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Least-squares pressure recovery in Reduced Order Methods for

incompressible flows

M. Azäıez∗, T. Chacón Rebollo †, M. Oulghelou ‡, I. Sánchez Muñoz §

November 13, 2024

Abstract

In this work, we introduce a method to recover the reduced pressure for Reduced Order Models
(ROMs) of incompressible flows. The pressure is obtained as the least-squares minimum of the
residual of the reduced velocity with respect to a dual norm. We prove that this procedure provides
a unique solution whenever the full-order pair of velocity-pressure spaces is inf-sup stable. We also
prove that the proposed method is equivalent to solving the reduced mixed problem with reduced
velocity basis enriched with the supremizers of the reduced pressure gradients. Optimal error
estimates for the reduced pressure are obtained for general incompressible flow equations and
specifically, for the transient Navier-Stokes equations. We also perform some numerical tests for
the flow past a cylinder and the lid-driven cavity flow which confirm the theoretical expectations,
and show an improved convergence with respect to other pressure recovery methods.

Keywords: Pressure recovery, Inf-sup condition, Reduced Order Methods, Incompressible flow,
Navier-Stokes equations

1 Introduction

Apart from addressing the non-linear convective term, the primary challenge in numerically solving
the time-dependent, incompressible Navier-Stokes equations lies in the Stokes stage. Specifically,
determining the pressure field acts as a Lagrange multiplier to ensure the continuity equation. This
issue has led to a significant body of work and publications in both non-reduced and reduced-order
methods. In the non-reduced framework, two main families of approaches can be considered: one
based on time splitting and the projection method. For comprehensive coverage on this topic, refer
to the following references [11, 23]. The second family of methods operates without splitting and
utilizes techniques such as Uzawa algorithms. For further insights, consult the following references
[9, 24, 29]. The challenge of pressure calculation persists in the numerical solution of the Navier-
Stokes equations using reduced bases. According to our review of the literature, solutions to this
issue depend on the nature of the vectors in the bases of the reduced spaces, specifically on whether
these vectors are divergence-free or not. For comments and justifications on this issue, refer, for
example, to [3, 8, 16, 20] and the references therein. Indeed, if the reduced base only weakly satisfies
the constraint, it becomes impossible to directly calculate the pressure, which is precisely the Lagrange
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multiplier in the equations ensuring the constraint, using the Galerkin-POD-ROM application.
To overcome this challenge, various methods have been proposed to recover the pressure of the reduced
model a posteriori. These include:

i) solving the Poisson pressure equation (PPE) with appropriate boundary conditions. In this
formula, the continuity equation of the reduced system is replaced by the Poisson pressure
equation, which is obtained by taking the divergence of the momentum equation and exploiting
the fact that the velocity field is divergence-free. For the Poisson equation to be consistent
with the initial NSE, we need to impose appropriate boundary conditions. Some possibilities
include enforcing a no-slip boundary on the velocity, or incorporating a Neumann boundary
condition, which in some cases leads to an artificial boundary layer. Full details of these different
approaches can be found in [2, 13, 19, 20, 28]. More recently, in [6], the authors proposed to
solve a pressure equation by duality with the gradients of the reduced pressure basis functions.
This amounts to solving a Poisson equation for the pressure, with the advantage of defining
better adapted boundary conditions and ensuring better precision in their recovery. However,
their approach does not seem to provide a clear answer for the case of non-ordinary boundary
conditions, such as the non-stress or outflow boundary condition. Finally, it is important to
note another inconsistency in the choice of the H1 regularity of the pressure to solve the Poisson
problem compared to that of NS, where the pressure is only L2.

ii) solving the pressure via the momentum equation recovery formulation

∇pr = f − ∂tur . . ..

In practice, additional velocity space modes, called supremizer modes, are introduced to com-
pute the reduced pressure. They are chosen to satisfy the inf-sup condition [3, 4, 12, 26]. This
approach to pressure recovery was introduced in the context of the POD for parameterised
NSEs (see [3]) . A stability analysis in terms of the existence of an inf-sup condition was carried
out in the same reference. The method was later extended in [30] to the case where a strongly
divergence-free POD velocity basis is used. It has also been used in the context of Petrov-
Galkerin methods in [1, 7].The way to ensure a stable enrichment of the reduced velocity basis
is to go through each element of the reduced pressure basis and compute the Riesz represen-
tation of the linear, continuous functional associated with the gradient of it. It is obtained by
solving a vectoriel Poisson problem with as right hand side the gradient of the pressure element.
More recently, in [15], data-driven closure/correction terms are given and studied to increase
the pressure and velocity accuracy of reduced order models (ROMs) for fluid flows. These ref-
erences propose some supremiser stabilisation techniques to ensure compatibility between the
pressure and added velocity spaces. In [16], the authors proposed a numerical analysis of the
two approaches. They proved stability and convergence results for the supremizer-stabilised
approach and numerically investigated these properties, in addition to its performance against
the pressure Poisson method.

In this paper, we propose an approach falling into category (ii). We adopt a strategy that has
the dual advantage of calculating pressure without resorting to additional boundary conditions and
extending the choice of velocities in the supermizers procedure. We propose a recovery procedure
using least-squares minimization of the residual dual norm. We prove that this procedure provides a
unique solution whenever the full-order pair of velocity-pressure spaces is inf-sup stable. Additionally,
we establish that this least-squares recovery of the pressure is equivalent to solving the reduced mixed
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problem with the reduced velocity basis enriched with the supremizers of the reduced pressure gradi-
ents. In essence, the pressure computed by the supremizers procedure is treated as the least-squares
pressure provided by the velocity solution of the reduced mixed problem. A similar result holds for
the full-order mixed problem. As a consecuence, the reduced pressure obtained by the least-squares
method is equivalent to the pressure obtained from MER formulation with suprermizers as test func-
tions, which has been studied in [8, 16]. We also prove error estimates for the least-squares recovered
pressure for general incompressible flow equations. Finally, we present numerical results for transient
Navier-Stokes equations, demonstrating good agreement with theoretical expectations. We obtain
discretization errors in the approximation of the reduced pressure quite close to the POD projection,
achieving error reductions of four orders of magnitude compared to the pressure Poisson Equation
approach.

The following sections of this paper are organized as follows: in Section 2, we introduce the
parametrized incompressible Navier-Stokes equation and derive its reduced-order Galerkin formula-
tion. Moving on to Section 3, we describe the reduced pressure recovery through the least-squares
minimum residual, analyzing the existence and uniqueness of the solution. This section concludes
with an algebraic description of the operator on the pressure. Section 4 establishes the equivalence
between the pressure gradient supremizers procedure and the least-squares recovery of the pressure,
along with exploring the adoption of a new choice of supremizers procedure. Optimal error estimates
for the pressure, in terms of the approximation, are proven in Section 5. In Section 6, we conduct a
numerical investigation into the performance of these pressure recovery techniques. Numerical tests
are performed to assess and quantify the error estimates derived in the previous section for the pres-
sure, and a comparison is made with the results obtained by the method introduced by Chacon et al
(refer to [6]).
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2 The need of pressure recovery for ROMs of incompressible flows

We start from a ROM for an incompressible flow that is solved only for velocity, dropping the
free divergence equation. To describe it, we consider a boundary value parametric model for the
incompressible Navier-Stokes-Brinkman. Set Ω ⊂ Rd (d = 2 or 3) be a bounded domain with a
Lipschitz-continuous boundary Γ = ∂Ω which is splitted into two disjoint parts Γ = ΓD ∪ ΓN . We
consider the problem:

Find a velocity field u(µ) : Ω → Rd and a pressure p(µ) : Ω → R such that

γ u(µ) + u(µ) · ∇u(µ)− µ∆u(µ) +∇p(µ) = f in Ω,

∇ · u(µ) = 0 in Ω,

u(µ) = 0 on ΓD,

−µ∂nu(µ) + p(µ)n = 0 on ΓN ,

(1)

where γ is a positive constant, f : Ω → Rd is a given external body force field per unit mass and
n is the external normal unit vector on Γ. Here µ = 1

Re , where Re is the Reynolds number, is
considered as a parameter. In order to present the basic ideas of the pressure recovery method that
we are going to introduce in this paper, we will consider a steady-state problem that depends on a
single parameter with homogeneous boundary conditions. It can easily be extended to the transient
problem depending on different parameters, either physical or geometrical or both, and more general
boundary conditions. In fact, the first term in the first equation of the model includes the case of the
evolution problem, once it has been discretised in time.

In order to formulate problem (1) in weak form we introduce for the velocity the space

H1
D(Ω) =

{
v ∈ H1(Ω)d such that v = 0 on ΓD

}
,

H−1(Ω) its dual space, while for the pressure we consider the space M that can be L2(Ω) or L2
0(Ω) ={

q ∈ L2(Ω) such that
∫
Ω q dx = 0

}
when ΓN = ∅. We denote by (·, ·)0 the L2 inner product, either

for scalar or vector functions, (·, ·)1 the inner product in H1
D(Ω). We also denote by ∥ · ∥0 and ∥ · ∥1

the norms defined by these inner products, respectively, and ⟨·, ·⟩ the duality pairing between H−1(Ω)
and H1

D(Ω).

The weak formulation of problem (1) consists in:
Find u(µ) ∈ H1

D(Ω) and p(µ) ∈ L2
0(Ω) such that

a(u(µ),u(µ), v;µ)− (∇ · v, p(µ))0 = ⟨f , v⟩, ∀v ∈ H1
D(Ω),

(∇ · u(µ), q)0 = 0 ∀ q ∈ L2
0(Ω),

(2)

where a is the trilinear form given by

a(w,u,v;µ) = γ (u,v)0 + (w · ∇u,v)0 + µ (∇u, ∇v)0, ∀w, u, v ∈ H1
D(Ω).

To state the Galerkin discretisation of problem (2), let us consider a family of inf-sup stable
discrete velocity-pressure spaces (Xh,Mh) ⊂ H1

D(Ω)×L2
0(Ω). That is, there exists a constant β > 0

such that

β ∥qh∥0 ≤ sup
vh∈Xh

(∇ · vh, qh)0
∥∇vh∥0

, ∀ qh ∈Mh, ∀h > 0. (3)
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Note that for some discretisation techniques, in particular for spectral methods, the constant β may
depend on the discretisation parameter h.

We consider for instance the Galerkin discretisation of problem (2) (the “Full Order Model”,
FOM), that consists in:

Find uh(µ) ∈ Xh and ph(µ) ∈Mh such that

a(uh(µ),uh(µ),vh;µ)− (∇ · vh, ph(µ))0 = ⟨fh, vh⟩, ∀vh ∈ Xh,

(∇ · uh(µ), qh)0 = 0 ∀ qh ∈Mh,

(4)

where fh is a given data coming from f . For example, for the transient case, approximating the time
evolution by a first-order Euler scheme then fh = f + 1

∆tu
n−1
h .

To state the ROM approximation of problem (2), let us assume that we already have determined
the reduced basis spaces for the discrete velocity and pressure (Xr,Mr), such that:

Xr ⊂ X0h = {vh ∈ Xh such that (∇ · vh, qh) = 0, ∀qh ∈Mh}. (5)

We then consider the Galerkin projection of the momentum equation, as ROM for the velocity:{
Find ur(µ) ∈ Xr such that

a(ur(µ),ur(µ),vr;µ) = ⟨f r, vr⟩, ∀vr ∈ Xr,
(6)

where f r is a reduced data coming from f .
Note that the reduced pressure pr(µ) ∈ Mr verifies (∇ · vh, pr(µ)) = 0,∀vh ∈ X0h, because

Mr ⊂Mh, and thus the reduced pressure is removed from problem (6). However, this problem can be
solved by itself, and only the reduced velocity is computed (as is done in practice for many engineering
problems).

Nevertheless, for many applications in aerodynamics, hemodynamics and hydrodynamics, knowing
the pressure is of paramount interest, to compute for instance drag and lift coefficients, or the pressure
exerted by an artery on its walls. We will therefore tackle the problem of recovering the pressure
from the velocity solution ur(µ) of the reduced problem (6).

3 Reduced pressure recovery by least-squares minimum residual

In the following, we omit the dependency of the reduced solution on the parameters for brevity.
The keystone of our method is to recover the reduced pressure by means of least-squares method.

In order to describe it, let us introduce the following discrete operators:

G :Mh 7→ H−1(Ω) given by

⟨Gqh,vh⟩ = −(∇ · vh, qh)0, ∀qh ∈Mh, ∀vh ∈ Xh. (7)

Note that ⟨Gqh,vh⟩ = ⟨∇qh, vh⟩−
∫
ΓN

qh vh ·n and thus, if we consider Dirichlet boundary conditions

on all the boundary Γ, the operator G would be the gradient operator.

Π
(k)
h : H−1(Ω) 7→ Xh defined by

(Π
(k)
h φ,vh)k = ⟨φ,vh⟩, ∀φ ∈ H−1(Ω), ∀vh ∈ Xh, (8)
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for k = 0 or k = 1. Observe that from (8) and (7),

(Π
(k)
h (Gqh),vh)k = −(∇ · vh, qh)0, ∀qh ∈Mh, ∀vh ∈ Xh. (9)

We then propose to recover the reduced pressure as a solution of the following least-squares
minimum residual problem, either with respect to the L2(Ω) or the H1

D(Ω) norms,

pr = argmin
qr∈Mr

J(qr) := ∥Π(k)
h (Gqr −R(ur)) ∥2k, (10)

where R(ur) ∈ H−1(Ω) given by

⟨R(ur),v⟩ = ⟨f r,v⟩ − a(ur,ur,v;µ), ∀v ∈ H1
D(Ω). (11)

The optimality conditions of this problem are

(Π
(k)
h (Gpr),Π

(k)
h (Gqr))k = (Π

(k)
h R(ur),Π

(k)
h (Gqr))k, ∀ qr ∈Mr. (12)

The following results state that the method is well-defined.

Lemma 1. Assume that the discrete inf-sup condition (3) holds. Then, for k = 0 and k = 1,

∥qh∥h,k = ∥Π(k)
h (Gqh)∥k, ∀ qh ∈Mh, (13)

is a norm on Mh which satisfies

∥qh∥0 ≤ α ∥qh∥h,k, ∀ qh ∈Mh, (14)

for some α > 0. Moreover, for k = 1 the norm (13) is uniformly equivalent to the L2(Ω) norm on
Mh.

Proof: It is straightforward to prove that ∥ · ∥h,k is a semi-norm on Mh. To prove (14), let qh ∈Mh,
qh ̸= 0. Observe that from (9), the inf-sup condition (3) can be written as

β ∥qh∥0 ≤ sup
vh∈Xh

(∇ · vh, qh)0
∥∇vh∥0

= sup
vh∈Xh

(Π
(k)
h (Gqh),vh)k
∥∇vh∥0

= sup
vh ∈ Xh

∥∇vh∥0 = 1

(Π
(k)
h (Gqh),vh)k =

∥Π(k)
h (Gqh)∥2k

∥∇Π
(k)
h (Gqh)∥0

,

(15)

where in the last equality we use that the maximun of the inner product (Π
(k)
h (Gqh),vh)k is reached

when vh = λΠ
(k)
h (Gqh) for any λ > 0. Then, we obtain the equality with v̂h =

1

∥∇Π
(k)
h (Gqh)∥0

Π
(k)
h (Gqh)

such that ∥∇v̂h∥0 = 1.

When k = 0,

∥Π(k)
h (Gqh)∥2k

∥∇Π
(k)
h (Gqh)∥0

≤ cP ∥Π(k)
h (Gqh)∥0 = cP ∥qh∥h,0, (16)

where cP is the Poincaré’s constant yielding the inequality ∥v∥0 ≤ cP ∥∇v∥0, ∀v ∈ H1
D(Ω).
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When k = 1,

∥Π(k)
h (Gqh)∥21

∥∇Π
(k)
h (Gqh)∥0

= ∥Π(k)
h (Gqh)∥1 = ∥qh∥h,1, (17)

Inequality (14) follows from (15), (16) and (17) with α =
M

β
being M = cP for k = 0 or M = 1 for

k = 1.

Moreover, from (15) and (17),

∥qh∥h,1 = sup
vh∈Xh

(∇ · vh, qh)

∥∇vh∥0
≤

√
d ∥qh∥0,

which, combined with (14) gives the equivalence of the norms ∥ · ∥0 and ∥ · ∥h,1 on Mh. □

Remark 1. Actually, the equivalence of the norms ∥ · ∥0 and ∥ · ∥h,1 on Mh is a re-formulation of the
discrete inf-sup property, that states that the L2(Ω) norm of the discrete pressures and the H−1(Ω)
norm of their gradients are equivalent norms in Mh.

Theorem 3.1. Assume that the discrete inf-sup condition (3) holds. Then problem (10) admits a
unique solution, which is characterised as the solution of the normal equations (12).

Proof: Let us consider the space

Sr = {Π(k)
h (Gqr) such that qr ∈Mr} ⊂ Xh. (18)

Due to the inf-sup condition, the mapping T = Π
(k)
h ◦G :Mr 7→ Sr is bijective. Indeed, it is trivially

surjective and from Lemma 1, the inf-sup condition implies that if

Π
(k)
h (Gqr) = 0, then qr = 0. Therefore, the spaces Sr and Mr are isomorphic. Problem (10)

can equivalently be expressed as

pr = T −1(sr), with sr = argmin
ξr∈Sr

Ĵ(ξr) := ∥ξr −Π
(k)
h (R(ur))∥2k. (19)

Due to the standard theory of least-squares approximation on finite-dimension sub-spaces, this prob-
lem admits a unique solution, characterised by the normal equations, that is

(sr, ξr)k = (Π
(k)
h (R(ur)), ξr)k, ∀ξr ∈ Sr.

These equations indeed are (12). □

3.1 Matrix expression of pressure recovery problem

Let {ϕi}nh
i=1 be a basis of Xh and {ψi}nr

i=1 a basis of Mr, then problem (12) is equivalent to

Find pr =

nr∑
i=1

pi ψi ∈Mr such that

p⃗ ∈ Rnr with (p⃗)i = pi is the solution of the linear system:

Mp⃗ = r⃗ with M = B G−1 Bt and r⃗ = B G−1 R⃗, (20)
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where

B ∈ Rnr×nh : Bij = −(∇ · ϕj , ψi)0,

G ∈ Rnh×nh : Gij = (ϕj , ϕi)k

R⃗ ∈ Rnh : R⃗i = ⟨R(ur), ϕi⟩.

Indeed, for all i = 1 . . . , nr,

Π
(k)
h (Gψi) =

nh∑
j=1

αi
j ϕj , where α⃗

i = G−1 b⃗i with (⃗bi)j = −(∇ · ϕj , ψi).

Then,

Mij = (Π
(k)
h (Gψj), Π

(k)
h (Gψi))k = (⃗bi)t (G−1)t b⃗j .

Note that M ∈ Rnr×nr and thus, (20) is a low-dimensional system. Moreover, if we consider the
Cholesky factorization of G−1, G−1 = LLt, system (20) can be written as

DDt p⃗ = DLt R⃗, with D = BL. (21)

In this case, p⃗ ∈ Rnr is the solution of problem

p⃗ = argmin
q⃗∈Rnr

∥Dt q⃗ − Lt R⃗∥2Rnr . (22)

That is, p⃗ is the least-squares solution of the system Dt p⃗ = Lt R⃗. In particular, when the basis of
Xh is ortonormal with respect to the inner product (·, ·)k, matrix G = Id and p⃗ is the least-squares
solution of the system Btp⃗ = R⃗.

From a purely algebraic point of view, the inf-sup condition (3) implies that system (20) admits
a unique solution. This is stated as follow

Proposition 1. Assume that the inf-sup condition (3) holds. Then the matrix M of the linear system
(20) is positive definite and thus, this system admits a unique solution.

Proof: For simplicity of calculation, let us assume that the basis {ϕi}nh
i=1 is orthogonal in L2(Ω).

Then G = Id and M = BBt. For any q⃗ ∈ Rnr ,

q⃗tMq⃗ =

nr∑
i,j=1

q⃗i

( nh∑
k=1

(∇ · ϕk, ψi)0 (∇ · ϕk, ψj)0

)
q⃗j

=

nh∑
k=1

(∇ · ϕk,
nr∑
i=1

qi ψi)0 (∇ · ϕk,
nr∑
j=1

qj ψj)0 =

nh∑
k=1

(∇ · ϕk, qr)20,

with qr =

nr∑
i=1

qi ψi ∈ Mr. Then q⃗tMq⃗ ≥ 0, for all q⃗ ∈ Rnr . Moreover, q⃗tMq⃗ = 0 if and only if

(∇ · ϕk, qr)0, for all k = 1 . . . nh and thus, (∇ · vh, qr)0 = 0 for all vh ∈ Xh. From (3), this implies
that qr = 0 and thus q⃗ = 0. □
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4 The pressure gradient supremisers revisited

It is a common practice in ROM of incompressible flows to solve the reduced counterpart of the mixed
problem (2) with enriched velocity spaces Xr in such a way that the couple (Xr,Mr) satisfies an
inf-sup condition. The reduced velocity space actually is built as

Xr = Sr ⊕X0r, (23)

where Sr is defined by (18) and X0r is a reduced space formed by weakly divergence-free velocities,
that is a subset of X0h given by (5). Observe that the elements of Sr are the pressure-gradient
supremisers introduced in [25] and applied in several works to build reduced order models for incom-
pressible flows, for instance [3, 21, 22, 26]. In this way, the reduced problem:

Find ur(µ) ∈ Xr and pr(µ) ∈Mr such that

a(ur(µ),ur(µ),vr;µ)− (∇ · vr, pr(µ))0 = ⟨f r, vr⟩, ∀vr ∈ Xr,

(∇ · ur(µ), qr)0 = 0, ∀ qr ∈Mr,

(24)

is well posed.
The equivalence between this pressure gradient supremizers procedure and the least-squares re-

covery of the pressure introduced above is stated as follows.

Proposition 2. Assume that (23) holds. Then the velocity ur solution of problem (24) satisfies{
Find ur(µ) ∈ X0r such that

a(ur(µ),ur(µ),v0r;µ) = ⟨f r, v0r⟩, ∀v0r ∈ X0r.
(25)

and the pressure pr satisfies (12).

Proof: From (23), the velocity ur is decomposed into

ur = sr + u0r, with sr ∈ Sr and u0r ∈ X0r.

Let πr = T −1(sr) ∈Mr, that is, sr = Π
(k)
h (Gπr). As Mr ⊂Mh, (∇ · u0r, πr)0 = 0. From the second

equation in (24), it follows

0 = (∇ · ur, πr)0 = (∇ · sr, πr)0 = −(Π
(k)
h (Gπr), sr)k = −∥Π(k)

h (Gπr)∥2k = −∥πr∥2h,k.

Therefore, πr = 0 and consequently sr = 0, what implies ur = u0r ∈ X0r. Thus, the first equation
in (24) gives (25).

Moreover, the first equation in (24) can be written as

−(pr, ∇ · vr)0 = ⟨R(ur), vr⟩, ∀vr ∈ Xr,

and, from the decomposition (23), this equation is equivalent to

−(pr, ∇ · sr)0 = ⟨R(ur), sr⟩, ∀ sr ∈ Sr, (26)

as (pr, ∇ · v0r)0 = 0, for all v0r ∈ X0r. Then, pr satisfies

(Π
(k)
h (Gpr), sr)k = (Π

(k)
h (R(ur)), sr)k,

for all sr = Π
(k)
h (Gqr) ∈ Sr with any qr ∈Mr, that is, problem (12). □
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Remark 2. From Proposition 2 the pressure computed by the supremizers procedure is cast as the
least-squares pressure provided by the velocity solution of the reduced mixed problem (24). In addition,
the computation of this velocity can be partially decoupled from that of the pressure, as it solves problem
(25). Therefore the (velocity, pressure) pair provided by the supremizers procedure can be computed
by solving two coercive problems, sequentially in two steps. In the first step the velocity is computed
by solving (25) and in the second step the pressure is computed by solving (12), that is:

ur ∈ X0r, a(ur(µ),ur(µ),v0r;µ) = ⟨f r, v0r⟩, ∀v0r ∈ X0r;

pr ∈Mr, (Π
(k)
h (Gpr), Π

(k)
h (Gqr))k = (Π

(k)
h (R(ur)),Π

(k)
h (Gqr))k, ∀ qr ∈Mr.

Remark 3. (26) is the formulation MER to recover the reduced pressure in ROMs (see [8, 16]).
Therefore, Proposition 2 proves that the pressure obtained by this method is equivalent to the pressure
given by least-squares method (10).

Remark 4. All the preceding theory holds whenever the family of full-order velocity and reduced-order
pressure spaces (Xh,Mr) satisfies the discrete inf-sup condition. Then, Xh needs not to be the full
finite element space appearing in the FOM problem (4), but it can be replaced by any smaller space
that ensures the inf-sup condition. For instance, it can be a reduced space containing non-weakly
divergence free velocities, or a finite element space in a coarse grid. This would decrease the time
needed to compute in the off-line step the matrix G−1 appearing in (20), without increasing the error
in the computation of pr (see Theorem 5.1 below).

Remark 5. The previous analysis leads to casting general mixed methods in terms of pressure gradient
supremisers. More specifically, if a pair of discrete velocity-pressure spaces (Xh,Mh) ⊂ H1

D(Ω) ×
L2
0(Ω) satisfies the inf-sup condition (3) then Xh can be expressed as

Xh = Sh ⊕X0h, with Sh = {Π(k)
h (Gqh) such that qh ∈Mh}, (27)

for either k = 0 or k = 1.

Indeed, for any xh ∈ Xh, because of the inf-sup condition, there exists a unique (x0h, πh) ∈
Xh ×Mh solution of problem{

(x0h,vh)k − (∇ · vh, πh)0 = (xh,vh)k, ∀vh ∈ Xh,

(∇ · x0h, qh)0 = 0, ∀ qh ∈Mh,

for k = 0 or k = 1. Then, sh = xh − x0h verifies

(sh,vh)k = −(∇ · vh, πh)0 = (Π
(k)
h (Gπh), vh)k, ∀vh ∈ Xh.

Therefore, sh = Π
(k)
h (Gπh) ∈ Sh. The sum is direct because if xh ∈ Sh ∩X0h then xh = 0 as occurs

to sr in Proposition 2.

Moreover, πh is the solution of problem

(Π
(k)
h (Gπh), Π

(k)
h (Gqh))k = (Π

(k)
h (xh − x0h), Π

(k)
h (Gqh))k, ∀ qh ∈Mh,

and thus, πh is the least-squares pressure recovered by (10) on Mh instead Mr with R(xh) = xh−x0h.
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5 Error estimates

In this section we obtain optimal error estimates for the pressure in terms of the approximation
properties of space Mr and the distance between the FOM and ROM velocities. For that, let us
assume that an inverse inequality between the L2(Ω) and H1

0(Ω) semi-norms holds on space Xh:

∥∇vh∥0 ≤ Ch ∥vh∥0, ∀vh ∈ Xh, (28)

where Ch > 0 is unbounded as the discretisation parameter h decreases to zero. This constant
depends on the actual kind of discretisation used. For instance, for finite element discretisations this
constant scales as h−1

min, where hmin is the smallest diameter of the grid elements.
In sequel, we will use the following notation: given a Banach space X endowed with the norm

∥ · ∥X and a subset Y ⊂ X, we denote the distance from an element x ∈ X to Y by

dX(x, Y ) = inf
ζ∈Y

∥x− ζ∥X .

Theorem 5.1. Assume that the discrete inf-sup condition (3) holds, then the solution of problem
(12) satisfies the following error estimates:

If k = 0,

∥ph − pr∥0 ≤ Ch

(
dL2(Ω)(ph,Mr) + ∥R(uh)−R(ur)∥H−1(Ω)

)
, (29)

where Ch is given by (28).

If k = 1,

∥ph − pr∥0 ≤ C
(
dL2(Ω)(ph,Mr) + ∥R(uh)−R(ur)∥H−1(Ω)

)
, (30)

where C is a positive constant independent of h.

Here (uh, ph) is a solution of the FOM problem (4), R(ur) is defined by (11) and similarly, ⟨R(uh),v⟩ =
⟨fh,v⟩ − a(uh,uh,v;µ), ∀v ∈ H1

D(Ω).

Proof: From (4) it holds

(Π
(k)
h (Gph),vh)k = (Π

(k)
h (R(uh)),vh)k, for any vh ∈ Xh.

Let p̂r be the L2(Ω) proyection of ph on Mr. It holds

(Π
(k)
h (G p̂r), Π

(k)
h (Gqr))k = (Π

(k)
h G (p̂r − ph) + (Π

(k)
h (R(uh)), Π

(k)
h (Gqr))k, ∀ qr ∈Mr.

Let us define the error er = p̂r − pr ∈ Mr and subtract (12) from this last equality. We deduce the
following equation for er:

(Π
(k)
h (Ger), Π

(k)
h (Gqr))k = (Π

(k)
h G (p̂r − ph), Π

(k)
h (Gqr))k

+(Π
(k)
h (R(uh)−R(ur)), Π

(k)
h (Gqr))k, ∀ qr ∈Mr.

(31)

Taking qr = er,

∥Π(k)
h (Ger)∥2k
= (Π

(k)
h ∇(p̂r − ph), Π

(k)
h (Ger))k + (Π

(k)
h (R(uh)−R(ur)), Π

(k)
h (Ger))k.

(32)

11



We now bound the terms of the last line of (32):

(Π
(k)
h ∇(p̂r − ph), Π

(k)
h (Ger))k = −(∇ ·Π(k)

h (Ger), p̂r − ph)0

≤
√
d ∥∇Π

(k)
h (Ger)∥0 ∥p̂r − ph∥0.

(33)

(Π
(k)
h (R(uh)−R(ur)), Π

(k)
h (Ger))k = ⟨R(uh)−R(ur),Π

(k)
h (Ger)⟩

≤ ∥R(uh)−R(ur)∥H−1(Ω) ∥∇Π
(k)
h (Ger)∥0.

(34)

Then, from estimates (32), (33) and (34) we have:

If k = 0, applying (28) to ∥∇Π
(k)
h (Ger)∥0,

∥er∥h,0 ≤ Ch

(√
d ∥p̂r − ph∥0 + ∥R(uh)−R(ur)∥H−1(Ω)

)
, (35)

If k = 1,

∥er∥h,1 ≤
√
d ∥p̂r − ph∥0 + ∥R(uh)−R(ur)∥H−1(Ω). (36)

Estimate (29) and (30) follow from estimates (35), (36) and (14). □

5.1 Error estimates for the evolutionary model

In this section we apply the previous analysis to the evolutionary incompressible Navier-Stokes equa-
tion. That is, assuming that the flow takes place during a time interval [0, T ], we consider the
problem:

Find a velocity field u(µ) : Ω× (0, T ) → Rd and a pressure p(µ) : Ω× (0, T ) → R such that

∂t u(µ) + u(µ) · ∇u(µ)− µ∆u(µ) +∇p(µ) = f in Ω× (0, T ),

∇ · u(µ) = 0 in Ω× (0, T ),

u(µ) = 0 on ΓD × (0, T ),

−µ∇u(µ) · n+ p(µ)n = 0 on ΓN × (0, T ),

u(µ, 0) = u0, in Ω,

(37)

where u0 is a initial field velocity given.

Consider a uniform partition of the interval [0, T ], {0 = t0 < t1 < . . . tN = T}, with time-step size
∆t = T/N . The time discretization of problem (37) by the Backward Euler scheme carries to the
following family of stationary problems:

Given the initialization u0(µ) = u0,

Find un(µ) ∈ H1
D(Ω) and pn(µ) ∈ L2

0(Ω) such that

a(un(µ),un(µ), v;µ)− (∇ · v, pn(µ))0 = ⟨fn, v⟩, ∀v ∈ H1
D(Ω),

(∇ · un(µ), q)0 = 0 ∀ q ∈ L2
0(Ω),

∀n = 1, 2, . . . N.

(38)
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For each time step, this problem fits into the formulation (2) with γ = 1
∆t and fn = f + 1

∆tu
n−1.

Then, we obtain time-space aproximations of a solution of problem (37) applying the FOM (4) to
problem (38): (un

h(µ), p
n
h(µ)) ∈ Xh ×Mh such that{

a(un
h(µ),u

n
h(µ),vh;µ)− (∇ · vh, p

n
h(µ))0 = ⟨fn−1

h , vh⟩, ∀vh ∈ Xh,

(∇ · un
h(µ), qh)0 = 0 ∀ qh ∈Mh,

(39)

where fn−1
h = f + 1

∆tu
n−1
h .

We also obtain ROM aproximations: (un
r (µ), p

n
r (µ)) ∈ Xr ×Mr, where the reduced velocity un

r (µ) is
computed by problem

a(un
r (µ),u

n
r (µ),vr;µ) = ⟨fn−1

r , vr⟩, ∀vr ∈ Xr, (40)

where fn−1
r = f + 1

∆tu
n−1
r , and the reduced pressure pnr (µ) is recovered from the reduced velocity by

the least-squares method (10).
To obtain error estimates for the reduced pressure we introduce the following discrete functions.

In the following we omit the dependency on the parameters for brevity.

• uh : [0, T ] → Xh is the piecewise linear in time function such that uh(tn) = un
h.

• ph : [0, T ] →Mh is the piecewise constant in time function that takes the value pnh on (tn−1, tn).

• ur : [0, T ] → Xr is the piecewise linear in time function such that ur(tn) = un
r .

• pr : [0, T ] →Mr is the piecewise constant in time function that takes the value pnr on (tn−1, tn).

Theorem 5.2. Assume that the discrete inf-sup condition (3) holds, then the least-squares reduced
pressure for problem (37) satisfies the following error estimates:

If k = 0,

∥ph − pr∥L1(L2(Ω)) ≤ Ch

(
dL1(L2(Ω))(ph,Mr) + ∥uh − ur∥L2(H1

D(Ω))

)
, (41)

where Ch is given by (28).

If k = 1,

∥ph − pr∥L1(L2(Ω) ≤ C
(
dL1(L2(Ω))(ph,Mr)+

∥uh − ur∥L2(H1
D(Ω)) + ∥Dt(uh − ur)∥L1(H−1(Ω))

)
,

(42)

where C is a positive constant independent of h and Dtv = 1
∆t(v(tn) − v(tn−1)) denote the

discrete time derivate.

Proof: We obtain estimates for the errors ∥pnh − pnr ∥0 from Theorem 5.1. Here, we firstly observe
that

R(un
h)−R(un

r ) = A(un
r )−A(un

h),

where
⟨A(w),v⟩ = ⟨Dtw,v⟩+ ⟨w · ∇w,v⟩ − µ (∇w,∇v)0, ∀w,v ∈ H1

D(Ω).

Moreover, depending on the value of k, one of the terms of the residual in the last term of (32) disap-
pears. Indeed, the operator Π0

h restricted to L2(Ω) coincides with the L2 the orthogonal projection
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operator on Xh. Consequently, when k = 0 there is no contribution from the discrete time derivative
term of the residual to the error:

(Π
(0)
h (Dt(u

n
h − un

r )), Π
(0)
h (Genr ))0 = (Dt(u

n
h − un

r ), Π
(0)
h (Genr ))0

= −(∇ · (Dt(u
n
h − un

r )), e
n
r )0 = 0.

Likewise, when k = 1 there is no contribution of the diffusive term of the residual to the error:

(Π
(1)
h (un

h − un
r ), Π

(1)
h (Genr ))1 = (un

h − un
r , Π

(1)
h (Genr ))1 = −(∇ · (un

h − un
r ), e

n
r )0 = 0.

Then, from the estimates given by Theorem 5.1 for ∥pnh−pnr ∥0, multiplying by ∆t and adding up over
n, we obtain:
If k = 0,

N∑
n=1

∆t ∥pnh − pnr ∥0 ≤ Ch

N∑
n=1

∆t
(
dL2(Ω)(p

n
h,Mr) + ∥A(0)(un

h)−A(0)(un
r )∥H−1(Ω)

)
. (43)

If k = 1,

N∑
n=1

∆t ∥pnh − pnr ∥0 ≤ C

N∑
n=1

∆t
(
dL2(Ω)(p

n
h,Mr) + ∥A(1)(un

h)−A(1)(un
r )∥H−1(Ω)

)
, (44)

where
⟨A(0)w,v⟩ = (w · ∇w,v)0 + µ (∇w,∇v)0,

⟨A(1)w,v⟩ = (Dtw,v)0 + (w · ∇w,v)0, ∀w,v ∈ H1
D(Ω).

We now bound

N∑
n=1

∆t ∥A(k)(un
h)−A(k)(un

r )∥H−1(Ω). For the convective term, we have:

(un
h · ∇un

h − un
r · ∇un

r , v)0 ≤ C
(
∥un

h − un
r ∥0,3 ∥∇un

h∥0 + ∥un
r ∥0,3 ∥∇(un

h − un
r )∥0

)
∥v∥0,6,

≤ C
(
∥un

h − un
r ∥1 ∥un

h∥1 + ∥un
r ∥1 ∥un

h − un
r ∥1

)
∥∇v∥0,

where we denote by ∥ · ∥k,p the norm in W k,p(Ω)d and we have using HÃIP lder’s inequality and
Sobolev’s embedding from H1

D(Ω) in L3(Ω) and L6(Ω). From here, we get

N∑
n=1

∆t ∥un
h · ∇un

h − un
r · ∇un

r ∥H−1(Ω)

≤ C
( N∑
n=1

∆t ∥un
h − un

r ∥21
)1/2[( N∑

n=1

∆t ∥un
h∥21

)1/2
+

( N∑
n=1

∆t ∥un
r ∥21

)1/2]
= C ∥uh − ur∥L2(H1

D(Ω))

[
∥uh∥L2(H1

D(Ω)) + ∥ur∥L2(H1
D(Ω))

]
,

using Young’s inequality. Thus,

N∑
n=1

∆t ∥un
h · ∇un

h − un
r · ∇un

r ∥H−1(Ω) ≤ C ∥uh − ur∥L2(H1
D(Ω)), (45)
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as the solutions of the FOM and ROM methods are uniformly bounded in H1
D(Ω).

For the diffusive term:

µ
N∑

n=1

∆t (∇(un
h − un

r ), ∇v)0 ≤ µ ∥∇v∥0
N∑

n=1

∆t ∥∇(un
h − un

r )∥0

= µ ∥∇v∥0 ∥un
h − un

r ∥L1(H1
D(Ω)).

(46)

For the discrete time derivate term:

N∑
n=1

∆t (Dt(u
n
h − un

r ), v)0 ≤
N∑

n=1

∆t ∥Dt(u
n
h − un

r )∥H−1(Ω) ∥∇v∥0

= ∥Dt(uh − ur)∥L1(H−1(Ω)) ∥∇v∥0.

(47)

Then, in (43)
N∑

n=1

∆t ∥A(0)(un
h)−A(0)(un

r )∥H−1(Ω) ≤ C ∥uh − ur∥L2(H1
D(Ω)),

from (45) and (46), and we obtain (41). Likewise, in (44)

N∑
n=1

∆t ∥A(1)(un
h)−A(1)(un

r )∥H−1(Ω) ≤ C ∥uh − ur∥L2(H1
D(Ω)) + ∥Dt(uh − ur)∥L1(H−1(Ω)),

from (45) and (47), and we obtain (42). □

6 Numerical results

In the following, we perform numerical tests to assess and quantify the error estimates derived in
the previous section for the pressure obtained by the least-squares procedure for k = 0 and k = 1
and compare the results with those obtained by the method introduced by Chacon et al (see [6]). In
this reference the authors allow the solution of the pressure equation by duality of the momentum
conservation equation with gradients of the reduced pressure basis functions. This method is intro-
duced from a minimum residual projection approach and consists in solving a Poisson equation for the
pressure, but with the advantage of setting the right boundary conditions and thus ensuring a better
accuracy in its recovery. Note that in this validation section, we limit ourselves to the calculation of
the pressure that is the subject of the paper.

However, before proceeding to the numerical experiments, we address a crucial issue concerning
the calculation of the small amplitude POD modes. These, if poorly evaluated, can pollute the
approximation.

6.1 Treatment of small amplitude modes

In the following we address the stability issue that may arise in the least-squares pressure ROM
(LSpROM) due to small amplitude modes. These modes are susceptible to bring numerical noise
to the computed solutions as they are most likely to cause loss of orthogonality and consequently
amplification of the errors. To prevent this from happening, we propose two variants of the LSpROM
problem by tuning the optimization process to ensure bounds on the amplitudes of the predicted
solutions.
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LSpROM(1) : Inequality bound constraint A way to limit the error amplification in the
LSpROM is by constraining the problem at each time step. This procedure suggests to enforce
a bound on the amplitudes of the computed modes such that p2j ≤ ελj with {λj}nr

1 the pressure
POD eigenvalues and ε a small threshold chosen by the user. As a result, instead of solving the
unconstrained LSpROM problem (22) in Rnr , we seek the latent variable p⃗ in a smaller space as the
solution to the constrained problem

p⃗ = argmin
q⃗∈Rnr s.t q2j≤ελj

∥Dt q⃗ − Lt R⃗∥2Rnr . (48)

In this case, the reduced pressure is solved by using the projected descent gradient method.

LSpROM(2) : Orthogonality constraint In this approach, rather than tuning the low ampli-
tude modes bound through the threshold ϵ, we suggest to compute the pressure ROM in one shot for
all the sampling time steps, by enforcing orthogonality constraints on the normalized modes.

Let [λ] = diag({λ1, . . . , λnr}) ∈ Rnr×nr be the diagonal matrix of pressure POD eigenvalues,
⃗[q∗] = [q⃗∗

1 . . . q⃗∗
N ] ∈ Rnr×N the matrix carrying the orthonormalized temporal modes such that

⃗[q∗] ⃗[q∗]
t
= Inr , and

⃗[R] = [R⃗1 . . . R⃗N ] ∈ Rnh×N the matrix formed by concatenating the LSpROM
residuals. The orthogonality constrained LSpROM problem reads as follows

⃗[p∗] = argmin
⃗[q∗] ⃗[q∗]

t
=Inr

∥Dt [λ] ⃗[q∗]− Lt [R⃗]∥2F , (49)

where || · ||F denotes the Frobenius norm. The above problem is formulated as

min
[q⃗∗]∈Rnr×N

max
[η]∈Rnr×nr

L2([q⃗∗], [η]),

where [η] stands for the Lagrange multiplier symmetric matrix and L2 the Lagrange functional given
by

L2([q⃗∗], [η]) = ∥Dt [λ] ⃗[q∗]− Lt [R⃗]∥2F+ < [η], ⃗[q∗] ⃗[q∗]
t
− Inr >F .

The differentiation of the Lagrangian function gives

∂L2

∂[q⃗∗]
([p⃗∗], [η]) =

(
2 [λ]DDt [λ] + [η]

)
[p⃗∗]− 2 [λ]DLt [R⃗]

∂L2

∂[η]
([p⃗], [η]) = ⃗[p∗] ⃗[p∗]

t
− Inr

By canceling the first derivative equation, we obtain(
2 [λ]DDt [λ] + [η]

)
[p⃗∗] = 2 [λ]DLt [R⃗].

Let U , Σ, V be the SVD components of the matrix [R⃗]t LDt [λ] such that

[R⃗]t LDt [λ] = U ΣV t.

It follows by using the orthogonality constraint equations, that(
2 [λ]DDt [λ] + [η]

)
= 2V ΣV t,
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which yields

[p⃗∗] = V U t.

Finally, the predicted least-squares pressure with the right POD amplitudes is recovered as [p⃗] =
[λ] [p⃗∗]. In what follows, we quantify the errors of the LSpROM obtained by the three approaches,
the unconstrained approach (22), the constrained approach with inequalities (48) where we chose
ε = 5 · 10−3, and the constrained approach with orthogonality (49). The errors for the LSpROM are
calculated by varying simultaneously the POD truncation order of velocity and pressure.

6.2 Description of the test cases

The data used for the construction of the POD subspaces are obtained by using Fenics [18] with
Taylor-Hood element P2/P1. To quantify the pressure error estimates derived in the previous section,
we consider two classical benchmark numerical examples, the flow past a cylinder at Re = 100 and
the lid-driven cavity flow at Re = 10000

Flow past a cylinder Re = 100.

The flow is considered in a channel of rectangular shape with height H = 30D and length 45D, with
a cylinder of diameter D placed at L1 = 10D from the left boundary and H/2 from the bottom wall.
At the entrance of the channel, a horizontal velocity of magnitude U is imposed. On the remaining
boundaries, we set a free-slip condition on the horizontal walls, a no-slip condition on the cylinder,
and a normal stress free condition on the right boundary to allow the fluid to exit through the outlet
of the channel. Regarding the computational aspects, we use a space-time discretizations consisting of
a non-uniform triangular mesh made of 21174 cells, and a first order semi-implicit Euler integration
scheme of step ∆t = 10−2. The resulting flow shows a creation of alternating low-high pressure
vortices downstream the cylinder, triggering the generation of periodic Von Karman vortex pattern
in the wake region. These structures are illustrated in Figure 1.

(a) Velocity (b) Pressure

Figure 1: High fidelity velocity and pressure solutions of the flow past a cylinder, Re = 100

In order to construct the velocity and pressure POD bases, 200 uniformly distributed snapshots
covering 8 periods of the periodic regime of the flow are considered.

Results and discussion From the top left subfigures of Figures 2, we can already see that the
eigenvalues of the POD corresponding to the pressure decrease exponentially to zero. This means
that the few first modes carry the most of the flow energy and thus, are capable of reproducing the
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dynamics with a very good accuracy. The top right subfigures of Figures 2 shows that, using LSpROM
after a certain number of modes, the pressure errors start to increase, in contrast to what is expected
by the theory. Our analysis of this result led us to understand that this behaviour occurs when the
POD modes are no longer numerically orthogonal. Precisely, this occurs for very small eigenvalues.
To prevent this unwanted numerical defect, we proposed to couple the pressure calculation using
LSpROM with one of the two constrained approaches described in subsection 6.1. We then observe a
control of the error in the region where the growth was initially observed. In particular, the obvious
improvement takes place for the constrained LSpROM(2), that provides a nearly monotonic decrease
of errors as the number of POD modes increases (see the bottom right subfigures of Figures 2).
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(c) Constrained LSpROM(1)
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(d) Constrained LSpROM(2)
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Chacon et al. [6]

LSpROM k = 0

LSpROM k = 1

Figure 2: Pressure errors for the flow past a cylinder at Re = 100.

We also see a clear advantage for the LSpROM with the choice of k = 0, that provides reductions
of errors of two to three orders of magnitude compared to k = 1. One way to explain this can come
from the error estimates (41) (corresponding to k = 0) and (42) (corresponding to k = 1). In the
latter the time derivative of the velocity error appears, which is not bounded by the L2 POD that we
are using. Finally, we note that for k = 0, the results are close to the projection error by the POD
(curves in red), which is the optimal error that can be obtained.

To conclude this test case, we propose supplementing this quantitative study with a qualitative
evaluation. We consider pressures enriched by 40 POD modes and calculated using the different
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Figure 3: Pressure mean absolute error of the cylinder flow Re = 100
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versions. Figures 3 show the pressure mean absolute error and its isovalues. The solution using
LSpROM(2) with k=0 has an error level comparable to the POD projection. The error field illustrates
the effectiveness of choosing LSpROM(2) with k=0 compared to the others.

Flow in a lid driven cavity Re = 10000.

The flow is considered in a cavity of square shape ]0, D[×]0, D[ where the fluid is driven by a tangential
velocity of magnitude U applied to its top wall. No-slip conditions are imposed on the remaining
walls. To perform the numerical computations, we used a triangular mesh composed of 32928 cells
and a first order semi-implicit Euler scheme of step ∆t = 10−3 for time integration. The resulting
flow is cyclic, where in the lower and upper left corners, the secondary vortex separates into two small
vortices that periodically reincorporate. These structures are illustrated in Figure 4

(a) Velocity (b) Pressure

Figure 4: High fidelity velocity and pressure solutions of the cavity flow, Re = 10000

Here again in order to construct the velocity and pressure POD bases, 200 uniformly distributed
snapshots covering 8 periods of the periodic regime of the flow are considered.

Results and discussion From the top left subfigures of Figures 5, we can already see that the
eigenvalues of the POD corresponding to the pressure decrease exponentially to zero. We come to the
same conclusions as for the previous test cases. The figure 5 illustrates these results. In particular, the
obvious improvement takes place for the constrained LSpROM 2, that provides a nearly monotonic
decrease of errors as the number of POD modes increases (see the bottom right subfigures of Figures
5). We also see a clear advantage for the LSpROM with the choice of k = 0, that provides reductions
of errors of two to three orders of magnitude compared to k = 1. Once more we note that for k = 0,
the results are close to the projection error by the POD (curves in red), which is the optimal error
that can be obtained.

As for the first case first, we propose to complete this quantitative study with a qualitative
evaluation. We consider the pressures enriched by 40 POD modes and calculated with the different
versions presented above. In Figures 6 we present respectively, the pressure mean absolute error and
its isovalues. We observe that the solution obtained using LSpROM(2) and k=0 offers an error level
of the same order as that of the POD projection.
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Figure 5: Pressure errors for the flow in a Lid Driven Cavity Re = 10000.
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Figure 6: Pressure mean absolute error of the cavity flow Re = 10000
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Singular pressure test case

In this final example, we push to the limite the pressure recovery by proposing to test the robustness
of the LSpROM approaches on a specific complex fabricated case. We aim to recover the reduced
pressure solution that is both highly singular and requires an impractically fine mesh for its approx-
imation. We therefore propose to consider the velocity solution

u =
20∑
k=1

10−5 2(20−k) cos(kt)

[
sin2(k π x) sin(2 k π y)
− sin(2 k π x) sin2(k π y)

]
(50)

while the pressure is an approximation of the Weirstrass function, which is continuous and nowhere
differentiable

p =
20∑
k=1

10−2

(
4

3

)(20−k)

sin(k t) cos(k t3/2)
35∑
n=1

(
1

2

)n

(cos((k + 2)nx) + cos((k + 2)ny)) (51)

To illustrate the irregularity of the pressure solution, three snapshots with a horizontal cut at y = 1
2

corresponding to t = 4, t = 8 and t = 12 are plotted in figure 7.
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Figure 7: Illustration of the analytical truncated Weirstrass pressure scalar fields with a horizontal
cut at y = 1

2 , in three times instances t = 4, t = 8 and t = 12.

Since pressure acts as a Lagrange multiplier to ensure the divergence free constraint, the challenge
of developing pressure recovery schemes is equally important in the context of unsteady linear Stokes
equations. We therefore propose to present our results both for the unsteady Stokes and for the
Navier-Stokes equations. Moreover it will also allow us to appreciate the effect of nonlinear terms on
the level of approximation of the reduced pressure.

Before we start the discussion on the numerical results, it is important to note that the irregularity
of the selected pressure excludes the Laplacian-type method of Chacon et al. [6] that suggest the
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pressure to be in H1. Therefore, the next results will only be achievable using the proposed LSpROM
technique capable of recovering the reduced pressure in L2. Finally, regard to the previous numerical
experiments, we chose to focus and show only the results using LSpROM(2).

Results and discussions : Using the given analytical solutions, the source term is calculated and
the problem is solved in a domain Ω =]0, 1[×]0, 1[, with a regular triangular mesh of size 64× 64 and
for in time window [0, 12]. A choice of the viscosity is made to ν = 10−2 and a first order semi-implicit
Euler scheme with step ∆t = 10−3 is used for time integration. The POD bases are afterwards built
with snasphots uniformally retrieved from the simulations with a time jump of 100∆t.

Unlike in the two previous cases, the convergence of the pressure POD eigenvalues towards zero is
less evident. Figure 8 shows that for both unsteady Stokes and Navier Stokes snapshots, there is slow
decay of pressure POD eigenvalues towards zero with a stagnation at a level around 10−6 achieved
after a significant number of truncation modes. This indicates that a large number of modes is
necessary to accurately capture the irregular structures present in the given Weirstrass pressure.
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Figure 8: POD eigenvalues for the unsteady Stokes (left) and unsteady Navier-Stokes (right)

Pressure approximation errors presented in Figure 9 exhibit a conforming decay with respect to
the POD number of modes up to the truncation order 20.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
101
102

0 10 20 30 40 50 60

L
2
-E
rr
or

POD truncation order

POD

LSpROM(2) k=0

LSpROM(2) k=1

(a) Stokes case

10−6

10−4

10−2

100

102

0 10 20 30 40 50 60

L
2
-E
rr
or

POD truncation order

POD

LSpROM(2) k = 0

LSpROM(2) k = 1

(b) Navier Stokes case

Figure 9: Pressure errors using constrained LSpROM approach 2: unsteady Stokes (left) and unsteady
Navier-Stokes (right) .
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This behavior is observed consistently across LSpROM approaches for k = 0 and for k = 1. For
higher mode numbers, a stagnation in error reduction is noted for both unsteady Stokes and Navier
Stokes cases. We can also note that the level of error approximation for the Navier Stokes is a
thousand times larger than that obtained for Stokes. However for both problems, the obtained errors
predictions align with the result predicted by theorem 5.1. Furthermore, one can note a difference
in the error magnitude between the LSpROM(2) for k = 0 and k = 1. Ended, choosing k = 0
outperforms k = 1 by nearly an order of magnitude. This order gap underscores once again the
superior performance of the choice k = 0 approach in maintaining lower error levels.

7 Conclusions

In this paper we have introduced a method to recover the reduced pressure for incompressible flows.
We have given some fundamental theoretical results concerning the existence and uniqueness of the
solution whenever the full-order pair of velocity-pressure spaces is inf-sup stable, and we have proved
an optimal error estimate for the reduced pressure.

An additional highlight lies in the fact that our method is equivalent to solving the reduced mixed
problem with reduced velocity basis enriched with the supremizers of the reduced pressure gradients.

We have introduced a constrained treatment to avoid instabilities for high number of modes, that
provide nearly-optimal errors, close to the POD projection ones, that provide error reductions of four
order of magnitudes with respect to the pressure Poisson equation procedure. All our theoretical
results have been confirmed by numerical experiments on stiff test cases. We have specifically demon-
strated, using a manufactured solution, the difference in pressure calculation levels for the Stokes
and Navier-Stokes problems. This highlights the impact of the non-linear terms on the recovery
procedure.
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[6] T. Chacón Rebollo, S. Rubino, M. Oulghelou, C. Alléry. Error analysis of a residual-based stabilization-motivated
POD-ROM for incompressible flows. Comput. Methods Appl. Mech. Engrg. 401, 115627 (2022).

[7] Y. Choi and K. Carlberg, Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction,
SIAM J. Sci. Comput., 41 (2019), pp. A26-A58, https://doi.org/10.1137/ 17M1120531.

[8] E. Fonn, H. van Brummelenb, T. Kvamsdalac, A. Rasheeda. Fast divergence-conforming reduced basis methods for
steady Navier-Stokes flow. Comput. Methods Appl. Mech. Engrg. 346, 486-512 (2019).

[9] V. Girault, P.A. Raviart. Finite Element Approximations of the Navier-Stokes Equations. Springer, New York,
1986.

[10] P. M. Gresho, R. L. Sani. On pressure boundary conditions for the incompressible Navier-Stokes equations. Internat.
J. Numer. Methods Fluids. 7, 1111-1145 (1987). https://doi.org/ 10.1002/fld.1650071008.

[11] J. L. Guermond, P. Minev, J. Shen. An Overview of projection methods for incompressible flows. Comput. Methods
Appl. Mech. Engrg. 195, 6011-6045 (2006).

[12] Saddam Hijazi and Giovanni Stabile and Andrea Mola and Gianluigi Rozza. Data-Driven POD-Galerkin Reduced
Order Model for Turbulent Flows. Journal of Computational Physics, V 416, page = 109513, 2020,

[13] G. Rozza, D. Huynh, A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes
flows in parametrized geometries: roles of the inf-sup stability constants, Numerische Mathematik 125 (1) (2013)
115-152.

[14] T. Iliescu, Z. Wang. Are the snapshot difference quotients needed in the Proper Orthogonal Decomposition? SIAM
Journal on Scientific Computing, 36(3), A1221-A1250 (2014).

[15] A. Ivagnes, G. Stabile, A. Mola. Pressure data-driven Variational Multiscale Reduced Order Models. Journal of
Computational Physics. 476, 111904 (2023). https://doi.org/10.1016/j.jcp.2022.111904.

[16] , K. Kean, M. Schneier. Error analysis of supremizer pressure recovery for POD based Reduced- Order Models of
the time-dependent Navier-Stokes equations. SIAM Journal on Numerical Analysis. 58(4), 2235-2264 (2020).

[17] B. Koc, T. Chacón Rebollo, S. Rubino. Uniform bounds with difference quotients for Proper Orthogonal De-
composition Reduced Order Models of the Burgers Equation. Journal of Scientific Computing. 95, 43 (2023).
https://doi.org/10.1007/s10915-023-02160-2.

[18] H. P. Langtangen, A. Logg. Solving PDEs in Python: The FEniCS Tutorial I. Springer Publishing Company,
Incorporated, 1st edition (2017).

[19] M. Mohebujjaman, L. G. Rebholz, T. Iliescu, Physically-constrained data-driven correction for reduced order
modeling of fluid flows, Int. J. Num. Meth. Fluids 89 (3) (2019) 103-122.

[20] B.R. Noack, P. Papas, P. A. Monkewitz. The need for a pressure-term representation in empirical Galerkin models
of incompressible shear flows. J. Fluid Mech. 523, 339-365 (2005).

[21] N. C. Nguyen, K. Veroy, A.T. Patera. Certified real-time solution of parametrized partial differential equations. R.
Catlow, H. Shercliff and S. Yip editors, Handbook of materials modeling, Kluwer Academic, 2005.

[22] A. Quarteroni, G. Rozza. Numerical solution of parametrized Navier-Stokes equations by reduced basis methods.
Numer. Methods Partial Differential Equations, 23, 923-948 (2007).

[23] A. Quarteroni, F. Saleri, A. Veneziani. Factorization methods for the numerical approximation of Navier-Stokes
equations. Comput. Methods Appl. Mech. Engrg. 188(1), 505-526 (2000).

[24] A. Quarteroni, A. Valli. Numerical approximation of partial differential equations. Springer, Berlin, 1994.

[25] D. V. Rovas. Reduced-Basis output bound methods for parametrized partial differential equations. Ph D Thesis,
Massachussets Institute of Technology, 2003.

26



[26] G. Rozza, K. Veroy. On the stability of the reduced basis method for Stokes equations in parametrized domains.
Comput. Methods Appl. Mech. Engrg. 196(7), 1244-1260 (2007).

[27] R. L. Sani, J. Shen, O. Pironneau, P. M. Gresho. Pressure boundary condition for the time-dependent incompressible
Navier?Stokes equations. J. Numer. Methods Fluids. 50, 673-682 (2006). https://doi.org/10.1002/fld.1062.

[28] G. Stabile, S. Hijazi, A. Mola, S. Lorenzi, G. Rozza. POD-Galerkin reduced order methods for CFD using fi-
nite volume discretisation: vortex shedding around a circular cylinder. Commun. Appl. Ind. Math., 8 (2017),
https://content.sciendo.com/view/journals/caim/8/1/article- p210.xml.

[29] R. Temam. Navier Stokes equations. North Holland, Amsterdam, 1984.

[30] F. Eivind, H. Brummelen, T. Kvamsdal, and A. Rasheed, Fast divergence-conforming reduced basis meth-
ods for steady Navier-Stokes flow, Comput. Methods Appl. Mech. and Engrg., 346 (2019), pp. 486-512,
https://doi.org/10.1016/j.cma.2018.11.038.

27


