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Abstract – Since the late 19th century, researchers have measured and predicted the acoustic properties of
single-reed instruments like the clarinet and saxophone. According to musicians, the reed itself has a significant
impact on sound production and playing comfort. However, the physics of the reed remains incompletely
understood, and reed makers are constantly seeking a deeper comprehension that could allow them to deduce
physical parameters that more adequately account for the sensations of musicians. This is the reason why some
researchers are interested in studying the behavior of reeds, either through the creation of physical models or
through physical or perceptual experiments. The present paper proposes a review of these studies, structured
into three sections. Firstly, the physics of single-reeds and single-reed instruments is exposed and described by
various models of increasing complexity. The experimental studies about single cane reeds are then detailed in
the second and third sections, which respectively deal with perceptual assessments and physical measurements.
Finally, the conclusion synthesizes and brings together the findings from each section to provide a comprehen-
sive overview of current knowledge while also highlighting prospects for future research.

Keywords: Single cane reeds, Woodwinds, Theoretical models, Perceptual assessments, Physical measure-
ments

List of symbols
Latin

A(x) Reed cross section at position x (m2)
Ar Reed equivalent area (m2)
b(x) Reed thickness at position x (m)
c Speed of sound (m s�1)
Cc Contraction coefficient (–)
E0 Dynamic reed material Young’s modulus (N m�2)
Ex Longitudinal reed material Young’s modulus

(N m�2)
Ey Transverse reed material Young’s modulus

(N m�2)
F(x) Force per unit length due to the pressure differ-

ence across the reed (N m�1)
F0 Static lip force (F = F0 for �p = 0) (N)
Fc Contact force from Hunt-Crossley impact model

(N)
Gxy Reed material shear modulus in plane xy (N m�2)
Gxz Reed material shear modulus in plane xz (N m�2)
Gyz Reed material shear modulus in plane yz (N m�2)

h(x) Reed displacement at position x (m)
h Reed channel height (m)
h0 Reed channel height at rest with static

force F0 (m)
hc Reed displacement value below which

the nonlinear stiffness exists (m)
he Effective reed channel height (m)
hr Dimensionless reed channel height (–)
h00 Reed channel height at rest with no static

force (m)
I(x) Quadratic moment of the reed at position x (m4)
Ka Reed equivalent stiffness per unit area (N m�3)
Kc Reed nonlinear stiffness parameter (N m�4)
Km Reed mechanical stiffness (N m�1)
Kp Reed point stiffness (N m�1)
Kr Reed equivalent stiffness (N m�1)
l Reed channel length (m)
lr Length of jet reattachement (m)
Ma Reed equivalent mass per unit area (kg m�2)
Mr Reed equivalent mass (kg)
p Mouthpiece pressure (Pa)
PM Static reed closure pressure (Pa)
Pm Mouth pressure (Pa)
PTh Threshold pressure (Pa)*Corresponding author: amelie.gaillard@univ-lemans.fr
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Qr Reed quality factor (–)
qr Reed damping coefficient, inverse of quality fac-

tor (–)
Ra Reed equivalent damping per unit area

(kg s�1 m�2)
Rr Reed equivalent damping (kg s�1)
Rul Reed damping per unit length (kg s�1 m�1)
S Cross section of the resonator (m2)
Sd Reed driving surface (m2)
Se Effective reed channel opening section (m2)
Sf Front reed channel opening section (m2)
Sr Reed flow-related effective surface (m2)
Ss Side reed channel opening section (m2)
Sop Total reed channel opening section (m2)
U Volume flow entering the resonator (m3

S
�1)

Uc Volume flow in the reed channel (m3
S
�1)

Ur Volume flow induced by the reed (m3
S
�1)

Veq Equivalent volume of reed (m3)
w Reed channel width (m)
x Longitudinal position on reed (m)
y(x) Vertical displacement of the reed at position x (m)

Greek

a Power law constant for nonlinear stiffness (–)
b Damping coefficient in the Hunt-Crossley impact

model (s m�1)
�l Equivalent correction length of reed (m)
�p = Pressure drop across the reed channel (Pa)
Pm � p
�pg Generalized pressure drop across the reed

channel (Pa)
d Damping of the fluid surrounding the reed (–)
gr Magnitude of the internal reed viscoelastic losses (–)
c Relative mouth pressure(–)
mx Reed material Poisson’s ratio when a stress is ap-

plied in the x direction (–)
my Reed material Poisson’s ratio when a stress is ap-

plied in the y direction (–)
xr Reed angular resonance frequency (s�1)
q Air density (kg m�3)
qr Reed material density (kg m�3)
f Embouchure parameter or dimensionless reed

opening parameter (–)

1 Introduction

A wind instrument or aerophone is a musical instrument
supplied by a source of air. It includes woodwind, brass and
free-reed instruments. Free-reed instruments such as the
accordion use a source of pressure and the sound is gener-
ated by the coupling between an air jet and the reed. In
these instruments the playing frequency is mainly con-
trolled by the reed properties [1]. In brass and woodwind
instruments, a column of air is set into vibration thanks

to the energy supplied by the player. For brass instruments,
the source of energy is the pressure in the player’s mouth
and the sound is generated thanks to the coupling between
the air column and the player’s lip. In this case, the player
controls the resonance frequency of the lips and the playing
frequency is determined mainly by the air column but can
also be controlled by the lip resonance frequency [2]. For
woodwinds instruments the source of energy is divided into
two families. On the one hand, instruments can produce a
sound thanks to an air-jet which oscillates due to the
coupling between the jet and the air column (flutes). On
the other hand, single or double reed instruments produce
a sound thanks to a constant pressure converted into acous-
tic pressure due to coupling between the air column and the
reed which creates a pulsating flow in the instrument. For
these instruments, the source of pressure can be located in
the mouth of the player (clarinet, saxophone, oboe, bas-
soon) or in an air pocket (bagpipes). The present paper
focuses on single reeds. They appear to have a small impact
on the pitch compared to free reeds or lips (for brass instru-
ments) but they can largely affect other playing parameters
such as ease of playing, timbre and clean intonation [3].

Single reeds are usually made from a grassy plant desig-
nated as Arundo donax L. according to the Linnaean bino-
mial nomenclature [4, 5]. It is mainly grown in the French
region of Provence due to the optimal climatic environment
[6]. For this reason, it is more commonly known as Canne
de Provence. The process of making a reed, from plant to
sale, takes time and requires high-precision tools. Once
the two-year canes have been harvested, they undergo a
drying process first in the sun and then in a warehouse
for at least two years. When the stems are completely
dry, the plant can be shaped into reeds. Firstly, the canes
are cut so that only hollow tubes remain, and the knots
are removed. The tubes are split lengthways into four quar-
ters to form four reeds. Each quarter is cleaned and then the
inside surface is flattened. The outer surface of the sample
undergoes several stages of planing until it has the desired
cut (i.e. geometry). The thin extremity is then rounded
[7–9] as depicted in Figure 1. Finally, each reed is submitted
to a flexibility test to be graded on a scale describing its
strength usually from one (very soft) to five (very strong)
[10]. Reeds are distinguished by three main characteristics:
cut, strength and brand. For a musician, the choice of reed
strength is partly conditioned by the type of mouthpiece
used, especially with respect to the tip opening.

Until the industrialization of the reed-making process at
the end of the nineteenth century, each musician made his
own reeds by hand [7, 12, 13]. It was therefore difficult to
cut all the reeds identically, which could explain quality dis-
parities. Nowadays, despite the very precise automated
manufacturing process, the perceived quality is still not
uniform among reeds. According to a survey of clarinetists
and saxophonists around the world [14, 15], only 30% of
reeds are of very good quality. The rest are of average
(40%) or even mediocre (30%) quality. Manufacturers are
still struggling to understand and predict these differences.
Some tried to overcome this issue by designing new syn-
thetic materials to produce reeds with exact same physical
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properties [16] and to finally replace natural cane. Although
this sounds promising, the vast majority of musicians still
prefer traditional cane to synthetic reeds.

The current paper proposes an overview of the current
knowledge about single cane reeds. Despite the numerous
studies that are cited throughout this review, there is still
way to go to fully understand the reed behavior in playing
situation. As an example, the relationships between
physical models and experimental results (both perceptual
and physical) are not thoroughly described so far. Such
issues specific to single reeds are not addressed in depth
by the current reference books about musical instruments
[17, 18] or even more precisely about wind instruments
[2, 8].

This paper is structured in three sections. Section 2 pre-
sents the different physical models used to describe the
behavior of the reed itself or the behavior of the exciter
(reed, mouthpiece, player’s lip). It introduces several model
parameters that enable to better understand the role of the
reed on the self-sustained oscillations or that can be used for
simulations. These models also give information on which
physical quantity should be measured to characterize reeds.
The two following Sections 3 and 4 are devoted to experi-
mental researches on reeds. Section 3 describes the different
perceptual assessments conducted on clarinet or saxophone
reeds with musicians. Section 4 lists the numerous
experimental approaches designed to understand the reed
behavior and estimate reed parameters values. A list of
numerical values extracted from this section is given in

Appendices A–C. To conclude, the relationships between
perceptual and physical characterization are explored and
future works are discussed.

2 Physics of single reed instruments

Single cane reed instruments are self-oscillating systems.
The steady-state energy of the source (provided by the
pressure in the musician’s mouth) is converted into self-
sustained oscillations in the instrument thanks to the
mutual coupling between the resonator and a nonlinear sys-
tem localized in the exciter (composed of the mouthpiece
and the reed [19]). In this system, the reed acts as a pres-
sure-controlled valve [17, 20] whose main role is to close
and open the reed channel defined in Figure 2. This modifies
the reed opening section and consequently the volume flow
velocity entering the resonator.

While playing, the musician controls the mouth pres-
sure, the lip force acting on the reed (which controls the
opening section of the reed channel at rest) and the lip posi-
tion along the length of the reed. These parameters are
assumed to vary slowly over time compared to the pressure
variations in the mouthpiece. The player can also control
the reed channel opening with his tongue in order to control
the transient characteristics [21, 22].

The physical variables involved in this system are
presented in Figure 2. They are the mouth pressure Pm,
the mouthpiece pressure p, the volume flow in the reed
channel Uc, the volume flow entering the resonator U.
The reed channel height is written h. The channel height
at rest is h0 when the player applies the static force F0 on
the reed. The channel height can also be described as a
dimensionless variable hr ¼ h

h0
[23]. Depending on the

studies, the reed at rest with a lip force F0 can be defined
by h = 0 [24, 25] or h = h0 [26]. The closing of the reed
on the mouthpiece can occur for h = 0 (see Fig. 2) [26],
h = h0 (hr = 1) [24] or h = �h0 (hr = �1) [25]. The volume
flow produced by the reed movement is written Ur ¼ Sr

_h
where Sr is the flow-related effective surface.

The mechanical properties of the reed can be described
by local parameters (density qr, Young’s moduli Ex, Ey,
shear moduli Gxy, Gxz, Gyz, Poisson’s ratio mx, my) [27], or
global parameters when the reed is modeled as a system
with one degree of freedom. In the later case, they are the
mass Mr (kg), the damping Rr (kg s�1), the stiffness
Kr (N m�1), and the driving surface Sd (m

2) [28]. Parame-
ters per unit area, also called effective parameters are used
in some papers (Ma ¼ Mr

Sd
, Ra ¼ Rr

Sd
, Ka ¼ Kr

Sd
) [24]. Lastly,

some authors [29] characterize the reed mechanics using
the damping coefficient qr ¼ xrRr

Kr
(inverse of quality factor)

and the resonance angular frequency xr ¼
ffiffiffiffiffi
Kr
Mr

q
. These

authors also describe the reed opening with the dimension-
less channel height hr.

The reed has been studied by several researchers and
has been considered as a system with different degrees of
complexity, starting from a simple spring and going to a
two-dimensional system with complex boundary conditions
(mouthpiece and lip). Figure 3 shows the reed models

Figure 1. Reed sketch inspired from Intravaia and Resnick [11].
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presented in the following sections and gives a list of the
references used in this paper.

2.1 Elementary model for single reed instruments

This section presents the elementary model describing
the instrument and enabling to explain the production of
self-sustained oscillations. In this model, the reed is assumed
to behave as an ideal spring characterized by its effective
stiffness Ka (in Pa m�1) [31].

2.1.1 Resonator

The resonator is composed of the instrument bore and of
the mouthpiece. It is usually characterized by its input
impedance at low-level acoustic pressures, assuming linear
behavior. The impedance Z is defined in the frequency
domain by

ZðxÞ ¼ pðxÞ
UðxÞ ; ð1Þ

where x is the angular frequency.

2.1.2 Flow entering the exciter

The flow entering the exciter is controlled by the reed
channel height h(t) and by the pressure drop between the
mouth and the mouthpiece �p(t) = Pm � p(t). Assuming
a quasi-stationary behavior and a very short reed channel
(l/h � 1 with l the channel length defined in Fig. 2), Hirsch-
berg et al. [30] showed that the air passes through the chan-
nel and that a jet is created in the mouthpiece after the flow
separation from the walls. For high ratios (l/h � 3), the jet
reattaches at a fixed point lr ’ h measured from the chan-
nel’s entrance. In the case of short channels, the flow can be
modeled by the Bernoulli theorem, taking into account a
contraction coefficient [26].

Assuming that the reed channel is a rectangle aperture
of width w and height h(t), the volume velocity Uc in the
reed channel is written

UcðtÞ ¼ wheðtÞ � sign½�pðtÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�pðtÞj

q

s
; ð2Þ

with he(t) = Cch(t) the effective reed opening, taking into
account the contraction coefficient Cc. The effective open-
ing section Se(t) = whe(t) is different from the front open-
ing of the reed channel Sf(t) = wh(t) not only because of
the contraction coefficient but also because the air can
enter through the lateral cross-section, which implies con-
sidering the effect of lateral flow. Chatziioannou [48]
defined the effective opening section as Se ¼ C exp

c Sop, with
C exp

c the experimental contraction coefficient. Sop is the
total opening surface of the reed, defined as Sop = 0.69
(Sf + Ss), with Sf the front opening surface and Ss the side
opening surfaces, as suggested by experimental data [53]
and also discussed by Yoshinaga et al. [54] or Taillard [55].

As demonstrated by Chatziioannou [48], in the quasi-
static configuration, the experimental contraction coeffi-
cient Cexp

c is dependent upon the reed opening h(t), and
for h > 0.3 mm for the clarinet, Cexp

c ’ 0:85 (refer to
Fig. 4.8 in the reference [48]).

It should also be noticed that the quasi-stationary model
in equation (2) is not valid in the dynamic case, as shown by
Ricardo da Silva et al. [46] using Lattice-Boltzmann
simulation.

2.1.3 Nonlinear characteristics

Assuming that the reed behaves as an ideal spring with
stiffness Ka leads to

hðtÞ ¼ h0 ��pðtÞ
Ka

if�p tð Þ � PM ;

0 if�p tð Þ � PM ;

8<
: ð3Þ

where h0 is the reed opening at rest due to the static lip
force F0 and PM = Kah0 is the static reed channel closure
pressure (lowest pressure value for which the reed channel
is closed). According to results obtained by Gazengel et al.
[32], h0 can be written

h0 ¼ h00 � F 0

Km
; ð4Þ

where h00 is the opening at rest with no lip force (F0 = 0),
and Km is the mechanical stiffness of the reed, defined as
Km = KaAr. The reed equivalent area, Ar, can be defined
by considering the mouth pressure�p0 with no lip force or
the static lip force F0 with no mouth pressure. Assuming
that F0 and �p0 result in the same reed tip displacement
h0, the reed equivalent area is written as Ar ¼ F0

�p0
, mean-

ing that both effects (force and pressure) are equivalent.

Figure 2. View of the exciter and definition of the physical
variables used in the model of the instrument.

UcðtÞ ¼ UA � sign½�pðtÞ� � ð1��pðtÞ
PM

Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�pðtÞj
PM

s
; if�pðtÞ � Kah0

0 if�pðtÞ � Kah0

8><
>: ð5Þ
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Combining equations (2), (3) and (4) leads to

See the Equation (5) bottom of previous page

where UA ¼ wCch0
ffiffiffiffiffiffiffiffiffi
2Kah0

q

q
. UA is a volume velocity ampli-

tude parameter that depends on the reed effective stiffness
Ka, on the reed opening at rest h0 (which depends on h00, on
the lip force F0, and on the reed mechanical stiffness Km).
The volume velocity Uc is plotted in Figure 4 as a function
of �p for three different force values. In Figure 4,
PM0 = Kah00, UA0 ¼ Ccwh00

ffiffiffiffiffiffiffiffi
2PM0
q

q
and FM = Kmh00.

The volume flow Uc shows a maximum Umax ¼ 2
3
ffiffi
3

p UA

for �p ¼ 1
3 PM which depends on lip force F0. After this

maximum, the flow decreases and the reed channel closes
completely for�p = PM. In the increasing part of the curve
(�p � PM

3 ), the conductance of the system (obtained as the
first derivative) is positive, meaning that the exciter acts as
a resistance to the air flow. However, in the decreasing part
of the curve (�p � PM

3 ), the conductance is negative and the
exciter acts as an acoustic generator. Thus, the generation

of self-sustained oscillations is possible [17]. As a result,
the threshold pressure for the beginning of the self-sustained
oscillations is 1

3 PM , ignoring losses in the resonator [31].

2.2 Physical models of the reed

The simple model given by equations (1) and (5) enables
to get self-sustained oscillations thanks to a resonator
coupled with an exciter showing a nonlinear behavior. This
exciter controls the volume flow entering the mouthpiece
thanks to a reed acting as a spring and closing the reed
channel, assuming an inelastic collision. The threshold
pressure of the oscillations is determined by the reed effec-
tive stiffness Ka and by the opening at rest h0 ¼ h00 � F 0

Km
.

This model shows that the reed parameters Ka and h0
(depending on h00 and Km) are of major importance in
the functioning of a woodwind instrument.

However, the reed is in contact with the lip, the mouth-
piece lay and sometimes the tongue. In a quasi-static
regime, the mouthpiece lay has an impact on the reed stiff-
ness, creating a nonlinear effect (an increase in stiffness
when the reed closes). In the dynamic regime, the damping
provided by the lips of the player enables to damp the reed
resonance and to prevent the apparition of a squeak. By
moving the lower lip along the reed, the player can adjust
this damping as well as the effective mass and stiffness of
the reed. However, the reed dynamic is more complex at
high sound levels when the reed starts to interact with
the mouthpiece lay (reed beating). In order to describe
these complex effects, different physical models of the reed
have been proposed in the literature and are discussed in
the following subsections. These models are presented in
order of increasing complexity.

2.2.1 Flow due to the reed

While vibrating, the reed produces an air flow
UrðtÞ ¼ Sr

_hðtÞ induced by its flow-related surface Sr so
that the total incoming volume flow in the instrument is
U(t) = Uc(t) – Ur(t). Nederveen [56] and Dalmont et al.

Figure 4. Volume flow as a function of the pressure difference
across the reed.

Figure 3. List of literature references presented in this paper and dedicated to the study of the single cane reed.
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[33] demonstrated that this reed flow can be understood as
a correction length applied to the resonator in the case of a
non-beating reed (h(t) < h0). This correction length can be
written as �l ¼ qc2

Ka

Sr
S , with q the air density, c the sound

speed, and S the cross-section of the resonator. It can be
explained as the effect of the compliance of the reed acting
as a supplementary volume of air at the resonator entry.
Dalmont et al. [3] reported typical clarinet correction
lengths of 10 mm. Nederveen [57] related �l to the reed
strength and showed that �l may approximately vary from
6 mm (strong reeds) to 9 mm (softer reeds).

According to Dalmont et al. [33], when the reed is
beating, its equivalent volume Veq is determined by the
mouthpiece pressure p. This can be expressed as follows:
V eq ¼ qc2Srh0

2jpj . This indicates that the reed’s playing fre-
quency tends to increase as the amplitude of the sound.
Numerical simulations demonstrating that the decrease in
the flow rate effect is the cause of the increase in playing fre-
quency above the beating reed threshold [34] corroborate
this conclusion. However, for high mouth pressure values,
the analytical model overestimates the predicted frequency
compared to numerical simulations.

Section Sr can be derived knowing the reed deflection
along its length. Considering the potential energy of the
reed, van Walstijn and Avanzini [28] showed that the driv-
ing surface Sd and the flow-related surface Sr are identical.

2.2.2 Lumped element models

The model of reed presented in Section 2.1.3 considers
the reed as a pure spring. This assumption does not consider
dynamic effects due to the lip (damping) and the reed iner-
tia (mass), nor does it consider the variation of stiffness
when the reed bends on the mouthpiece rails. Lumped ele-
ment models considering these effects have been proposed
in the literature and are presented below.

Quasi static models
The effect of bending the reed on the lay of the mouth-

piece was modelled by Chatziioannou and vanWalstijn [24]
as a conditional contact force, written in the form of a
power law1. This nonlinear part is added to the linear stiff-
ness Ka to write a nonlinear spring model as follows:

Kaðh� h0Þ � Kc hc � hb cð Þa ¼ ��p; ð6Þ
where Kc is the nonlinear stiffness parameter and a is a
power-law constant. The nonlinear part is written

hc � hb c ¼ hc � h if h < hc;

0 if h � hc:

�
ð7Þ

In equation (7), hc is the displacement value below which
the power law becomes active. For a= 2, the nonlinear stiff-
ness provided by equation (6) and shown in Figure 5 fits the

stiffness obtained from a distributed model [35]. The limita-
tion of this model is that the reed tip displacement h is not
asymptotically close to 0 (or to h0 in [24]) so that the reed
penetrates into the mouthpiece. The simplest linear model
(eq. (3)) explains this closing (see Fig. 5) but does not take
into account the bending of the reed on the mouthpiece lay.

According to a different model, the reed effective open-
ing section Se (defined in Sect. 2.1.2) is a piece-wise function
of the pressure drop �p or of the generalized pressure
�pg = �p + F/Ar, where F is the lip force and Ar the lip’s
effective area. This model assumes that the effect of bending
on the mouthpiece is represented by a parabola (for N = 3
[32]) or a set of parabola (for N > 3 [55]) and can also take
into account the effect of residual leakage (Fig. 6) which can
be due to a bad contact between the reed tip and the
mouthpiece.

Dynamic models
More often, the reed is modeled as a one degree of free-

dom system in order to consider the effective mass Ma and
damping Ra (mainly caused by the lip). In these models, the
effect of mouthpiece lay and tongue are written as variable
stiffness and sometimes as variable mass and damping
terms.

Ducasse [36] proposed to consider the reed parameters
as functions of the reed position written as follows:

MaðhÞ � €hþ dMa

dh
� _hþ RaðhÞ

� �
� _hþ KaðhÞ � ðh� h0Þ ¼ ��p:

ð8Þ
In this model, the parameters Ka(h) and Ma(h) are primar-
ily related to the reed density and longitudinal flexibility
and they also depend on the geometry of both the reed
and the mouthpiece, taking into account the bending of
the reed on the lay of the mouthpiece. The damping
Ra(h) is considered to be mainly produced by the lip, so that
the reed is considered a highly-damped reed. The variability
of the parameters according to h is in particular used to

1 This model is written with different variables from those used
in this review. In the work of Chatziioannou and van Walstijn
[24], the reed tip opening is written y. In this work, it is written
h0 � h so that the equivalence between the two models is
y = h0 � h.

Figure 5. Pressure difference �p versus reed tip displacement
h0 � h, for h0 = 0.5. The solid curve (nonlinear model, Eq. (7)) is
obtained with Ka = 8000, Kc = 80000, h0 � hc = 0.25. The
dashed curve shows the linear model (Eq. (3)).
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take into account the bending of the reed on the mouth-
piece lay. This bending occurs when the reed tip position
h is smaller than a limit hc. It is modeled using a constant
damping term, a nonlinear stiffness proportional to hc � h
and a nonlinear mass proportional to (hc � h)2. Analytical
expressions of the effective reed parameters are given in
Ducasse’s thesis [37] (Appendix, p. 97). Ducasse modeled
the tongue as another mass-spring system which can touch
the reed as a perfectly soft shock.

More recently, the mouthpiece-reed contact has been
modeled taking into account a separate contact force
consisting of a stiffness term and a damping term (Hunt-
Crossley impact model [39]). The contact force is activated
when the reed is in contact with the mouthpiece for a specific
channel height hc. It is due to the contact between the reed
and the mouthpiece when the reed curvature is higher than
the mouthpiece lay curvature [25, 47]. As the contact force is
activated for h � hc, the reed movement is described by

Ma � €hþ Ra � _hþ Ka � ðh� h0Þ ¼ ��p þ F c

Sd
; ð9Þ

where Sd is the driving area and Fc the contact force
defined by

F c

Sd
¼ Kc hc � hb cð Það1� b _hÞ: ð10Þ

The term hc � hb c ¼ hc�hþjhc�hj
2 ¼ maxðhc � h; 0Þ, also

defined in equation (7), is the ramp function. Kc is the non-
linear stiffness parameter, a � 1 a power law exponent, and
b a damping coefficient. a is typically set to 2 to describe the
interaction between the reed and the mouthpiece lay,
resulting in a quadratic stiffness activated when the reed
meets the lay at height hc. The ramp function can be regu-
larized using a parameter g (chosen equal to 10�3) to avoid
non-differentiability at h = hc (reed contact) by writing
hc�hþjhc�hj

2 ’ hc�hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhc�hÞ2þg

p
2 [23]. Alternatively, the activa-

tion of the contact force can be considered when the reed
tip is contact with the mouthpiece (h = 0) and not for

h= hc. Finally, some authors [40, 41] consider the “phantom
reed” or “ghost reed” model, assuming that Fc = 0 but that
the volume velocity Uc vanishes when the reed closes.

Considering the contact force with no damping term,
Chatziioannou and Hofmann [38] modeled the reed as a
spring mass system with effective stiffness Ka depending
on reed tip position:

Ma � €hþ Ra � _hþ Ka � ðh� h0Þ � Kc � ð hc � hb cÞa ¼ ��p;

ð11Þ
where bhc � hc is defined in equation (7). They included
the effect of mouthpiece lay and the action of the tongue
by varying the parameters Ma(h), Ra(h) and h0 in the
attacks. They used this description to compare tongue-
separated tones and pressure-separated tones. Muñoz
Arancón et al. [42] studied the efficiency of this model.
They showed that for low playing levels (up to piano
nuance) and without considering the tongue effect, the
reed can be modeled by using a nonlinear stiffness term
Ka(h) and a constant damping term Ra, which validates
the model given in equation (11) without considering
the effect of mass. For mezzo forte nuance, the model fits
the measurement, but the shock of the reed on the mouth-
piece is not well explained. For higher playing level (forte
nuance), this model is no longer valid.

More recently Chatziioannou et al. [43] considered con-
stant terms for mass and damping. They introduced nonlin-
ear terms for modeling the reed mouthpiece collision and
the tongue reed interaction using contact forces depending
on the contact stiffness Kj, contact position hj, collision
exponent aj, contact damping bj, j describing either the
reed-mouthpiece collision or the tongue-reed interaction.

2.2.3 One-dimensional distributed models

Instead of modeling the reed using lumped elements,
some authors chose to suggest a more realistic model,
based on the idea that the reed can be understood as a
homogeneous, isotropic, cantilevered beam with variable
cross-sections, where the tip is thinner than the shoulder.
According to this theory, the vertical displacement y(x, t)
of a non- uniform clamped beam with width w and
thickness b(x) is determined by:

qrAðxÞ �
@2yðx; tÞ

@t2
þ Rul � @yðx; tÞ

@t
þ @2

@x2
ExIðxÞ � @

2yðx; tÞ
@x2

� �

¼ F ðx; tÞ; ð12Þ
with qr the mass density, A(x) = w � b(x) the variable
cross-section, Rul the damping per unit length, Ex the
Young’s modulus, I ðxÞ ¼ w�bðxÞ3

12 the moment of inertia,
and F(x, t) the force per unit length due to the pressure
difference across the reed. The boundary conditions to
be satisfied by the equation at the ligature end, which
we assume to be clamped are y = 0 and @y

@x ¼ 0 and at
the free end, they are @2y

@x2 ¼ 0 and @3y
@x3 ¼ 0. Both Stewart

and Strong [44] and Sommerfeldt and Strong [45] used
this description of the reed.

Figure 6. Reed effective opening section Se as a function of
pressure drop �p for 7 different lip positions [55]. The 7 lip
positions along the z-axis defined in Figure A1 are encoded by
the colors from orange to blue with decreasing z.
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In order to take into account the interaction of the reed
with the mouthpiece, Stewart and Strong [44] proposed to
use varying functions for the reed mass and damping.
Sommerfeldt and Strong [45] used a varying function for
the damping to take into account the role of the musician’s
lip as a damper.

The internal viscoelastic losses can be included as pro-
posed by Ricardo da Silva et al. [46]. Completing this model
with the damping, Avanzini and vanWalstijn [47] as well as
Chatziioannou [48] proposed to modify equation (12) as
follows:

qrAðxÞ �
@2yðx; tÞ

@t2
þ d

@yðx; tÞ
@t

� �

þ @2

@x2
ExIðxÞ � 1þ gr

@

@t

� �
@2yðx; tÞ
@x2

#
¼ F ðx; tÞ;

"
ð13Þ

where the coefficient gr represents the magnitude of the
internal viscoelastic losses and d accounts for damping
of the surrounding fluid.

The interaction of the reed with the lip was modelled by
Avanzini and van Walstijn [47] as a linear spring exerting
an elastic force in the region of application of the lip and
by an increase of the damping d in this region. The reed-
lay interaction was defined as a contact force that acts in
the profile of the lay of the mouthpiece. The resulting force
relating the pressure difference across the reed to the reed
tip displacement is linear for low-level displacements and
nonlinear for large displacements. Another result of this
numerical experiment was that the reed does not smoothly
curl up onto the lay of the mouthpiece, but a discontinuity
appears. The authors defined the variable “separation
point” as the point of contact between lay and reed that
is closest to the tip (the separation point defines which part
of the reed is free to oscillate). They showed that the reed
does not bend in a smooth way and that the separation
point undergoes a discontinuity during reed bending
(see Fig. 7). This discontinuity is also observed in the reed
equivalent parameters Sr and Ka as shown by van Walstijn
et al. [28].

2.2.4 Two-dimensional transverse isotropic distributed
models

As the one-dimensional distributed model can not cap-
ture any of the torsional modes of the reed that are said
to be important for reed quality by some authors [49, 50],
a two-dimensional model has been used in other works. In
addition, this approach enables to take into account the
bending of the reed in the middle of the mouthpiece in
the transverse direction while the sides of the reed remain
in contact with the mouthpiece rails.

Some models take into account geometry of the reed
vamp, i.e. the fact that the reed is thinner at its borders
than in its heart. These models assume that the reed mate-
rial is isotropic transverse and needs five elastic parameters.

Casadonte [13] was the first to perform a numerical
modal analysis (ANSYS software) of a reed using a grid

of 84 by 33 (2772) points measured on a real reed. He
obtained the first twenty modes of a clamped clarinet reed
without lip and without mouthpiece. Results show that the
first modes are pseudo-torsional modes whereas bending
modes are expected. According to Casadonte, this effect
could be caused by the asymmetry of the reed.

Ducasse [37] performed a modal finite element simula-
tion of the synthetic reed (Fibracell) of a bass clarinet with
free vibrating length of 47 mm using ANSYS, the geometry
being defined from measurements. The results show that
modes appear as follow: first flexural, first torsional, flexural
+ torsional modes (Fig. 8).

Facchinetti et al. [49] performed a finite element simula-
tion assuming a linear Love-Kirchhoff plate elements in the
CAST3M finite-element code. They used a geometry inter-
polated from 200 points measured at the reed surface and
assumed the reed to be symmetrical with regard to its
longitudinal axis. They used five parameters (density, longi-
tudinal and transverse Young’s moduli, transverse to longi-
tudinal shear modulus, longitudinal-transverse Poisson’s
ratio). The modes are labelled LnTm where L stands for
longitudinal and n is the number of intersections of nodal
lines with the edges parallel to the main axis including
the one imposed by the boundary condition at the ligature.
T stands for transverse and index m is the number of inter-
sections of the nodal lines with the tip edge of the reed.
Results obtained after simulation are similar to the modes
obtained by Ducasse and appear in an expected order
(L1T0, L1T1, L2T0, L1T2, L2T1) as shown in Figure 9.

Guimezanes [51] used a finite-element thick-plate model
(assuming a linear Love-Kirchhoff plate model) in the
CAST3M finite-element code. The reed geometry was inter-
polated from measurements carried out on 246 points and
led to a mesh of 5988 elements. The length of free vibrating
part of the reed was set to 35 mm for comparison with
experimental results. Modes obtained by Guimezanes are
similar to the modes obtained by Facchinetti et al. [49]
and Ducasse [58]. The comparison of numerical simulations
and experimental results showed that the Young’s modulus
used in the numerical model should depend on the longitu-
dinal position in order to fit the two sets of results (measure-
ments, simulations) for three different reeds (Young’s
moduli values given in Appendices A–C).

In his thesis, Chatziioannou [48] proposed an analytical
formulation for the deflection of a anisotropic plate and
studied a numerical scheme that ensured stability consider-
ing the boundary conditions at the edges of a clamped-free
plate. He also took into account the effect of the player’s lip
and of the external driving force between the free end of the
reed and the player’s lip. He showed that the main differ-
ence with the one-dimensional model is that, because of
torsional modes, the reed can enter the mouthpiece around
the middle of the reed surface. As the reed interior is free to
oscillate inside the mouthpiece even when collision occurs at
the edges of the reed, the effect of the lay blocking the
motion of the reed at its edges is not transferred as strongly
to the tip of the reed. As a consequence, high-frequency
oscillations preceding every closing of the reed tip are much
smaller than those appearing in the one-dimensional case.
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This two-dimensional model enabled Chatziioannou [48] to
deduce the equivalent lumped model parameters of the
reed, the area Sr and the stiffness Ka. The results show that
the parameters are nonlinear functions of �p and that they
exhibit a discontinuity (jump) that can vary between
“smooth” and “abrupt” (with a jump), depending on both
the reed thickness and the lip position. But in this case,
because the reed enters the mouthpiece, it is impossible to
define a separation point for the entire reed, even though
it would be possible to define one at its edges.

Taillard et al. [27] used a FEM simulation of 55 reeds
alone (without lip or mouthpiece) in order to estimate the
numerical values of elastic coefficients (longitudinal, trans-
verse and radial moduli Ex, Ey, Ez, shear moduli Gxy, Gxz,
Gyz and Poisson’s ratios mx, my). The material was defined
as 3D orthotropic and assumed to be homogeneous. The

dimensions in the xy plane were consistent with the mea-
surements given by Facchinetti et al. [49]. The generated
mesh involved 5927 points. He firstly performed a sensitiv-
ity analysis of the elastic coefficients and showed that Ex

and Gxy play a decisive role, while Ey plays a marginal role
and all other parameters have an almost negligible influence
on the resonance frequencies. As a consequence, the moduli
Ex andGxy are the variables retained in the model. Compar-
ing measured and computed resonance frequencies of 55
clamped reeds with a free vibrating length of 38 mm, Tail-
lard et al. [27] showed that an elastic model cannot predict
the 11 eigenfrequencies of the reeds and proposed to use a
viscoelastic model in which Ex and Gxy are frequency depen-
dent according to a Zener model called also Standard
Linear Solid model [52]. This model (Maxwell representa-
tion) needs three parameters for each modulus (six

Figure 7. Separation point versus tip displacement [47]; (a) quasi-static simulations (black solid line) and dynamic simulations (yL is
defined as the displacement of the reed tip and xsep as the point of contact between the lay and the reed which is closest to the tip), (b)
non-smooth reed curling.

Figure 8. First four computed modes of an isolated reed [37].
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parameters per reed). Using a Mean Squared Deviation
Method, the optimal parameters were searched assuming
that the damping terms in the Zener model are constant,
leading to an estimation of two stiffness values per modulus.
Results show that the model is valid for “ambient dry” reeds
(typically around 55% humidity) in a frequency range
which should not exceed one decade.

2.3 Discussion

This section presents the different physical models that
can describe the reed behavior. The simplest one considers
the reed as a spring. In many papers, the reed is modeled
as a Single Degree Of Freedom (SDOF) system in order
to take mass and damping into account. To be more realis-
tic, the bending of the reed on the mouthpiece or the
contact force between the reed and the mouthpiece can
be added, considering a nonlinear stiffness or a nonlinear
contact force. More complex models assume the reed as a
non-uniform clamped beam or plate.

The process of self-sustained oscillations can be
explained by assuming that the reed is a pure stiffness
and that the volume velocity entering the reed channel
vanishes when the reed closes the mouthpiece. This can
be done by solving a two-equations system that describe

the resonator and the exciter (reed movement + flow enter-
ing the reed channel). In this case, the two important
parameters are the reed opening at rest h0 and the reed
equivalent stiffness Ka. These two parameters define the
closing pressure PM = Kah0 and the threshold pressure
Kah0
3 in the case of a cylindrical resonator without losses.

Moreover, according to Dalmont and Frappé [59] and Fritz
et al. [60], the musician must blow harder in the case of
higher losses of the resonator. Also, Fritz et al. [60] showed
that, considering a constant closing pressure PM, the thresh-
old pressure diminishes when the opening h0 is decreased.

Considering the reed dynamics (damping, mass) enables
to obtain more realistic simulations of the self-sustained
oscillations and to understand the effect of these parameters
on the pressure signal. Under this assumption, the reed is
characterized by four parameters: h0, Ka, Ra, Ma or h0,
Ka, xr and Qr as in [60]. It can be also characterized by five
parameters as proposed in [29] adding Sd = Sr defined in
Section 2.2.1. These parameters, coupled with the relative
mouth pressure c ¼ Pm

PM
and the embouchure parameter f

(defined by Fritz et al. [60] and proportional to
ffiffiffiffi
h0
Ka

q
) have

an influence on the threshold pressure and the frequency of
oscillations at the threshold. The study of this influence is a
complex topic due to the fact that self-sustained oscillations
are produced thanks to a nonlinear dynamic system. If the
reed resonance angular frequency xr is much greater than
the first resonance frequency of the resonator x1, approxi-
mating the reed as a simple spring is rather good, and the
threshold pressure is independent of the reed damping
factor. For smaller values of xr

x1
, then xr

x1
and qr have a impact

on the playing parameters (threshold pressure, frequency at
the threshold).

According to a study by Karkar et al. [29], the threshold
pressure rises with the damping coefficient qr when taking
into account a realistic resonator with frequency-dependent
losses. Also, register selection is greatly influenced by the
reed damping qr, which the player controls with his lower
lip and higher registers can be played only for low values
of qr, typically lower than 0.5. However, it appears that qr
has a very small effect on the playing frequency.

In a recent work, Petersen et al. [61] developed a simu-
lation tool for simplified clarinets. They showed that the
reed resonance angular frequency xr has an impact on the
threshold pressure, indicating that the “ease of playing”
may be related to the reed resonance.

The reed effective area Sd has an influence on intonation
and on regime selection [29]. Small values of Sd enable the
selection of higher registers with a low frequency deviation,
whereas higher values of Sd lead to the selection of the first
register with a higher frequency deviation, typically �4%
(�68 cents).

The control parameter f, which represents the effect of
the player’s embouchure, in particular the control of the
opening h0, has an influence on the regime selection and
on the playing frequency. Results given by Karkar et al.
[29] show that for low values of f, regime 1 is selected, while
for higher values (f > 0.2), regime 4 is chosen. f has also a
noticeable influence on the frequency of the oscillations at
threshold. The frequency deviation of the first regime is less

Figure 9. First five computed modes of an isolated reed [49].
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than �0.3% (�5 cents) for f < 0.2, whereas the fourth
regime frequency deviation is �2.7% (�46 cents) for
f = 0.8. Finally, for very low values of f (when the reed is
almost closed), the threshold pressure quickly increases.

Considering the reed as a nonlinear stiffness or consider-
ing the contact force due to the interaction between the reed
and mouthpiece enables a better explanation of the curling
of the reed on the mouthpiece. In this case, the inertial
effects appearing when the reed is pressed against the lip
and beating effects occurring when the reed closes show clear
oscillations on the reed position signal [25] (see Fig. 10).

Finally, considering the reed as a clamped beam
explains the interaction between the reed and the mouth-
piece. This shows the existence of a separation point evolv-
ing with reed displacement (see Fig. 7). Assuming that the
reed can be viewed as a 2D system enables us to predict the
eigenmodes of the structure and also better explain the
interaction between the reed and the mouthpiece. Indeed,
using this assumption shows that the separation point is
not so clearly defined and that the reed is free to bend inside
the mouthpiece while being in contact with the rails, which
minimizes the effect of reed beating.

These models provide information about the relation-
ships between the reed equivalent parameters and the play-
ing parameters, such as the threshold pressure and the
playing frequency. They can also give information about
the internal structure of the reed material. However, the
cane material parameters and the equivalent parameters
of the reed need to be estimated from measurements in
order to feed the models. Moreover, these parameters can
have a significant effect on the musician’s perception, and
this perception needs to be understood. The following
section presents the various studies that were carried out
to define robust perceptive descriptors that relate to musi-
cians’ feedback. Section 4 presents the different experimen-
tal approaches developed in order to estimate the values of
reed parameters.

3 Perceptual assessments of reeds

Reeds are classified by their manufacturers according to
their strength and cut. However, large perceptual differ-
ences are reported between assumed identical reeds (same
manufacturer, strength and cut). According to Petiot
et al. [15], who summarized a survey carried out by Muñoz
Arancón over 375 musicians [14], clarinet (B[ and bass) and
saxophone (alto, tenor, baritone) players report that in a
box of reeds, roughly 30% are of good quality, 40% are of
medium quality, and 30% are of bad quality. However,
one should note that the reed quality does not only relate
to sound perception, but also to the vibroacoustic feedback
[62] experienced by the musician during the sound produc-
tion process described in Section 2. Therefore, the reed qual-
ity is often described as “global” [13], “musical” [50] or
“overall” [63] as sound quality would only partially reflect
the perception by the musician.

Among the numerous studies devoted to the percep-
tion of musical instruments [64], a few of them aimed at

characterizing the reed quality from the musician’s point
of view. These studies were conducted over the past 3 dec-
ades but their results can hardly be compared because of
methodological discrepancies. Namely, the experimental
conditions in which the perceptual assessments are carried
out largely vary from one study to another. The main differ-
ences that can be observed are:

� The number of musicians involved in the test. It can
vary from 32 [65] to only 1 [66, 67] that can even be
one of the experimenters [55, 68].

� The material under test. It can differ because of the
instrument (B[ clarinet or tenor/alto saxophone)
and the reeds (amount and models).

� The assessment method. The reeds can be assessed on
the basis of a single quality feature (denoted global/
overall/musical) and/or on the basis of more specific
criteria (alternatively denoted as quality factors [65],
descriptors [13], parameters [68] or abilities [69]).

These main, but not exhaustive, differences between
perceptual studies are listed in Table 1, with respect to
the terminology used by the authors. The two following
subsections are devoted to the description of the assess-
ment methods (quality and criteria) used in these various
studies.

3.1 Quality assessment

The reed quality can be determined by assessing a
unique perceptual feature on a dedicated rating scale. Casa-
donte [13] used for this purpose a 7-point “overall quality”
scale ranging from “bad” to “good”. The “global quality”
can also be assessed on a continuous scale, eventually
labelled, but this method has been reported to result in
large inter-individual differences [14, 15].

As an alternative to scale rating, reeds may rather be
categorized with respect to their perceived quality. As an

Figure 10. Simulation of the self-sustained oscillations of a
clarinet assuming the reed is a SDOF system and considering a
force term due to the collision between the reed and mouthpiece
lay [25]. Top: steady-state oscillation of the reed position
without beating against the lay (illustrated as a grey region at
y = �0.4 mm). Bottom: reed position under a higher pressure
illustrating beating effects.
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example, Pinard et al. [50] classified the reeds as “very poor”,
“poor”, “good” and “very good” on the basis of the “musical
quality”. A binary categorization of the reeds can also be
proposed to discriminate between good and mediocre reeds
with respect to “the musical quality” [70] or between good
and bad reeds with respect to “the overall quality” [63].

3.2 Criteria assessment

As large discrepancies can be observed among global
quality assessments [14, 15], some authors decided to focus
on more specific criteria. Such perceptual assessment can
be carried out in addition to quality assessment in order to
study the correlation between the criteria and the overall
quality, as did Casadonte for the following descriptors:
“timbre”, “strength”, “noise”, “stability” and “acoustic
strength” (rated each on a 7-point scale). Obataya and
Norimoto [65] carried out subjective reed assessments on
the basis of five “quality factors” : “sonority”, “richness”, “soft-
ness”, “ease of vibration”, and “response” (translated from
Japanese) as an alternative to a unique quality feature.
Gazengel et al. [66] assessed three descriptors: “ease of play-
ing”, “brightness” and “roundness”. Two of these descriptors,
“ease of playing” and “brightness”, were kept by Petiot et al.
[15] and Muñoz Arancón [14] in subsequent studies. One
should, however, note that “ease of playing” is alternatively
denoted as “softness” [15] and “brightness” as “timbre” [14].
Gangl et al. [71] also categorized the reeds according to their
“playing ease”. Taillard [55] assessed the reeds himself
according to two descriptors (“subjective strength” and
“intonation”) and to their abilities to play the first lines of
particular musical pieces (a Poulenc sonata and a Schubert
lied). Parameter assessment can also be used to obtain a reed
ranking, as did Kemp and Scavone [67] in order to rank the
reeds with respect to the “perceived stiffness”.

Such abilities and parameters can also be used to derive
an overall quality score. Kolesik et al. [69] carried out

subjective assessments by two “experienced clarinettists”
according to the abilities of the reed to produce:

� “a clear tone over the range of the instrument”,
� “clear and rapid articulations over the range of the
instrument”,

� “smooth slurs between high and low notes”,

and to play:
� “the note F6 (clarinet pitch) with the conventional fin-
gering in tune”,

� “the note A9 easily and in tune”,
� “without great effort upward to C7”.

Each reed was subsequently categorized as “good”, “fair”
or “poor” overall quality on the basis of its average perfor-
mance along these abilities. Similarly, Mukhopadhyay
et al. [68] defined the reed “overall quality score” as the aver-
age of the ratings on the following parameters: “ease of
attack”, “ease of sustenance”, “tone quality in the low, mid-
dle, and high ranges of the instrument”, and “score for
volume”.

In all, one can observe a large variety in the criteria
studied from one study to another. On one hand, two differ-
ent descriptors assessed in a single study may prove to be
highly correlated (e.g., “ease of playing” and “brightness”
[66]). On the other hand, a descriptor designed to describe
the same perceptual feature may be designated by different
terms across studies (e.g., “ease of playing”/”softness” [15,
66] or “brightness”/”timbre” [14, 66]), despite being con-
ducted by the same coauthors. As a result, the correlation
between “ease of playing” and “brightness” highlighted by
Gazengel et al. [66] was subsequently reaffirmed by Petiot
et al. [15] who reported “softness” to be correlated with
“brightness”, as can be seen in Figure 11.

In order to tackle the semantic issue related to criteria
definition, Koehl et al. [72] tried to identify the perceptual

Table 1. Chronological list of the studies about single reed perception. The subjects and assessment methods are reported following
the terminology used by the respective authors.

Year Material Subjects Assessment

1995 [13] Clarinet (100 reeds) 10 clarinet students (professional or
preprofessional)

Overall quality 5 descriptors

1998 [69] Clarinet (60 reeds) 2 experienced clarinettists (including 2nd
author)

6 abilities (averaged as overall quality
category)

1999 [65] Clarinet (10 reeds) 32 clarinet players (professional) 5 quality factors
2003 [50] Clarinet (24 reeds) 2 clarinet players (professional soloists) Musical quality (4 categories)
2007 [68] Alto/tenor saxophone (25

reeds)
1 experienced musician (3rd author) 6 parameters (averaged as overall quality

score)
2014 [70] Clarinet (9 reeds) 2 clarinet players (professional and author) Musical quality (good/mediocre)
2016 [66] Clarinet (200 reeds) 1 expert musician (professional reed tester) 3 descriptors
2016 [71] Clarinet (27 reeds) 2 professional clarinetist 1 parameter (3 categories)
2017 [15] Tenor saxophone (20 reeds) 10 saxophone students (skilled musicians) Global quality 2 descriptors
2017 [14] Tenor saxophone (20 reeds) 7 musicians (amateurs and professionals) Global quality 2 descriptors
2018 [55] Clarinet (40 reeds) 1 professional clarinetist (author) 2 descriptors 2 abilities
2020 [67] Alto saxophone (8 reeds) 1 jazz musician (professional) 1 parameter (ranking)
2022 [72] Tenor saxophone (12 reeds) 1 professional saxophonist Dissimilarity 4 criteria
2023 [63] Clarinet (13 reeds) 2 experienced musicians (including 1st author) Overall quality (good/bad)
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dimensions that are used to differentiate between reeds. By
using a similar approach as the one used to identify musical
timbre dimensions thanks to multidimensional scaling [73],
dissimilarity judgments were obtained for 12 reeds in paired
comparisons. The timbre of wind instruments [74],
saxophone [75] and clarinet [76] has already been studied
this way, but from the listener’s point of view. However,
the difficulty of performing dissimilarity judgments
(66 pairs) for a professional saxophonist in a playing situa-
tion led to even less reliability than when assessing the four
criteria defined by the musician himself (“strength”, “color”,
“emission” and “reactivity”).

3.3 Summary about perceptual reed assessment

All the perceptual studies cited above are chronologi-
cally ordered in Table 1. To sum up, one can observe large
methodological differences between these studies that do
not enable so far to draw general conclusions about percep-
tual reed assessment. Therefore, the establishment of rela-
tionships between perceptual assessments and physical
properties of the reeds is not straightforward.

In addition, large variations in the experimental condi-
tions may also be observed within one given study. As an
example, all the subjects involved in a study are not
necessarily asked to assess the same reed subset [13]. The
perceptual assessments may also be carried out by using
different instruments [15] or mouthpieces [50] when the sub-
jects were allowed to use their owns. All these discrepancies
do not facilitate the prediction of perceptual assessments by
physical characteristics.

Nevertheless, the physical measurements that were
carried out alongside the perceptual assessments (and that
are described in Sect. 4) still enabled to highlight physical
correlates of global quality, ease of playing, intonation (or
playing frequency [3]), and timbre (mostly brightness).

4 Physical measurements on reeds

The studies presented in Section 3 are dedicated to
perceptual tests, but they also include physical measure-
ments in order to establish relationships with perceptual
observations and to possibly predict the reed qualities prior
to perceptual assessment by musicians. In addition to these
studies, several other ones were solely devoted to the phys-
ical characterization of the reeds. An exhaustive list of the
measurement methods is structured in Figure 12, where
the studies including also perceptual assessments are indi-
cated in bold. The present section describes the measure-
ment methods presented in Figure 12. The link between
perceptual assessments presented in Section 3 and physical
measurements presented here is presented in Section 5.

The physical measurements can be gathered into two
main categories, namely destructive and non-destructive
methods.

Destructive methods were designed to study thematerial
parameters. Once the reed is cross-cut, the inner structure of
Arundo donax can be observed thanks to optical measure-
ments with microscopes. Mechanical measurements, in
either static or dynamic conditions, can also be carried out
to measure material properties such as stiffness or Young’s
modulus. As the reeds are always destroyed prior to charac-
terization, these methods are generally applied to small reed
samples and cannot be used for industrial purposes.

Non-destructive methods were then designed to avoid
this main drawback; they are of two types. On the one
hand, the sole reed can be studied to measure several phys-
ical parameters. Among others, its external geometry, its
global or local stiffness, and its vibration modes can be mea-
sured. On the other hand, reed behavior can be observed in
playing situations with either an artificial or a real musi-
cian. Reed parameters (equivalent stiffness for example),
playing parameters such as frequency, spectral centroid,
threshold pressure, and sound pressure level are estimated
using signal analysis. The link between these parameters
(perceptual descriptors and reed physical parameters)
enable to better understand the role of the reed.

The typical numerical values of the parameters pre-
sented in the section are presented in Appendices A–C.

4.1 Destructive methods

The purpose of destructive studies is to get insight into
the reed material Arundo donax by measuring its physical
properties. The design of a destructive study begins
with the collection of reed samples extracted from the heel
(i.e. the reed’s thickest part). The reed sample can be
directly observed from a microscopic point of view to gather
information about the biological structure. The structure of
the different type of cells and vascular bundles is revealed.
Reed samples can also be submitted to mechanical tests
to measure the mechanical properties of Arundo donax, in
either static or dynamic conditions. The material stiffness
is measured in static conditions, whereas the Young’s
modulus can be measured in both static and dynamic
conditions.

Figure 11. Relationship between “softness” and “brightness”
assessments (average within 95% confidence interval) for 20
reeds [15].
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Optical observations

Reserchers from ITEMM [77] observed the reed cross-
sections. A thin slice of a clarinet reed heel is observed
thanks to tomography. The cross-section is made of two
main parts: firstly the outer part and secondly the inner
part depicted in Figure 13.

The epidermis and the fiber band are on the outer part
of the cane. These layers are completely removed from the
vibrating part of the reeds. The inner part of the cane is
called cortex. It contains a matrix called parenchyma made
of compliant cells accounting for 43%–57% of the whole cor-
tex [10, 78]. Parenchyma is inlaid of vascular bundles as
presented in Figure 13. Inside, the plant blood vessels
(namely phloems and xylems) are surrounded by a rigid
fiber ring. The fiber ring is oriented along the length of
the cane, forming a long tube. Thanks to scanning electron
microscopy, Casadonte [13] observed that the number of
vascular bundles increases from the inside to the outside
of the cane radius. Kolesik et al. [69], Kawasaki et al. [80]
and Veselack [10] reached the same conclusions.

Firstly, reeds differ in the quality of their fiber rings.
Some have wide and continuous fiber rings as shown in Fig-
ure 13 whereas some have just a few fiber ring cells. Sec-
ondly, reeds have different proportions of vascular bundle
fibers and parenchyma cells. Veselack [10] and Kolesik
et al. [69] reported that the growing environment of cane
impacts the cells structure. As an example, fast-growing
and immature canes present larger cells and thinner cell

walls. Canes grown in a plantation have a bigger proportion
of vascular bundles with a continuous fiber ring than wild
canes. Moreover, canes from crops have a higher proportion
of fiber and a lower one of xylem [69].

Mechanical measurements

Fibers constituting the fiber ring shown in Figure 13 are
responsible for the cane rigidity. Indeed, the fiber ring cells
have a higher Young’s modulus than the parenchyma cells.
Consequently, the mechanical properties of the reed depend
on the quantity, quality and distribution of fibers within the
material. The mechanical properties of the materials can be
assessed under both static and dynamic conditions.

In static condition, the object is measured thanks to a
force that is constant in time. Generally speaking about
reed mechanics, this type of measurement is used to obtain
mechanical parameters such as stiffness and Young’s mod-
ulus. A nanoindentation system was used by Kawasaki
et al. [79] to measure the Young’s modulus of clarinet reeds
heel samples. In the longitudinal direction (from the heel to
the tip, in the direction of the fibers), this parameter reaches
7 GPa. Ukshini and Dirckx [80] were also interested in
observing the static parameters of reeds. By applying a
punctual force to tenor saxophone reed heel samples, he
measured longitudinal (Ex) and transversal (Ey) Young’s
moduli. The resulting Ex (5 GPa) is 10 times greater than
Ey (0.5 GPa), making Arundo donax a highly anisotropic
material. This result is of the same order of magnitude as

Figure 12. Overview of the different methods to study single reeds. A perceptual study was carried out for references in bold.
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Kawasaki et al. [79]. A comparison between a wet and a dry
specimen showed that both Ex and Ey are lower for the wet
reed (respectively 3.1 GPa and 0.1 GPa), with an increasing
difference in the transversal direction [80]. As a consequence
a wet reed is more flexible than a dry one.

The chemical composition of the plant can explain this
observation. In fact, parenchyma cells are filled with cellu-
lose and contains glucose, fructose and sucrose which are
water-soluble extractives. As a consequence, in contact with
water or musician’s saliva, the substances are extracted
from the cells [78]. This may cause a shrinkage of the cells
and changes in the mechanical behavior of the reed. Long
term effects can cause excessive deterioration of the reed.
Obataya et al. [65] tried to understand this phenomenon
thanks to a dynamic measurement method.

They studied the role of the extractives on the reed
properties (dynamic Young’s modulus, internal friction)
using dynamic measurements with various levels of relative
humidity and different excitation frequencies. Especially, a
free-free beam flexural method was used. In this way, vibra-
tional modes were studied via the estimation of the eigen-
modes and modal parameters. Obataya et al. [65]
compared the dynamic Young’s modulus (E0) of chemically
modified samples of reeds. Some were freed from the water-
soluble extractives and among these, some were impreg-
nated with glucose. Their behavior was compared to
untreated reeds, as shown in Figure 14. E0 of untreated
and glucose-impregnated reeds have the same evolution
even if it is constantly smaller by 0.5 GPa for the glucose-
impregnated reed. E0 increases with frequency (Fig. 14a)
and decreases with the level of ambient relative humidity
(RH) measured in a closed box (Fig. 14b). The effect of
RH on the E0 of water-extracted reeds is negligible.

It should be noticed that the extracted reeds and the
glucose-impregnated reeds have respectively a smaller and
a higher density than the untreated reeds.

4.2 Non-destructive methods

In Section 4.1, several studies applying destructive
methods to reeds were presented. Both biological and

mechanical material parameters can be estimated this
way. The information gathered provides a better under-
standing of the material structure but remains insufficient
to fully characterize reeds. Specifically, several conclusions
drawn from these studies cannot be extended to the whole
reed as the cross-section is not constant. Moreover, the
destruction of the reeds rules out the possibility of using
these methods for industrial purposes.

Instead, non-destructive methods can be used, firstly on
the reed itself without mouthpiece or resonator. The exter-
nal geometry of the reed can be verified using manual mea-
surements of the reed cut or by image analysis. Images can
also reveal the internal structure of the reed and the geo-
metrical arrangement of fibers from the tip to the heel. Elec-
tromagnetic and mechanical setups can be used to measure
structural parameters. In static conditions, stiffness and
compliance (i.e. the inverse of stiffness) of the reed tip can
be estimated. In dynamic conditions, vibrational modes of
the reeds can be characterized by their shape and eigenfre-
quency, as well as material parameters such as shear and
Young’s moduli.

Secondly, the reed can be studied in a playing situation,
with an artificial player or a real musician. This time, the
reed is an integral part of the exciter coupled to the res-
onator. Various signals can be recorded using sensors and
microphones incorporated into the instrument. With these
acquisitions, it is possible to observe the movement of the
reed in interaction with its environment, estimate the reed
parameters, and estimate parameters related to the signal
produced by the instrument.

4.2.1 Unmounted reeds

The simplest way to measure reed parameters is to con-
sider the reed alone to avoid the effect of mouthpiece and
ligature. Even musicians can proceed to easy measurements
since commercial tools have been designed. They enable to
control some reed parameters and eventually adjust them
when needed. For this purpose, Groom [9] developed a man-
ual single reed micrometer accurate to one-thousandth of an
inch (25.4 lm). It enables the musicians to measure the reed
thickness over a 35-points mapping and control the regular-
ity of the cut (i.e. shape, also known as profile). According
to her, this device is intended to help the musician to
enhance the reed quality. He may recover the reed lateral
symmetry by adjusting the thickest part of the reed. Hanai
[81] designed another test rig using the same self-made mea-
surement principle on several points. Instead of estimating
the reed thickness, the rigidity of the reed is measured.
More information about this type of measurement is pro-
vided in the following paragraph Mechanical measure-
ments. Gangl et al. [71] were also interested in manual
measurements and used a third type of commercial tool
aiming at estimating the hardness of the material. They
only concluded that this method cannot be used to compare
reeds of different materials or strength.

To take this a step further, the researchers have devel-
oped other measurement benches designed for research
and not for commercial use.

Figure 13. Tomographic reconstruction of the inner part of
Arundo-Donax. This picture has been provided by ITEMM [77]
(FR = fiber ring, P = phloem, X = xylem).
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Image analysis
The profile geometry of the reed can be analyzed thanks

to image analysis. Cazalans et al. [82] experimented X-ray
microtomography. This technique results in pictures of mul-
tiple longitudinal or transversal slices of the measured reed.
In addition to being very accurate, this technique provides
information on the internal structure of the reed. In partic-
ular, the amount of cane fiber and its distribution across the
width of the tip can be examined. Thanks to microscopy,
Kemp et al. [67, 93] observed the fiber distribution along
the entire length of the reed. The conclusion of this work
was that most fibers are continuous from the heel to the
tip of the reed. Figure 15 illustrates this observation.

Electromagnetism
The inner structure of the reed can be studied by

employing planar electromagnetic sensors as suggested by
Mukhopadyay et al. [68]. They indirectly measured mate-
rial parameters such as dielectric permittivity e measured
in, magnetic permeability l measured in and electric con-
ductivity r measured in by using a specially designed sen-
sor. It does not appear to be a direct method for assessing
the contribution of the three parameters to the transfer
function. Nevertheless, the authors believe that dielectric
permittivity is the most important characteristic responsi-
ble for the differences in reeds behavior as it resulted in a
frequency shift in the phase response of the sensor.

The method provided promising results in the high fre-
quency domain but required expertise in sensor implemen-
tation and expensive state-of-the-art technology. As a
result, no one has attempted to take this approach any
further.

Mechanical measurements
As for destructive methods, the mechanical properties of

the reed itself can be studied under static and dynamic
conditions.

Measurements under static conditions are an interest-
ing option. In fact, this method is a major part of the reed
manufacturing process. The reed strength, which is usually
indicated on the reed by a number between 1 and 5, is typ-
ically measured this way [8]. It can be obtained by using an
automated measuring bench that imposes a linear displace-
ment across the entire width of the reed tip. The force
induced by this displacement directly provides the reed
strength.

Gazengel et al. [66] measured saxophone reeds in the
same way. The heel of the reed was fixed and the vamp
remained free. A spring with a known stiffness bends the
reed tip. In this way, both the reed tip displacement and
the force induced by the spring were known. From these
two variables, the authors deduced reeds compliance (in-
verse of stiffness). Alongside the static compliance, they
measured the dynamic compliance of each reed. These
two quantities were found to be highly correlated, with a
correlation coefficient R = 0.99. In addition to global reed
compliance, it may be interesting to measure local reed
compliance. In this way, measurements can be used to fur-
ther differentiate between reeds. Reeds may have identical
overall compliance but differ locally in width or length. This
idea was followed by Hanai [81] to design his own commer-
cial test rig (previously presented in Sect. 4.2.1). Gangl
et al. [71] investigated local compliance using the same tech-
nique as Gazengel et al. [66]. The compliance was measured
in three points aligned on the reed center at 0 mm, 8 mm,
and 16 mm from the tip and compared for 9 cane and 18
synthetic reeds of different strengths. Similar stiffness val-
ues were obtained for reeds of the same strength but made
of different materials.

Kemp et al. [67] were also interested in local stiffness
measurements on clarinet reeds. Reeds were studied
through the measurements at 3 points distributed over
the width at 1 mm and 4 mm from the tip. The first conclu-
sion of this work is that the local stiffness of the tip is cor-
related with the local amount of vascular bundles.

Figure 14. Effects of frequency and relative humidity on the dynamic Young’s modulus of untreated (black dot), water-extracted
(white dot) and glucose-impregnated (black square) reed from Obataya et al. [64]. (a) Evolution of E0 at 33% relative humidity plotted
against frequency. (b) Effect of relative humidity (RH) on E0 at the first vibrational mode.
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Secondly, investigations about the evolution of reeds over
time revealed that the more the reed is played, the more
the reed tip stiffness decreases. After 300 min of playing,
the reed stiffness has decreased by almost 45%. Finally,
Gaillard et al. [63] also designed a test rig to measure local
stiffness. The main objective of this experimentation was to
measure the stiffness symmetry of the reed tip. For this pur-
pose, stiffness measurements were carried out at 11 points
distributed over the width at 3 mm and 10 mm from the
tip. The stiffness profile obtained was then approximated
by a parabola where one of the coefficients indicates the
maximum stiffness of the reed tip. Its values were of the
same order of magnitude as the measurements by Kemp
et al. [67]. Another coefficient was found to indicate the lat-
eral position of the maximum which quantifies the asymme-
try of the reed tip. An example of measurements can be seen
in Figure 16.

To better understand the physical behavior of a reed in
a playing situation, it is important to consider it under
dynamic conditions. This can be obtained thanks to a
forced excitation that is usually applied by a loudspeaker
located in the mouthpiece or in a cavity close to the reed
[66]. This method enables to reveal the shapes and eigenfre-
quencies of vibrational modes. To carry out such measure-
ments, optical methods as holography were used by Pinard
et al. [50], Picart et al. [83], Stetson [70] and Taillard et al.
[27]. This non-invasive technique consists in projecting a
monochromatic light from a LASER on the reed. The phase
of the reflected light on the reed is recorded by interferom-
etry and compared to the phase of the reference ray [94].
Three different categories of modes can be identified on sim-
ple reed, as some examples can be seen in Figure 17: flexural
modes, torsional modes and mixed modes.

According to Pinard et al. [50], the reed quality relies on
the presence and symmetry of the first torsional mode.
They concluded that the symmetry enabled a uniform air
flow and an easier sound emission. In order to verify this
assumption under more realistic conditions, they repro-
duced the same measurement when humidifying each reed

beforehand. The conclusions were the same, but the modes
appeared at lower eigenfrequencies for humidified reeds. As
an example, for the first bending mode, the resonance fre-
quency of a clarinet reed dropped from 2200 Hz to
1800 Hz. Stetson [70] reached the same observation. This
is in agreement with the fact that moisture adds mass to
the vibrating part and reduces its rigidity. Taillard et al.
[27] showed that the eigenfrequencies of these flexural
modes depend on the longitudinal Young’s modulus (Ex).
For the torsional ones, they depend on the shear modulus
in the tangential plane (Gxy). For the mixed modes, the fre-
quencies depend on both (Gxy) and (Ex). Then, they
designed a numerical simulation of a viscoelastic model by
Finite Element Method (FEM) which confirmed these
experimental observations for the first fifteen modes.

All these measurement methods appear to be suitable
for studying the reeds themselves. They have proven their
efficiency but do not provide information about the reed
behavior in real playing condition. Firstly, the boundary
conditions were generally not realistic, as the reed was typ-
ically not clamped on a mouthpiece. As a consequence, the
reed could not bend on the mouthpiece rails as it should in a
playing situation. Secondly, even if the reed was attached to
a mouthpiece and able to vibrate, as it was the case for
dynamic holographic measurements, the excitation level
was far below what can produce a real musician. The level
of excitation is around 100 dB SPL for a loudspeaker
whereas it can reach 150 dB SPL in a real situation. Thus,
to go further in reed understanding, measurements in arti-
ficial or real playing conditions were designed.

4.2.2 Reeds in playing conditions

Artificial conditions
The first approach consists of using an artificial player.

This makes it possible to observe the reed behavior in
repeatable playing conditions. For this purpose, the reed
is attached to an instrumented mouthpiece (clarinet or sax-
ophone) with a ligature. The mouthpiece is equipped with

Figure 15. A: optical and corresponding segmented images of the underside of an alto saxophone reed (z = 0 according to Fig. A1),
with identified solid fibers shown as shaded/colored regions. B: reed tip (T) and heel (H) subsections of segmented images for three
reeds. Black scale bars are 1. Adapted from Kemp [92].
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various sensors measuring pressure, displacement, or force.
An artificial lip and a resonator are added to the device.

Two types of artificial musicians can be designed, as
shown in Figure 18. An artificial musician of the first type
applies an overpressure at the entrance of the mouthpiece
(Fig. 18a). The mouthpiece and sensors are located in a her-
metic enclosure modelling the mouth cavity. By increasing
the air pressure in the box, as the musician would do in his
mouth, the reed vibrates. It is also possible to design an arti-
ficial musician of the second type by applying an underpres-
sure at the end of the mouthpiece (Fig. 18b). In this case,
the mouthpiece is in the open air. In the same way as for
the first type, the pressure difference allows the reed to
vibrate, which induces self-sustained oscillations. This kind
of device is more convenient to study reeds since it does not
necessitate to open the box to replace the reed. However,
this test rig does not allow the use of a side-hole resonator.
As the resonator is a cylindrical tube, only one note can be
played.

Using an artificial musician enables to study the reed in
different conditions, such as static, quasi-static, and
dynamic, which is not possible with a real musician.

In static conditions, the device is partially used as it
does not apply any air pressure variation. This type of mea-
surement makes it possible to estimate the channel opening
as a function of the lip position alongside the z-axis (see
Fig. A1 in Appendix A). Taillard [55] designed such a sys-
tem. He recorded the distance between the reed tip and the
mouthpiece for 40 new reeds at 16 lip positions in the z
direction. Each lip position induces a force distributed on
the reed along the y-axis but he did not record it. The mea-
surement was repeated after a break-in on these same reeds
in 25 positions. Taillard pointed out two consequences of
the break-in process. According to him, the reed channel
height becomes smaller and the reed tip undergoes a slight
deformation.

In quasi-static conditions, both the overpressure system
[26] and the underpressure system [32, 56] can be used.
Pressure variations are here applied by the system, but in
such a way that the reed does not vibrate as in playing

conditions. Such measurements are conducted in order to
validate models of the nonlinear characteristics of the reed
and mouthpiece, as illustrated by the equation (6). It is also
possible to estimate reed parameters such as the initial
opening of the reed channel h00, the closing pressure PM

or the leakage cross-section [32]. Dalmont et al. [26]
designed an overpressure artificial musician that enabled
them to increase the pressure in the mouth cavity until
the reed completely closed the channel. Then the pressure
gradually decreased until the reed channel opened to an
equilibrium position. While the pressure changed, the
height of the reed channel was measured. This process
may be repeated for several lip positions.

Taillard [55] plotted the aeraulic section S as a function
of pressure drop �p for 7 different lip forces on the reed. It
appeared that all functions contained a straight line of iden-
tical slope. Gazengel et al. confirmed this result [32] that is
summarized in Figure 19. The characteristic of the system
appears to be nonlinear when the reed bends on the mouth-
piece rails. Dalmont et al. [26] also carried out such mea-
surements and concluded that the reed stiffness is
approximately the same for an increase or decrease in pres-
sure. In addition to this observation on the reed opening,
they obtained the nonlinear characteristic of volume flow
as a function of pressure. For both measurements, the the-
oretical and experimental curves were superimposed, which
validate the two-equation model (Eq. (5)) which ignores the
reed dynamics.

In order to gain insight about the reed behavior in a sit-
uation that is close to a real musician playing, self-sustained
oscillations shall be used in order to create realistic vibra-
tion levels. Experiments with artificial musicians in
dynamic conditions can provide information about the reed
vibration parameters as frequency and displacement. Both
periodic (i.e. producing a note of the tempered scale) and
chaotic (i.e. producing an unpleasant squeak) regimes can
be created [86] by adjusting the lip force and the mouth
pressure. The next part of this article is devoted to periodic
regimes obtained with artificial musicians in dynamic
conditions.

McGinnis et al. [84] used an artificial player combined
with a stroboscope to measure the vibration frequency of
a clarinet reed. They firstly observed that the reed vibration
frequency is the same as the expected fundamental fre-
quency of the tone produced. Thompson et al. [20] justified
this observation by pointing out that the sound quality is
better when the reed vibration frequency is close to the
playing frequency, as the production of energy is maxi-
mized. As a result, the oscillation of the air column is stabi-
lized by increasing the feedback at the reed frequency.
Besides, it has been shown that the reed channel opening
surface is proportional to the mouthpiece pressure [87].

McGinnis et al. [84] secondly showed that a complete
cycle of reed displacement included complete closure of
the channel. Backus et al. [88] completed this statement
by reporting that the channel was closed during half of
the cycle for loud tones for the clarinet. The closure time
decreases as intensity decreases, so that the channel remains
open for very soft sounds. Picart et al. [83] confirmed this

Figure 16. Stiffness profile at 3 mm from the tip of a clarinet
reed and its approximation by a parabola.
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finding and went even further by decomposing the reed dis-
placement for very loud sounds in four steps as shown in
Figure 20. The channel is open between letters A and E.
From E et F, the channel is closing and the reed is wrapping
around the mouthpiece until J. It should be noticed that the
reed bounces on the mouthpiece at point G. Finally, the
reed moves away from the mouthpiece to reach the maxi-
mum opening at A.

Picart et al. [83] also confirmed the theory of McGinnis
et al. [84] about the shocks between the reed and the
mouthpiece when the regime of the beating reed is reached.
These shocks are likely to highlight high-rank modes of the
reed which contribute to the production of a “metallic”
sound. The authors concluded that the local material prop-
erties at the tip of the reed play a prominent role in the
vibrational behavior of the reed and, by extension in the

timbre. This effect on the timbre is caused by the interac-
tion between the reed and the mouthpiece as the high-level
vibrations of the reed are constrained by the mouthpiece lay
geometry [87]. Ukshini and Dirckx [85] were also interested
in this phenomenon which led them to study 3D vibrational
pattern of saxophone reeds in relation to different mouth-
pieces. They used an artificial musician with two high-speed
cameras to record the reed movements and a microphone at
the bell of the instrument. They concluded that the shape of
the mouthpiece and the lip force both change the amplitude
of the reed vibration and its harmonic content. In addition,
it appeared that the first bending mode of the reed is the
most present compared to any other mode.

Artificial musicians do not represent the exact same
playing conditions as real ones since the control parameters
are only estimates. On the one hand, clarinetists and

Figure 18. Sketches of two different artificial mouth systems. (a) Artificial mouth designed by Dalmont et al. [26] with overpressure
system. (b) Artificial mouth designed by Muñoz Arancón et al. [95] with underpressure system.

Figure 17. First 3 modes of each type (Flexural, Torsional and Mixed) of a dry clarinet reed with their frequency ranges obtained by
Taillard et al. [27]. This figure is adapted from their work.
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saxophonists adjust the geometry of their vocal tract to
modulate the timbre of their instrument [96–100]. On the
other hand, the role of tongue shape and displacement is
crucial in pitch and articulation control [90, 101]. Neither
the effect of the vocal tract nor that of the tongue is taken
into account when using an artificial musician, except in
[43, 102] where the authors use an artificial mouth equipped
with an artificial tongue. Only the volume of the hermetic
box can be controlled to be similar to that of a musician’s
mouth [103]. Nevertheless, a significant relative difference
has been observed in the reed displacement between artifi-
cial and real musicians that can reach up to 30% [95]. To
avoid these problems and to better understand the way real
musicians play their instruments, real-condition experi-
ments are designed. Therefore, instrumented mouthpiece

and recordings of the acoustic pressure at the instrument’s
bell are used.

Real conditions
Measurements in real conditions may be conducted for

three main reasons, detailed below:
� to better understand how musicians play their instru-
ment and use it for educational purposes,

� to estimate reed parameters via signal processing,
� to estimate playing parameters such as playing fre-
quency, sound pressure level, threshold pressure.

Firstly, these measurements are made to better under-
stand how clarinetists and saxophonists play their instru-
ment. By using an instrumented mouthpiece, it is thus
possible to obtain pressure values in the musician’s mouth
and mouthpiece. Fuks et al. [88] conducted such experi-
ments with musicians. Thanks to pressure sensors inte-
grated in clarinet and alto saxophone mouthpieces, they
recorded the blowing pressure in the musician’s mouth for
different pitches and dynamic levels. The pressure typically
ranges from 2.0 kPa to 5.9 kPa and from 1.3 kPa to 8.3 kPa,
for clarinet and saxophone respectively. Even if these mea-
surements are not directly related to reeds, they may con-
tribute to their study. Indeed, realistic pressure levels
could be applied to artificial musicians. Pamiès-Vilà et al.
[90] measured the same order of magnitude for the mouth
pressure of clarinet players. In addition, their results
showed that mouthpiece pressure is higher, reaching 6 kPa.

The musician’s lip plays a major role in sound produc-
tion. It is pressed directly against the reed with a certain
force controlled by the player. This force determines the
height h0 defined in Section 2. Guillemain et al. [91] mea-
sured the lip force with an FSR (Force Sensing Resistor)
simultaneously with mouth and mouthpiece pressures. A
saxophonist played a chromatic scale in the first register
with legato. The lip force appeared to be fairly constant.
When the musician separated the notes with his tongue,
the lip force did not remain constant. As a result, the lip
force was close to 0 before the attack of each note, as can
be seen in Figure 21. These experimental values can also
give indications to monitor the lip force applied by an arti-
ficial musician. However, measuring the lip force on the reed
in this way is extremely complicated. As a matter of fact, it
is necessary to stick a force sensor on the reed, which is
likely to considerably hinder the musician’s natural playing.
Moreover, the FSR signal does not inform about the force
value but gives only information about the force signal
shape.

Secondly, such experiment setups can be used to study
the reed behavior and to evaluate several of its parameters
as equivalent stiffness, damping and mass. The first exper-
iment in this way was conducted by Boutillon et al. [92].
Their aim was to compute saxophone reed stiffness from
the measured input impedance of the instrument. In addi-
tion, the mouthpiece pressure was recorded while a musi-
cian played a note trying to keep a constant embouchure.
It means that the musicians have to place the mouthpiece
in the optimum mouth position to produce a stable sound.

Figure 20. Reed displacement during one period of vibration
measured by Picart et al. [82]. The reed channel is open between
letters A and E. The channel is then closing until F and opens
again from letter J.

Figure 19. Effective section Se as a function of pressure �p for
6 different static lip forces F0, adapted from Gazengel et al.[32].
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This method proved to be promising as the computed
stiffness values were of the same order of magnitude as pre-
vious results [57, 104]. However, the values were dependent
on the measurement duration, the pitch and the dynamic of
the note played. Then, Chatziioannou et al. [24] suggested
an inverse modelling method to estimate clarinet reed
parameters. They also planned to compute the reed stiff-
ness, damping and effective surface as well. They recorded
pressure and flow signals in a clarinet mouthpiece with
three microphones. The parameters were calculated and
optimized through a numerical procedure, taking into
account a simplified lumped model intended to capture
most of the dynamics of the reed-mouthpiece system. A 4-
second-long single sustained note played by a clarinetist
was recorded. Based on this recording, the proposed
method provided numerical values for the reed parameters.
Muñoz Arancón et al. [42] also designed a study to get an
estimate of the reed parameters. Contrarily to Boutillon
et al. [92] and Chatziioannou et al. [24], a direct method
that does not require the whole instrument model was
designed. The method enabled them to measure the pres-
sure difference across the reed and the reed displacement
by using an instrumented mouthpiece. The measured data
was then used to estimate the parameters used in equation
(11). They concluded that the most relevant model is the
nonlinear oscillator containing nonlinear stiffness and
damping, as illustrated by Figure 22. In addition, its esti-
mations were the most accurate for small reed oscillations
that do not generate reed beating. The typical values of
all of these parameters are presented in Appendix A.

Last but not least, experiments performed in real-life
situations with musicians, like those conducted by Petiot
et al. [15], allow for the relationship between physical mea-
surements and perceptual evaluations. In parallel to the
perceptual study detailed in Section 3, a physical study
with two saxophonists was conducted. Both the mouth
and mouthpiece pressure were recorded thanks to an instru-
mented mouthpiece. The acoustic pressure at the bell of the

saxophone was also measured. Two additional saxophonists
performed arpeggios using the twenty reeds that were eval-
uated in the perceptual tests. Thirteen acoustical parame-
ters extracted from the recorded signals were selected for
further analysis. They highlighted that the threshold pres-
sure which corresponds to the pressure in the mouth at
the beginning of the permanent regime PTh was highly cor-
related to five of these parameters as can be seen in
Figure 23:

� Spectral Centroid SC,
� Odd-harmonic and Even-harmonic Spectral Centroid
OSC, ESC,

� 2 Tristimuli TR3 and TR4 respectively defined as the
ratio between the power of the higher harmonics from
the 5th and the harmonics above 4000 Hz, and the
total power of the harmonics.

They also showed that the acoustical parameters related
to the mouth pressure were correlated with the timbre
features.

4.3 Summary about physical reed measurement

The twelve families of experimental methods presented
in Figure 12 for studying reeds have been detailed in this
section. About 40 different experiments were carried out
and some reached similar conclusions. In particular, micro-
scopic observations of the reed cross-section enabled to con-
sistently characterize the biological structure of the cane.
Vascular bundles are inserted into the cell matrix called
parenchyma. Depending on the growth conditions, fibers
around the vascular bundles are more or less thick and
numerous. The characteristics of these fibers impact the
mechanical properties of the reed sample.

Mechanical measurements on the unmounted reed led
to consistent results on the stiffness in static and dynamic
conditions. Dynamic conditions showed that the first vibra-
tional mode of the reed is far more present than the upper
modes and slightly damped. These observations were car-
ried out by different authors that obtained numerical values
of the same order of magnitude for the eigenfrequencies [50,
70, 83]. The values are detailed in Appendix A.

As measurements on the unmounted reed does not give
information about its behavior in playing conditions, some
authors designed experimental protocols with both musi-
cians and artificial musicians, with the reed linked to a
mouthpiece and a lip. Such measurements can be used to
observe, confirm and explain the results obtained in simula-
tions. Moreover, the signals obtained (mouthpiece and
mouth pressure, lip force and reed displacement) are repre-
sentative of the reed behavior since the measurement are
conducted under playing conditions.

However, the differences in the various test rigs designed
and especially the different artificial lips led to incomparable
situations between the different artificial musicians. The
complexity of the instrumentation increases when a real
musician takes the place of the artificial one. Because of sen-
sors implemented in the mouthpiece, the clarinetists or sax-
ophonists may play with an unusual embouchure that does

Figure 21. Mouth pressure, mouthpiece pressure and lip force
of a saxophonist playing a chromatic scale. The notes are
attacked [90].
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not reflect their playing habits. In addition, the environmen-
tal conditions of the reed, such asmoisture and temperature,
vary over time. Consequently, the physical reed parameters
and the reed vibrational behavior may also vary, which
makes the comparison between authors difficult.

5 Conclusions and perspectives

The present review aims at bringing together the
numerous studies about single reeds and classifying them
in three thematic categories.

A description of the reed’s physical behavior and model-
ing techniques are covered in Section 2. Two families of
models are used in the literature. The first family comprises
the lumped element models. At a simple level of complexity,
these models describe the reed as a simple stiffness, which
enables the prediction of the threshold and closing pressures

while knowing the opening at rest between the reed and the
mouthpiece. These models can also take into account the
dynamics of the reed and the contact force that relates
the contact between the reed and the mouthpiece rails. In
this case, the reed resonance frequency and the damping
factor have an impact on the threshold pressure. The effec-
tive surface and the embouchure parameter (related to the
opening at rest) have an impact on the regime selection and
the playing frequency. The existence of a contact force
explains the high-frequency components of the pressure sig-
nal due to the shock between the reed and the mouthpiece.
The second family comprises the distributed models. These
models make it possible to observe the fine behavior of reed
vibration and to also estimate equivalent mechanical
parameters (Young’s modulus, . . .) by comparing measure-
ments and simulations.

Section 3 summarizes the studies about the perceptual
assessment of reeds by musicians. As indicated in Table 1,

Figure 22. Pressure difference p � PM vs simulated (green) and measured (blue) displacement for the different physical models with
small oscillations {piano} from Muñoz Arancón [14]. Left: linear models, right: nonlinear stiffness models. Up: models with stiffness
only, middle: models with stiffness and damping, down: models with stiffness, damping and mass.
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they have been carried out using custom test protocols and
methodologies. Consequently, the comparison of their obser-
vations is not straightforward, and the general conclusions
that can eventually be drawn rely on numerous assumptions.
One of the main goals of these perceptual studies was to
explain the large perceptual differences that were observed
between reeds that were considered identical. In order to
establish a connection between the perceptual evaluations
and physical parameters, physical measurements were con-
ducted alongside each perceptual experiment.

Section 4 gives an overview of the numerous types of
physical measurements that have been carried out on reeds.
They were designed to measure biological or mechanical
parameters, either in playing conditions or on the
unmounted reed. The main relationships that were estab-
lished between physical properties and perceptual features,
especially regarding “overall quality” and “ease of playing”,
are recalled below.

Physical correlates of “global quality”

As stated in Section 3, there is no consensus on the exact
denomination of “global quality”. In any case, it seems that
several studies have reached similar conclusions when com-
paring the biological parameters of “good” and “bad” reeds
[10, 69, 79]. Firstly, a reed was considered to be “good” when
constituted of wide and, above all, continuous fiber rings as
shown in Figure 13. Secondly, a reed with a higher propor-
tion of vascular bundle fibers than that of parenchyma cells
was found better. Finally, the smaller the parenchyma cells
and the thicker the parenchyma cell walls, the better the
reed. In addition to this observation, Veselack [10] stated
that fast-growing and immature canes present larger cells
and thinner cell walls. She recommended to use two- or
three-years grown canes to produce “good” reeds. Kolesik
et al. [69] suspected that the environmental conditions of

the crop has an effect on the quality of reeds. Especially,
musicians reported that reeds made from harvested canes
are slightly better than reeds from wild canes.

Some authors have hypothesized that the reed quality is
related to the mechanical parameters describing its symme-
try. Firstly, a “good” reed is supposed to be geometrically
symmetrical. Groom [9] created a tool to control the reed
symmetry and adjust it when needed. Secondly, according
to Hanai [81] translated by Kawasaki et al. [79]: “The best
quality reed has symmetry of the local rigidity in the blade
tip”. The measurements of the static reed tip stiffness car-
ried out by Kemp et al. [67] and Gangl et al. [71] were in
agreement with this assumption. Finally, other authors
have also observed that reed quality is correlated with the
symmetry of the first torsional mode [50, 70], which should
contribute to the homogeneity of the reed tip movement.
Despite these promising first results, no firm link has yet
been established between reed symmetry and quality.

Physical correlates of “ease of playing”

Choosing “overall quality” for reed perceptual assess-
ment led to major disagreements between musicians [14,
15]. Using “ease of playing” as a descriptor enabled more
consistency in the assessments. While musicians may inter-
pret the notion of quality differently, the notion of “ease of
playing” is easier to understand and more universal.

Ease of playing can be physically quantified by the
threshold pressure or the mean pressure in the musician’s
mouth inducing reed vibrations, as shown by Petiot et al.
[15]. The reed compliance measured at the tip also proved
to be correlated with “ease of playing” (R = 0.74). The mea-
surements carried out by Gangl et al. [71] were in agree-
ment with this conclusion.

Muñoz Arancón [14] found the “ease of playing” descrip-
tor to be highly correlated (R = 0.95) with the timbre char-
acteristic “brilliance”, which is related to a high spectral
centroid of the radiated pressure as shown by Petiot et al.
[15] and confirmed by Gazengel et al. [66]. This can be
explained by the fact that soft reeds may easily beat on
the mouthpiece. As a consequence, the produced sound is
likely to contain more higher harmonics.

Physical correlates of “intonation”

The intonation is related to the playing frequency of the
instrument. According to the authors who studied the effect
of reed parameters h0, Ka, Ra, Ma, Sd on intonation, the
most important is the effective surface Sd which is responsi-
ble for the reed volume velocity as shown by Coyle et al.
[34]. However, simulation results obtained by Karkar
et al. [29] showed that the embouchure parameter f, which
is proportional to

ffiffiffiffi
h0
Ka

q
has an impact on the frequency at

the threshold, lowering the frequency (compared to the res-
onance frequency of the resonator) when increasing f.

The experimental work by Almeida et al. [105] demon-
strated that mouth pressure and lip force affect the playing
frequency. He showed that over the region of high pressure
(up to 7 kPa) and high force (up to 3 kPa), the playing
frequency increases both with increasing pressure and with

Figure 23. Principal component analysis on the 13 acoustical
variables extracted by Petiot et al. [15].
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increasing lip force. This shows that the effective surface
area Sd is decreased in both scenarios, except for low force
values, and suggests that Sd depends on the generalized
pressure defined in Section 2.2.2.

In his experimental and statistical approach, Taillard
[56] hypothesized that intonation is related to the opening
of the reed channel at rest h00 (without lip pressure). Statis-
tical analysis performed on 40 reeds reveals that the playing
frequency is inversely proportional to h00. However, except
for the work of Taillard [56], no other experimental study
about intonation has been carried out on many reeds, so
complementary investigations should be conducted to con-
firm this result.

Physical correlates of timbre

Obataya et al. [65] were interested in the timbral prop-
erties of reeds. In the perceptual tests they conducted, clar-
inetists played reeds that were subjected to chemical
treatments, eliminating extractive substances. They found
that the removal of extractives affected the softness and
richness of the sounds, but that the reeds’ ability to absorb
glucose restored them. They finally concluded that the
extractives play a major role in the acoustic properties of
the reeds. Casadonte [13] argued that a symmetrical reed
sounds better because it does not buzz. According to Tail-
lard [27], the more symmetrical the reed, the more brilliant
the sound. This is in line with the concept of buzz intro-
duced by Casadonte since a reed sounds good if the timbre
is “brilliant” instead of “buzzy”.

Perspectives

Despite the numerous studies carried out on reeds and
on reed’s perceived quality in particular, formal conclusions
on the subject remain insufficient. Further research is
needed to expand our knowledge. Lastly, the authors feel
that a number of directions should be investigated. First,
the protocols for perceptual studies with musicians need
to be improved so that intra and inter-musician agreements
are better verified. In addition, it would be interesting to
determine other indicators to describe the quality of a reed,
putting aside the ease of playing, which seems to mainly
dictate the musician’s sensations.

Second, mechanical measurements on reeds have
demonstrated their effectiveness, indicating that more
study in this field is necessary. First, more precise methods
for measuring static point stiffness on unmounted reeds
could validate the importance of symmetry in reed stiffness.
Second, using artificial musicians seems to be the most
promising avenue for future research. Indeed, artificial
musicians take into account the interaction between the
reed and the mouthpiece and are more representative of real
playing. Moreover, they offer a distinct advantage in the
study of the reed in a playing context, providing a more
robust and less complex approach than the use of real musi-
cians. Numerous studies would be worth considering, and
among them, the examination of the nonlinear part of the
reed stiffness on the mouthpiece would be particularly
interesting.
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Appendix A

Reed parameter values

This appendix gives the numerical values associated to differ-
ent materials (cane, synthetic) and different instruments (clarinet,
saxophone). The geometry of the reed is defined in Figure A1.

A.1 Geometrical parameters

The geometrical parameters of clarinet reeds are given in
Table A1.

A.2 Structural mechanical parameters

The structural mechanical parameters used in publications
dedicated to the numerical modelling of the reed in 1-D or 2-D
(see Sects. 2.2.3 and 2.2.4) are given in Table A2.

Guimezanes [51] shows that the mechanical parameters
depend on the longitudinal position on the reed (x axis) as given
in Figure A2 (with Lf = 35 mm) and Table A3.

A.3 Equivalent mechanical parameters

A.3.1 Reed alone
To our knowledge, Nederveen [56] conducted the first measure-

ments on reeds alone using a distributed static load. He reported
the values given in the Table A4 for different instruments. The
measurements have been done on a reed of medium hardness that
is free to move.

Table A5 gives the point-stiffness measured more recently on
reeds alone (without lip or mouthpiece) using a static load by three
different authors. In these experiments, the force and the displace-
ment are measured at the same location.

Table A6 gives the parameters of a reed alone measured with a
dynamic acoustic excitation.

A.3.2 Reed, lip and mouthpiece
Static measurement. Quasi-static Measurements performed

by Taillard in [55] (Fig. 4.11) for clarinet reeds mounted on a
mouthpiece (with a lip) give an estimation of the reed compliance
of 1 mm2 kPa�1. Assuming the width of the reed is w = 13.15 mm
leads to a compliance of 0.07 mm kPa�1 (stiffness equal to
1.43 � 107 N m�3).

Figure A1. Geometry of the reed (x: longitudinal, y: transver-
sal, z: radial, Lr: reed length, Lf: free or vibrating length, w:
width, tt: tip thickness, th: heel thickness).
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Table A3. Optimal parameters proposed by Guimezanes [51] in
order to fit experimental and simulated frequency responses for
one clarinet cane reed.

x (mm) x = 5 x = 10 x = 15 x = 20 x = 25 x = 30 x = 35

Ex (MPa) 9500 8000 6200 4300 4000 4800 3000
Ey (MPa) 500 500 250 250 250 200 200
Gxy (MPa) 600 600 600 600 1100 870 870

Figure A2. View of the reed sectors used for defining different
mechanical parameters given in Table A3 [51].

Table A2. Order of magnitude of mechanical clarinet reed
parameters Ex (longitudinal Young’s modulus), Ey (transverse
Young’s modulus), Gxy, Gxz and Gyz shear moduli, Poisson’s
ratio mx and my, cane density qr.

Material Cane Fibracell

Reference [49, 50] [51] [80] [48] [27] [37]

qr (kg m�3) 450 520 500 500 520 500
Ex (GPa) 10 3 to 9.5 5 10 14 10
Ey (GPa) 0.4 0.2 to 0.5 0.5 0.4 1
Gxz (GPa) 1.3 0.6 to 0.87 1.3 1.1 0.5
Gxz = GYz (GPa) 1.2 0.3
mx (–) 0.22 0.22 0.22 0.35
my (–) 0.08
g (s) 6 � 10�6

Table A5. Order of magnitude of equivalent clarinet reed point-stiffness for the reed alone. Lf is the free length (between the clamping
and the reed tip), and xt is the distance between the reed tip and the measurement points. The minimum value of Kp is measured on
the sides of the reed, whereas the maximum value of Kp is measured in the middle.

Reference [67] [63]

Lf (mm) 38.25 30
xt (mm) 1 5 3 10
Kp (N mm�1) 2 [0.5–1] 2 [1.5–2.5] 2 [0.5–1] 2 [3–7]

Table A4. Compliance and stiffness of different instrument reeds as measured by Nederveen [56].

Instrument Clarinet Saxophone

Tenor Alto Soprano

Compliance 1
Ka

(m3 N�1) 10�7 3 � 10�7 1.2 � 10�7 10�7

Stiffness Ka (N m�3) 107 3.33 � 106 8.33 � 106 107

Table A1. Geometrical parameters of clarinet reeds.

Dimensions Value (mm) Reference

Width w 13.15 [49]
Total length Lr 67.5 [49]
Free or vibrating length Lf 34.1 [49]
Tip thickness tt [0.09–0.11] [106]

0.15 [78]
Heel thickness th [2.8–3.25] [106]

Table A6. Order of magnitude of equivalent clarinet reed parameters (resonance frequency, quality factor, compliance) of reed alone.
Lf is defined in Figure A1, xt is the distance between the reed tip and the sensor, f1 is the resonance frequency, Q1 is the quality factor,
C1 is the equivalent compliance of the first vibration mode and K 1 ¼ 1

C1
is the equivalent stiffness.

Reference [66] [50] [70]

Mounting On bench On mouthpiece
Lf (mm) 30
xt (mm) 2
f1 (Hz) [1890–2270] 2 [2140–2440] (dry) 2300 (dry)

2[1530–1890] (wet) 2060 (wet)
Q1 (–) 2 [30–50]
C1 (m Pa�1) 2 [15–40] 10�9

K1 (N m�3) 2 [2.5–6.7] 107

A. Gaillard et al.: Acta Acustica 2024, 8, 6328



Real playing situation. Table A7 contains equivalent geomet-
rical area (Sd = Sr) and equivalent mechanical parameters (mass
Ma, damping Ra or equivalent, stiffness, and nonlinear stiffness
as given in Sect. 2.2.2) estimated from real instrument measure-
ments or from numerical simulations.

A.4 Pressures

The blowing pressures for the clarinet are Pm 2 [2.0–5.9] kPa,
for the saxophone Pm 2 [1.3–8.3] kPa [88]. Sound level in tenor sax
mouthpiece for pianissimo level is 146 dB SPL and 162 dB SPL for
forte [42].

Appendix B

Chatziioannou model

Figure B1 shows the physical variables as defined by Chatzi-
ioannou [24].

The motion of reed is written

m€y þ mc _y þ ky þ kcby � yccað1þ rc _yÞ ¼ Srp�; ðB1Þ
with y the reed tip opening, p� = pm � p. The parameters
related to the contact are kc (contact stiffness), a (collision

exponent), rc (contact damping). bxc can be written
bxc ¼ xþjxj

2 (activation for x � 0).

Appendix C

Our model

Figure C1 shows the physical variables as defined by Gaillard
et al.

The reed tip opening is written here h0 � h so that the equiv-
alence between the two models is y = h0 � h. Introducing h0 � h in
equation (B1) leads to

�m€h� mc _hþ kðh0 � hÞ þ kcbh0 � h� yccað1� rc _hÞ
¼ Srp�; ðC1Þ

which can be written

�Ma
€h� Ra

_hþ Kaðh0 � hÞ þ Kcbhc � hcað1� rc _hÞ ¼ p�;

ðC2Þ
with Ma ¼ m

Sr
, Ra ¼ mc

Sr
, Ka ¼ k

Sr
, Kc ¼ kc

Sr
, hc = h0 � yc.

This leads to

Ma
€hþ Ra

_hþ Kaðh� h0Þ � Kcbhc � hcað1� rc _hÞ ¼ �p�;

ðC3Þ
This can be written

Ma
€hþ Ra

_hþ Kaðh� h0Þ ¼ �p� þ F c; ðC4Þ
with

F c ¼ Kcbhc � hcað1� rc _hÞ: ðC4Þ

Table A7. Order of magnitude of equivalent reed parameters (mass, damping, stiffness, resonance frequency, quality factor) of reed +
lip system in simulated or real playing situation.

Instrument Clarinet Tenor saxophone

Reference [107] [28] [24] [42]

Conditions Measurements Simulation Measurements

Effective area Sr = Sd (m2) [3–8] 10�5 1.77 � 10�4

Equivalent stiffness Ka (N m�3) 1.24 � 107 [7–21] 106 1.24 � 107 4.8 � 106
Equivalent mass Ma (kg m�2) 0.0231 0.05 0.056 0.269

Resonance frequency (Hz) 3687.4 [1883–3262] 2368.3 672

Equivalent resistance Ra (kg s�1 m�2) 67 145 25.4 1 � 103
Equivalent damping g (s�1) 2900 2900 453 3717

Equivalent quality factor Qr 8 [4.1–7] 32.8 1.13
Equivalent damping factor qr 0.125 [0.14–0.24] 0.03 0.88

Nonlinear stiffness kc (N m�4) 3.7 � 1011 7 � 1011

Figure B1. Definition of variables by Chatziioannou.
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Figure C1. Definition of variables by Gaillard et al.
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