, the design we propose naturally enriches the
sampled-data controller with further correcting terms aimed
at compensating the effect of sampling and improving perfor-
mances with respect to mere emulation.

Remark 3.8: Another possible approximation to the solu-
tion to (18) can be deduced as follows. It can be easily
checked that such equality rewrites as the contribution of two
components: one that does not depend on ω and another one
that does; i.e., denoting

ω̄δ =− δκω

2 + δκω
ϑ, ∆̄kr = r(ϑ+ δω̄δ)− r(ϑ).

one gets

ω = − δκω

2 + δκω
ϑ+ ak

(∆̄kr)
⊤

δω̄δ
z + ak

( (∆kr)
⊤

δω
− (∆̄kr)

⊤

δω̄δ

)
z

(32)
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Accordingly, neglecting the term (∆kr)
⊤

δω − (∆̄kr)
⊤

δω̄δ yields the
approximate solution

ωa = − δκω

2 + δκω
ϑ+ ak

(∆̄kr)
⊤

δω̄δ
z. (33)

IV. SAMPLED-DATA FORMATION CONTROL

A. The case of synchronous sampling

In this section, we first consider the case of synchronous
agents, that is δi = δ for all i ∈ V .

In this setting, one can solve Problem 1 by computing a
digital control making col{zid, ϑi

d} = col{zs + σi, ϑs} ∈ R3

asymptotically stable for the sampled-data equivalent model
of each unicycle (3) specified, for i = 1, . . . , Q, as

zik+1 =zik −
vik
ωi
k

∆ks
i (34a)

ϑi
k+1 =ϑi

k + δωi
k. (34b)

The controller can be designed based on the result in Theorem
3.1 as stated below.

Proposition 4.1: Consider a group of Q > 1 unicycles
with sampled-data model (34) communicating, at the sampling
instants t = kδ, over a synchronous network described by a
digraph G containing a spanning tree. Problem 2 with δi = δ
for all i ∈ V is solved by the controller

vi =− δωi2κv

δωi2 − κv

(
1− cos (ωiδi)

)B⊤(δωi)eiz (35)

and ωi = ωiδ(eiz, e
i
ϑ) defined as the solution to

ωi = − 2κω

2 + δκω
eiϑ + ak

(
B⊥(δωi)

)⊤
eiz (36)

for κv, κω > 0, B⊥(·) in (24), ak = a(kδ) a discrete bounded
and persistently exciting signal for all δ > 0 and

eiz =
∑
j∈Ni

R(ϑi)(z̃i − z̃j), eiϑ =
∑
j∈Ni

(ϑi − ϑj) (37)

for z̃i = zi−σi. Moreover, the consensual state is defined by

zs = (ν⊤ ⊗ I2)z̃0, ϑs = ν⊤ϑ0 (38)

with z̃ = col{z̃1, . . . , z̃Q}, ϑ = col{ϑ1, . . . , ϑQ} and ν ∈ RQ

verifying ν⊤L = 0 and ν⊤1Q = 1.
Proof: The proof is carried out by considering the im-

mersion mapping provided by the error component (37) and
the so-called mean field unit [35]

zs =(ν⊤ ⊗ I2)z̃, ϑs = ν⊤ϑ

so that, setting v = col{v1, . . . , vQ} and ω =
col{ω1, . . . , ωQ}, the overall network dynamics reads

zsk+1
=zsk − κv(ν

⊤ ⊗ I2)∆ksvk

ϑsk+1
=ϑsk + δ(ν⊤ ⊗ I2)ωk

eizk+1
=R(δωi

k)e
i
zk

+ δB(δωi
k)v

i
k

eiϑk+1
=eiϑk+1

+ δωi
k.

with ∆ks = diag{∆ks
1

ω1
k

, . . . , ∆ks
Q

ωQ
k

}. Embedding the local
controller into the dynamics above, one gets the error

eizk+1
=
(
R(δωi

k)− δκδ(ωi
k)B(δωi

k)B
⊤(δωi

k)
)
eizk

eiϑk+1
=
2− δκω

2 + δκω
eiϑk

+ ak
(
B⊥(δωi

k)
)⊤

eizk

that coincides with (19) and which is uniformly asymptotically
stable at the origin by Theorem 3.1. By the cascade structure
and because vi → 0 and ωi → 0 as eiz → 0 and eiϑ → 0, the
consensual dynamics is zsk+1

= zsk , ϑsk+1
= ϑsk . and the

result follows.

B. The case of asynchronous sampling

Consider now the case in which the network is asynchronous
and periodic. In particular, let δi = {ti0, ti1, . . . } be the
sampling sequence associated with unicycle i ∈ V with the
corresponding bounded sampling period δi := tik+1 − tik
verifying δi ∈ [δmin, δmax[. Accordingly, each agent dynamics
(7) for t ∈ [tik, t

i
k+1[ reads

żi(t) =ri(t)vi(tik) (39a)

ϑ̇i(t) =ωi(tik) (39b)

and the next result can be given.
Theorem 4.1: Consider a network of Q unicycles kinemat-

ics over a sampled-data communication graph G containing a
spanning tree. Let λmax and λmin denote the largest and small-
est (non-zero) eigenvalues of the Laplacian. Then, Problem 2
is solved by the sampled-data time-varying control

vi(tik) =−
δiω

i(tik)
2
κvB

⊤(δiω
i(tik))e

i
z(t

i
k)

δiωi(tik)
2 − κv

(
1− cos (ωi(tik)δi)

) (40)

and ωi(tik) = ωiδi(eiz(t
i
k), e

i
ϑ(t

i
k)) defined as the solution to

ωi(tik) = −
2κω

2 + δiκω
eiϑ(t

i
k) + ak

(
B⊥(δiω

i(tik))
)⊤

eiz(t
i
k)

(41)

for B⊥(·) in (24), ak = a(tik) a discrete bounded and
persistently exciting signal for all δi > 0 and ei,j as in (37)
provided that

κv, κω ∈ [0, κ⋆], κ⋆ =
δminλmin

δmaxλmax(1 + δmax)
. (42)

In addition, the consensual state is defined by (38).
Proof: Analogously to [16], the proof relies on modeling

the effect of mismatches over the sampling periods as time-
delays and then investigating the robustness of the closed-loop
dynamics with respect to the nominal one. To this end, let us
define the network sampling sequence as

∆ := ∪Qi=1∆i = {t0, t1, . . . } (43)

with, for all i = 1, . . . , Q, δk := tk+1 − tk ≤ δi and
δk ∈ [δmin, δmax[ denoting the distance from two successive
sampling instants in the network. At this point, introduce
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z̃ = col{z̃1, . . . , z̃Q}, ϑ = col{ϑ1, . . . , ϑQ} the matrix
E(tk) = diag{E1(tk), . . . , E

Q(tk)} ∈ R2Q×2Q with

Ei(tk) =

{
0, tk = tik

I2, otherwise

and the coordinate transformation

zs =(ν⊤ ⊗ I2)z̃, ez = z̃ − (1Q ⊗ I2)zs

ϑs =(ν⊤ ⊗ I2)ϑ, eϑ = ϑ− (1Q ⊗ I2)ϑs

(44)

with zs ∈ R2 and ϑs ∈ R the mean-field unit, ez and eϑ the
consensus errors over the position and orientations. Then, at
all tk ∈ ∆, the agglomerate of the feedback laws (40)-(41)
rewrites as

v(tk) =κv(I −E(tk))(L⊗ I2)D(tk)ez(tk) +E(tk)v(tk−1)

ω(tk) =− κω(I −E(tk))(L⊗ I2)F
δeϑ(tk)

+ (I −E(tk))(IQ ⊗ ak)(G
⊥(tk))

⊤ez(tk)

− κωE(tk)(L⊗ I2)F
δeϑ(tk−1)

+E(tk)(IQ ⊗ ak−1)(G
⊥(tk−1))

⊤ez(tk−1)

with

G(tk) = diag{(IQ ⊗G1(tk)), . . . , (IQ ⊗GQ(tk))}

Gi(tk) =
∆ks

i

ωi(tk)

D(tk) = diag{IQ ⊗D1(tk), . . . , IQ ⊗DQ(tk)}

F δ = 2diag{IQ ⊗
1

2 + δ1κω
, . . . , IQ ⊗

1

2 + δQκω
}

Di(tk) =
∆⊤

k s
i

δkωi(tk) +
κv

ωi(tk)
(1− cos (ωi(tk)δk)

∆ks
i=si(tk+1)− si(tk)=

[
− sinϑi(tk+1) + sinϑi(tk)

cosϑi(tk+1)− cosϑi(tk)

]
.

In words, the selecting matrix E(tk) possesses a zero on the
ith diagonal element if the corresponding agent is updating the
corresponding feedback and measures at the time instant tk ∈
∆. Accordingly, the product E(tk) . . .E(tk−M ) possesses a
zero on the ith diagonal element if the corresponding agent
has updated the corresponding feedback and measures at least
once over the time window [tk−M , tk] with tk, tk−M ∈ ∆ and
1 otherwise. Accordingly, because all δi ∈ [δmin, δmax[ for a
finite upper bound δmax > 0, there exists M > 0 such that
all agents have updated the corresponding feedback laws and
measures at least once over [tk−M , tk] with tk, tk−M ∈ ∆ so
that one gets E(tk) . . .E(tk−M−1) = 0. Accordingly, fixing

Ē(tk, tℓ) :=

{
−E(tk), ℓ = k

E(tk), . . . (I −E(tk−M )), otherwise

the feedback gets the form

v(tk) =κv(I −E(tk))(L⊗ I2)D(tk)e(tk)

+

k−1∑
ℓ=k−M

Ē(tk, tℓ)v(tℓ)

=κv(L⊗ I2)D(tk)e(tk)

+ κv

k∑
ℓ=k−M

Ē(tk, tℓ)(L⊗ I2)D(tℓ)e(tℓ)

ω(tk) =− κω(L⊗ I2)F
δeϑ(tk)

+ (IQ ⊗ ak)(G
⊥(tk))

⊤ez(tk)

+ κω

k−1∑
ℓ=k−M

Ē(tk, tℓ)
(
(L⊗ I2)F

δeϑ(tℓ)

+ (IQ ⊗ aℓ)(G
⊥(tℓ))

⊤ez(tℓ)
)

(45)

Thus, the sampled-data agglomerate dynamics of all unicycles
in the corresponding coordinates is given by the time-delayed
time-varying dynamics below

zs(tk+1) =zs(tk)− κv(ν
⊤ ⊗ I2)∆ksv(tk)

ϑs(tk+1) =ϑs(tk) + δ(ν⊤ ⊗ I2)ω(tk)

ez(tk+1) =ez(tk) +G(tk)v(tk)

eϑ(tk+1) =eϑ(tk) + δω(tk).

As in the previous cases, substituting the expression of the
controllers (45) in the agglomerate dynamics above, one
gets that the closed-loop system exhibits a cascade structure.
Thus, asymptotic stability of the error dynamics at the origin
follows if both the position and orientation components (when
considered decoupled) are asymptotically stable. Noticing that
the angular error dynamics is a set of discrete integrators,
the result follows from a straightforward application of [16,
Theorem 1]. As far as the position dynamics is considered, it
gets the closed-loop form

ez(tk+1) =
(
I2Q −M(tk)(L⊗ I2)

)
ez(tk)

− κv

k∑
ℓ=k−M

Ē(tk, tℓ)G(tk)
(
L⊗ I2

)
D(tℓ)e(tℓ)

with

M(tk) =diag{(IQ ⊗M1(tk)), . . . , (IQ ⊗MQ(tk))}
M i(tk) =κvG

i(tk)M
i(tk)

=

κ
ωi(tk)

∆ks
i∆⊤

k s
i

δkωi(tk) + κv(1− cos (ωi(tk)δk))

and the property that

G(tk)
(
L⊗ I2

)
D(tℓ)e(tℓ) =

(
L⊗ I2

)
G(tk)D(tℓ)e(tℓ)

=G(tk)D(tℓ)
(
L⊗ I2

)
e(tℓ).

At this point, introducing in the coordinates

ẽ = col{ẽ0, ẽ1, . . . , ẽQ−1} = (I ⊗ T )e (46)

with T such that TLT−1 = diag{0,Λr}, Λr =
diag{λ1, . . . , λQ−1} ≻ 0 and setting, in particular ẽr =
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col{ẽ1, . . . , ẽQ−1}, uniform asymptotic stability of the origin
of the dynamics above is achieved if the origin is uniformly
asymptotically stable for the reduced time-delay dynamics

ẽr(tk+1) =
(
I2Q −M(tk)(Λr ⊗ I2)

)
ẽr(tk)

− κv

k∑
ℓ=k−M

Ē(tk, tℓ)G(tk)D(tℓ)
(
UrΛr ⊗ I2

)
ẽr(tℓ)

with Ur ∈ RQ×(Q−1) being the matrix of the right eigenvec-
tors associated with the non-zero eigenvalues of the Laplacian.
Setting now the functional

V (ẽr(tk), . . . , ẽr(tk−M )) = V0(ẽr(tk))

+ γV1(ẽr(tk), . . . , ẽr(tk−M ))

V0(ẽr) =
1

2
∥ẽr∥2

V1(ẽr(tk), . . . , ẽr(tk−M )) =
k∑

ℓ1=k−M

k∑
ℓ2=ℓ1

∥Ē(tk, tℓ2)D
⊤(tk)D(tℓ2)

(
UrΛr ⊗ I2

)
ẽr(tℓ2)∥2

with γ > 0 the proof follows exactly the same lines as the one
in [16, Theorem 1] exploiting that for all i = 1, . . . , Q− 1,

ωi
(
1− κ(ωi)∆⊤

k s
i∆ks

i
)
≤ 1.

Remark 4.1: From (42), the gain is reduced for coping
with asynchronism. Accordingly, the convergence rate to the
required formation is proportional to the term δmin

δmax
which

can be hence interpreted as the degree of synchronization: as
δmax ≫ δmin convergence is slow and faster as δmax → δmin.

Remark 4.2: In the proposed framework, we embed the
possibility for agents to share the same sampling period (i.e.,
all the δi’s are not necessarily distinct).

Remark 4.3: The robustness design and analysis we pro-
pose rely upon modeling the effect of asynchronism as a dis-
tributed state delay over the network and involves Lyapunov-
Krasovskii-like arguments. Accordingly, the deduced bound
on the gains might be conservative depending on the situation.
For instance, when δmin

δmax
≈ 1 but λmin

λmax
≪ 1 (i.e., when the

network connectivity degree is large) the resulting estimate
might be small even if larger gain might still provide good
performances. On the other side, when δmin

δmax
≪ 1 (that is

when the sampling period of all agents is notably spread and
different) the estimate is much closer to the actual maximal al-
lowed gain. The definition of new gains (possibly via adaptive
methodologies) bridging this gap is part of perspective works.

C. Simulations

The aim of the reported simulations is to show that the
proposed controller is capable of enforcing desired formation
despite the effect of both synchronous and asynchronous
sampling (Proposition 4.1 and Theorem 4.1), contrarily to the
case of emulation-based control (30)-(31) associated with the
continuous-time design in [30]. The communication topology

1 2 3

456

Fig. 1: Communication topology.

is fixed by the graph in Figure 1. The control laws are ac-
cordingly defined to guarantee consensus of Q = 6 unicycles
toward the hexagonal formation specified by the vector

σ =
[
1 0 1

2

√
3
2 − 1

2

√
3
2 − 1 0 − 1

2 −
√
3
2

1
2

√
3
2

]
with initial conditions

z(0) =
[
2 5 5 11

2 3 7
2 3 2 1 7

2 1 9
2

]⊤
ϑ(0) =

[
3
4π −π

4
π
2

π
4

π
2

π
4

]⊤
.

The gains are fixed according to 4.1 and Theorem 4.1 while the
angular velocity component solution to (36) is approximated
as discussed in Remark 3.8. The persistently exciting signal
is obtained by sampling the one below

a(t) =

{
0, if t ∈

[
2j+1
ω̄ π, 2(j+1)

ω̄ π
]
, j ∈ {0, 1, . . . }

α sin ω̄t, otherwise .

with α = 1
2 and ω̄ = 2. For the synchronous case, the results

are reported in Figures 2, 3 and 4 when fixing the sampling
period as δ = 0.5 seconds and unitary gains for all reported
scenario. In this case, the results highlight the capability of the
proposed sampled controller (Fig. 4) to guarantee stabilization
of the desired formation with performances that are close
(and comparable) to the ones of the ideal continuous-time
feedback (Fig. 2). In the same situation, the emulation-based
controller fails and makes all unicycles diverge (Fig. 3).
As far as the asynchronous case is concerned the results
are reported in Figures 5, 6 and 7 the sampling periods
are randomly generated within the interval [δmin, δmax[ with
δmin = 10−2 and δmax = 1 seconds. In that case, similar
considerations hold true: the emulation control fails when the
proposed one is successful in forcing the desired formation
with performances that are similar to the continuous-time one.
The transient time significantly increases as the gains are small
as we consider an inflated scenario in which the sampling
periods can be largely different for each agent. Those results
testify that the proposed control, even if computed as an
approximate solution to the corresponding equalities, preserves
the performances of the continuous-time counterpart, despite
the effect of sampling. As one might expect, the convergence
rate in the asynchronous case is notably affected by the choice
of the gain that must take into account the asynchronism of
the network. However, despite the large spread among the
minimum and the maximum sampling period and even if with
a slower convergence, the desired formation is reached with
good overall performances.
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Fig. 2: Continuous-time control [30] with κv = κω = 1.

V. CONCLUSIONS AND PERSPECTIVES

A new sampled-data controller has been proposed for steer-
ing unicycles to a desired configuration with a preliminary
application to formation consensus control of groups of uni-
cycles under sampled-data asynchronous communication. The
sampled-data control is robust with respect to the effect of
sampling in both the synchronous and asynchronous cases.
Current works concern the extension of those arguments to
formation tracking under time-delay noisy communication and
time-varying transmission intervals and scheduling constraints.
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