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Abstract
Bilevel optimization problems embed the optimality of a subproblem as a constraint of
another optimization problem. We introduce the concept of near-optimality robustness for
bilevel optimization, protecting the upper-level solution feasibility from limited deviations
from the optimal solution at the lower level. General properties and necessary conditions
for the existence of solutions are derived for near-optimal robust versions of general bilevel
optimization problems. A duality-based solution method is defined when the lower level is
convex, leveraging the methodology from the robust and bilevel literature. Numerical results
assess the efficiency of exact and heuristic methods and the impact of valid inequalities on
the solution time.

Keywords Bilevel optimization · Robust optimization · Decision-dependent uncertainty ·
Bounded rationality · Duality · Bilinear constraints · Extended formulation

Mathematics Subject Classification 90C33 · 90C46 · 91A65 · 90C26 · 90C34

1 Introduction

Bilevel optimization problems embed the optimality conditions of a subproblem into the
constraints of another one. They can faithfully model various decision-making problems
such as Stackelberg or leader-follower games, market equilibria, or pricing and revenue
management. A recent review of methods and applications of bilevel problems is presented
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in [1]. In the classical bilevel setting, when optimizing its objective function, the upper
level anticipates an optimal reaction of the lower level to its decisions. However, in many
practical cases, the lower level canmake near-optimal decisions, bywhichwemean decisions
that respect bilevel feasibility but with the corresponding objective value different from the
optimal value by up to an additive constant. An important issue in this setting is the definition
of the robustness of the upper-level decisions with respect to such near-optimal lower-level
solutions.

In some engineering applications [2–4], the decision-maker optimizes an outcome over a
dynamical system (modelled as the lower level). For stable systems, the rate of change of the
state variables decreases as the systemconverges towards theminimumof a potential function.
If the system is stopped before reaching the minimum, the designer of the system would
require that the upper-level constraints be feasible for near-optimal lower-level solutions.

In economics and decision theory, the concept of bounded rationality [5] or ε-rationality
[6] defines an economic and behavioural interpretation of a decision-making process where
an agent aims to take any solution associated with a “satisfactory” objective value instead of
the optimal one.

Protecting the upper level from a violation of its constraints by deviations of the lower
level is a form of robust optimization, and it is through these lenses that we will view it in this
paper. Therefore, we use the terms “near-optimality robustness” and “near-optimal robust
bilevel problem” or NRB in the rest of the paper to refer to this form of robustness.

The introduction of uncertainty and robustness in games has been approached from differ-
ent points of view in the literature, with for instance [7] for the existence of robust counterparts
of Nash equilibria without the knowledge of probability distributions associated with the
uncertainty. For uncertainty in hierarchical games and bilevel problems which is our focus in
this work, we refer to the recent survey [8] for an overview of approaches and formulations.
In [9], the robust version of a network congestion problem is developed. Users are assumed to
make decisions under bounded rationality, leading to a robust Wardrop equilibrium. Robust
versions of bilevel problems modelling specific Stackelberg games have been studied in [10,
11], using robust formulations to protect the leader against non-rationality or partial ratio-
nality of the follower. A stochastic version of the pessimistic bilevel problem is studied in
[12], where the realization of the random variable occurs after the upper level and before the
lower level. The authors then derive lower and upper bounds on the pessimistic and opti-
mistic versions of the stochastic bilevel problem as MILPs, leveraging an exact linearization
by assuming the upper-level variables are all binary. The models developed in [13] and [14]
explore different forms of bounded or partial rationality of the lower level, where the lower
level either makes a decision using a heuristic or approximation algorithm or may deviate
from its optimal value in a way that penalizes the objective of the upper level. In [15], a bilevel
model is developed with the lower-level agent facing limit observability of the upper-level
decisions, resulting in another form of uncertainty for the upper level; the uncertainty is for-
mulated in a fashion inspired by the concept of near-optimality robustness presented in this
work. In [16], a robust version of the bilevel continuous knapsack is considered, where the
upper level does not have a complete knowledge of the lower-level objective function. They
also establish complexity results for the problem which depend on the discrete or continuous
nature of the uncertainty set of the lower-level objective coefficients.

Solving bilevel problems under limited deviations of the lower-level response was intro-
duced in [17] under the term “ε-approximation” of the pessimistic bilevel problem. The
authors focus on the independent case, i.e. problem settings where the lower-level feasible
set is independent of the upper-level decisions. Problems in such settings are shown to be
simpler to handle than the dependent case and can be solved in polynomial time when the
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lower-level problem is linear under the optimistic and pessimistic assumptions [17, Theo-
rem 2.2]. A custom algorithm is designed for the independent case, solving a sequence of
non-convex non-linear problems relying on global nonlinear solvers. We must highlight that
other bilevel formulations such as the one presented in [18] have used concepts of approxi-
mate lower level solutions, but that these formulations are relaxations of the original problem,
allowing solutions that are ε-optimal for the second level and therefore not necessarily bilevel-
feasible unlike our approach or that of [17] which restrict the feasible space of the standard
(both optimistic and pessimistic) bilevel optimization formulation and robustify the solution.

We consider bilevel problems involving upper- and lower-level variables in the con-
straints and objective functions at both levels, thus more general than the independent
“ε-approximation” from [17]. Unlike the independent case, the dependent bilevel problem is
NP-hard even when the constraints and objectives are linear. By defining the uncertainty in
terms of a deviation from optimality of the lower level, our formulation offers a novel inter-
pretation of robustness for bilevel problems and Stackelberg games. In the case of a linear
lower level, we derive an exact MILP reformulation while not requiring the assumption of
pure binary upper-level variables.

The main contributions of the paper are:

1. The definition and formulation of the dependent near-optimal robust bilevel problem,
resulting in a generalized semi-infinite problem and its interpretation as a special case of
robust optimization applied to bilevel problems.

2. The study of duality-based reformulations of NRB where the lower-level problem is
convex conic or linear inSect. 3, resulting in afinite-dimensional single-level optimization
problem.

3. An extended formulation for the linear-linear NRB in Sect. 4, linearizing the bilinear
constraints of the single-level model using disjunctive constraints.

4. Exact and heuristic solution methods for the linear-linear NRB in Sect. 5 using the
extended formulation and its properties.

The paper is organized as follows. In Sect. 2, we define the concepts of near-optimal set
and near-optimal robust bilevel problem. We study the near-optimal bilevel problems with
convex and linear lower-level problems in Sects. 3 and 4 respectively. In both cases, the near-
optimal robust bilevel problem can be reformulated as a single level. For a linear lower level,
an extended formulation can be derived from the single-level problem. Exact and heuristic
solution algorithms are provided in Sect. 5 and computational experiments are conducted in
Sect. 6, comparing the extended formulation to the compact one and studying the impact
of valid inequalities. Finally, in Sect. 7 we draw some conclusions and highlight research
perspectives on near-optimality robustness.

2 Near-optimal set and near-optimal robust bilevel problem

In this section, we first define the near-optimal set of the lower level and near-optimality
robustness for bilevel problems. Next, we illustrate the concepts on an example and highlight
several properties of general near-optimal robust bilevel problems before focusing on the
convex and linear cases in the following sections.
The general bilevel problem is classically defined as:

min
x

F(x, v) (1a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (1b)
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x ∈ X (1c)

v ∈ argmin
y∈Y

{ f (x, y) s.t. gi (x, y) ≤ 0 ∀i ∈ [[ml ]]}. (1d)

The upper- and lower-level objective functions are noted F, f : X ×Y → R respectively.
Wedenotewith [[n]] the set of running indices 1 . . . n. nU , nL denote the number of variables of
the upper and lower level respectively, mU , mL similarly denote the number of constraints.
Constraint (1b) and gi (x, y) ≤ 0 ∀i ∈ [[ml ]] are the upper- and lower-level constraints
respectively. In this section, we assume that Y = R

nl in order that the lower-level feasible
set can be only determined by the gi functions. The optimal value function φ(x) is defined
as follows:

φ : Rnu → {−∞} ∪ R ∪ {+∞}
φ(x) = min

y
{ f (x, y) s.t. g(x, y) ≤ 0}. (2)

To keep the notation succinct, the indices of the lower-level constraints gi are omitted
when not needed as in Constraint (2). Throughout the paper, it is assumed that the lower-level
problem is feasible and bounded for any given feasible upper-level decision.
When, for a feasible upper-level decision, the solution v to the lower-level is not unique, the
bilevel problem is not well-defined and further assumptions are required [1]. In the optimistic
case, we assume that the lower level selects the optimal solution favouring the upper level
and the optimal solution disfavouring them the most in the pessimistic case. We refer the
reader to [19, Chapter 1] for further details on these two approaches. The optimistic case is
the most straightforward to formulate using the value function:

min
x,v

F(x, v) (B)

s.t. Gk(x, v) ≤ 0 k ∈ [[mu]]
x ∈ X
f (x, v) ≤ φ(x)

gi (x, v) ≤ 0 ∀i ∈ [[ml ]].
Note that a near-optimal robust problem can be constructed from the original “unspecified”
problem (1) or from the optimistic formulation (B).

Instead of making an explicit optimistic/pessimistic assumption about the reaction v of the
lower level, we propose a means for the upper level to protect itself against possible follower
deviations from its optimality. In other words, we seek a decision x at the upper level that
is robust in the sense that it remains feasible even if the lower level deviates from its own
optimality. For this purpose, for a given upper-level decision x and tolerance δ, we define the
near-optimal set of the lower level Z(x; δ) as:

Z(x; δ) = {y | g(x, y) ≤ 0, f (x, y) ≤ φ(x) + δ}.
ANear-Optimal Robust Bilevel ProblemNRB, of parameter δ is defined as a bilevel problem
with the additional constraints (3e) below ensuring that the upper-level constraints must be
satisfied for any lower-level solution z in the near-optimal set Z(x; δ):

(NRB) min
x,v

F(x, v) (3a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (3b)

f (x, v) ≤ φ(x) (3c)
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g(x, v) ≤ 0 (3d)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (3e)

x ∈ X . (3f)

Each k constraint in (3b) is satisfied if the corresponding constraint set in (3e) is non-empty
and holds and is therefore redundant since v ∈ Z(x; δ). However, wemention Constraint (3b)
in the formulation to highlight the structure of the initial bilevel problem in the near-optimal
robust formulation.

NRB captures, unifies, and extends several common formulations in bilevel optimization.
The special case Z(x; 0) is the set of optimal solutions to the original lower-level problem,
NRB with δ = 0 is therefore equivalent to the constraint-based pessimistic bilevel problem
as formulated in [17]:

f (x, y) ≤ φ(x) ∀y ∈ Z(x; 0).
For δ < 0, Z(x; δ) is the empty set, in which case NRB is equivalent to the original opti-
mistic bilevel problem. The set Z(x;∞) corresponds to the complete lower-level feasible
set, assuming the lower-level optimal solution is not unbounded for the given upper-level
decision x . It therefore results in an optimistic bilevel formulation with a classical robustness
constraints at the upper level. We also note the connection or near-optimality robustness to
the uncertainty model proposed in [14], in which the lower-level decision is assumed to be
derived from an exact or heuristic method known from a fixed set of known algorithms. In
contrast, we do not make assumptions on a solution process but consider that the lower-level
problem may be solved to near-optimality with a fixed additive constant δ. This corresponds
naturally to several classes of exact algorithms which provide a guarantee on the optimality
gap that depends on the computational effort (e.g. first-order, interior point methods, branch-
and-bound algorithms), and to all approximation algorithms which would provide solutions
with a bound on the optimality gap.

Unlike the constraint-based pessimistic bilevel problem presented in [17], the upper-
level objective F(x, v) depends on both the upper- and lower-level variables, but is only
evaluated with the optimistic lower-level variable v and not with a worst-case near-optimal
solution. This modelling choice is enabled by the NRB formulation we chose which uses the
optimistic lower-level response v explicitly. It also implies that the upper level chooses the
best optimistic decision which also protects its feasibility from near-optimal deviations. One
implication for the modeller is that a near-optimal robust problem can be constructed directly
from a bilevel instance where the objective function often depends on the variables of the
two levels, without an epigraph formulation of the objective function. Alternatively, the near-
optimal robust formulation can protect both the upper-level objective value and constraints
from near-optimal deviations of the lower level using an epigraph formulation introducing
an additional variable:

(C-NRB) min
x,v,τ

τ (4a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (4b)

f (x, v) ≤ φ(x) (4c)

g(x, v) ≤ 0 (4d)

F(x, z) ≤ τ ∀z ∈ Z(x; δ) (4e)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (4f)

x ∈ X . (4g)
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The two models define different levels of conservativeness and risk. Indeed:

opt(B) ≤ opt(NRB) ≤ opt(C-NRB),

where opt(P) denotes the optimal value of problem P. Both near-optimal robust formulations
NRB and C-NRB can be of interest to model decision-making applications. It can also be
noted that NRB includes the special case of interdiction problems, i.e. problems for which
F(x, v) = − f (x, v). The two models offer different levels of conservativeness and risk
and can both be of interest when modelling decision-making applications. We will focus
on Problem (3), NRB, in the rest of this article, but all results and formulations extend to
Problem (4).

Constraint (3e) is a generalized semi-infinite constraint [20]. The dependence of the set of
constraintsZ(x; δ) on the decision variables leads to the characterization of NRB as a robust
problem with decision-dependent uncertainty [21]. Each constraint in the set (3e) can be
replaced by the corresponding worst-case second-level decision zk obtained as the solution
of the adversarial problem, parameterized by (x, v, δ):

zk ∈ argmax
y

Gk(x, y) (5a)

s.t. f (x, y) ≤ φ(x) + δ (5b)

g(x, y) ≤ 0. (5c)

The addition of the semi-infinite near-optimal robustness constraint increases the compu-
tational difficulty of the bilevel optimization problem. Nonetheless, NRB and multilevel
optimization problems with similar forms of uncertainty on lower-level decisions do not
increase the complexity of the multilevel problem in the polynomial hierarchy under mild
conditions [22]. For bilevel knapsack problems with an uncertain lower-level objective, [23]
establishes complexity results in the discrete and continuous lower level cases.

It is common in the robust optimization literature to present models with either uncertainty
on the constraints and/or on the objective function [24]. As for these, we show that the
Objective-Robust Near-Optimal Bilevel Problem (O-NRB), is a special case of NRB:

(O-NRB) min
x∈X sup

z∈Z(x;δ)
F(x, z)

s.t. X = {x ∈ X ,Gk(x) ≤ 0 ∀k ∈ [[mu]]}
and where: Z(x; δ) = {y | g(x, y) ≤ 0, f (x, y) ≤ φ(x) + δ}.

In contrast to most objective-robust problem formulations, the uncertainty set Z depends
on the upper-level solution x , qualifying O-NRB as a problem with decision-dependent
uncertainty.

O-NRB is a special case of NRB, following a reformulation from objective uncertainty to
constraint uncertainty with an epigraph variable, O-NRB is equivalent to:

min
x,τ

τ

s.t. x ∈ X

F(x, z) ≤ τ ∀z ∈ Z(x; δ),

this formulation is a special case of NRBwith an upper-level objective independent of lower-
level variables. The pessimistic bilevel optimization problem defined in [25] is both a special
case and a relaxation of O-NRB. For δ = 0, the adversarial problem of O-NRB is equivalent
to finding the worst lower-level decision with respect to the upper-level objective amongst
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Fig. 1 Linear bilevel problem

the lower-level-optimal solutions. For any δ > 0, the inner problem can select the worst
solutions with respect to the upper-level objective that are not optimal for the lower level.
The pessimistic bilevel problem is therefore a relaxation of O-NRB.
We illustrate the concept of near-optimal set and near-optimal robust solution, first with a
simple linear bilevel problem represented in Fig. 1 for a geometric intuition, and then in two
applications from the literature to show the interest of near-optimality robustness in practical
applications.

min
x,v

x

s.t. x ≥ 0

v ≥ 1 − x

10

v ∈ argmax
y

{y s.t. y ≤ 1 + x

10
}. (6)

The high-point relaxation of Problem (6), obtained by relaxing the optimality constraint of
the lower level, while maintaining feasibility, is:

min
x,v

x

s.t. x ≥ 0

v ≥ 1 − x

10

v ≤ 1 + x

10
.

The shaded area in Fig. 1 represents the interior of the polytope, which is feasible for the
high-point relaxation. The induced set, resulting from the optimal lower-level reaction, is
given by: {(x, y) ∈ (R+,R) s.t. y = 1 + x

10 }. The unique optimal point is (x̂, ŷ) = (0, 1).
Let us now consider a near-optimal tolerance of the follower with δ = 0.1. If the upper-

level decision is x̂ , then the lower level can take any value between 1 − δ = 0.9 and 1. All
these values except 1 lead to an unsatisfied upper-level constraint problem. The problem can
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Fig. 2 Linear bilevel problem with a near-optimality robustness constraint

be reformulated as:

min
x,v

x

s.t. x ≥ 0

v ≥ 1 − x

10

v ∈ argmax
y

{y s.t. y ≤ 1 + x

10
}

z ≥ 1 − x

10
∀z ∈ {z | z ≤ 1 + x

10
, z ≥ v − δ}.

Figure2 illustrates the near-optimal equivalent of the problem with an additional constraint
ensuring the satisfaction of the upper-level constraint for all near-optimal responses of the
lower level.
This additional constraint is represented by the dashed line. The optimal upper-level decision
is x = 0.5, for which the optimal lower-level reaction is y = 1 + 0.1 · 0.5 = 1.05. The
boundary of the near-optimal set is y = 1 − 0.1 · 0.5 = 0.95.

We next present the interpretation of near-optimality robustness in the context of two appli-
cations. In [26], a bilevel model is introduce to determine the parameters of a pricing scheme
for electricity in the context of demand response. The pricing scheme can be summarized as
offering users two alternatives for a given time frame, either:

– the user remains on the baseline price for the given time frame, in which case the price
is “flat”, i.e. independent of the consumption,

– the user books a certain capacity for a time frame, benefitting from a price lower than
the baseline if their consumption remains below the booked capacity, and having to pay
a price higher than the baseline if they overconsume.

The energy supplier, acting as the leader, seeks to offer a price that incentivizes the user to
book a capacity in a certain range, for instance to make the consumption more predictable.
Formulating the problem with the optimistic hypothesis implies that we assume the user will
commit to booking a certain capacity and risking to potentially pay a higher price, even if
the expected total cost is identical to the simpler flat price. The pessimistic hypothesis also
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appears very limited in its mitigation of the problem, since it implies that the user choice
preferred by the supplier need to be better than all others by any arbitrarily small gain.
Bounded rationality appears like a more natural representation of the user decision-making
process, whowould probably not switch to amore complex pricing scheme unless the net gain
reaches a certain amount, therefore making near-optimality robustness the natural modelling
framework for this problem.

Another application in last-mile delivery can be proposed based on the problem introduced
in [27]. In this model, a delivery platform, acting as the leader, must deliver parcels to
customers by contracting intermediate delivery carriers acting as followers. The platform
must ensure that the parcels are delivered, and chooses a compensation to offer to each
carrier for delivering a particular parcel. The carriers then select a subset of parcels to deliver
maximizing their profit subject to time or space constraints. It is however natural to assume
that some carriers may have constraints or costs that are unknown from the leader, e.g.,
preferred routes, types of customers, or time windows, but could amount to a difference in
objective bounded by some quantity δ. Near-optimality robustness offers a framework to
require solutions ensuring that all the parcels are delivered, even if some carriers choose a
near-optimal route.

Generalizing from these application, near-optimal robust bilevel optimization is a natural
modelling framework for leader-follower games where:

– the leader has constraints that depend on the follower decisions,
– these constraints cannot be imposed directly to the follower, whose choice can mainly

be changed through incentives on their objective,
– the user could make a decision with bounded rationality.

Typically, when the follower objective amounts to a financial loss or profit, the optimistic and
pessimistic hypotheses assume that the follower will adopt a particular behaviour, even if the
relative benefit of that behaviour is infinitesimal for them. In contrast, NRB incorporates a
minimum incentive of δ directly in the model, ensuring the feasibility of the solution for the
upper level despite bounded rationality. Other applications following this structure include
pricing problems in networks and shared systems, e.g. passenger trains and flights, where
the price is the only incentive mechanism, and in which the upper level needs to ensure the
system is not used more than its capacity, corresponding to overbooking or overutilization
of some resources. We also note that one group of problems in bilevel optimization that is
not suited to NRB is that of interdiction games, since the lower level is already adversarially
trying to impact the upper level negatively.

In the rest of this section, we establish properties of the near-optimal set and near-optimal
robust bilevel problems. If the lower-level optimization problem is convex, then the near-
optimal set Z(x; θ) is convex as the intersection of two convex sets:

– {y | g(x, y) ≤ 0}
– {y | f (x, y) ≤ φ(x) + δ}.
In robust optimization, the characteristics of the uncertainty set sharply impact the diffi-

culty of solving the problem. The near-optimal set of the lower-level is not always bounded;
this can lead to infeasible or ill-defined near-optimal robust counterparts of bilevel problems.
In the next proposition, we define conditions under which the uncertainty set Z(x; δ) is
bounded.

Proposition 1 For a given pair (x, δ), any of the following properties is sufficient forZ(x; δ)

to be a bounded set:
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1. The lower-level feasible domain is bounded.
2. f (x, ·) is radially unbounded with respect to y, i.e. ‖y‖ → ∞ ⇒ f (x, y) → ∞.
3. f (x, ·) is radially bounded such that:

lim
r→+∞ f (x, rs) > f (x, v) + δ ∀s ∈ S,

with S the unit sphere in the space of lower-level variables.

Proof The first case is trivially satisfied since Z(x; δ) is the intersection of sets including
the lower-level feasible set. If f (x, ·) is radially unbounded, for any finite δ > 0, there is a
maximum radius around v beyond which any value of the objective function is greater than
f (x, v) + δ. The third case follows the same line of reasoning as the second, with a lower
bound in any direction ‖y‖ → ∞, such that this lower bound is above f (x, v) + δ. ��

The radius of robust feasibility is defined as the maximum “size” of the uncertain set [28,
29], such that the robust problem remains feasible. In the case of near-optimality robustness,
the radius can be interpreted as the maximum deviation of the lower-level objective from its
optimal value, such that the near-optimal robust bilevel problem remains feasible.

Definition 1 (Radius of near-optimal feasibility) For a given optimistic bilevel optimization
problem (B), let optδ(NRB) be the optimal value of the near-optimal robust problem (3)
constructed from (B) with a tolerance δ. The radius of near-optimal feasibility δ̂ is defined
by:

δ̂ = argmax
δ

{δ s.t. optδ(NRB) < ∞}. (7)

The radius as defined in Definition 1 can be interpreted as a maximum robustness budget in
terms of the objective value of the lower level. It represents the maximum level of tolerance
of the lower level on its objective, such that the upper level remains feasible.

Proposition 2 The optimistic bilevel problem (B) is a relaxation of the corresponding near-
optimal robust bilevel problem for any δ.

Proof The optimistic bilevel problem (B) is equivalent to Problem (3) without Constraints
(3e) and has the same variables as Problem (3). ��
Proposition 3 If the optimistic bilevel problem (B) is feasible, then the adversarial problem
(5) is feasible.

Proof If the bilevel problem is feasible, then the solution z = v is feasible for the primal
adversarial problem. ��
Proposition 4 If (x̂, ŷ) is a bilevel-feasible point, and Gk(x̂, ·) is Kk-Lipschitz continuous
for a given k ∈ [[mu]] such that:

Gk(x̂, ŷ) < 0,

then the constraint Gk(x̂, y) ≤ 0 is satisfied for all y ∈ F (k)
L such that:

F (k)
L (x̂, ŷ) = {y ∈ R

nl | ‖y − ŷ‖ ≤ |Gk(x̂, ŷ)|
Kk

}.
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Proof As Gk(x̂, ŷ) < 0, and Gk(x̂, ·) is continuous, there exists a ball Br (ŷ) in Rnl centered
on (ŷ) of radius r > 0, such that

G(x̂, y) ≤ 0 ∀y ∈ Br (ŷ).

Let us define:

r0 = argmax
r

{r s.t. G(x̂, y) ≤ 0 ∀y ∈ Br (ŷ)}. (8)

By continuity, Problem (8) always admits a feasible solution. If the feasible set is bounded,
there exists a point y0 on the boundary of the ball, such that Gk(x̂, y0) = 0. It follows from
Lipschitz continuity that:

|Gk(x̂, ŷ) − Gk(x̂, y0)| ≤ Kk‖y0 − ŷ‖
|Gk(x̂, ŷ)|

Kk
≤ ‖y0 − ŷ‖.

Gk(x̂, y) ≤ Gk(x̂, y0) ∀y ∈ Br0(ŷ), therefore all lower-level solutions in the set

F (k)
L (x̂, ŷ) = {y ∈ R

nl s.t. ‖y − ŷ‖ ≤ |Gk(x̂, ŷ)|
Kk

}

satisfy the k-th constraint. ��
Corollary 1 Let (x̂, ŷ) be a bilevel-feasible solution to the optimistic bilevel problem (B), δ
a tolerance value, and

FL(x̂, ŷ) =
mu⋂

k=1

F (k)
L (x̂, ŷ),

then Z(x; δ) ⊆ FL(x̂, ŷ) is a sufficient condition for near-optimality robustness of (x̂, ŷ).

Proof Any lower-level solution y ∈ FL(x̂, ŷ) satisfies all mu upper-level constraints, thus
Z(x; δ) ⊆ FL(x̂, ŷ) is a sufficient condition for the solution (x̂, ŷ) to be near-optimal robust.

��
Corollary 2 Let (x̂, ŷ) be a bilevel-feasible solution to the optimistic bilevel problem (B), δ
a tolerance value, let R be the radius of the lower-level feasible set and Gk(x̂, ·) be Kk-
Lipschitz for a given k, then the k-th constraint is robust against near-optimal deviations
if:

|Gk(x̂, ŷ)| ≤ Kk R.

Proof The inequality can be deduced from the fact that ‖y − ŷ‖ ≤ R. ��
Corollary 2 can be used when the lower level feasible set is bounded to verify near-optimality
robustness of incumbent solutions.

3 Near-optimal robust bilevel problems with a convex lower level

In this section, we study near-optimal robust bilevel problems where the lower-level Prob-
lem (1d) is a parametric convex optimization problem with both a differentiable objective
function and differentiable constraints. If Slater’s constraint qualification holds, the KKT
conditions are necessary and sufficient for the optimality of the lower-level problem and
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strong duality holds for the adversarial subproblems. These two properties are leveraged to
reformulate NRB as a single-level closed-form problem.
Given a pair (x, v), the adversarial problem associated with the k-th constraint of Problem (3)
can be formulated as:

max
y

Gk(x, y) (9a)

s.t. g(x, y) ≤ 0 (9b)

f (x, y) ≤ f (x, v) + δ. (9c)

Even if the upper-level constraints are convexwith respect to y, Problem (9) is in general non-
convex since the function to maximize is convex over a convex set. First-order optimality
conditions may induce several non-optimal critical points and the definition of a solution
method needs to rely on global optimization techniques [30, 31].

By assuming that the constraints of the upper-level problem Gk(x, y) can be decomposed
and that the projection onto the lower variable space is affine, the upper-level constraint can
be re-written as:

Gk(x, y) ≤ 0 ⇔ Gk(x) + HT
k y ≤ qk . (10)

The k-th adversarial problem is then expressed as:

max
y

〈Hk, y〉 (11a)

s.t. gi (x, y) ≤ 0 ∀i ∈ [[ml ]] (αi ) (11b)

f (x, y) ≤ f (x, v) + δ (β) (11c)

and is convex for a fixed pair (x, v). Satisfying the upper-level constraint in the worst-case
requires that the objective value of Problem (11) is lower than qk −Gk(x). We denote byAk

andDk the objective values of the adversarial Problem (11) and its dual respectively.Dk takes
values in the extended real set to account for infeasible and unbounded cases. Proposition 3
holds for Problem (11). The feasibility of the upper-level constraint with the dual adversarial
objective value as formulated in Constraint (12) is, by weak duality of convex problems,
a sufficient condition for the feasibility of a near-optimal solution. If Slater’s constraint
qualifications hold, it is also a necessary condition [32] by strong duality:

Ak ≤ Dk ≤ qk − Gk(x). (12)

The generic form for the single-level reformulation of the near-optimal robust problem can
then be expressed as:

min
x,v

F(x, v) (13a)

s.t. G(x) + Hv ≤ q (13b)

f (x, v) ≤ φ(x) (13c)

g(x, v) ≤ 0 (13d)

Dk ≤ qk − Gk(x) ∀k ∈ [[mu]] (13e)

x ∈ X . (13f)

In order to write Problem (13) in a closed form, the lower-level problem (13c–13d) is reduced
to its KKT conditions:

∇v f (x, v) −
ml∑

i=1

λi∇vgi (x, v) = 0 (14a)
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gi (x, v) ≤ 0 ∀i ∈ [[ml ]] (14b)

λi ≥ 0 ∀i ∈ [[ml ]] (14c)

λi gi (x, v) = 0 ∀i ∈ [[ml ]]. (14d)

Constraint (14d) derived from the KKT conditions cannot be tackled directly by non-linear
solvers [33]. Specific reformulations, such as relaxations of the equality Constraints (14d)
into inequalities or branching on combinations of variables (as developed in [34, 35]) are
often used in practice.
In the rest of this section, we focus on bilevel problems such that the lower level is a conic
convex optimization problem. Unlike the convex version developed above, the dual of a conic
optimization problem can be written in closed form.

min
y

〈d, y〉
s.t. Ax + By = b

y ∈ K (15)

where 〈·, ·〉 is the inner product associated with the space of the lower-level variables and K
is a proper cone [32, Chapter 2]. This class of problems encompasses a broad class of convex
optimization problems of practical interest [36, Chapter 4], while the dual problem can be
written in a closed-form if the dual cone is known, leading to a closed-form single-level
reformulation. The k−th adversarial problem is given by:

max
y,r

〈Hk, y〉 (16a)

s.t. By = b − Ax (16b)

〈d, y〉 + r = 〈d, v〉 + δ (16c)

y ∈ K (16d)

r ≥ 0 (16e)

with the introduction of a slack variable r . With the following change of variables:

ŷ =
[
y
r

]
B̂ = [

B 0
]
d̂ = [

d 1
]
Ĥk =

[
Hk

0

]
,

K̂ = {(y, r), y ∈ K, r ≥ 0},
K̂ is a cone as the Cartesian product of K and the nonnegative orthant. Problem (16) is
reformulated as:

max
ŷ

〈Ĥk, ŷ〉

s.t. (B̂ ŷ)i = bi − (Ax)i ∀i ∈ [[ml ]] (αi )

〈d̂, ŷ〉 = 〈d, v〉 + δ (β)

ŷ ∈ K̂
which is a conic optimization problem, for which the dual problem is:

min
α,β,sk

〈(b − Ax), α〉 + (〈d, v〉 + δ)β (17a)

s.t. B̂�α + βd̂ + s = Ĥk (17b)

s ∈ −K̂∗, (17c)
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with K̂∗ the dual cone of K̂. In the worst case (maximum number of non-zero coefficients),
there are (ml · nu + nl) bilinear terms in mu non-linear non-convex constraints. This number
of bilinear terms can be reduced by introducing the following variables (p, o), along with
the corresponding constraints:

min
α,β,s,p,o

〈p, α〉 + (o + δ)β (18a)

s.t. p = b − Ax (18b)

o = 〈d, v〉 (18c)

B̂�α + βd̂ + s = Ĥk (18d)

s ∈ −K̂∗. (18e)

The number of bilinear terms in the set of constraints is thus reduced from numl +nl toml +1
terms in (18a). Problem (17) or equivalently Problem (18) have a convex feasible set but a
bilinear non-convex objective function. The KKT conditions of the follower Problem (15)
are given for the primal-dual pair (y, λ):

By = b − Ax (19a)

y ∈ K (19b)

d − B�λ ∈ K∗ (19c)

〈d − B�λ, y〉 = 0. (19d)

The single-level problem is:

min
x,v,λ,α,β,s

F(x, v) (20a)

s.t. G(x) + Hv ≤ q (20b)

Ax + Bv = b (20c)

d − B�λ ∈ K∗ (20d)

〈d − B�λ, v〉 = 0 (20e)

〈Ax − b, αk〉 + βk (〈v, d〉 + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (20f)

B̂�αk + d̂βk + sk = Ĥk ∀k ∈ [[mu]] (20g)

x ∈ X , v ∈ K (20h)

sk ∈ −K̂∗ ∀k ∈ [[mu]]. (20i)

The Mangasarian–Fromovitz constraint qualification is violated at every feasible point
of Problem (20a) because of the complementarity Constraints (20e) [37]. In non-linear
approaches to complementarity constraints [33, 34], parameterized successive relaxations
which respect constraint qualifications are used:

〈d − B�λ, v〉 ≤ ε (21a)

−〈d − B�λ, v〉 ≤ ε. (21b)

Constraints (20f) and (21) are both bilinear non-convex inequalities, the other ones added
by the near-optimal robust model are conic and linear constraints. In general and unlike the
complementarity constraints, the feasible region defined by near-optimal robust constraints
admits strictly feasible solutions and therefore respect constraint qualifications.
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Remark 1 If Hk belongs to the interior of the polar set ofK, and if the sufficient conditions for
applying KKT to the lower level hold, then the k-th dual adversarial problem admits strictly
feasible solutions.

Proof From the assumptions on the lower-level KKT conditions, the dual lower level admits
strictly feasible solutions, i.e.

∃λ0 ∈ R
mu , d − B�λ0 ∈ int(K∗). (22)

The dual adversarial feasible set is described by the constraints:

B�α + βd − Hk ∈ K∗

β ≥ 0.

From (22), by setting α = −λ0, β = 1, we have B�α +βd ∈ int(K∗).K∗ is a closed convex
cone and is therefore closed under addition:

−Hk

2
+ 1

2
(B�α + βd) ∈ K∗ ⇔

2(
−Hk

2
+ 1

2
(B�α + βd)) ∈ K∗.

Since B�α + βd ∈ int(K∗) is in the interior of K∗, so is 1
2 (B

�α + βd).

2(
−Hk

2
+ 1

2
(B�α + βd))

then lies on the open segment between a point in int(K∗) and a point in the cone (that may
or be not be in the interior), it is therefore an interior point. ��

In conclusion, near-optimal robustness has only added a finite number of constraints of the
same nature (bilinear inequalities) to the reformulation proposed in [33]. Solution methods
used for bilevel problems with convex lower-level thus apply to their near-optimal robust
counterpart.

4 Linear near-optimal robust bilevel problem

In this section,we focus on near-optimal robust linear-linear bilevel problems.More precisely,
the structure of the lower-level problem is exploited to derive an extended formulation leading
to an efficient solution algorithm. We consider that all vector spaces are subspaces of Rn ,
with appropriate dimensions. The inner product of two vectors 〈a, b〉 is equivalently written
a�b.
The linear near-optimal robust bilevel problem is formulated as:

min
x,v

c�
x x + c�

y v (23a)

s.t. Gx + Hv ≤ q (23b)

d�v ≤ φ(x) (23c)

Ax + Bv ≤ b (23d)

Gx + Hz ≤ q ∀z ∈ Z(x; δ) (23e)

v ∈ R
nl+ (23f)
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x ∈ X . (23g)

For a given pair (x, v), each semi-infinite robust constraint (23e) can be reformulated as the
objective value of the following adversarial problem:

max
y

HT
k y (24a)

s.t. (By)i ≤ bi − (Ax)i ∀i ∈ [[ml ]] (αi ) (24b)

d�y ≤ d�v + δ (β) (24c)

y ∈ R
nl+ . (24d)

Let (α, β) be the dual variables associated with each group of constraints (24b–24c). The
near-optimal robust version of Problem (23) is feasible only if the objective value of each k-th
adversarial subproblem (24) is lower than qk − (Gx)k . The dual of Problem (24) is defined
as:

min
α,β

α�(b − Ax) + β (d�v + δ) (25a)

s.t. B�α + βd ≥ Hk (25b)

α ∈ R
ml+ β ∈ R+. (25c)

Based on Problem (3) and weak duality results, the dual problem is either infeasible or
feasible and bounded. By strong duality, the objective value of the dual and primal problems
are equal. This value must be smaller than qk − (Gx)k to satisfy Constraint (23e). This
is equivalent to the existence of a feasible dual solution (α, β) certifying the feasibility of
(x, v) within the near-optimal set Z(x; δ). We obtain one pair of certificates (α, β) for each
upper-level constraint in [[mu]], resulting in the following problem:

min
x,v,α,β

c�
x x + c�

y v (26a)

s.t. Gx + Hv ≤ q (26b)

d�v ≤ φ(x) (26c)

Ax + Bv ≤ b (26d)

α�
k (b − Ax) + βk (d�v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (26e)

B�αk + βkd ≥ Hk ∀k ∈ [[mu]] (26f)

αk ∈ R
ml+ βk ∈ R+ ∀k ∈ [[mu]] (26g)

v ∈ R
nl+ (26h)

x ∈ X . (26i)

Lower-level optimality is guaranteed by the corresponding KKT conditions:

d j +
∑

i

Bi jλi − σ j = 0 ∀ j ∈ [[nl ]] (27a)

0 ≤ bi − (Ax)i − (Bv)i ⊥ λi ≥ 0 ∀i ∈ [[ml ]] (27b)

0 ≤ v j ⊥ σ j ≥ 0 ∀ j ∈ [[nl ]] (27c)

σ ≥ 0, λ ≥ 0 (27d)

where⊥ defines a complementarity constraint. A common technique to linearize Constraints
(27b–27c) is the “big-M” reformulation, introducing auxiliary binary variables with primal
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and dual upper bounds. The resulting formulation has a weak continuous relaxation. Fur-
thermore, a correct choice of bounds is itself an NP-hard Problem [38], and the incorrect
choice of these bounds can lead to cutting valid and potentially optimal solutions [39]. Other
modelling and solution approaches, such as special ordered sets of type 1 (SOS1) or indicator
constraints avoid the need to specify such bounds in a branch-and-bound procedure.
The aggregated formulation of the linear near-optimal robust bilevel problem is:

min
x,v,λ,σ,α,β

c�
x x + c�

y v (28a)

s.t. Gx + Hv ≤ q (28b)

Ax + Bv ≤ b (28c)

d j +
∑

i

λi Bi j − σ j = 0 ∀ j ∈ [[nl ]] (28d)

0 ≤ λi ⊥ Ai x + Biv − bi ≤ 0 ∀i ∈ [[ml ]] (28e)

0 ≤ σ j ⊥ v j ≥ 0 ∀ j ∈ [[nl ]] (28f)

x ∈ X (28g)

α�
k (b − Ax) + βk(d

�v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (28h)
ml∑

i=1

Bi jαki + βkd j ≥ Hkj ∀k ∈ [[mu]], ∀ j ∈ [[nl ]] (28i)

αk ∈ R
ml+ , βk ∈ R+ ∀k ∈ [[mu]]. (28j)

Problem (28) is a single-level problem and has a closed form. However, constraints (28h)
contain bilinear terms, which cannot be tackled as efficiently as convex constraints by branch-
and-cut based solvers. Therefore, we exploit the structure of the dual adversarial problem
and its relation to the primal lower level to design a new efficient reformulation and solution
algorithm.

4.1 Extended formulation

The bilinear constraints (28h) involve products of variables from the upper and lower level
(x, v) as well as dual variables of each of the mu dual adversarial problems. For the rest of
this paper, when the value of a variable a is fixed in a given problem, we will denote it with
a. For fixed values (x, v) of (x, v), mu dual adversarial subproblems (25) are defined. The
optimal value of each k-th subproblem must be lower than qk − (Gx)k for near-optimality
robustness to hold. The feasible region of each subproblem is defined by (28h–28j) and is
independent of (x, v); their objective functions are linear in (α, β). Following Proposition
3 and by weak duality, Problem (25) is bounded. If, moreover, Problem (25) is feasible, at
least a vertex of the polytope (28i –28j) is an optimal solution. Following these observations,
Constraints (28h–28j) can be replaced by disjunctive constraints, such that for each k, at least
one extreme vertex of the k-th dual polyhedron is feasible. This reformulation of the bilinear
constraints has, to the best of our knowledge, never been developed in the literature. We must
highlight that disjunctive formulations are well established in the bilevel literature to express
the complementarity constraints from the lower-level KKT conditions [40–42]. However, the
bilinear reformulation of near-optimality robustness constraints does not possess the same
structure and thus cannot leverage similar techniques.
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Let Vk be the number of vertices of the k-th subproblem and αl
k, β

l
k be the l-th vertex of

the k-th subproblem. Constraints (28h–28j) can be written as:

Vk∨

l=1

ml∑

i=1

αl
ki (b − Ax)i + β

l
k · (d�v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]], (29)

where
∨N

i=1 Ci is the disjunction (logical “OR”) operator, expressing the constraint that at
least one of the constraints Ci must be satisfied. These disjunctions are equivalent to indicator
constraints [43].

This reformulation of bilinear constraints based on the polyhedral description of the (α, β)

feasible space is similar to the Benders decomposition[44]. Indeed, in the near-optimal robust
extended formulation, at least one of the verticesmust satisfy a constraint (a disjunction)while
Benders decomposition consists in satisfying a set of constraints for all extreme vertices and
rays of the dual polyhedron (a constraint described with a universal quantifier). Disjunc-
tive constraints (29) are equivalent to the following formulation, using set cover and SOS1
constraints:

θ lk ∈ {0, 1} ∀k ∈ [[mu]],∀l ∈ Vk (30a)

ωl
k ≥ 0 ∀k ∈ [[mu]],∀l ∈ Vk (30b)

(b − Ax)�αl
k + β

l
k(d

�v + δ) − ωl
k ≤ qk − (Gx)k ∀k ∈ [[mu]],∀l ∈ Vk (30c)

Vk∑

l=1

θ lk ≥ 1 ∀k ∈ [[mu]] (30d)

SOS1(θ lk, ω
l
k) ∀k ∈ [[mu]], ∀l ∈ Vk, (30e)

where SOS1(a, b) expresses a SOS1-type constraint between the variables a and b. In con-
clusion, using disjunctive constraints over the extreme vertices of each dual polyhedron and
SOS1 constraints to linearize the complementarity constraints leads to an equivalent refor-
mulation of Problem (28). The finite solution property holds even though the boundedness of
the dual feasible set is not required. This single-level extended reformulation can be solved by
any off-the-shelf MILP solver. We next illustrate the extended formulation on the following
example.

4.2 Bounded example

Consider the bilevel linear problem defined by the following data:

x ∈ R+, y ∈ R+

G =
[−1
1

]
H =

[
4
2

]
q =

[
11
13

]
cx = [

1
]
cy = [−10

]

A =
[−2
5

]
B =

[−1
−4

]
b =

[−5
30

]
d = [

1
]
.

The optimal solution of the high-point relaxation (x, v) = (5, 4) is not bilevel-feasible.
The optimal value of the optimistic bilevel problem is reached at (x, v) = (1, 3). These two
points are respectively represented by the blue diamond and red cross in Fig. 3. The dotted
segments represent the upper-level constraints and the solid lines represent the lower-level
constraints.
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Fig. 3 Representation of the bilevel problem

Fig. 4 Near-optimal robustness constraints

The feasible space for (α, β) is given by:

− 1α11 − 4α12 + β1 ≥ 4

− 1α21 − 4α22 + β2 ≥ 2

αki ≥ 0, βk ≥ 0.

This feasible space can be described as a set of extreme points and rays. It consists in this
case of one extreme point (αki = 0, β1 = 4, β2 = 2) and 4 extreme rays. The (x, v) solution
needs to be valid for the corresponding near-optimality conditions:

β1 (v + δ) ≤ 11 + x

β2 (v + δ) ≤ 13 − x .

This results in two constraints in the (x, v) space, represented in Fig. 4 for δ = 0.5 and
δ = 1.0 in dotted blue and dashed orange respectively. The radius of near-optimal feasibility
δ̂ = 5 can be computed using the formulation provided in Definition 1, for which the feasible
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domain at the upper-level is reduced to the point x = 5, for which v = 0, represented as a
green disk at (5, 0) in Fig. 4.

4.3 Valid inequalities

The extended formulation can be tackled directly in a branch-and-cut framework. Neverthe-
less, we propose two groups of valid inequalities to tighten the formulation.

The first group of inequalities consists of the primal upper-level constraints:

(Gx)k + (Hv)k ≤ qk ∀k ∈ [[mu]].

These constraints are necessary for the optimistic formulation but not for the near-optimal
robust one since they are always redundant with and included in the near-optimal robust
constraints. However, their addition can strengthen the linear relaxation of the extended
formulation and lead to faster convergence.

The second group of inequalities is defined in [45] and based on strong duality of the lower
level.We only implement the valid inequalities for the root node, which are the primary focus
of [45]:

〈λ, b〉 + 〈v, d〉 ≤ 〈A+, λ〉, (31)

where A+
i is an upper bound on 〈Ai , x〉. The computation of each upper bound A+

i relies on
solving an auxiliary problem:

A+
i = max

x,v,λ
〈Ai , x〉 (32a)

s.t. Gx + Hv ≤ q (32b)

Ax + Bv ≤ b (32c)

d + B�λ ≥ 0 (32d)

x ∈ X , v ≥ 0, λ ≥ 0 (32e)

(x, v, λ) ∈ Υ , (32f)

where Υ is the set containing all valid inequalities (31).
The method proposed in [45] relies on solving each i-th auxiliary problem once and using

the resulting bound A+.We define a new iterative procedure to improve the bounds computed
at the root node, similar to domain propagation techniques:

1. Solve Problem (32a) ∀i ∈ [[ml ]] and obtain A+;
2. If ∃i, A+

i is unbounded, terminate;
3. Otherwise, add Constraint (31) to (32f) and go to step 1;
4. Stopping criterion: when an iteration does not improve any of the bounds, terminate and

return the last inequality with the sharpest bound.

This procedure allows tightening the bound as long as improvement can bemade in one of the
A+
i . If the procedure terminates with one A+

i unbounded, the right-hand side of (31) is +∞,
the constraint is trivial and cannot be improved upon. Otherwise, each iteration improves the
bound until the convergence of A+.
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5 Solution algorithm

In this section, we describe the direct solution method for the extended formulation, derive
an exact variant lazifying the subproblem exploration and provide a heuristic providing a
near-optimal robust solution.

Solving the extended formulation can be done by first optimizing the dual adversarial
subproblems, enumerating their vertices; if any subproblem is infeasible, the procedure can
be terminated as the instance cannot have a robust solution.

5.1 Lazy subproblem expansion

Directly solving the extended formulation of NRB quickly becomes computationally
demandingwhen the problemsize increases,more lower-level constraints implymore vertices
in each dual adversarial subproblem and thus larger disjunctive constraints, more upper-level
constraints imply more dual adversarial subproblems and thus more disjunctive constraints.
We next provide an exact method that builds upon this formulation while avoiding adding
the whole set of disjunctive constraints upfront.

Each dual adversarial subproblem must be feasible with an objective value of less than
qk − G�

k x for the NRB instance to be near-optimal robust. For S ⊆ [[mu]], we denote by
NRB(S) the NRB formulation with the near-optimal robustness constraints replaced with:

G�
k x + H�

k v ≤ qk ∀z ∈ Z(x; δ) ∀k ∈ S. (33)

NRB(∅) does not have any near-optimality robustness constraint and corresponds to the opti-
mistic bilevel problem, while NRB([[mu]]) is equivalent to the extended formulation of NRB
and integrates all near-optimality robustness constraints. NRB(S) is trivially a relaxation of
NRB since only a subset of the robust constraints is applied.

Furthermore, for a given pair (x, v), verifying its near-optimality robustness with respect
to the k-th upper-level constraint can be done with an auxiliary linear optimization problem:

min
α,β

(b − Ax)�α + (d�v + δ)β

s.t. B�α + βd ≥ Hk

α ∈ R
ml+ β ∈ R+. (34)

We consider a solution to the auxiliary problem as “robust” if the optimal value is below
qk − G�

k x , in which case the constraint is robust to near-optimal deviations of the lower
level. Algorithm 1 starts from S = ∅ and iteratively adds violated constraints from (33) that
ensure the near-optimality robustness of some upper-level constraints. We thus qualify it as
lazy in contrast to the extended formulation using all disjunctive constraints upfront.

At any given iteration, the set Ŝ is the complement of S,
Ŝ ≡ [[mu]] \S

and Sopt contains the set of upper-level constraint indices that are robust for a current iterate.
If Ŝ is empty, there is no upper-level constraint that is not either added (already in S) or
already optimal (in Sopt ). Given that NRB is a relaxation of NRB, Ŝ = ∅ implies that the
optimum is reached.

At any given iterate of Algorithm 1, NRB(S), a MILP with disjunctive constraints, is
solved from scratch. The advantage over the extended formulation is that each of these
MILPs is smaller and contains fewer indicator constraints than the extended formulation.
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Algorithm 1 Lazy Subproblem Expansion
1: function LazySubProblemExpansion(G, H , q, cx , cy , A, B, b, d, δ)
2: NRB ← optimistic model with parameters G, H , q, cx , cy , A, B, b, d
3: if Optimistic infeasible then
4: Terminate with optimistic infeasible
5: end if
6: Ŝ ← [[mu ]]
7: wk ← {} ∀k ∈ [[mu ]]
8: while Ŝ not empty do � subproblem exploration phase
9: Sopt ← ∅
10: (x̂, v̂) ← current solution
11: Choose k ∈ Ŝ
12: Solve k-th dual subproblem (34) parameterized by (x̂, v̂)

13: if Solution is robust then
14: Sopt ← Sopt ∩ {k}
15: Ŝ ← Ŝ \ {k}
16: else � subproblem expansion phase
17: Add new variables wkl ∈ {0, 1} ∀l ∈ 1 . . . |Vk | to NRB
18: Add constraint

∑|Vk |
l=1 wkl ≥ 1 to NRB

19: for l ∈ 1 . . . |Vk | do
20: (αlk , β

l
k ) ← Vl

k
21: Add indicator constraint to NRB:
22: wkl = 1 ⇒ (b − Ax)�αlk + (d�v + δ)β

l
k ≤ qk − G�

k x
23: end for
24: end if
25: Solve current iterate NRB
26: if Infeasible then
27: Terminate with infeasible k−th subproblem
28: end if
29: Ŝ ← Ŝ ∩ Sopt
30: end while
31: return (x̂, v̂, w)

32: end function

5.2 Single vertex heuristic

We now present a heuristic method with a computational cost close to that of the canonical
bilevel problem and computing a high-quality bilevel-feasible near-optimal robust solution.
It only requires optimizing a sequence of at most mu MILPs with the same variables as
the canonical bilevel problem and at most mu additional linear constraints, instead of the
disjunctive constraints with a number of terms equal to the number of vertices of the dual
adversarial polyhedron.

At any given iterate, C is the set of upper-level constraint indices that were already added
to the model. New constraints are added in a batched fashion, with the batch size controlled
by the η parameter. Each k-th subproblem is added only once, by selecting a single vertex
(α, β) and using it to enforce the constraint

(b − Ax)�α + (d�v + δ)β ≤ qk − G�
k x .

Unlike the exact algorithms, Algorithm 2 initializes a MILP model and iteratively adds
linear constraints to it. This procedure therefore lends itself to warm starts and single-tree
formulations.
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Algorithm 2 Single-Vertex Heuristic
1: function SingleVertexHeuristic(G, H , q, cx , cy , A, B, b, d, δ, η)
2: P ← optimistic model with parameters (G, H , q, cx , cy , A, B, b, d)

3: if Optimistic infeasible then
4: Terminate with optimistic infeasible
5: end if
6: if ∃k, k-th dual adversarial subproblem is infeasible then
7: Terminate, no robust solution exists
8: end if
9: count ← 1
10: C ← ∅
11: while count > 0 do � Outer loop
12: k ← 1
13: count ← 0
14: (x̂, v̂) ← current solution of P
15: while count ≤ η and k ≤ mu do
16: (α, β) ← solution to k-th subproblem (34) parameterized by (x̂, v̂)

17: if (b − Ax̂)�α + (d�v̂ + δ)β > qk − G�
k x̂ then

18: C ← C ∪ {k}
19: Add constraint to P: (b − Ax)�α + (d�v + δ)β ≤ qk − G�

k x
20: count ← count + 1
21: while k ∈ C do
22: k ← k + 1
23: end while
24: end if
25: end while
26: Re-optimize P
27: if Current iterate infeasible then
28: Terminate with no found solution
29: end if
30: end while
31: return (x̂, v̂)

32: end function

Proposition 5 Algorithm 2 terminates in at most mu iterations of the outer loop begin-
ning Line 11 and solves optimization problems with the same variables as the canonical
optimization problem and at most mu linear constraints.

Proof Algorithm 2maintains a cache C of the subproblems that have been explored. For each
subproblem, exactly one vertex is chosen, which minimizes

(b − Ax̂)�α + (d�v̂ + δ)β

with (x̂, v̂) the current iterate. For a chosen x̂ , the lower-level problem is feasible since v̂

is computed, so the dual problem cannot be unbounded. It cannot be infeasible since its
feasibility domain depends only on the problem data and is verified Line 6. Therefore, a
vertex (α, β)k is computed. If the objective is greater than qk −G�

k x̂ , then the current iterate
is not near-optimal robust with respect to the k-th constraint, and the linear constraint:

(b − Ax)�α + (d�v + δ)β ≤ qk − G�
k x

is added to the model. If no addition is made, the current iterate is near-optimal robust, the
count variable remains at 0, and the outer loop exits, with the function returning the current
iterate. Otherwise, the iterate was not near-optimal robust with respect to at least one upper-
level constraint, which is turned into a constraint and added to the cache. The outer loop adds
at least one constraint in a non-terminating iteration, therefore, mu iterations suffice to add
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all constraints. Moreover, each subproblem adds exactly one linear constraint, so at most mu

linear constraints are added to the formulation of the canonical problem. ��
The η parameter controls the maximum number of linear constraints added for each outer

iteration. η = 1 implies that the algorithm reoptimizes the problem after adding a single
constraint, while η ≥ mu will add all the linear constraints that correspond to upper-level
constraints that are not near-robust at each iterate.

Finally, it can be noted that the single-vertex algorithm can be applied even when the
number of vertices in the dual adversarial is infinite, i.e. when the lower-level problem
is a convex optimization problem. The only modification is the optimization of the dual
adversarial problem for fixed values of (x, v) at Line 16,where a convex optimization problem
is solved instead of a linear one.

6 Computational experiments

In this section, we demonstrate the applicability of our approach through numerical experi-
ments on instances of the linear-linear near-optimal robust bilevel problem. We first describe
the sets of test instances and the computational setup and then the experiments and their
results.

6.1 Instance sets

Two sets of data are considered. For the first one, a total number of 1000 small, 200 medium
and 100 large random instances are generated and characterized as follows:

(mu,ml , nl , nu) = (5, 5, 5, 5) (small)

(mu,ml , nl , nu) = (10, 10, 10, 10) (medium)

(mu,ml , nl , nu) = (20, 10, 20, 20) (large).

All matrices are randomly generated with each coefficient having a 0.6 probability of
being 0 and uniformly distributed on [0, 1] otherwise. High-point feasibility and the vertex
enumeration procedures are run after generating each tuple of random parameters to discard
infeasible instances. Collecting 1000 small instances required generating 10,532 trials, the
200medium-sized instanceswere obtainedwith 18,040 trials and the 100 large instances after
90,855 trials. A second dataset is created from the 50 MIPS/Random instances of the Bilevel
Problem library [46], where integrality constraints are dropped. All of these instances contain
20 lower-level constraints and no upper-level constraints. For each of them, two new instances
are built by moving either the first 6 or the last 6 constraints from the lower to the upper level,
resulting in 100 instances. We will refer to the first set of instances as the small/medium/large
instances and the second as the MIPS instances. All instances are available in [47] in JLD
format, along with a reader to import them in Julia programs.

6.2 Computational setup

All experiments are carried out in Julia 1.6 [48] using the JuMP v0.21 modelling framework
[49, 50]; theMILP solver isSCIP 7.0 [51] with SoPlex 5.0 as the inner LP solver, both with
default solving parameters.SCIPhandles indicator constraints in the formof linear inequality
constraints activated only if a binary variable is equal to one. Polyhedra.jl [52] is used
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to model the dual subproblem polyhedra with CDDLib [53] as a solver running the double-
description algorithm, computing the list of extreme vertices and rays from the constraint-
based representation. The exact rational representation of numbers is used inCDDLib instead
of floating-point types to avoid rounding errors.Moreover,CDDLib fails to produce the list of
vertices for some instanceswhen set in floating-pointmode.All experiments are performed on
a workstation with 32GB of RAM and Intel Xeon 3.5GHz CPUs running Ubuntu 18.04LTS.

6.3 Bilinear and extended formulation

To assess the efficiency of the extended formulation, we compare its solution time to that of
the non-extended formulation including bilinear constraints (23). The bilinear formulation is
implemented with SCIP using SoPlex as the linear optimization solver and Ipopt as the
nonlinear solver. SCIP handles the bilinear terms through bound computations and spatial
branching. Out of all MIPS and ALTMIPS sets, only one instance is solved with the bilinear
formulation within the time limit in half a second, a time similar to the extended formulation.
The bilinear formulation not only runs out of time, but also of memory (a memory limit
of 5000MB was fixed in this setting). The spatial branching required to handle the non-
convex bilinear inequalities is thus more time- and memory-consuming than the branching
over disjunctive constraints introduced by the extended formulation. Because of the vertices
of the dual adversarial subproblems being optimal solutions as developed in Sect. 4.1, the
disjunctive constraints explicitly constrain the optimality candidates to a discrete set instead
of exploring a continuous set of (α, β) solutions through spatial branching.

6.4 Robustness of optimistic solutions and influence of ı

We solve the MIPS instances to optimistic bilevel optimality and verify the near-optimal
robustness of the obtained solutions. We use various tolerance values:

δ = max(0.05, δr × opt(L))

with opt(L) the lower-level objective value at the obtained optimistic solution and

δr ∈ {0.01, 0.05, 0.1, 0.5, 3.0}.

Out of the 100 instances, 57 have canonical solutions that are not robust to even the smallest
near-optimal deviation 0.01opt(L). Twelve more instances that have a near-optimal robust
solution with the lowest tolerance are not near-optimal robust when the tolerance is increased
to 3opt(L). Out of the 57 instances that are not near-optimal robust with the lowest tolerance,
40 have exactly one upper-level constraint that is violated by near-optimal deviations of the
lower level and 17 that have more than one. Finally, we observe that the number of violated
constraints changes across the range of tolerance values for 31 out of 100 instances. For the
other 69 instances, the number of violated upper-level constraints remains identical for all
tolerance values.

6.5 Computation time of the different algorithms

Statistics on the computation times of the vertex enumeration and solution phases for the
extended formulation on each set of instances are provided in Table 1 and Table 2.
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Table 1 Runtime statistics for the
vertex enumeration (s)

Set Mean 10% Quant 50% Quant 90% Quant

MIPS 15.79 0.15 2.38 53.37

ALTMIPS 0.17 0.05 0.13 0.42

Table 2 Runtime statistics for the optimization phase (s)

Set # Optimized Mean 10% Quant 50% Quant 90% Quant

MIPS 47 474.657 2.583 71.219 1659.787

ALTMIPS 41 603.040 1.392 66.819 1751.774

The solution time is greater than the vertex enumeration phase which is thus not the
bottleneck to solve NRB instances.

We also studied the sensitivity of NRB solutions to variations of δ on small-size random
instances. When δ increases, the number of problems solved to optimality monotonically
decreases; greater δ values indeed reduce the set of feasible solutions to NRB. The optimal
values of the upper-level only slightly increase with δ and the lower-level objective value
does not vary significantly with δ.

Even thoughmore instances become infeasible as δ increases, the degradation of the objec-
tive value is in general insignificant for the optimal near-optimal robust solution compared
to the optimistic solution.

The different solution methods are compared in Fig. 5. The single vertex heuristics with
various batch sizes, labelled random_sv_batchsize, are the fastest to compute near-
optimal robust solutions, slightly slower than solving the optimistic bilevel formulation. On
exact methods, the lazy vertex enumerationAlgorithm 1 outperforms the eager extended
formulation and terminates within the time limit for all instances. One MIPS instance is
bilevel feasible but does not possess a near-optimal robust solution. On 90 MIPS and 71
ALTMIPS instances, the single vertex heuristic successfully finds a solution while it termi-
nates unsuccessfully in one and seven cases respectively. Furthermore, the heuristic runtime
is fast enough compared to the exact methods that it could be improved by randomly remov-
ing some vertices that were added in the first iterations to then possibly reintroduce them to
the formulation. Finally, we note that when the single-vertex heuristic finds a solution, it is
one of high quality. On no MIPS instance and only two ALTMIPS instances is the objective
value of the heuristic solution not equal to that of the exact method, verified with the lazy
algorithm.

6.6 Implementation of valid inequalities

In the last group of experiments, we implement and investigate the impact of the valid
inequalities defined in Sect. 4.3.

The valid inequality procedure found cuts for all 100 MIPS instances. For 98 of these, the
procedure terminates after one iteration, the two other instances terminate with a cut after 4
and 8 iterations. On the 100ALTMIPS instances, 18 are bilevel-infeasible, none of which had
an infeasible high-point relaxation. For 12 of these instances, adding the valid inequalities
was enough to prove their infeasibility. For all instances, the procedure computed non-trivial
valid inequalities i.e. all coefficients of A+ are finite.
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Fig. 5 Comparing the different solution methods on the two instance sets

These results highlight the improvement of the model tightness with the addition of the
valid inequalities, compared to the high-point relaxation where primal and dual variables are
subject to distinct groups of constraints. These inequalities thus discard infeasible instances
without the need to solve a MILP. For all but two MIPS instances, a single iteration of the
procedure computes the final valid inequality. 12 out of 100 ALTMIPS instances require
more than one iteration with one instance requiring up to 32 iterations.

We also compared the total runtime for MIPS and ALTMIPS instances under near-
optimality robustness constraints using δ = 0.1 with and without valid inequalities for
all instances solved to optimality. Valid inequalities do not improve the runtime for NRB in
either group of instances, This result is similar to the observations in [45] for instances of the
canonical bilevel linear problem without near-optimality robustness.

We next study the inequalities based on the upper-level constraints on the small, medium
and MIPS instances.
As shown in Fig. 6, the addition of primal upper-level constraints accelerates the resolution
of the MIPS and even more of ALTMIPS instances and dominates the standard extended
formulation.
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Fig. 6 Runtime for MIPS and ALTMIPS instances with and without upper-level constraints

7 Conclusion

In this work, we introduce near-optimal robust bilevel optimization, a specific formulation of
the bilevel optimization problem does not make an explicit optimistic/pessimistic assumption
about the reaction of the lower level, but instead seeks an optimal decision at the upper level
that is robust in the sense that it remains feasible even if the lower level deviates from its own
optimalitywithin a prescribed near-optimal set for the lower level.Near-optimality robustness
challenges the assumption that the lower-level problem is solved to optimality, resulting in a
generalized, more conservative formulation including the optimistic and pessimistic bilevel
problems as special cases. We formulate NRB in the dependent case, i.e. where the upper-
and lower-level constraints depend on both upper- and lower-level variables, thus offering a
framework applicable to many bilevel problems of practical interest.

We derive a closed-form, single-level expression of NRB for convex lower-level prob-
lems, based on dual adversarial certificates to guarantee near-optimality robustness. In the
linear case, we derive an extended formulation that can be represented as a MILP with indi-
cator constraints. This extended formulation lends itself to a faster exact lazy method and
a single-vertex heuristic leveraging the problem structure to find high-quality feasible solu-
tions. Numerical experiments highlight the efficiency of the extended method compared to
the compact bilinear formulation, the impact of valid inequalities on both solution time and
tightness of the linear relaxation. Finally, they highlight the interest of the lazy and heuristic
formulation, showing a solution time only slightly slower than the corresponding
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