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ABSTRACT

Full waveform inversion (FWI) in the North Sea has demonstrated its imaging power start-

ing from low-resolution models obtained by traveltime tomography, enriching them with

geologically interpretable fine-scale details. However, building a traveltime-based kinemat-

ically accurate starting model for FWI is a time-consuming and rather subjective process

requiring phase identification and selection. The two main problems faced by FWI starting

from non-informative initial models are the liability to cycle-skipping and a lack of sen-

sitivity to low-wavenumbers in the deep subsurface not sampled by turning waves. On a

North Sea ocean-bottom-cable (OBC) 3D dataset, we apply a novel Vp-building methodol-

ogy that addresses those issues by jointly inverting reflections and refractions (JFWI) using

a robust misfit function in the vertical traveltime domain (pseudotime). While pseudotime

addresses reflectivity-velocity coupling and attenuates phase-ambiguities at short offsets, a

graph-space optimal transport (GSOT) objective function with dedicated data windowing

averts cycle-skipping at intermediate-to-long offsets. A fast and balanced reflectivity re-

constrution is obtained prior to JFWI thanks to an asymptotic-preconditioned Impedance
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Waveform Inversion (IpWI). Starting from a linearly increasing one-dimensional model,

GSOT-pseudotime JFWI is effective at obtaining a meaningful P-wave velocity macro-

model down to depths sampled by reflections only, without phase identification and pick-

ing. P-wave FWI starting from the JFWI-based model, injects the high-wavenumbers miss-

ing in the JFWI solution, attaining apparent improvements in both shallow and deep model

reconstruction and imaging compared to the previous studies in the literature, and a satis-

factory prediction of the ground-truth logs.
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INTRODUCTION

Full waveform inversion (FWI, Lailly, 1983; Tarantola, 1984, 1986) seeks a broadband

reconstruction of the subsurface physical properties by iteratively minimizing the misfit

between predicted and recorded waveforms, independent from phase labelling and picking.

Waveform-based imaging is able to characterize targets with size down to half a propagated

wavelength, hence having a higher resolution power than traveltime tomography, which is

limited to the width of the first Fresnel zone (Woodward, 1992; Huang and Schuster, 2014).

In the past decade, FWI has been applied to the characterization of subsurface targets across

a range of scales: from regional seismology (10-100 km, e.g., Fichtner and Villaseñor,

2015; Davy et al., 2017; Górszczyk et al., 2021) to exploration for energy resources (2-10

km, e.g., Operto et al., 2015; Hicks et al., 2016), down to shallow site-characterization in

marine as well as land settings (10-100 m, e.g., Provenzano et al., 2018; Irnaka et al., 2022).

Ideal illumination conditions for FWI are achieved when the imaging target is sur-

rounded by sources and receivers (Virieux and Operto, 2009). Under these conditions, a

full wavenumber reconstruction of the propagation medium can be obtained, as in recent

applications to medical imaging (e.g. Guasch et al., 2020; Marty et al., 2021). In explo-

ration seismic surveys, acquired at the surface above a subsurface target, FWI suffers from

limited wavenumber sensitivity (Jannane et al., 1989), and is therefore highly dependent

on the availability of very-low frequencies, ultra-wide source-receivers apertures, and ulti-

mately on the quality of the starting model.

The ocean bottom cable (OBC) dataset considered in this study has been used over the

past decade to showcase the resolution power of FWI, and its impact on the imaging of

3



complex subsurface targets at the exploration scale. Starting from a reflection traveltime P-

wave velocity (Vp) model produced by Aker BP (Sirgue et al., 2010), FWI enriches it with

decametric-scale features, improving the imaging of the deep subsurface and the shallow

multi-layered low velocity zone (LVZ, e.g., Sirgue et al., 2010). In particular, the improve-

ment in resolution brought about by FWI compared to first-arrival traveltime tomography

can be estimated to be in the order of the square root of the number of propagated wave-

lengths (Pratt and Shipp, 1999, their equation 1). In this dataset, with a maximum offset of

about 15 km and for a frequency of 5 Hz, this corresponds to a reduction of the size of the

smallest detectable object roughly by a factor of 5 compared to the starting long-wavelength

model (Prieux et al., 2011).

In addition to a high-fidelity reconstruction of the P-wave velocity distribution in the

subsurface, important insights in this survey area have been obtained about FWI multi-

parameter cross-talk and sensitivity. Prieux et al. (2011) study the impact of anisotropy

on isotropic one-parameter Vp inversion, demonstrating that anisotropic modelling with a

vertical symmetry axis (VTI-anisotropy) is key to avoid biases in velocity-reconstruction

and the consequent inaccurate reflectors imaging. They also show that accounting for vis-

cosity, even simply through a uniform attenuation model (Quality factor, Q), is necessary

to represent the amplitude decay with offset and time. Gholami et al. (2013) study the

optimal parametrization of anisotropic FWI, demonstrating the possibility to invert for Vp

as long as an accurate trend of the Thomsen parameter ε (Thomsen, 1986; Alkhalifah,

1997) is present in the starting model. Operto et al. (2015), in their frequency-domain

3D application, also invert for vertical Vp keeping the anisotropic parameters and attenu-
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ation fixed. Kamath et al. (2021) jointly inverts Vp and attenuation quality factor (Q), in

the time-domain, showing imaging improvements with respect to constant attenuation one-

parameter inversion, while Vp reconstruction benefits from a reduced acquisition footprint

in multi-parameter frequency-domain inversion (Operto and Miniussi, 2018).

The aforementioned works have in common an accurate starting model of the volume

around the target, obtained by reflection traveltime tomography prior to waveform inver-

sion. Such a model predicts the traveltime of the main seismic phases within half a dom-

inant period of the lowest usable frequency band in the data (about 3 Hz in the 2.5-5. Hz

band, Operto et al., 2015), therefore making it possible to apply FWI using a least-squares

(L2) waveform residuals objective function. If these conditions were not met, FWI would

skip one or more oscillation cycles, driving the Vp update towards the local minimum of

the objective function, and away from the optimal solution (Beydoun and Tarantola, 1988).

In particular, long-offsets recording wavefronts that propagated for several wavelengths

would be liable to cycle-skipping (Pratt et al., 2008).

Recently, Pladys et al. (2022) have applied Vp FWI on the same dataset, starting from

linearly increasing one-dimensional Vp and density models, while including in the mod-

elling weak anisotropy parameters (ε, δ, Thomsen, 1986) from traveltime-tomography and

a uniform Quality factor (Q). They demonstrated that, in this case, L2 norm inversion fails

regardless of the data-weighting strategy used, while a graph-space optimal transport dis-

tance (GSOT, Métivier et al., 2019) allows FWI to achieve an acceptable model reconstruc-

tion in the shallow part of the domain (down to 2 km) with a data-domain layer-stripping

strategy that includes progressively larger offsets and times.
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However, regardless of the objective function used, the lack of constraints by diving

waves in the deep subsurface makes it difficult to obtain reliable kinematic updates (Pladys

et al., 2022). Despite the long-offsets acquired by the ocean-bottom cables in the area,

the recorded diving waves do not propagate below 1.5/2.0 km (Prieux et al., 2011) and,

therefore, deep Vp updates rely mostly on reflected energy. At depths sampled by reflections

only, FWI provides a band-limited high-wavenumber imaging of the subsurface, similarly

to an iterative least-squares migration in a fixed background velocity trend (Woodward,

1992), once more relying on the accuracy of the long-wavelengths in the starting model.

Reflection-based FWI (RWI) has the potential to obtain Vp updates below the depth

sampled by diving waves, by exploiting the tomographic contribution of deep-reaching

wavepaths in a reflective starting model (Xu et al., 2012; Brossier et al., 2015; Yao et al.,

2020) built prior to Vp inversion by least-squares migration. In RWI, reflections act as

virtual deep seismic sources that illuminate the target from below, thus filling the small-

wavenumber sensitivity gap of FWI at depth (Mora, 1989) and approximating ideal subsur-

face illumination conditions. The idea of using RWI to inform accurate deep model updates

in this area has been suggested in earlier works (e.g. in Prieux et al., 2011; Operto et al.,

2015). Recently, Zhou et al. (2018) jointly inverted diving and reflected waveforms on a

2D line extracted from the 3D dataset, starting from the tomographic model and using a L2

objective function.

In this work, we attempt to reconstruct the broadband subsurface Vp using the 3D OBC

hydrophone dataset and starting from a one-dimensional linearly increasing Vp model, ide-

ally combining the objectives of Zhou et al. (2018) and Pladys et al. (2022). In order to do
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so, we take advantage of the robust velocity-model building workflow presented in a com-

panion paper (Provenzano et al., 2023) that combines: 1) joint diving and reflection FWI

(JFWI) in a velocity-impedance (Vp − Ip) parametrization, as in Zhou et al. (2018), to ob-

tain deep velocity updates while constraining the shallow portions of the model; 2) a pseu-

dotime (Plessix, 2013) reformulation of the JFWI gradient ensuring velocity-reflectivity

consistency; 3) a GSOT objective function to ensure robustness against inaccurate starting

models, as in Pladys et al. (2022); 4) an asymptotic preconditioner for fast and balanced

reflectivity imaging (e.g., Li and Chauris, 2018).

We propose a challenging real-data exercise aiming to tackle cycle skipping and lack

of deep velocity sensitivity starting from an almost blind guess of Vp and density. After

briefly recalling the key aspects of the methodology described in Provenzano et al. (2023),

we show that, using minimal pre-processing, the JFWI-based strategy is effective at ob-

taining a meaningful low-frequency model consistent with the one provided by Aker BP,

but in a purely waveform-based fashion, without phase identification and picking. The

JFWI provides an improved prediction of the P-wave velocity trends contained in three

sonic logs available in the acquisition area, in particular close to the exploration target.

Mono-parameter Vp-FWI, starting from the JFWI-based model, complements the JFWI

solution with additional high-wavenumbers, attaining improvements in both shallow and

deep model broadband imaging compared to conventional FWI.
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OVERVIEW OF DATASETS AND MODELS

The survey area is located in the Norwegian North Sea, with an approximately constant

water depth of 70 m. An anticline structure between 2.5 and 3.5 km is overlaid by weakly

tectonized, almost plane-parallel multi-layered low-velocity zone between 1.5 and 2.5 km

(hereafter referred to as LVZ). Shallow (< 300 m depth) riverbed channel structures, as

well as near-vertical low-velocity zones (< 1 km depth) have been imaged by recent FWI

applications (e.g., Operto et al., 2015; Kamath et al., 2021).

The four-component (4C) ocean-bottom-cable (OBC) dataset, acquired in 2011, covers

an area of 145 km2, and consists of 50824 shots fired at 5 m below the sea surface with 50

m spacing. The acquisition system is made up of 2049 receivers with 50 m in-line spacing

and 300 m cable-spacing (Figure 1), for a maximum absolute offset of about 15 km. In this

study, we work on the hydrophone component of the 4C system, with a useful bandwidth

starting from 2.5 Hz. Three sonic logs, one proximal to the target area, the remaining two

at the margin of the survey, are going to be used to quality check our estimated P-wave

velocity (Vp).

The feasibility of acoustic FWI on the hydrophone-component of this OBC dataset has

been shown by Brossier et al. (2009), by virtue of the weak imprint of P-S converted waves

on the pressure component in a subsurface containing relatively mild S-wave constrasts

(Operto et al., 2015). In this study, we invert the hydrophone data for vertical P-wave

velocity (Vp) in a visco-acoustic anisotropic subsurface, while keeping the other parameters

fixed (Pladys et al., 2022).
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The starting acoustic properties are described by 1D linearly increasing velocity (Vp,

Figure 4) and density (ρ) (Pladys et al., 2022), therefore lacking key low-wavenumber

information and exposing conventional FWI to cycle-skipping at offsets as low as 3 km.

Although an analysis of the first-arrivals kinematics would make it possible to build a better

initial model, this work aims at testing the methodology proposed in Provenzano et al.

(2023) in a particularly challenging context, starting from an almost-blind guess (as in

Pladys et al. (2022)).

In the attempt to attain an accurate Vp reconstruction from such a poor initial model,

accounting for anisotropy is however key to avoid over-/under-estimating vertical Vp in the

shallow subsurface. In particular, Prieux et al. (2011) and Gholami et al. (2013) show that

it is possible to invert for vertical Vp in a [Vp, ε, δ] parametrization as long as the long-

wavelength trend of ε is correct in the starting model, while δ has little impact (Thom-

sen, 1986). Therefore, we include in the starting model the tomographic smooth weak

anisotropy (ε, δ) provided by Aker BP. Their ellipticity model (η = ε−δ
1+2δ

, Alkhalifah, 1997),

presented in Figure 3, accounts for a relative change between horizontal and vertical Vp

reaching 15% at the reservoir level. Finally, a visco-acoustic modelling with homogeneous

Quality factor (Q) equal to 200 is employed to appropriately account for the wavefield’s

amplitude decay with time and offset (Operto and Miniussi, 2018; Kamath et al., 2021).

Despite the availability of large source-receiver offsets in the OBC dataset, subsurface

depths greater than 1.5 km are mostly sampled by reflections (Prieux et al., 2011; Operto

et al., 2015). Therefore, FWI provides a band-limited update of Vp both at the reservoir

level and the multi-layered LVZ, due to the narrow-angle available wavepaths (Woodward,
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1992). In order to overcome this limitation, we will take advantage of the tomographic

contribution of reflections in a reconstructed reflective model, jointly with diving waves

(Zhou et al., 2015). In this context, the methodology outlined in the following section

addresses three fundamental issues of reflection-driven velocity model building starting

from a poor initial model (Provenzano et al., 2023): 1) ensuring consistency between fixed

reflectivity and evolving model kinematics in Vp inversion; 2) minimizing the risk of cycle

skipping; 3) minimizing the cost of building the initial reflective model.

OUTLINE OF THE METHOD

Efficient Joint FWI in pseudotime

JFWI (Zhou et al., 2015) simultaneously inverts reflected and refracted waves, in order

to enrich the sensitivity kernel of diving waves with deep-reaching transmission-regime

reflection wavepaths (Huang and Schuster, 2014). Scale separation between the desired

tomographic updates and the high-wavenumber reflective components of the model is

achieved by suppressing the migration isochrones (Zhou et al., 2015), in combiation with

a velocity-impedance (Vp-Ip) parametrization (Operto et al., 2013). The JFWI objective

function thus results from the weighted contributions of early arrivals (e) and reflections

(r):

f(Vp) = G (W edecal,W
edeobs) +G (W rdrcal,W

rdrobs) . (1)
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In the latter, G is a generic misfit function, W e and W r are data weighting matrices se-

lecting and scaling early arrivals and reflections (Figure 2c,d), dobs and dcal indicate re-

spectively the observed and synthetic data sampled at the receivers position. In particular,

decal is the background (u0) synthetic wavefield computed in the smooth starting model,

while drcal is the reflected wavefield (δu) computed in the reflective starting model, whose

discontinuities are contained in Ip.

Using u to indicate the forward fields and λ for the adjoint fields, the JFWI gradient

with respect to Vp can be written as:

∇f(Vp) = u0 ? λ
e
0 + u0 ? δλ

r + δu ? λr0 + δu ? δλr, (2)

where the ? operator encompasses the time-convolution and the partial derivative with re-

spect to Vp. In the right hand side, we can recognize the following contributions to the

JFWI gradient: 1) an early-arrival kernel obtained by correlating the incident field u0 and

the incident adjoint λe0 generated by the diving wave residuals; 2) a source-to-reflector RWI

kernel resulting from the correlation of the incident wavefield u0 and the scattered reflec-

tion adjoint wavefield δλr ; 3) a receiver-to-reflector RWI kernel produced by correlation

of the scattered primary wavefield δu and the incident reflection adjoint field λr0; 4) the last

terms represents higher order scattering contributions.

Convergence of JFWI is however made difficult by the dependency of Ip on Vp, namely

between the reconstructed reflectors geometry and model kinematics. We propose a refor-

mulation of JFWI in the vertical traveltime (pseudotime, τ ) domain (Rickett and Childs,

2011), following Plessix (2013) and Brossier et al. (2015). This makes it possible to en-
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force the zero-offset time invariance by keeping the reflective Ip model fixed in pseudotime

rather than in depth, hence reducing phase ambiguities at short-offsets. At each iteration,

modeling and computation of the JFWI gradient are performed in depth (as in equation 2)

and mapped to pseudotime by using the derivative chain rule (Plessix, 2013); both the up-

dated Vp and the invariant Ip in time are then re-mapped to depth using a linear interpolation

scheme in the modeling grid. Thereby, reflectors in Ip are repositioned at each iteration,

reducing the need for iterative least-squares migrations (Provenzano et al., 2023) and there-

fore containing the computing cost. Two model-dependent pseudotime axis parameters are

defined, namely the maximum expected traveltime and the time step, preferably so that

the sea-floor reflection is an integer multiple of the latter. The one-dimensional time-to-

depth transform is however sub-optimal in models with steep structural dips and strong

lateral variations, where the need for reverse-time reflection imaging cannot be altogether

eliminated.

In order to speed-up the reconstruction of the reflective model by impedance waveform

inversion (IpWI), a dedicated asymptotic-preconditioned Ip gradient is employed (Proven-

zano et al., 2023). Originally based on the inverse scattering theory for the asymptotic lin-

earized wavefield (Beylkin, 1985), this approach relies only on wavefield quantities (Qin

et al., 2015; Li and Chauris, 2018; Farshad and Chauris, 2021) to scale and weight the

IpWI gradient in the framework of an iterative least-squares inversion. Unlike in previous

approaches (Li et al., 2019), the proposed asymptotic IpWI implements a true frequency-

domain deconvolution imaging condition (Schleicher et al., 2008) within the time-domain

waveform inversion framework, thanks to the decimation and storage on the fly of the for-
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ward and adjoint wavefields in the discrete-Fourier-domain (DFT, Yong et al., 2022). This

makes it possible to obtain sharp and balanced impedance models at a fraction of the time,

and within reasonable memory requirements (Provenzano et al., 2023).

Graph space optimal transport against cycle skipping

While the pseudotime approach avoids phase ambiguity at near-zero offsets, a graph-space

OT (Métivier et al., 2019; Métivier and Brossier, 2021) objective function is used in order

to reduce the liability to cycle-skipping at intermediate-to-long offsets. In GSOT, seismic

traces are transformed from oscillatory signals into two-dimensional discrete distributions

ofK unit-weight points in the time-amplitude graph-space, whereK is the number of sam-

ples after Nyquist resampling. An assignment problem between the observed (t(j), dobs(j))

and predicted (t(i), dcal(i)) trace is solved for the optimal permutation plan σ∗, which con-

nects each sample of the initial distribution to a sample in the target one. In the graph-space,

the 2-Wasserstein distance between the two distributions is thus defined as:

hW 2 =
K∑
i=1

A2

∆2
t

|ti − tσ∗(i)|2 + |dcali − dobsσ∗(i)|2, (3)

where the time axis is scaled by the ratio between the maximum expected time shift ∆t

and the maximum amplitude A difference between observed and predicted data. Among

all possible i − j permutations, σ∗ minimizes the work needed to transport the predicted

data points distribution into the observed one (Kantorovich, 1942). Convexity with respect

to time-shifts is given by the monotonic dependency of the transport work on the terms

|ti − tj|2.
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In JFWI, the reflection and diving wave optimal transport distances are computed in-

dependently, to honor the differences in amplitude range between the two propagation

regimes. The objective function in equation 1 can be re-written using equation 3 as:

f(Vp) =
∑
shot

[
W ehrW 2(σdiv∗) +W rheW 2(σrefl∗)

]
. (4)

Each propagation regime has its own optimal transport plan in a specific graph space scaled

by Adiv and Arefl respectively, with the possibility of defining different maxima expected

time-shifts ∆t if, for example, a larger one should be used for diving waves than for reflec-

tions (Provenzano et al., 2023).

In equation 3, large ∆t values emphasize the convexity with respect to shifted patterns

and therefore help to mitigate cycle skipping, whereas, as ∆t decreases, each σ∗ tends to a

local sample-by-sample mapping (σ∗(i) = i), and hW 2 approximates the behavior of the L2

distance. L2 can be therefore viewed as a special case of GSOT distance for ∆t=0, in which

the adjoint sources are simply the reflection and diving wave residuals. Such flexibility can

be exploited to fine-tune the behaviour of the objective function during inversion: large ∆t

values may enhance robustness at early iterations, when kinematic mismatches are large,

and can then be reduced as wavefield prediction improves and it becomes desirable to

approximate the resolution of L2-norm
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JFWI-BASED VP INVERSION

Modelling

In order to predict the hydrophone component of the OBC dataset, modelling is performed

in the time-domain using a first-order formulation of the wave equation (Yang et al., 2016a),

within a visco-acoustic VTI anisotropic approximation. In the latter, attenuation is imple-

mented using a generalized standard linear solid (SLS) mechanical model (Yang et al.,

2016a), with a combination of 3 relaxation mechanism at frequencies equal to 1, 6.32 and

40 Hz, to approximate a constant quality factor (Q) within the frequency band of interest

(Blanch et al., 1995; Yang et al., 2018), as in Kamath et al. (2021).

The finite-difference discretization is performed using a fourth-order in space and second-

order in time staggered grid. The nearly flat topography makes the finite-difference method

suitable in this setting. The models are discretized in space with ∆x= 70 m for the 2.5-5

Hz band, to ensure at least 5 grid points per wavelength for the smallest velocity, and ∆t

is chosen accordingly to enforce the CFL (Courant-Friedrichs-Lewy) stability conditions

for explicit schemes. Windowed cardinal sine interpolation is used to simulate source and

receivers positions falling in between grid points (Hicks, 2002).

A flat free surface condition is applied at the top of the model to represent the water/air

interface and include ghosts and multiples in the predicted data, since they are not removed

from the field data in pre-processing. Sponge layers (Cerjan et al., 1985) are applied in the

other directions to simulate an infinite-extension medium and thus attenuate off-boundary

reflections. This choice aims at avoiding instabilities of perfectly-matching-layer boundary
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conditions (PML, Bérenger, 1994) that may arise in acoustic anisotropic media (e.g. Be-

cache et al., 2003, 2010). Finally, in order to have an efficient and stable computation of

the gradient in a visco-acoustic medium, we rely on a checkpoint-assisted reverse forward

simulation approach (CARFS, Yang et al., 2016b), which ensures stability and reduces the

re-computation ratio compared to purely checkpointing-based approaches.

Data pre-processing and windowing

Since the number of sources in the survey is around 25 times larger than the number of

receivers, reciprocity between sources and receivers is applied, in order to reduce the com-

puting cost by taking advantage of the shot-based parallelization of the inversion code.

Gathers with anomalous root-mean-square (RMS) energy are identified and eliminated, re-

ducing the number of sources, after reciprocity, from 2049 to 2044. Data pre-processing

is limited to minimum-phase bandpass frequency filtering, followed by muting of Scholte

waves (Kamath et al., 2021; Pladys et al., 2022), since they cannot be modelled in our

visco-acoustic approximation. The inversion is performed on the 2.5-5.Hz frequency band,

decimated to a 8 ms sampling rate.

In such narrow frequency bands, separation between turning waves and reflected ar-

rivals can be cumbersome; on top of that, the presence of multi-refracted guided waves in

the shallow subsurface (shingling waves, Robertson et al., 1996) contaminates the diving

waves with steep-sloping slow arrivals. Therefore, in order to design an appropriate win-

dowing, data computation in a reflection free model is performed to identify an acceptable

time-offset separation between the two propagation regimes. A taper zone of 0.2 seconds
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is applied, to avoid contaminating the reflection window with the aforementioned near-

surface effects, and to allow for changes in traveltime during inversion. For simplicity, the

same windowing function is used for every shot.

A shot-averaged source wavelet is estimated (Figure 2a) at the beginning of each in-

version stage, using the frequency domain method proposed by Pratt (1999). The latter

is a linear inverse problem for a set of wavelet coefficients, which assumes the predicted

Green’s function to be equal to the observed one. In order to minimize the impact of an

incorrect subsurface model on the wavelet estimation, only the near offset, short time data

are used for this task, as in Kamath et al. (2021) and Pladys et al. (2022). In Figure 2, the

different data portions used for source estimation (Figure 2a), impedance inversion (IpWI,

Figure 2b), and velocity reconstruction (JFWI) are presented (Figure 2c for reflections,

Figure 2d for diving waves.)

[Figure 1 about here.]

[Figure 2 about here.]

Inversion

[Table 1 about here.]

Despite the convexity of GSOT with respect to time-shifts, offset-windowing in Vp in-

version is beneficial when starting from such a crude model (Figure 4). This helps avert
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cycle-skipping induced local-minima entrapment, while ensuring a resonable convergence

speed (Górszczyk et al., 2021; Pladys et al., 2022).

The 1D starting model predicts heavily cycle-skipped diving waves even at offsets

shorter than 3 km (Figure 13a) as a consequence of the inaccurate shallow subsurface

velocities. Therefore, it has been found beneficial to start the inversion workflow with a

conventional diving wave Vp-FWI at offsets shorter than 4.8 km, taken to be equivalent to

the first step of Pladys et al. (2022), and only later start the reflection-based velocity model

building with JFWI. The 4.8 km offset threshold has been found empirically to correspond

to a synthetic-to-observed traveltime mismatch GSOT can handle, without overly increas-

ing ∆t (equation 3) thus jeopardizing convergence in the presence of noise (Métivier and

Brossier, 2021)

In the preliminary FWI stage, random 128-shot subsamples are drawn and inverted

for 3 limited-memory BFGS (Nocedal, 1980) iterations with illumination-compensation

preconditioning (Kamath et al., 2021), for a total of 101 iterations so that every source is

drawn at least twice. The resulting model is smoothed using a 3D Gaussian filter with

lengths equal to the wavelength at 1.5 km/s, to obtain a suitable kinematic model rid of

high-wavenumbers (Figure 5) that would otherwise pollute Vp. This is followed by IpWI to

build the initial reflective model that will inform JFWI kernel with deep-reaching wavepath

and, finally, by FWI.

Table 1 summarizes the stages of the adopted inversion strategy and the values of the

most relevant tuning parameters. Within the multi-stage JFWI+FWI workflow, the phi-

losophy is to progressively include larger offsets, increase the deeper contributions to the
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gradient by preconditioning and reduce the GSOT-∆t (equation 3) to approximate an L2

behaviour as model kinematics improves.

It is worth pointing out two major differences between the preliminary stage and the

JFWI-based velocity model building. Firstly, the size of the random source subset is

changed to 256, purely because of the different node-architecture of the cluster used com-

pared to the short-offset diving wave step by Pladys et al. (2022). More importantly, the

optimization method is changed from l-BFGS to a preconditioned steepest-descent. As

pointed out in Zhou et al. (2018), steepest descent ensures slower but more robust updates

in reflection-based inversion in the presence of noise (e.g., Dagnino et al., 2016), both ran-

dom and coherent (e.g., ghosts and multiples), a situation in which l-BFGS may collect

inaccurate information about the curvature of the objective function from the previously

computed gradients (Métivier and Brossier, 2016).

Ip reconstruction

Velocity model building starts with IpWI of the short spread reflections, with source-

receiver offsets smaller than 3 km (Figure 2b), taking advantage of the proposed pseudo-

asymptotic wavefield-based precondioner. Two iterations are performed for each 256-shot

random batch, for a total of 16 iterations, such that each available shot gather is sampled at

least once. Within the 2.5-5 Hz band, 12 frequencies are stored to compute the precondi-

tioned gradient, which is 1/4 of the Nyquist number of samples at 5 Hz and yet sufficient

to avoid wrap around effects in the computed Ip update (Yong et al., 2022). A larger num-

ber of frequencies did not improve substantially the final model quality, whereas a number
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of frequencies lower than 10 would create artefacts in the Ip gradient as wrap-arounds of

the deep structures into the shallow ones. This number is largely data-dependent, and re-

quires an educated user choice; however, it is qualitatively proportional to the wavefield

complexity (Yong et al., 2022).

In Figure 6 the advantages of the proposed preconditioner are apparent in a higher

convergence rate compared to a wavefield-based illumination compensation (Kamath et al.,

2021), by virtue of the deconvolution imaging condition and the inherent wavenumber

filtering. This corresponds to a sharper and more balanced final reflective model (Figure

7), while the conventional preconditioning would require a larger number of iterations to

converge to a comparable solution. The proposed preconditioner is thus key in obtaining,

in a limited number of iterations, a suitable starting reflective model for JFWI (Zhou et al.,

2018).

Vp JFWI

After IpWI, JFWI is first run on offsets shorter than 7 km for 24 steepest descent (ST)

iterations, 3 for each 256-shot random batch. The weight of the diving waves term is 2-

times as large as the one of reflections, in order to priviledge shallow kinematic updates

in the earlier iterations. Even so, the added value of reflections compared to conventional

FWI at depths larger than 1.5 km is apparent when comparing this stage’s JFWI with the

initial early-arrivals FWI model (Figure 8).

The offset window is then relaxed to include offsets up to 9 km and one more JFWI run

is performed with the same number of ST iterations; diving and reflected waves are now
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given the same weight in the objective function, in order to respect the natural scaling of

the two propagation regimes in the data. A final JFWI step is then performed on the whole

offset range (Figure 9).

Combined with offset-selection, a depth-dependent gain is applied to the JFWI gradi-

ent as a preconditioner after conversion to pseudotime, progressively increasing the depth

power from 1 to 2 as the inversion proceeds to the following step, in order to priviledge

deep velocity updates after meaningful shallow updates have been obtained.

The GSOT maximum expected time-shift (∆t) is set to 0.35 s at the first two JFWI

stages, and then reduced to 0.25 s in the diving window and to 0.125 s in the reflection one.

The choice of a variable ∆t across the inversion stages serves the purpose of enhancing

convexity with respect to time-shifts at the beginning, and later approximate the behaviour

of a L2-norm inversion as the model kinematics improves; the use of a shorter ∆t in the

reflection window is, on the other hand, justified by the lower maximum expected time

shift between predicted and observed reflection moveout compared to that of diving wave

traveltimes.

In this pseudotime formulation of JFWI, Ip is updated in depth simultaneously with

Vp, without requiring repeated runs of IpWI to ensure consistency between kinematics and

reflectivity at short offsets. However, intermediate fast (8 iterations, 1 per source ran-

dom batch) IpWI steps are interleaved in between offset-range JFWI runs starting from

the pseudotime-updated impedance, in order to adjust the amplitude of the impedance

constrasts and make up for possible losses of structure during resampling from depth to

pseudotime.
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The intermediate and final JFWI models are shown in Figure 8 and 9. Note that the

JFWI-Vp contains structures consistent with the ones in the tomographic model (Figure

10), though entirely based on waveform inversion and without requiring travetime picking.

The inversion will then proceed with a conventional FWI step starting from the final JFWI

Vp model, first with offsets shorter than 9 km, then including all offsets.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]
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Vp FWI

After three JFWI runs with widening offset windows, Vp FWI starts in the same frequency

band to inject higher spatial frequencies into the velocity macromodel, thus broadening

the bandwidth of the reconstructed subsurface model. For this aim, the parametrization is

changed from [Vp, Ip] to [Vp, density (ρ)] (Operto et al., 2013), where ρ is re-set to its initial

value, since density after JFWI in the [Vp, Ip] parametrization has no physical meaning.

FWI is performed for 48 l-BFGS iterations (Nocedal, 1980) with wavefield preconditioning

(Kamath et al., 2021) in two steps, the first with offsets shorter than 9 km, the second

including all offsets. Partitioned into 3 iterations per 256-shot batch, this corresponds to 2

epochs of full data sampling per stage. GSOT distance is used at this stage, with ∆t equal

to 0.25 in the 9 km window and reduced then to 0.2 in the full-offset one.

The results of FWI following JFWI are shown in Figure 11. We compare them in

Figure 12 with the model obtained by conventional FWI starting from the 1D model by

Pladys et al. (2022) with a 6-step data-domain layer stripping strategy that progressively

included larger offsets and time. The contribution of JFWI to FWI (Figure 11) is apparent at

depths larger than 1.5 km, where a wider LVZ is reconstructed, while a deep high-velocity

anticline is obtained below the LVZ consistent with the tomographic model (Figure 10).

Conventional FWI (Figure 12), on the contrary, fails to update the model away from the 1D

starting model at those depths not sampled by turning waves. This is apparent also on the

vertical profiles extracted at the LVZ location and shown in Figures 9, 10, 11 and 12.

We will now ascertain whether the updated JFWI+FWI model is necessary to better
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explain the data and the independent ground-truth information available in the target area.

Quality checks

Data domain

The first quality check is performed on the waveform fit of two control 2D lines extracted

from two common receiver gathers, one proximal to the LVZ (cable A), the other one away

from it (cable B). Modelling is performed using the same source wavelet (the one estimated

in the first JFWI stage) in order to make the comparison consistent. In Figures 13 and 14,

an alternating view of field and synthetic traces is presented to showcase the waveform fit

for: a) the starting model, b) the short-offset EWI+IpWI, and c) JFWI. Wiggle overlays at

randomly selected traces at a range of offsets are also plotted to better appreciate phase and

amplitude changes. It is worth pointing out the important traveltime difference between

predicted and observed data at offsets as short as 2.5 km in a), that would expose L2 in-

version to cycle-skipping. After the very-short offset diving waves are fit by early-wave

GSOT-EWI (b), GSOT-JFWI, along with IpWI and the pseudotime formulation, improves

the waveform fit for both diving and reflected waves, both in phase and amplitude (c).

In Figures 15 and 16, a comparison is presented between the data prediction of JFWI+FWI

(panels a) and the 6-step layer-stripping conventional GSOT-FWI (panels b) by Pladys et al.

(2022) starting from the same initial model. Marginal improvements in data prediction are

observed for JFWI+FWI compared to conventional FWI, mostly for larger offset reflec-

tions, namely at times larger than 5 seconds and offsets between 4 and 7 km. In particular,
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reflection amplitude prediction is improved in the JFWI+FWI model, despite the fact that

both cases use the same density model. While the long-offset diving waves at offsets larger

than 9 km seem to be slightly better predicted by conventional FWI in cable B (Figure

16b), the improvement in long offset fit in cable A (proximal to the low-velocity cloud) is

striking at long offsets, as it appears in the wiggle plot at 9.5 km (Figure 15a).

In order to provide an alternative more quantitative evaluation of data prediction over

the whole target, we compute the zero-lag correlation between the predicted and observed

data for the same two control common receiver gathers, again using the same source

wavelet. In Figure 17 the improvement in waveform coherency between the initial and

final JFWI+FWI model is striking, while the comparison with the results of conventional

FWI is non-conclusive (a relative increment of -1.5% for receiver A and +1% for receiver

B).

The same comparison is then performed selecting the reflection time-offset window

(Figure 18). In this case, the improvement in waveform coherency of the JFWI+FWI data

is more apparent and results in a higher average cross-correlation value: +7% for receiver

A and +3% for receiver B. This posterior data prediction analysis confirms the role of

reflections in velocity model building; on the other hand, the fact that the average cross-

correlation values on the whole dataset are similar (within a 1.5% tolerance) suggests that

conventional FWI ensures marginally better waveform coherency in the diving window, as

expected by a velocity model updated mostly by refractions.

In the exact subsurface model, the estimated source wavelet using the frequency do-

main method by Pratt (1999) is indepedent of the location within the survey, since the pre-
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dicted and observed Green’s functions should be identical in the frequency band and offset

range of interest. Otherwise, the estimated wavelet coefficients collect the space-dependent

Green’s functions’ inaccuracies as they result from an inaccurate subsurface model. Such

an attribute can thus be exploited to assess the quality of a model (Operto and Miniussi,

2018). Here, the stationarity of the wavelet estimation across a random selection of com-

mon receiver gathers is evaluated in the initial, FWI and JFWI+FWI final Vp models on

the whole time-offset range. Figure 19 shows an apparent improvement in model quality

between the initial and both the JFWI+FWI and FWI inverted models. The sum of the

least-squares residuals between the wavelets and their average, i.e. their variance, confirms

that the JFWI+FWI model ensures a better wavelet stationarity than the conventional FWI

one, which is consistent with a better approximation of the true model. Furthermore, the

onset of the average estimated wavelet in the JFWI+FWI model is closer to the reference

wavelet used for inversion (red vs white wavelet envelopes in Figure 19)

Ground-truthing

In Figure 20, we compare the inverted velocities with the ground-truth of the three available

sonic logs, low-pass filtered within half a period for the maximum frequency used in the

inversion (5 Hz), and against the reference kinematic model by Aker BP. As pointed out in

Pladys et al. (2022), GSOT makes it possible for FWI to attain sensible improvements de-

spite the very simple starting model down to around 1.5 km depth. Below, the contribution

of reflections becomes apparent, in particular for Log-1, proximal to the LVZ (Figure 1),

where JFWI captures a velocity reduction consistent with the sonic velocities, while FWI
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only adds high-wavenumbers to the initial trend. For Log-2, predictions are not entirely

satisfactory, which may result from the poor illumination at the margin of the acquisition

layout (Figure 1). Here FWI seems to outperform JFWI, since it remains locked to the

starting model at depth, where the latter happens to be closer to the sonic velocities. It is

worth pointing out how the reference tomographic model underestimates Log-2 below 2

km depth similarly to JFWI. As for Log-3, JFWI produces velocity updates consistent with

the tomographic model, and outperforms FWI at depths larger than 1.5 km.

In Figure 21, the correlation coefficients between the low-pass filtered logs and the

inverted Vp are plotted. In Log-2, although the FWI prediction is closer in absolute value

to the ground-truth, JFWI produces a better-correlated profile. The results for Logs 1 and

3, instead, are unambiguous both in absolute distance and correlation value.

The tomographic model seems to outperform both FWI and JFWI in the top 800 meters

(Logs 2 and 3 in Figures 21), probably due to the impact of the short-period sea-surface

multiples and inaccurate densities in the shallow subsurface, making it difficult for the

waveform methods to retrieve the velocity trend, approximating it instead with oscillating

patterns.

Image domain

Common image gathers (CIGs) are built by two-dimensional reverse-time-migration (RTM)

on a section of the model extracted along receiver-cable A, going over the LVZ cloud.

Band-pass filter between 2.5 and 10 Hz is applied to the selected 160 common-receiver

gathers, along with 3D to 2D conversion for amplitude (
√
t factor as in, e.g., Hicks and
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Pratt (2001)) and FK-filter to remove Scholte waves in the reflection window. The wavelet

is re-estimated to absorb 3D-2D phase effects, and 26 offset classes are migrated beetween

0 and 6 km. In Figure 22, the 2D RTM CIGs for the starting 1D model (a), conventional

FWI (b), JFWI+FWI (c) and reference tomography (d) are compared at an interval of 750

metres along the extracted line, in a west-to-east range between 5.5 and 12.5 km (Figure 1).

Note that the FWI model (b) flattens the CIGs at shallow depths, correcting for the consis-

tent under-estimation in the starting one (a). However, the lack of deeper velocity updates

in FWI is such that reflectors are bent downwards (velocity over-estimation) compared

to the relatively flat reconstruction in the starting model (a). On the contrary, JFWI (c)

seems to correct the reflection image move-out at a broader range of depths, corroborating

the results from data-domain and ground-truth QC. However, some velocity under-/over-

estimations in the JFWI model are present, in particular in the rightmost part, and the to-

mography model (d) remains a benchmark for this case study, with excellent overall CIGs

flattening. Nevertheless, in some instances (see white arrows in Figure 22), JFWI seems to

ensure better flattening than both FWI and the reference tomographic model.

Stacking CIGs in Figure 22 produces the migration images in Figure 23. RTM in the

JFWI+FWI model (c) yields a structural reconstruction closer to the reference tomo (d),

with improved deeper imaging (e.g. at 2.5 km) compared to conventional FWI (b), which

only marginally improves compared to the 1D model (a). Consistent with the observations

on the CIGs, imaging quality seems to be the most reliable in the reference tomographic

model.

[Figure 13 about here.]
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[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]

[Figure 19 about here.]

[Figure 20 about here.]

[Figure 21 about here.]

[Figure 22 about here.]

[Figure 23 about here.]

DISCUSSION

Starting from a crude one-dimensional model, graph-space optimal transport (GSOT) can

mitigate significantly cycle-skipping with respect to L2-norm (Pladys et al., 2022), but the

missing low-wavenumbers cannot be fully retrieved at depth by conventional FWI regard-

less of the objective function employed. The results presented here show that velocity is
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constrained by diving waves down to the top of the LVZ, while the tomographic contribu-

tion of reflections has to be explicitly accounted for to image accurately any deeper (Prieux

et al., 2011).

An obvious advantage of Joint FWI over RWI is that it retains the constraints of div-

ing waves down to 1.5 km depth, while deeper reflection-driven updates benefit from a

better constrained shallow model. In addition, in areas of the subsurface sampled by both

reflections and refractions, the latter stabilize the inversion results where surface-related

multiples and elastic effects are present (Provenzano et al., 2023). This makes it possible

to invert the data with minimal pre-processing, i.e. no multiple suppression or de-ghosting,

and within the visco-acoustic approximation, despite expected elastic effects (e.g. AVO) in

the LVZ reflections.

The results of FWI following JFWI are comparable with the ones obtained in Pladys

et al. (2022) down to 1.5 km, but are richer in low-wavenumbers below this depth thanks to

the tomographic contribution of reflections. The low wavenumbers injected by JFWI into

FWI are closer to the ones contained in the reference traveltime-tomography model, though

driven entirely by waveform inversion. This is apparent in the delineation of the anticline

structure below the LVZ, which is absent in the FWI-only results, as well as in a superior

fit with the sonic log velocities. The ground-truth is predicted with high-fidelity within the

expected vertical resolution (Figure 20) especially close to the LVZ , showing independence

from the low-frequencies contained in the 1D linearly-increasing initial model.

The quality of the data fit at the two control shot lines vouch for the accuracy of the

obtained subsurface model, as shown in the waveform comparison (Figures 13 and 14),
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as well as in the zero-lag correlation image between observed and predicted seismograms

(Figures 17 and 18). Though for the whole time-offset range the quality of JFWI+FWI

and FWI-only predictions is hardly distinguishable, long-offset fit for JFWI+FWI seems

to be superior, in particular for the gather proximal to the LVZ (cable A). Furthermore,

the cross-correlation performed on the reflection window shows better phase prediction for

the JFWI+FWI model. The cross-correlation results for the two common receiver gathers

are worth commenting on. Receiver A is closer to the LVZ area and has thus stronger

reflections, implicitly posing a higher weight to the reflection term of the JFWI objective

function, which might explain the difference in cross-correlation value between the diving

and reflection window. Ideally, a gather-dependent objective function weighting would thus

be required to account for space-dependent reflection and diving amplitude scaling.

The migration-based quality check (Figure 22 and 23) confirms a better quality of the

JFWI+FWI model with respect to the starting 1D as well as to conventional FWI. However,

the imaging quality obtained in the estimated Vps seem to be lower than the one ensured

by the reference tomographic model (Figure 23). This could be attributed to a number of

factors that may hinder the effectiveness of our waveform-based method over a kinematic

one in retrieving a purely tomographic model update from reflections, e.g.: the imperfect

reflection-diving separation may pollute with unwanted high-wavenumber components the

JFWI gradient (equation 1 and Figure 2); high-wavenumber features may be introduced

also by the higher-order scattering term in equation 2; the impact of converted P-S-P waves

may challenge the acoustic approximation used. In addition, both waveform methods seem

to suffer from an imperfect reconstruction of the shallow velocities (see for example log-3
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in Figure 20), which JFWI can only partially make up for by including reflections. This

may reflect the impact of inaccurate densities and/or shallow-water multiples, both on

wavelet estimation and model parameter inversion. Better constrained shallow densities

(e.g. aided by density-logs) and additional pre-processing (e.g. surface-related multiple

attenuation) may in principle reduce the shallow-model inaccuracies observed in this case

study, and thus their impact on the quality and repeatability of the solution.

Solution uncertainties may be estimated quantitatively, in order to shed light on the re-

liability of some of the unconfirmed patterns in the reconstructed model. Data-assimilation

approaches, such as Ensemble Kalman filters (Thurin et al., 2019), are a potential candidate

to access a low-rank approximation of the posterior covariance matrix. While Monte Carlo

Markov Chain analysis (MCMs, Sambridge and Mosegaard, 2002) would be computation-

ally intractable, Hamiltonian MCMC (H-MCMC) approaches may be a viable alternative

to explore the solution null-space, thanks to their hybrid local-global nature (e.g., Keating

and Innanen, 2021), similarly to variational inference approaches (Zhang and Curtis, 2020)

in a re-parametrized low-dimensional space (e.g., Ray et al., 2016).

In an anisotropic subsurface, while the turning waves in the early-arrival term of JFWI

are more sensitive to the shallow horizontal Vp, the kinematics of the near-vertically propa-

gating reflections would be controlled by vertical Vp; therefore, when inverting for vertical

Vp only, it is crucial in JFWI to rely on anisotropic modelling within an accurate ε macro-

model. Here we use ε, δ weak anisotropy model derived from the traveltime-based tomog-

raphy by Aker BP, though future work will explore the possibility to invert for anisotropic

velocity by JFWI with an appropriate model parametrization (Gholami et al., 2013).
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The waveform-based asymptotic preconditioner, used in IpWI, is key in this case study

to obtain a fast and balanced reflective image (Figures 6 and 7), thanks to the deconvolution

imaging condition implemented in the decimated DFT domain (Yong et al., 2022; Proven-

zano et al., 2023). As shown by Zhou et al. (2018), the accuracy of the starting reflective

model is crucial for JFWI to converge to the true model kinematics. In this paper, we build

the impedance model once at the beginning of the workflow in the starting velocity model,

and then let it evolve in the pseudotime domain during JFWI, interleaving fast IpWI (1

iteration per random sources batch) refinements after each offset group, to compensate for

potential inaccuracies arising from anisotropy and resampling from depth to pseudotime

domain and back. Such intermediate fast IpWI steps are beneficial to make up for losses

of continuity of the reflectors that can be attributed to the effects of VTI anisotropy in a

depth-to-time stretching that only accounts for vertical velocity.

The pseudotime approach (Plessix, 2013) is a computationally- and memory-cheap al-

ternative to migration-based-traveltime-tomography (e.g. Chavent et al., 1994) and meth-

ods explictly enforcing velocity-reflectivity consistency at the wave-equation level (Yang

et al., 2021), or within an augmented objective function (Valensi and Baina, 2021). This

cheap domain transformation makes it possible to passively update impedance during Vp-

inversion, as opposed to reconstructing it by IpWI at each iteration, with huge computa-

tional savings, especially in 3D.

This case study is the first published 3D field data application of GSOT to reflection-

based FWI. The conclusions of Pladys et al. (2022) about the robustness of the objective

function are confirmed by this work, and extended to reflection data fitting. The presence
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of reflections in both the predicted and observed data since the first iteration (thanks to the

reconstructed Ip) is an ideal characteristic for GSOT (and, in general, objective functions

sensitive to time-shifts), whereby the calculated data can be thought of as a shifted version

of the observations through velocity-driven differences in move-out. Optimal transport, in

this context, works in conjunction with the pseudotime re-parametrization to avert phase

ambiguity respectively at mid-to-long and short offsets (Provenzano et al., 2023).

Each JFWI gradient computation requires 6 wavefield modellings, against 3 in time-

domain FWI, thus being twice as expensive. It is worth pointing out that this is the price

to pay for the time saved in building an accurate traveltime-based initial model, since the

proposed methodology may start from very non-informative starting models and does not

require phase identification and picking, aside from simple windowing and weighting.

The additional cost of GSOT is in the order of +30% at the frequency band used in

this work (2.5-5 Hz). As described in Métivier et al. (2019) and observed by Pladys et al.

(2022), the cost of computing optimal transport in the graph-space scales with the 3rd

power of frequency, while the computational complexity of the finite-difference acoustic

modelling varies with the 4th power of frequency. Therefore, the extra-cost than the L2-

norm becomes proportionally smaller as we move up in frequency in multi-scale inversion

schemes (Bunks et al., 1995).

Though theoretically capable of ensuring convexity with respect to time shifts, GSOT

does not altogether free waveform-inversion from cycle-skipping, and the recent literature

on the subject (e.g., Górszczyk et al., 2021; Pladys et al., 2022) confirms that offset selec-

tion remains necessary to ensure convergence. Large values of expected time-shift ∆t lead
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to better-behaved objective function with respect traveltime differences, with larger valleys

of attraction towards the global minimum, but at the same time make the objective function

flatter (Métivier et al., 2019). The reason is that the larger ∆t, the larger the importance

of small amplitude events in the seismogram is in determining the optimal transport plan

(Métivier and Brossier, 2021), which may dramatically collapse to a flat objective function,

especially in noise-contaminated data. Hence the difficulty of ensuring convergence invert-

ing for arrivals with very large traveltime differences with respect to the dominant period.

In practice, the user has to perform a preliminary comparison between synthetic and ob-

served data, from which expected maximum time-lags (∆T ) for GSOT may be chosen and

tested.

With this in mind, it is worth pointing out that the integration of GSOT in JFWI consid-

ers the possibility to indepedently define reflection-∆t and diving-∆t, whereby an educated

choice can be made based on the maximum expected time-shifts in the two propagation

regimes in an otherwise rather user-independent inversion strategy. Along with the GSOT

parameter-tuning, the definition of offset-windows and the separation between diving and

reflection regimes, however, remain key manual/semi-automatic tasks of the workflow.

CONCLUSIONS

Starting from a highly non-informative kinematic model that would expose the non lin-

earity and limited wavenumber sensitivity of conventional FWI, a novel velocity model

building methodology is applied to an OBC dataset from the North Sea. The proposed

approach jointly inverts diving and reflected waves (JFWI) in a reflective starting model
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using a graph-space optimal transport (GSOT) objective function in pseudotime. Minimal

pre-processing is required, and the inverted dataset contains multiples, ghosts and elastic

effects.

Preliminarly to GSOT JFWI, early-arrivals GSOT FWI is run on the very-short offset,

followed by impedance-model building using a novel asymptotic-based preconditioner that

significantly speeds-up the reflective model building. GSOT JFWI is then run in three

widening-offset stages to build a suitable starting model for FWI. The JFWI+FWI results

confirm the potential of GSOT in reducing cycle-skipping and the effectiveness of JFWI

in exploiting jointly diving waves and reflections to obtain deep velocity updates while

constraining the shallow subsurface.

The efficiency of the methodology is ensured by the pseudotime approach, that greatly

reduces the need to iteratively reconstruct the reflectivity as kinematics is updated. Encour-

aging data prediction and sonic log reconstruction vouch for the effectiveness of the method

in complementing the FWI wavenumber sensitivity at depth and mitigating its liability to

cycle skipping, thus making it more independent from the quality of the traveltime-based

starting model.

The results obtained in this challenging real-data exercise suggest that the proposed

methodology may bring about improvements to current high-resolution velocity model

building workflows, enriching the value of full-waveform methods in providing geologi-

cally plausible updates in conjunction with kinematics-based methods. Future work will

focus on extending JFWI to the estimation of the anisotropic parameters, which in this

work have been kept fixed to the ones derived from the traveltime-tomography model.
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Figure 1: Acquisition geometry overlayed to the horizontal slice at 1.1 km depth to show
the low-velocity cloud position (Kamath et al., 2021): receiver cables (blue), shot positions
(white), projection of well-logs location at the surface, control receiver cables (Rec. A and
B) used for QC.
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a) b)

c) d)

Figure 2: Estimated wavelet in the 2.5-5 Hz band (a) and data windows on an example
shot gather proximal to the LVZ, for: a) source estimation, b) IpWI, c) reflection Wr and
d) refraction We in the JFWI objective function (equation 1)
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Figure 3: Starting η model: the anisotropic parameters are part of the tomographic model
by AkerBP; as well as the constant attenuation,they are used in modelling, but kept constant
during inversion. The bottom 4 panels are vertical slices cutting through the volume, while
the greyscale ones are horizontal slices at constant depth (0.2, 0.5 and 1.1 km). Slices
locations are indicated by the letter-coded black lines.
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Figure 4: Starting 1D Vp model. Density is derived from this Vp model using a Gardner’s
law relationship, hence initial Ip is also smooth and linearly increasing. The bottom 4
panels are vertical slices cutting through the volume, while the greyscale ones are horizontal
slices at constant depth (0.2, 0.5 and 1.1 km). Slices locations are indicated by the letter-
coded black lines.

52



Figure 5: Early-wave FWI offset window 1: 5 Hz GSOT diving wave FWI results, offsets
< 4.8 km, starting from the initial 1D model in Figure 4. The bottom 4 panels are vertical
slices cutting through the volume, while the greyscale ones are horizontal slices at constant
depth (0.2, 0.5 and 1.1 km). Slices locations are indicated by the letter-coded black lines.
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Figure 6: Speed-up in misfit reduction of proposed asymptotic preconditioner (deconvolu-
tion imaging condition in time-domain) vs wavefield illumination compensation.
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Figure 7: Density perturbation obtained after IpWI using a)proposed asymptotic precon-
ditioner (deconvolution imaging condition in time-domain) and b) wavefield illumination
compensation on a two-dimensional line extracted along cable A, close to the LVZ (Figure
1)
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Figure 8: JFWI offset window 2: 5 Hz Pseudotime GSOT JFWI results, offsets < 7 km.
The bottom 4 panels are vertical slices cutting through the volume, while the greyscale ones
are horizontal slices at constant depth (0.2, 0.5 and 1.1 km). Slices locations are indicated
by the letter-coded black lines.
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Figure 9: JFWI offset window 4: 5 Hz Pseudotime GSOT JFWI results, full offsets. The
bottom 4 panels are vertical slices cutting through the volume, while the greyscale ones
are horizontal slices at constant depth (0.2, 0.5 and 1.1 km). Slices locations are indicated
by the letter-coded black lines. A vertical profile is extracted at the LVZ (red asterisk on
horizontal slices), showing that the proposed workflow updates Vp consistently with the
reference tomographic model despite the very simple starting model.

57



Figure 10: Reference macromodel: Reflection traveltime tomography model by AkerBP.
The bottom 4 panels are vertical slices cutting through the volume, while the greyscale ones
are horizontal slices at constant depth (0.2, 0.5 and 1.1 km). Slices locations are indicated
by the letter-coded black lines. Note how the final JFWI in Figure 9, and in the vertical
profile, identifies the position of the low-velocity areas and the regional velocity trends of
the reference kinematics model starting from the 1D initial guess.
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Figure 11: FWI after JFWI: 5 Hz Pseudotime GSOT JFWI + GSOT FWI results, full
offsets. The bottom 4 panels are vertical slices cutting through the volume, while the
greyscale ones are horizontal slices at constant depth (0.2, 0.5 and 1.1 km). Slices locations
are indicated by the letter-coded black lines. Same vertical profile location as for Figure 9.
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Figure 12: Conventional FWI: 5 Hz GSOT FWI results, full offsets stage after a 6-step
data-domain layer-stripping workflow starting from the initial 1D model (Pladys et al.,
2022). The bottom 4 panels are vertical slices cutting through the volume, while the
greyscale ones are horizontal slices at constant depth (0.2, 0.5 and 1.1 km). Slices locations
are indicated by the letter-coded black lines. Note, in particular in the vertical profile at the
LVZ, that the JFWI+FWI and conventional FWI models are close down to 1.5 km depth,
below which the JFWI contribution becomes apparent in escaping from the initial Vp trend.

60



a)

b)

c)

Figure 13: Data fit QC on common receiver gather close to the low-velocity cloud (cable
A, Figure 1): a) Initial, b) Initial after short-offset diving wave FWI and IpWI; c) GSOT
JFWI. Synthetic and observed data alternate in the greyscale image with a 15-trace interval.
Fit improves as continuities of seismic events increases. On the left, selected wiggle traces
at the positions indicated by the red vertical lines in the greyscale plot
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a)

b)

c)

Figure 14: Data fit QC on common receiver gather away from the low-velocity cloud (cable
B, Figure 1): a) Initial, b) Initial after short-offset diving wave FWI and IpWI; c) GSOT
JFWI. Synthetic and observed data alternate in the greyscale image with a 15-trace interval.
Fit improves as continuities of seismic events increases. On the left, selected wiggle traces
at the positions indicated by the red vertical lines in the greyscale plot
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a)

b)

Figure 15: Data fit QC on common shot gather close to the low-velocity cloud (cable A).
Comparison between FWI starting from the JFWI model (a) and layer-stripping conven-
tional FWI starting from initial model (Pladys et al., 2022) (b).
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a)

b)

Figure 16: Data fit QC on common shot gather away from the low-velocity cloud (cable
B). Comparison between FWI starting from the JFWI model (a) and layer-stripping con-
ventional FWI starting from initial model (Pladys et al., 2022) (b).
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a) b)

c) d)

e) f)

Figure 17: Cross-correlation of field and predicted data with a, b) initial model, c, d) FWI
starting from initial model, e, f) FWI starting from JFWI model
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a) b)

c) d)

Figure 18: Cross-correlation of field and predicted data in the reflection window, with a, b)
FWI starting from initial model, c, d) FWI starting from JFWI model
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Figure 19: Source estimation quality check. The stationarity of the source wavelets es-
timated on different shots, at different locations should improve as the model quality in-
creases, i.e. as the estimated model approximates the true one. L2 value refers to the vari-
ance of the estimate. Red line is the envelope of the average wavelet of each panel, white
one is the envelope of the reference wavelet estimated on the short-offset early arrivals only
for inversion.
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Figure 20: Well log predictions by JFWI+FWI and FWI using GSOT. Log P-wave veloci-
ties are converted to time, low-pass filtered within half a period for the maximum modelling
frequency (5 Hz), and converted back to depth. Logs positions are plotted over the 1 km
depth slice in Figure 1
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Figure 21: Correlation coefficient between low-pass filtered logs and inverted velocities
at the same location. Note that, although in Log-2 FWI is closer to the ground-truth than
JFWI (Figure 20), the correlation coefficient is larger for JFWI, probably resulting from a
better prediction of the velocity changes with depth.
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a)

b)

c)

d)

Figure 22: 2D RTM CIG gathers along cable A at offsets between 0 and 6 km. a) Initial
1D model; b) FWI starting from the 1D model; c) JFWI+FWI starting from the 1D model;
d) Reference tomography model by Aker BP. The upper x-axis indicates the position of the
CIG along cable A.
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a) b)

c) d)

Figure 23: RTM 2D images along cable A. a) Initial 1D model; b) FWI starting from the
1D model; c) JFWI+FWI starting from the 1D model; d) Reference tomography model by
Aker BP
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Stage Max. offset Smooth Z,X,Y/λ Precond. Misfit We,Wr ∆eT ∆rT
EWI 4.8 km 1.0, 1.0 Energy GSOT 1, 0 0.35 –
IpWI 3 km 0.3, 0.8 Asy L2 0, 1 – –

JFWI-1 7 km 0.4, 1.0 z1 GSOT 1, 0.5 0.35 0.35
JFWI-2 9 km 0.4, 0.9 z1.5 GSOT 1, 1 0.35 0.35
JFWI-3 All 0.3, 0.9 z2 GSOT 1, 1 0.25 0.125
FWI-1 9 km 0.3, 0.8 Energy GSOT 1, 1 0.25 –
FWI-2 All 0.3, 0.5 Energy GSOT 1, 1 0.20 –

Table 1: Inversion parameters for each step of the velocity-model building strategy, start-
ing from the one-dimensional model. Gaussian smooth lengths are normalized by the local
wavelength. Z is the vertical dimension, positive downwards. While for JFWI We,Wr

are the relative weights of early arrivals and reflections in the joint objective function, in
the FWI and IpWI steps they simply refer to the data misfit weighting (e.g. containing re-
flections only in IpWI). Energy preconditioning refers to scaling for the incident wavefield
energy (Kamath et al., 2021), whereas Asy indicates the proposed asymptotic precondi-
tioner for IpWI
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