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S U M M A R Y 

Full-wav eform inv ersion (FWI) has emerged as the state-of-the art high resolution seismic 
imaging technique, both in seismology for global and regional scale imaging and in the 
industry for exploration purposes. While gaining in popularity, FWI, at an operational level, 
remains a heavy computational process involving the repeated solution of large-scale 3-D wave 
propagation problems. For this reason it is a common practice to focus the interpretation of 
the results on the final estimated model. This is forgetting FWI is an ill-posed inverse problem 

in a high dimensional space for which the solution is intrinsically non-unique. This is the 
reason why being able to qualify and quantify the uncertainty attached to a model estimated by 

FWI is key. To this end, we propose to extend at an operational level the concepts introduced 

in a previous study related to the coupling between ensemble Kalman filters (EnKFs) and 

FWI. These concepts had been developed for 2-D frequency-domain FWI. We extend it here 
to the case of 3-D time-domain FWI, relying on a source subsampling strategy to assimilate 
pro gressi vel y the data within the Kalman filter. We apply our strategy to an ocean bottom 

cable field data set from the North Sea to illustrate its feasibility. We explore the convergence 
of the filter in terms of number of elements, and extract variance and covariance information 

showing which part of the model are well constrained and which are not. Analysing the variance 
helps to gain insight on how well the final estimated model is constrained by the whole FWI 
w orkflo w. The variance maps appears as the superposition of a smooth trend related to the 
geometrical spreading and a high resolution trend related to reflectors. Mapping lines of 
the covariance (or correlation matrix) to the model space helps to gain insight on the local 
resolution. Through a wave propagation analysis, we are also able to relate variance peaks in 

the model space to variance peaks in the data space. Compared to other posterior-covariance 
approximation scheme, our combination between EnKF and FWI is intrinsically scalable, 
making it a good candidate for exploiting the recent exascale high performance computing 

machines. 

Key words: Tomography; Computational seismology; Waveform inversion. 
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 I N T RO D U C T I O N  

ull-wav eform inv ersion (FWI), introduced b y Laill y ( 1983 ); Taran-
ola ( 1984 ), is a high resolution tomographic technique which aims
t reconstructing the 3-D distribution of geophysical subsurface
arameters such as the wave velocities, density, attenuation or
nisotropy parameters (Virieux & Operto 2009 ; Virieux et al. 2017 ).
ts resolution power compared to other seismic tomographic tech-
iques, such as seismic ray tomography, makes it popular both in
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
cademic seismology (Fichtner et al. 2009 , 2013 ; Tape et al. 2010 ;
uan et al. 2014 ; Fichtner & Villase ̃ nor 2015 ; Bozda ̆g et al. 2016 ;
 órszczyk et al. 2017 ; Karao ̆glu & Romanowicz 2018 ; Lei et al.
020 ; Lu et al. 2020 ; Thrastarson et al. 2022 ) for a better under-
tanding of complex mechanisms and structures at depth, and in
he seismic imaging industry, mainly for crustal-scale exploration
Plessix 2009 ; Sirgue et al. 2010 ; Plessix & Perkins 2010 ; Warner
t al. 2013 ; Stopin et al. 2014 ; Vigh et al. 2014 ; Operto et al. 2015 ;
aknes et al. 2015 ; Solano & Plessix 2019 ). 
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1353 
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FWI typically involves solving a non-linear optimization problem 

where one minimizes a given distance between observed seismic 
data and simulated seismic data computed through the solution of a 
wave propagation equation. The minimization is performed over a 
set of parameters controlling this wave propagation equation, which 
depends on the subsurface mechanical properties. The non-linearity 
of FWI arises from the non-linear relationship between these pa- 
rameters and the wavefield. Such problem is generally solved using 
quasi-Newton techniques (Pratt et al. 1998 ; Shin et al. 2001 ; Operto 
et al. 2006 ; Brossier et al. 2009b ; M étivier & Brossier 2016b , for in- 
stance). FWI is a computationally intensive technique as for typical 
applications it requires to repeatedly solve 3-D wave equations in 
domains containing several tens to several hundred of wavelengths 
in each spatial direction (leading to hundreds of discretization of 
points in each spatial direction), for a high number of different 
source terms. 

Historically, this cost has been somehow controlled by formu- 
lating FWI in the frequency-domain. In this context the solution 
of the wave equation gets back to the solution of a linear system 

where the left-hand side involves a complex-valued impedance ma- 
trix whose values depends on both the medium parameters and the 
frequency (Pratt et al. 1998 ; Operto et al. 2006 ) and the right-hand 
side represents the source term at a giv en frequenc y. As soon as 
the impedance matrix can be factorized, using for instance an LU 

factorization (Virieux & Operto 2009 ), the wave equation can be 
solved for each right hand side in linear complexity which reduces 
largely the overall computational cost of FWI. While this approach 
can be used for 2-D FWI, the memory requirement and associated 
lack of scalability of direct solvers make them difficult to use for 
3-D FWI (Li et al. 2020 ). For such problems, the FWI commu- 
nity has now switched to a time-domain formulation of the wave 
equation (Sirgue et al. 2010 ; Hu et al. 2012 ; Warner et al. 2013 ; 
Kamath et al. 2021 ), which has a limited memory requirement but is 
more computationall y demanding, especiall y when a large number 
of sources is involved (Brossier et al. 2013 ). 

The non-linearity of FWI coupled with its high computational 
cost makes it a challenging problem to solve for practical applica- 
tions. For this reason, uncertainty estimation of FWI output remains 
a very challenging task. While simple quality controls, such as di- 
rect comparison between synthetic observed data via direct seis- 
mograms comparison and zero-lag cross-correlation between the 
observed and synthetic data, are possible (e.g. Pladys et al. 2022 ), 
they might not be sufficient as different velocity models can lead to 
similar data-fit (Prieux et al. 2011 ). In practice, most of the qual- 
ity control assessment is either conducted by cross-validation with 
other geophysical techniques or well-log data, which are, at best, 
costly, at worst, impossible to realize past the shallow crustal scale. 
Uncertainty quantification is however all the more crucial that FWI 
is a highly non-linear problem with a significant ‘numerical’ null- 
space (ensemble of model parameters having a weak influence on 
the data then poorly constrained). In addition FWI models serves 
as a basis for geological interpretation in seismology, and more and 
more in the exploration industry as the frequency content of the data 
used to derive these models reach the frequency range of migration 
(Shen et al. 2018 ). 

The uncertainty quantification of the FWI output is still weakly 
tackled by the literature as most of the research focuses on diminish- 
ing the method cost and on improving its robustness and resolution. 
While recent work propose a Bayesian approach for uncertainty 
quantification (Gebraad et al. 2020 ; Zhang & Curtis 2020 ; Zhang 
et al. 2023 ) the whole topic of uncertainty quantification is thus still 
challenging (Rawlinson et al. 2014 ). Nonetheless this topic is hardly 
new for the inverse problem community. Work on uncertainty quan- 
tification for seismic inverse problems was already considered more 
than decades ago by (Tarantola 2005 ). Using a Bayesian inference 
framework, Tarantola states that, for weakly non-linear problems, 
when the solution is close to the global minimum, the inverse of the 
Hessian operator is equi v alent to the posterior covariance operator 
(Tarantola 2005 , chapter 3). We should mention that, when dealing 
with non-linear inverse problems, Tarantola recommends to explore 
the model space and variance space with global methods such as 
Monte Carlo. 

Alternati vel y the data assimilation (DA) community has been 
relying on Kalman filter (KF) to estimate the uncertainty of weather 
forecast. KF are used in dynamical process where the initial state 
is not exactly known. The state variable is forecasted by a forward 
modelling equation and then corrected or filtered to bring it closer 
to observations of the state variable. An interesting feature of KF is 
that they can be used on Gaussian processes and provide a tool to 
estimate the random variable mean and covariance after the filtering 
step (also called the analysis step; Kalman 1960 ). Recent attempt 
to estimate the uncertainty of the FWI took inspiration from theses 
two communities and can be divided into three categories. 

A first category of methods rely on global or semi-global opti- 
mization methods (instead of local optimization) such as simulated 
annealing (Sen & Stoffa 1991 ; Tran & Hiltunen 2011 ), and genetic 
algorithms (Sen & Stoffa 1992 ), or methods aiming at sampling 
the posterior probability density function (PDF), that is Markov 
Chain Monte Carlo (Sen & Stoffa 1996 ; Martin et al. 2012 ; Bards- 
ley et al. 2014 ; Biswas & Sen 2017 ) or more recently Hamiltonian 
Monte Carlo (Sen & Biswas 2017 ; Fichtner et al. 2018 ; Gebraad 
et al. 2020 ). This allows for the sampling of potentially multimodal 
PDF. These studies show promising results, and while the number of 
unknowns in the underlying FWI problem seems to hamper their ap- 
plicability for realistic scale 3-D FWI problems, some recent works 
start to tackle 3-D synthetic problems (Zhang et al. 2023 ). Let us 
also mention stochastic optimization which seems also promising 
but has, so far, only been applied to small 2-D synthetic examples 
(Zhang & Curtis 2020 ). 

Methods from the second category use information from the Hes- 
sian operator in the final FWI model. This approach is especially in- 
teresting in the case of multiparameter FWI where inter-parameters 
cross-talk are involved. In such a case, the Hessian gives an under- 
standing of the contribution of each parameters and of the inter- 
parameter interactions (Operto et al. 2013 ; M étivier et al. 2014b ). 
Due to the large scale aspect of FWI the Hessian operator is not 
directly accessible. It is however possible to evaluate its effect on a 
giv en v ector at the price of the solution of four wave propagation 
equation (Fichtner & Trampert 2011a ; M étivier et al. 2013 , 2014a ; 
M étivier et al. 2017 ; Yang et al. 2018 ; Matharu & Sacchi 2019 ). 
This yields the possibility to build a low-rank approximation of 
the inverse Hessian via a matrix-free Lanczos method (Bui-Thanh 
et al. 2013 ) or a randomized singular value decomposition (SVD; 
Zhu et al. 2016 ; Eliasson & Romdhane 2017 ). This low-rank ap- 
proximation is moti v ated b y the rapid decay of the eigenvalues of 
the Hessian operator observed by Bui-Thanh et al. ( 2013 ) and by 
Zhu et al. ( 2016 ) indicating that the Hessian operator has an effec- 
tive null-space , that is there is a set of parameter perturbations with 
negligible influence on the FWI cost function. To further reduce the 
computation cost, it is possible to project the model parameters onto 
a low-dimensional subspace thus drastically reducing the dimension 
of the Hessian (Du et al. 2012 ; Jordan 2015 ). 

A general limitation of these methods is that it is assumed that 
FWI has reached, or at least is very close from the global minimum 
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f the cost function. This makes it difficult, as noted b y K eating &
nnanen ( 2021 ), to quantify how close the inverse Hessian opera-
or is to the actual posterior covariance operator. This is especially
rue, when an approximate Hessian is used to reduce the compu-
ational burden of the SVD/Lanczos iterations (e.g. Liu & Peter
019 ). Fur ther more, while constr ucting a low-rank approximation
f the Hessian operator by omitting the effective null-space makes
ense from a physical point of view, it also means that the model
erturbations corresponding to substantial parameter uncertainty
ave been removed from the resulting truncated inverse Hessian
perator as the neglected small eigenvalues of the Hessian corre-
pond to large eigenvalues in the inverse Hessian. It is thus difficult,
n practice, to select a threshold to truncate the SVD that preserves
he accuracy of the truncated correlation matrix. Some authors thus
ry to quantify the uncertainty of FWI results without relying on
pproximating the inverse of the Hessian matrix. Hessian probing
Fichtner & Trampert 2011b ; Fichtner & van Leeuwen 2015 ), as an
xample, has been used to assess the quality of FWI results obtained
rom field data (Tao et al. 2018 ; Lei et al . 2020 ). Alternati vel y, null-
pace shuttles can be viewed as the dual to SVD/Lanczos methods
s one tries to find a subset of model perturbations that preserves the
ata misfit, thus exploring the ef fecti ve null space neglected by the
VD/Lanczos based methods. In other words, null-space shuttles
xplores the set of model features that are not properly constrained
y the data. The concept was first introduced in the case of a lin-
ar overdetermined data fitting problem (Deal & Nolet 1996 ) and
ater adapted to FWI. A direct approach is to perform a quadratic
pproximation of the FWI cost function and to explore the set of
ectors that preserves the value of the approximated cost function,
ither using SVD and random probing (Liu & Peter 2020 ) or by
nvestigating only specific feature of the model making the un-
ertainty quantification more tractable (Keating & Innanen 2021 ).
nother elegant approach to explore the null-space is to design an

rtificial Hamiltonian system where the model is treated as a high-
imensional particle and where the potential energy of the system
s the FWI cost function, which forces the system to evolves along
rajectories that preserves the value of the cost function (Fichtner &
unino 2019 ). 
The third general category of strategies relies on methods de-

eloped by the DA community to estimate the uncertainty of the
WI. DA has a wide range of applications including land surface
Rodell et al. 2004 ), weather prediction (Navon 2009 ), oceanog-
aphy (Cosme et al. 2010 ) and, more recently, reservoir charac-
erization (Lee et al. 2016 ). The DA community has developed a
ide set of tools to tackle such large scale inverse problems with

carce and noisy data. Some of their tools directly integrate the un-
ertainty quantification within their problem-solving schemes. The
rst DA modern tool is the above mentioned KF (Kalman 1960 ). It

s a predictor-corrector method which computes a random variable
ean and covariance. 
Ho wever , KF only w ork with linear forecast and observation

perators. Besides it is restricted to low dimensional problems
s it involves manipulations of dense matrices preventing to go
eyond a few hundred to thousands of parameters. Theses limi-
ations have been the moti v ation for the introduction of the en-
emble KF (EnKF; Evensen 1994 ). EnKF rely on a low-rank
pproximation of the system state based on an ensemble of un-
nowns, the benefit of which is twofold. First, it avoids the inver-
ion of large covariance matrices. Secondly, the forecast covari-
nce can be approximated from the forecasted ensemble, removing
he need for a linear forecast operator (Evensen 2003 ; Hunt et al.
007 ). 
Today, EnKF are used in weather forecasting codes that involves
p to 10 9 degree of freedom (DoF) such as the MOGREPS (Bowler
t al. 2008 ) or the ICON (Wang et al. 2018 ) codes, which is a
estimony to their capacity to tackle large-scale problems. There
as been quite a few application of DA techniques to seismic
omography and seismic imaging, including 1-D pre-stack wave-
orm inversion (Jin et al. 2008 ), 1-D velocity profile inversion
Gineste & Eidsvik 2017 ; Gineste et al. 2019 , 2020 ), elastic and
etro-physical rock properties estimation by maping petrophysi-
al properties onto classical elastic FWI parameters (Liu & Grana
018 ), 2-D frequency domain FWI (Thurin et al. 2019 ) and 3-D
ime-lapse FWI (TLFWI; Huang & Zhu 2020 ). The methodology
roposed by Huang & Zhu ( 2020 ) is very similar to a standard DA
ethod where the data is assimilated pro gressi vel y using a FWI

cheme. 
In this study, we are interested in the ensemble transform KF-

WI (ETKF-FWI) scheme proposed by Thurin et al. ( 2019 ). As-
imilating pro gressi vel y the data in time is adapted to 4-D/time-
apse imaging but not for general inversion applications. In Thurin
t al. ( 2019 ), an alternative is proposed, where the forecast opera-
or becomes the whole FWI operator. The conventional multi-scale
pproach, inverting for low-frequency to high frequency, is used to
efine a dynamic evolution over the frequency axis. This method
as yielded satisfactory results on 2-D synthetic and field data. The
TKF-FWI scheme makes it possible to estimate reliable and inter-
retable mean model, variance model, and covariance matrix, using
nsembles containing few tens to few hundred of models, for prob-
ems going up to hundred of thousands of unknowns. This implies
eing able to compute the solution of as many FWI problems as
he number of ensemble members. Ho wever , the solution of these
WI problems can be computed in parallel, each of them being run

ndependently from the other during the forecast step. The analysis
tep, which couples the information from the different runs, requires
nly basic linear algebra operations on squares matrices whose size
s the number of elements in the set. This is to us the main interest of
he ETKF-FWI strategy: it is by essence scalable, making it suitable
or running on the new generation of exascale machines. Note that
osterior covariance estimation through inverse Hessian estimation
oes not enjoy such properties as Lanczos/randomized SVD algo-
ithms are by essence sequential. This limitation adds to the above
entioned difficulty to set an appropriate threshold to truncate the
essian estimation. 
The main limitation in the work of Thurin et al. ( 2019 ) is the 2-D

requency-domain framework within which it is performed. While
his framework is adapted to develop a proof of concept, we want
n this study to extend it to a 3-D time-domain framework adapted
o the application to 3-D field data, and provide the first 3-D field
ata application of the ETKF-FWI technique. After discussing two
ossible adaptations of the ETKF-FWI technique to time-domain
WI, namely a time-offset based scheme and a source subsampling
cheme, we apply the latter one to the 3-D North Sea Ocean-Bottom-
able (OBC) data set in a 3–5 Hz frequency band. We show how
 ariance and cov ariance estimated from this scheme can contribute
o interpret the final estimation of the model. We link the variance
f the model to the variance of the data, showing that seismic ar-
i v als with high variance travel through model structures with high
ariance. We also provide quantitative variance estimates, making it
ossible to derive error bars from the final estimation (correspond-
ng to the ensemble mean). We show that the variance follows the
llumination pattern, with higher values in less illuminated zones at
epth and on the side of the acquisition. Local peaks of variance
re also located on interfaces. Correlation maps derived from the
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covariance estimation can give an information about the local res- 
olution of the model. We sho w ho w this resolution is high in the 
shallow part of the model and decreases with depth. 

We shall highlight here that the uncertainty estimation w orkflo w 

we design remains local: we explore locally the minimum found by 
FWI. Our method can thus be understood as a sensitivity analysis 
scheme for FWI based on EnKF, yet quantitati ve (b y how much 
do we deviate from the mean model?). It means that the specific 
goal of designing a global uncertainty quantification method in the 
Bayesian sense, with error bars with respect to the ground truth, is 
still not tackled by our strategy. Nonetheless, our local uncertainty 
estimation scheme yields a significant added value to the common 
practice of FWI where single best fitting models are used. Using our 
strategy, confidence indices on specific zones of the FWI estimated 
model can be derived, which shall greatly help the interpretation of 
these models. 

The study is structured as follows. In Section 2 , we provide a 
short recall of EnKF and describe the specific EnKF scheme we are 
using in this work. In Section 3 , we describe how two standard time- 
domain FWI w orkflo w can be adapted to the ETKF-FWI formalism. 
We illustrate and apply theses w orkflo ws to a synthetic 2-D example. 
In Section 4 , we illustrate how the method works on a 3-D field data 
set from the North Sea. We conclude by a discussion about our 
results and future work. 

2  E T K F  S  

2.1 General framework 

The EnFK is well known in the DA community (e.g. Bowler et al. 
2008 ; Miyoshi 2011 ; Chen et al. 2020 ) and has been introduced 
to the seismic imaging community notably by Thurin et al. ( 2019 ). 
Therefore we propose here only a quick summary, and refer inter- 
ested readers to Thurin et al. ( 2019 ) and Evensen ( 2009 ) for more 
details. The main drawback of deterministic EnKF is that the co- 
v ariance anal ysis does not satisfy the best linear unbiased estimator 
(BLUE) equation. ETKFs (Bishop et al. 2001 ; Ott et al. 2004 ) where 
introduced to overcome this limitation. While EnKF directly update 
the covariance matrix, ETKK update the square root factorization 
of the covariance matrix to compute the appropriate transformation 
and to perform the analysis with small size reduced covariance ma- 
trices (Tippett et al. 2003 ; Nerger et al. 2012 ). ETKF, very much like 
the standard KF, works in two steps, forecast and analysis, which 
we recall below. 

The forecast step consists in evolving the state variable from time 
t k to time t k + 1 by a forecast operator F k . Let us assume that the 
system under study has N dof DoFs and we have N models in our 
ensemble. The essence of ensemble methods is to have N � N dof . 
Typicall y, N reaches fe w hundreds, e ven sometimes few tens, while 
N dof can be as large as 10 10 . Mathematically, the forecast operation 
is described by 

m 

i 
f,k = F k ( m 

i 
k−1 ) + ηi 

k i = 1 . . . N , (1) 

where m f,k = [ m 

1 
f,k . . . m 

N 
f,k ] ∈ R 

N dof ×N is our forecasted state vari- 
ab le (ensemb le of models) and w here ηk is the process-noise at step 
k , typically ηk ∼ N (0 , Q k ) with Q k being the forecast error co- 
variance matrix. Note that in practice, very few information about 
Q k are available and in such a case, one generally neglects the 
process noise ηk as it cannot be properly simulated. This is equiv- 
alent to consider that Q k = 0. This is what is considered in this 
study. 
The first and second order Gaussian moments of m f , k , namely 
mean m̄ f,k and covariance P f , k , can be computed as 

m̄ f,k = 

1 

N 

N ∑ 

i= 1 
m 

i 
f,k , 

P f,k = 

1 

N − 1 
M f,k M 

T 
f,k , 

(2) 

where M f,k = [ m 

1 
f,k − m̄ f,k . . . m 

N 
f,k − m̄ f,k ] is the square root of 

the covariance matrix P f,k ∈ R 

N dof ×N dof . Such representation makes 
it possible to store and manipulate only M f,k ∈ R 

N dof ×N , which has 
N dof rows and N columns, rather than storing P f , k , a square matrix 
of size N dof . This is much more efficient both computationally and 
memory wise. On the other hand, with such representation, the rank 
of M f , k is, at best, N − 1. P f , k is thus a low-rank approximation, of 
rank, at best, N − 1 of the covariance behind ensemble schemes. 

The second step of an ETKF is the so-called analysis step. The 
core idea of the analysis is to compute a ne w v ariab le m a , k w hich 
is a balance between the model state m f , k predicted by the forecast 
operator and the synthetic data state y obs 

k+ 1 that is available at time 
t k + 1 . First, one computes the synthetic data y f , k from the state 
variable: 

y i f,k = H k+ 1 
(
m 

i 
f,k 

)
i = 1 . . . N , (3) 

where H k+ 1 is the non-linear observation operator at step k + 1, 
which will be further detailed in the next section. We then compute 
the average synthetic data ȳ f,k ∈ R 

N obs and the zero-mean observa- 
tion matrix Y f,k ∈ R 

N obs ×N ( N obs rows and N columns) as follows: 

ȳ f,k = 

1 

N 

N ∑ 

i= 1 
y i f,k , 

Y f,k = 

[
y 1 f,k − ȳ f,k . . . y N f,k − ȳ f,k 

]
. 

(4) 

Using these two sources of information, the first and second 
order Gaussian moments of our analysed state variable, m a , k , can 
be computed as: 

m̄ a,k = m̄ f,k + M f,k A k Y 

T 
f,k R 

−1 
k+ 1 

(
y obs 

k+ 1 − y f,k 
)
, 

P a,k = 

1 

N − 1 
M f,k A k M 

T 
f,k , 

(5) 

where R k+ 1 ∈ R 

N obs ×N obs , a square matrix of size N obs , is the mea- 
surement noise matrix expressing the data uncertainty, and where 
A k ∈ R 

N×N , a square matrix of size N , is our reduced covariance 
matrix, which can be computed as 

A k = 

(
( N − 1 ) I N + Y 

T 
f,k R 

−1 
k+ 1 Y f,k 

)−1 
, (6) 

where I N is the identity matrix of size N . The state variable after 
analysis can then be computed as 

m a,k = m f,k + 

√ 

N − 1 M f,k T k , (7) 

where T k ∈ R 

N×N is the so-called transf ormation matrix , w hich is 
computed from the square root of A k to preserve the ensemble mean 
(Wang et al. 2004 ; Sakov & Oke 2008 ) 

T k = A 

1 
2 
k �, (8) 

with � an arbitrary orthogonal mean-preserving matrix (Sakov & 

Oke 2008 ; Livings et al. 2008 ). 
In the current work, we chose � = I N . It is worth mentioning that, 

instead of directly evaluating A k and then A 

1 
2 
k , it is easier to compute 

the eigendecomposition of A 

−1 
k from which we can easily compute 
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oth A k and A 

1 
2 
k . For the measurement noise matrix R k + 1 , we assume

n this work it has a diagonal structure, which implies uncorrelated
oise. We estimate for each shot-gather a level of noise, and use a
hot-dependent weighting strategy for build the diagonal entries of
he measurement noise matrix R k + 1 . 

Because all underlying Gaussian assumptions hold for the ETKF,
he analysis step as described above is equivalent to solve the fol-
owing least-squares minimization problem (Hunt et al. 2007 ): 

minimize 
¯  a,k ∈ R 

N dof 

C( ̄m a,k ) : = 

1 

2 

∥∥y obs 
k+ 1 − H k+ 1 ( ̄m a,k ) 

∥∥2 

R −1 
k+ 1 

+ 

1 

2 

∥∥m̄ f,k − m̄ a,k 

∥∥2 

P −1 
f,k 

, (9) 

here the cost function C realizes a balance between the forecast
odel and the available observations. 
If we define, for a given weight vector , ω ∈ R 

N 

m̄ a,k ( w) = m̄ f,k + M f,k w, 

H k+ 1 ( ̄m a,k ( w)) ≈ ȳ f,k + Y f,k w. 
(10) 

¯  a,k as defined in eq. ( 5 ) is a solution of eq. ( 9 ) (Hunt et al. 2007 ;
arlim & Hunt 2007 ). 
In terms of computational cost, the ETKF involves N application

f the forecast and observation operators as well as the manipulation
f N dof × N , N obs × N and N × N matrices and the diagonalization

f a N × N matrix to compute A k and A 

1 
2 
k . 

.2 Balancing the analysis 

e should mention that, in the particular case of time-domain
TKF-FWI, by defining our data space over the (physical) time-
omain, we end up with a data space that is significantly larger than
ur model space. As an example, when working with the North
ea OBC data set in Section 4 , our data space is approximately
000 times larger than our model space. 

This dimensionality difference may be problematic because, as
entioned in the previous section and as illustrated by eq. ( 9 ),

he analysis step is supposed to find a model that minimizes the
ata misfit while remaining relati vel y close to the forecasted model.
o wever , a huge dimensionality difference between the data space

nd the model space can induce a bias in the analysis step where
he minimization of the data misfit will be prioritized over the

inimization of the background misfit. 
In order to illustrate this, let us assume there exists a m̄ a,k such

hat both background and observation residuals are constant vectors
ith all entries equal to εmodel and εobs , respecti vel y, such that 

m f,k − m̄ a,k = εmodel 1 , 

y obs 
k+ 1 − H k+ 1 ( ̄m a,k ) = εobs 1 , (11) 

ith 1 denoting a vector with constant entries equal to 1. In this
ase the values taken by the cost functions in eq. ( 9 ) would be 

( ̄m a,k ) = N obs 
εobs 

2 

N obs ∑ 

i= 1 

N obs ∑ 

j= 1 
( R k+ 1 ) −1 

i, j + N dof 
εmodel 

2 

N dof ∑ 

i= 1 

N dof ∑ 

j= 1 
( P f,k ) 

−1 
i, j . (12) 

hus if N dof � N obs , the minimization of C, will tend to favour the
iminution of the background error. On the other hand, if N obs �
 dof , the diminution of the observation error will be favoured. 
In our first trials, this dimensional difference resulted in an anal-

sis that collapsed the ensemble into a single model that minimized
he data misfit, even when the ensemble after the first forecast had
 very high variance. 
We solved this problem by replacing the L 

2 norms in eq. ( 9 )
y mean squared deviation (MSD), which leads to the following
ptimization problem: 

minimize 
¯  a,k ∈ R 

N dof 

˜ C ( ̄m a,k ) : = 

1 

2 N obs 

∥∥y obs 
k+ 1 − H k+ 1 ( ̄m a,k ) 

∥∥2 

R −1 
k+ 1 

+ 

1 

2 N dof 

∥∥m̄ f − m̄ a,k 

∥∥2 

P −1 
f,k 

, (13) 

hich is equi v alent to scaling the observation error matrix by N dof 
N obs 

.
ur analysis step is thus performed by simply modifying eq. ( 6 ) as

ollows: 

A k = 

(
( N − 1 ) I N + 

N dof 

N obs 
Y 

T 
f,k R 

−1 
k+ 1 Y f,k 

)−1 

. (14) 

ote that, with our modified analysis, if we go back to the previous
chematic example, we get the following equality 

˜ 
 ( ̄m a ) = 

εobs 

2 

N obs ∑ 

i= 1 

N obs ∑ 

j= 1 
( R k+ 1 ) −1 

i, j + 

εmodel 

2 

N dof ∑ 

i= 1 

N dof ∑ 

j= 1 
( P f,k ) 

−1 
i, j . (15) 

Thus, the minimization of ˜ C should not favour the reduction of
ne term against another. Note that, instead of using the MSD, we
ould simply divide the data misfit by the number of observations,
hich would result in a similar scaling and would make sense from a
hysical point of view. It is worth mentioning that the DA literature
roposes tests to check the consistency of the analysis and proposes
ethod to balance it (e.g. Desroziers et al. 2005 ). 

 E T K F  S  F O R  F W I  

.1 General ETKF-FWI scheme 

WI can be formulated as 

min 
m 

J ( m ) : = D 

( d cal ( m ) , d obs ) (16a) 

.t. d cal ( m ) = R u ( m ) (16b) 

 ( m ) u = s, (16c) 

here D is a function measuring the misfit between the observed
ata d obs and the calculated data d cal ( m ) (typically the least-squares
istance). The latter is computed through the solution of the wave
ropagation eq. ( 16c ), where A ( m ) stands for a general wave propa-
ation operator (from acoustics to viscoelastic), and the application
f a restriction operator R , which extracts the values of the wavefield
 ( m ) solution of eq. ( 16c ) at the receiver positions. 

As mentioned in the introduction, FWI problems are solved
hrough local optimization methods due to the large number of
egrees of freedom involved in the discretization of the wave equa-
ion. This implies the definition of an initial guess m 0 from which
he solution of eq. (16) is computed. For this reason, we introduce
he operator I( m 0 ) , which provides the solution of the FWI problem
tarting from an initial guess m 0 . 

A ETKF-FWI scheme is constructed by defining the following
orecast operator 

 k+ 1 = F k ( m k ) : = I( m k ) (17) 

nd observation vector H k 

 k ( m k ) : = R u ( m k ) . (18) 
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As mentioned in the introduction, the e v aluation of both the forecast 
and observation operator can be performed in parallel. The imple- 
mentation of a parallel ETKF-FWI is quite challenging as a single 
FWI is already computationally e xpensiv e. The Appendix presents 
the framework we developed to run our ETKF-FWI in parallel. 

What remains to be defined is a form of dynamic along which the 
models m k evolve, that is a specific splitting of the data so that each 
piece of data is interpreted step-by-step in the ETKF-FWI scheme. 

3.2 Fr equenc y-domain ETKF-FWI 

The key idea from Thurin et al. ( 2019 ) is to define this dynamic from 

the conventional multiscale approach used in frequency-domain 
FWI. More precisely, the ETKF steps correspond to the inversion 
of the data in different frequency bands, starting from the lowest 
frequencies and pro gressi vel y interpreting higher and higher fre- 
quencies. 

In this configuration, the forecast operator F k represents a FWI 
over the k th frequency band and the observation operator H k returns 
the synthetic observations for the k th frequency band. The method 
is sketched in Fig. 1 that we reproduce from Thurin et al. ( 2019 ). 

The method has proved successful to produce uncertainty quan- 
tification for frequency-domain FWI. Ho wever , memory require- 
ment of frequency domain FWI is prohibitive for tackling 3-D appli- 
cations. While it is possible to work in the frequency-domain using 
a time-domain modelling engine (Sirgue et al. 2010 ), it is com- 
putationall y expensi ve, especiall y when a large number of sources 
is involved (Brossier et al. 2013 ). The industry standard is now to 
work in the time-domain both for modelling and inversion. This is 
our moti v ation to extend the ETKF-FWI formalism to time-domain 
FWI. 

3.3 Time-domain ETKF-FWI 

Following Thurin et al. ( 2019 ), we must restore a dynamic with a 
hierarchical aspect to the time-domain FWI. A straightforward way 
of doing that would be to perform a time-domain FWI with data 
filtered within a certain list of frequency bands and then re-use the 
formalism proposed by Thurin et al. ( 2019 ). However this is not 
optimal as this would be computationally demanding. For ETKF- 
FWI to produce reliable uncertainty quantification, it is important 
to ensure a sufficient number of assimilation steps k . Running an 
entire FWI (meaning with all the sources) on a large number of 
filtered data sets would be prohibitiv e. Moreov er, while time-domain 
FWI typically loop over a certain frequency range, an increase in 
the frequency content of the data is typically accompanied by a 
finer discretization of the model parameters. Such a scheme would 
thus require the dimensionality of our ETKF’s state variable to 
change with each iteration, which is not possible within the ETKF 

framework. 

3.3.1 Time-offset windowing scheme 

Frequency windowing is not the only hierarchy which can be con- 
sidered in a FWI scheme. As an example, it is possible to use a 
hierarchy of time-offset windowing to avoid cycle skipping (Shipp 
& Singh 2002 ; Wang 2009 ; Brossier et al. 2009a ). Such strategy has 
recently been applied to a North Sea OBC data set to avoid cycle 
skipping when starting from a 1-D initial velocity model (Pladys 
et al. 2022 ). These strategies directly echo the D A framew ork where 
data are added iteration after iteration. A noticeable difference be- 
tween this strategy and the D A framew ork is that data corresponding 
to low-offset and early arrival time will be used several times in the 
inversion process, which can introduce a bias in the reconstruction, 
where the upper part of the model are better reconstructed than the 
lower parts. 

3.3.2 Source subsampling scheme 

When dealing with a huge number of sources, time-domain FWI 
also typically uses techniques to limit the number of sources si- 
multaneously inverted so as to reduce the computational cost of the 
inversion. Such techniques includes source encoding (Capdeville 
et al. 2005 ; Vigh & Starr 2008 ; Krebs et al. 2009 ; Baumstein et al. 
2011 ; Ben Hadj Ali et al. 2011 ; Schiemenz & Igel 2013 ; Castellanos 
et al. 2015 ) and source subsampling (Warner et al. 2013 ; Kamath 
et al. 2018 , 2019 ; Pladys et al. 2022 ). In the latter case, the original 
pool of sources is divided in non-overlapping subensembles ran- 
domly constituted. If � is the ensemble of all the data set, we build 
a partition of N s subensembles �k , k = 1, . . . , N s , such that 

N s ⋃ 

k= 1 
�k = �, and ∀ k, l, k 
= l, �k ∩ �l = ∅ . (19) 

Such subsampling strategy can also be used in the frame of ETKF- 
FWI: each step k of the assimilation consists in inverting for the 
data in the subensemble �k . 

3.4 Application to a 2-D synthetic model: the Marmousi 
II model 

We perform a first experiment under the 2-D constant-density acous- 
tic approximation. We use the SEISCOPE code T OYxD A C TIME 

to model and invert the data, which is based on a 2nd-order in time 
and a 4th-order in space finite-difference discretization of the wave 
equation. More details on its implementation can be found in Yang 
et al. ( 2018 ). 

We illustrate how the two time-domain ETKF-FWI strategies 
w e ha v e described abov e apply on the 2-D acoustic Marmousi-II 
synthetic model (Martin et al. 2006 ). The model we take as exact 
is presented in Fig. 2 (a). Using this model, we generate a data set 
using a fixed spread surface acquisition, with 128 sources and 169 
recei vers e venl y spaced each 110 and 100 m, respecti vel y. We use 
a spatial discretization step of 25 m yielding 141 × 681 = 96 021 
DoFs. We use a Ricker wavelet centred on 5 Hz to generate the data, 
yielding signal up to 12.5 Hz approximately. We add a Gaussian 
random noise to the data. The noise is filtered in the frequency band 
of the data (0–12.5 Hz) before it is added to it. The signal-to-noise 
ratio (SNR) is set to 10. 

The T OYxD A C TIME is coupled with the SEISCOPE optimiza- 
tion toolbox (M étivier & Brossier 2016b ), which enables the use 
of a conventional limited-memory Broyden–Fletcher–Goldfarb–
Shanno ( l -BFGS) algorithm to solve the minimization problem (No- 
cedal 1980 ). A depth pre-conditioner and a non-stationary Gaus- 
sian smoothing strategy are used to precondition the gradient. The 
gradient is filtered using a non-stationary Gaussian filter which cor- 
relation lengths are equal to a fraction of the dominant wavelenght 
λdom 

, defined as 

λdom 

( x ) = 

V P ( x ) 

f 0 
, (20) 

where V P ( x ) is the pressure wav e v elocity model and f 0 is a ref-
erence frequency we select equal to 5 Hz here. The correlation 
lengths are set equal to 0.2 × λdom 

in both x and z directions. We 
consider an ensemble of N = 50 velocity models. According to 
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Figure 1. Representation of a ETKF-FWI scheme. Ellipses represent the Gaussian distributed ensemb les. The ensemb les are discretized by a set of vectors 
denoted by dots for the state ensemble and by stars for observational ensemble. The forecasted (resp. analysed) state ensemble are denoted in blue (resp. red) 
and the forecasted (resp. analysed) data ensemble are denoted in grey (resp. green). Figure from Thurin et al. ( 2019 ). 

(a)

(b)

(c)

Figure 2. Marmousi II experimental settings. (a) The exact Marmousi II velocity model considered here. The shot positions are displayed as red dots. (b) 
Initial mean model obtained by smoothing the true velocity model with a Gaussian filter. (c) Initial variance of the model ensemble. 
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hurin et al. ( 2019 ) this number should be enough to reach a
orrect estimation of the variance and covariance attached to the
nversion of this data. We design our initial ensemble of velocity
odels m f , 0 in two steps. We first set its mean by applying a Gaus-
ian smoothing filter to the exact Marmousi-II model as is usually
one in conventional synthetic FWI experiments. The correlation
engths of the smoothing filter are set to few hundreds of meters in
 and z directions. We then add random perturbations following the

art/ggae114_f1.eps
art/ggae114_f2.eps
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(a) (d)

(e)(b)

(f)(c)

Figure 3. The data set used. We first use a (a–c) 3 s time-window from FAT and then use a (d–f) 7 s time-window. Additionally, for each of our two 
time-windows, we use an offset windowing of 4 km (a and d), 8 km (b and e) and 17 km (c and f). The time-offset windows are designed such that the last 
window (f) includes all of our data. 
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methodolo gy proposed b y Thurin et al. ( 2019 ). More precisely, we 
add zero-mean normally distributed random perturbations to V p 

with a covariance designed such that the spatial extent of the per- 
turbations matches the expected resolution power of FWI in the 
considered frequency band (De v aney 1984 ; Wu & Toks öz 1987 ; 
Sirgue & Pratt 2004 ). 

The amplitude of the random perturbations must be carefully 
chosen. If the amplitudes of the perturbations are too small, all our 
models may con verge to wards a single model after a few FWI, thus 
collapsing the ensemble. On the other hand, if the amplitudes are too 
strong, cycle-skipping may occur in some of our models, making 
it impossible to satisfy the Gaussian model distribution hypothesis 
required by the ETKF. This is a major concern since our successive 
FWI work on a smaller data set, increasing the ill-posedness of the 
inversion. While we rely here on a visual inspection of specifically 
chosen shot-gather to control the size and amplitude of the velocity 
perturbation to avoid cycle-skipping, a more systematic approach 
would consist in computing first arri v al time (FAT) for each shot and 
make sure that the differences between computed FAT and picked 
FAT on observed data remains in the limit of cycle skipping (half a 
period of at the dominant frequency). 

We show, in Fig. 2 (a) the exact model with the shot position in 
red dots. The mean model and the variance of the initial ensemble 
used for our two ETKF-FWI schemes are presented in Figs 2 (b) and 
(c), respecti vel y. Note that the variance is not completely uniform 

spatially, this is a side effect of using a small ensemble size compared 
to the 96 021 DoFs in our model space. Note that although the model 
has 96 021 DoFs, it has a comparati vel y low number of geological 
features, such as the high velocity layer at ∼2 km depth. Thus we 
can anticipate that the number of ef fecti ve DoFs required to describe 
the model could be actually much smaller than 96 021. 

We first implement a time-offset windowing ETKF-FWI scheme. 
More precisely we iteratively solve the FWI problem by first con- 
sidering a narrow window in the time-offset domain and then pro- 
gressi vel y increasing it to finally consider the entire seismogram. 
In this context, all the seismograms are considered in the inversion 
(all the shots). 

This category of scheme is linked to what is called ‘layer strip- 
ping approach’ (see Shipp & Singh 2002 ; Wang & Rao 2009 ; 
Brossier et al. 2009a , for instance). Data contained in shorter off- 
sets and early arrival times constrain the shallow part of the do- 
main while longer offsets and later arri v al times constrain deeper 
parts of the domain. This type of iterative scheme comes handy 
when the problem is ill-posed, the layered reconstruction acting as a 
regularization. 

We show, in Fig. 3 the time-offset windows used by our ETKF- 
FWI scheme. We use a sequence of increasingly wide time-offset 
windows. More precisely, we start our scheme by limiting our data 

art/ggae114_f3.eps
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Figure 4. Mean model (left-hand panel) and variance (right-hand panel) obtained after each step of the ETKF-FWI scheme with the time-offset windowing 
strategy. 
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et to short arri v al time window and short offset range (4 km),
hich allows us to recover the upper layer of our model. We then
radually increases the offset to 8 km and then to 17 km, which is
he maximum offset for our data in this experiment. Increasing the
ffset range allows us to recover deeper layers of our model. We
hen include longer time windows but restrict our data set to short
ffsets range (4 km) and gradually increase again the offset to 8 km
nd then to 17 km. The final time offset-window includes the whole

ata set. a  
We show, in Fig. 4 , the mean and variance of the velocity mod-
ls obtained by our ETKF-FWI scheme. We see that, as expected,
he inversion of the first time-offset window makes it possible to
econstruct the shallower part of the model. Increasing the offset
nd time ranges enables the reconstruction of the deeper parts of
he model. The estimation of the variance follows the same path. It
ends to concentrate on the bottom part of the model as we progress
n our time-offset windowing scheme. We see that our final vari-
nce is similar to the one recovered by Thurin et al. ( 2019 ), with two

art/ggae114_f4.eps
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Figure 5. Top panel: mean V p model obtained with the time-offset windowing ETKF-FWI scheme and position of the three logs displayed as dashed vertical 
lines. Bottom panels: comparison of the V p profiles extracted from the mean model (in blue) and the profiles extracted from the true model (in black). 
Additionally, we show the confidence intervals ±3.5 σ , with σ the square root of the computed variance. 
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features. The first is associated with the illumination of the model 
and energy spreading of the wave propagation, with higher variance 
values close to the lateral and bottom boundaries. The second is 
associated with higher variances values near the high velocity lay- 
ers where rapid changes of the velocity occur. It was confirmed in 
Thurin et al. ( 2019 ) that local peaks of variance are located precisely 
at the interface and not within the layers. We observe the same be- 
haviour here. Please note that variance in the bottom corners might 
appear misleadingly low. This is due to the colour scale choice, 
adapted to the peak of variance occurring at deep interfaces around 
3 km depth. The variance in the bottom corner remains significantly 
larger than the variance in the upper parts of the model which are 
better sampled by the wavefield and are thus expected to be better 
constrained. 

We then compare, in Fig. 5 three profiles extracted from aver- 
age model to the corresponding profiles extracted from the true the 
Marmousi-II model. Additionally, we show the confidence interval 
[ V̄ p − 3 . 5 σ, V̄ p + 3 . 5 σ ] , where σ is the square root of the variance
computed with our time-windowing ETKF-FWI scheme. This in- 
terval contains 99.95 per cent of the models following the PDF 

computed with our scheme. We see that, while the average inverted 
model with our time-offset windowing ETKF-FWI scheme and the 
true model may differ, the true model is approximately in the 3.5 σ
confidence interval. This means that, when the illumination is suf- 
ficient, we can hope that indeed the FWI model is close from the 
true model. In this case the local uncertainty estimation we per- 
form gives insight also on the deviation from the ground truth. Of 
course, this well controlled 2-D synthetic case where the ground 
truth is known, is a particularly fav ourab le case. We will see in the 
next section that with bandlimited field data, the ground truth is 
known only from localized well logs and that the FWI model fits 
onl y marginall y these well lo gs. The information we get from our 

art/ggae114_f5.eps
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Figure 6. Partition of the sources in four batches for the source-subsampling ETKF-FWI scheme. In blue, the first batch. In orange, the second batch. In green, 
the third batch. In red the fourth batch. Note that each source belongs to a single batch. 

Figure 7. Mean (left-hand panel) and variance (right-hand panel) models obtained after each step of the source-subsampling ETKF-FWI scheme. The red dots 
indicate the position of the sources at each step of the process. 
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ncertainty quantification scheme thus will remain in this case only
ocal. 

Such scheme requires the same computational cost for each indi-
idual FWI, making it especially challenging for large scale prob-
ems. We are thus interested to implement another scheme based
n source decimation in order to propose a cheaper ETKF-FWI
cheme able to consider larger 3-D problems. 

We implement a source-subsampling ETKF-FWI scheme, which,
nstead of using increasingly wide time-offset windows, utilizes, for
ach iteration a distinct set of shot gathers, thus reducing the com-
utational cost of each individual FWI. Such source subsampling
trategy is standard in FWI to decrease the computational cost of
arge 3-D applications (Warner et al. 2013 ). We present, in Fig. 6
he source batches used in our ETKF-FWI scheme. The sources are
andomly selected. The resulting uneven illumination is compen-
ated along the iterations of FWI by going through all the batches
o finally account for all the sources. We present, in Fig. 7 the mean
nd variance of the velocity models obtained by our source sub-
ampling ETKF-FWI scheme. We see between 10 and 12 km offset
nd around 2.5 km depth, an area with a noticeab le variance, w hich
orresponds to a part of the model with stark velocity change in
oth depth and offset, making this area difficult to properly recover.

Again, further insight can be gained by comparing profiles ex-
racted from average model to the corresponding profiles extracted
rom the true the Marmousi-II model. We see in Fig. 8 , the confi-
ence intervals [ V̄ p − 3 . 5 σ, V̄ p + 3 . 5 σ ] computed with our source
ubsampling ETKF-FWI scheme. We see, in the shallower parts
f the model, similar intervals to the one obtained with the time-
indo wing scheme. Ho wever , belo w 2 km depth we start seeing
if ferences. First, the confidence interv als do not alw ays include
he true model. This is especially the case when the true model ex-
ibit strong variation. Moreover, we see, on the second log, around
.5 km depth an outstandingly large confidence interval. Looking at
he model distribution here, we see a bi-modal distribution, which
eans that the convergence towards two different local minima for

his particular v o xel has occurred and the confidence intervals and
ariance estimated here loses their meaning. 

It is worth mentioning that the variance map obtained with the
ime-window based ETKF-FWI scheme do not exhibit such a high
ariance in this area, even-though both scheme started from the
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Figure 8. Top panel: mean V p model obtained by the source subsampling ETKF-FWI scheme and position of the three logs displayed as dashed vertical lines. 
Bottom panels: comparison of the V p profiles extracted from the mean model (in blue) and the profiles extracted from the true model (in black). Additionally, 
we show the confidence intervals ±3.5 σ , with σ the square root of the computed variance. 
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same initial ensemble. This is due to the regularization property of 
time-offset windowing based FWI schemes. More precisely, by first 
recovering the shallower parts of the model, the time-windowing 
scheme is less sensitive to the random perturbations located in the 
deeper parts of our initial model. 

We conclude from this experiment that the variance maps ob- 
tained by a specific ETKF-FWI scheme is dependent on said 
scheme. As an example, here, the variance estimated with a ETKF- 
FWI scheme based on time-offset windowing appears smaller than 
when it is based on a source-subsampling approach. This reflects 
the fact that time-offset windowing strategies makes use of more 
redundant information, yielding a “stabilizing” effect on the inverse 
problem, thus reducing the variance of the FWI w orkflo w based on 
such time-offset windowing. On the contrary, a FWI scheme based 
on source subsampling show less data redundancy as the source 
group design is mutuall y exclusi ve. We could hope that by taking 
more groups, with potential overlaps in the source selection, could 
help reduce the variance of the process. 

Moreover, the source subsampling scheme drastically reduces 
the computational cost of the forecast operator by diminishing the 
number of simultaneously inverted sources, allowing us to run more 
FWI simultaneously on the high performance computing (HPC) 
facilities w e ha ve access to. This is especially important if we want 
to run our scheme with larger ensembles or if we want to tackle 
standard industrial 3-D problems. Until now, we only considered 
a small 2-D problem with 96 021 DoFs and 128 sources, allowing 
us to perform a FWI in a few minutes on a single node of our 
local HPC facility. Ho wever , the field data FWI we consider in the 
ne xt section involv es more than 20 times more DoFs and more than 
15 times more sources, making it difficult to fit a single FWI on 
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ur local HPC facility. A source subsampling strategy is thus very
ppealing to fit our ensemble-based FWI on our local HPC facility
nd this is the one we select. 

 A P P L I C AT I O N  T O  A  N O RT H  S E A  O B C  

ATA  

.1 Environment data and pre-processing 

he data we consider in this study has been acquired in the North
ea, of fshore Norw ay. It is a shallow w ater oil and gas field, with
early constant water depth of 70 m. The target is composed of
n anticlinal in chalk in the upper Cretaceous Hod and Tor forma-
ions, at a depth of approximately 2400 m, and of ter tiar y sediments
bove it (Sirgue et al. 2009 , 2010 ; Prieux et al. 2011 , 2013 ; Operto
t al. 2015 ; Pladys et al. 2019 ). The data set we consider has been
ecorded by a 4-components OBC device. A total of 2048 receivers
re deployed on the seabed along twelve cables which cover a sur-
ace of 145 km 

2 with an inline spacing of 50 m and a cable spacing
f 300 m. 50 824 shots located 5 m below the sea surface have been
ecorded. In this work, we only use the pressure component. This
s the same data set as the one used in previous studies from Ka-
ath et al. ( 2021 ) and Pladys et al. ( 2022 ). We benefit from these

tudies regarding both the preprocessing of the data and the set-
ing of the FWI w orkflo w regarding parametrization, mesh design,
egularization and pre-conditioning. 

The pre-processing applied to the data is minimal. First, source–
eceiver reciprocity is applied to reduce the global cost of FWI (the
umber of considered sources for modelling and inversion goes
rom 50 824 to 2048). After despiking the data, we compute the
oot mean square (RMS) amplitude of each gather. Gathers with
arge values of RMS amplitude are considered faulty and thus re-

oved: four of them are excluded from the 2048 available gathers.
e apply a minimum-phase band-pass filter to restrict our data to

he frequency band 2.5–5 Hz. A time decimation from 	 t = 4 ms to
 t = 8 ms is also applied. A muting window is applied to remove
ch ölte waves identifiable with a linear velocity of approximately
00 m s −1 : as we are going to invert the data in the acoustic approx-
mation, these interface waves propagating along the seabed cannot
e predicted, and are therefore considered as noise in the inversion.

.2 FWI settings 

he first application of FWI on this data set used an isotropic
coustic modelling engine (Sirgue et al. 2010 ). Ho wever , an acous-
ic v ertical transv erse isotropic (VTI) modelling has been rapidly
roposed to avoid bias in the velocity inversion (Prieux et al. 2011 ).
ccounting for attenuation has also been shown crucial to correctly
odel the data in this environment containing both unconsolidated

ediment and low velocity layers (Operto et al. 2015 ; Operto &
iniussi 2018 ; Kamath et al. 2021 ). We therefore perform the in-

ersion of this data set in the 3-D visco-acoustic VTI approximation,
el ying as pre viousl y on the T OYxD A C TIME full waveform mod-
lling and inversion code (Yang et al. 2018 ). We use as modelling
arameters the v ertical P -wav e v elocity V p , the density ρ, the qual-
ty factor Q p and the two Thomsen’s parameters ε and δ. In this
tudy, we only invert for V p and keep the other parameters constant
passive parameters). 

The initial V p model, as well as the ε and δ models we use are
rovided courtesy of AkerBP. The V p model has been obtained by
eflection traveltime tomography and has been proven suf ficientl y
ccurate to allow for convergence starting from a 2.5–5 Hz fre-
uency band (Operto et al. 2015 ; Operto & Miniussi 2018 ; Kamath
t al. 2021 ; Pladys et al. 2022 ). The density model ρ is computed
rom this initial V p model through the Gardner’s law 

= 309 . 6 V 

0 . 25 
p . (21) 

or the attenuation, it was first shown by Operto et al. ( 2015 ) and
urther studied by Kamath et al. ( 2021 ) that a homogeneous quality
actor Q p set to 200 in the whole domain (except in the water layer
here it is set to 1000) is sufficient to capture most of the attenuation

nd dispersion effects induced by the viscosity of the medium in
he 2.5–5 Hz frequency band. Finally, we estimate a source wavelet
ommon to all the gathers, using the frequency domain approach
rom Pratt ( 1999 ), from 128 randomly selected gathers. 

The inversion scheme is based on a subsampling strategy where
e split the initial ensemble of shots in 15 batches of 128 sources + 1
atch of 124 sources, following the strategy depicted in eq. ( 19 ). For
ach batch of sources 3 iterations of l -BFGS are performed, there-
ore in total a whole inversion represents 48 l-BFGS iterations with
28 sources (124 sources for the final 3 iterations). It is shown in
amath et al. ( 2021 ) that this strategy guarantees the convergence

owards a model similar to what would be obtained by inverting
imultaneously for the 2044 sources for the same number of itera-
ions, therefore reducing the computational cost b y approximatel y a
actor 16. 

At each iteration the gradient is smoothed using the same non-
tationary Gaussian filter we use for the Marmousi II test case. Here
he reference frequency f 0 is chosen as f 0 = 3.75 Hz. The correlation
engths are chosen equal to 0.4 × λdom 

, 0.4 × λdom 

and 0.3 × λdom 

,
especti vel y in the x , y and z directions, where λdom 

is defined in
q. ( 20 ). 

We also use a preconditioning strategy. The gradient is multi-
lied by an approximation of the inverse Hessian to speed-up the
onvergence of the minimization algorithm. In practice, this pre-
onditioning helps to remove the strong imprint of the acquisition
y rebalancing the energy in the gradient so as to amplify pertur-
ation at depth and decrease the gradient values close from the
cquisition, in the shallow part. This is achieved based on wavefield
nformation: the strategy is fully described in Kamath et al. ( 2021 )
nd introduced as wavefield pre-conditioner. 

Additionally, we incorporate the post-processing proposed by
ladys et al. ( 2022 ) into our FWI scheme. More precisely, we pre-
ompute a stencil based on the acquisition shape. The part of the
radient outside of the stencil is extrapolated radially from the parts
f the gradients located within the stencil using a nearest-neighbour
trate gy. This e xtrapolation aims at removing the areas on the edge
f the model that, because of the lack of illumination, are weakly up-
ated by FWI, and end up in creating artificial reflectors surrounding
he illuminated zone. This kind of ad hoc strategy is complemented
ith a test to ensure that the smoothed, pre-conditioned and ex-

rapolated gradient remains a descent direction (we test if the scalar
roduct between the gradient and the post-processed gradient is still
ositive). 

Now that the subsampling FWI scheme is presented, we move to
ncertainty quantification using our ETKF-FWI strategy. 

.3 Initial ensemble design 

e generate an initial ensemble m 0 following the methodology pro-
osed by Thurin et al. ( 2019 ), similarly to what we have performed
or the 2-D synthetic Marmousi II case study. Both the initial model
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Figure 9. Left-hand panel: sections of the average initial model obtained by reflection tomography. Right-hand panel: sections of the variance of the initial 
normally distributed random models. (a–c) Horizontal sections at (a) 200 m depth, (b) 500 m depth and (c) 1 km depth. (d and e) Inline vertical sections for 
(d) x = 2.95 km and (e) x = 3.95 km. (f and g) Crossline vertical sections at (f) y = 9 km and (g) y = 6 km. Note that the depth sections use a greyscale 
colour-map with two different velocity and variance ranges, whereas the vertical sections use a ‘jet’ type colour-map with a fixed velocity and variance range 
for all sections. 
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mean and the diagonal of the initial covariance matrix (initial vari- 
ance) are displayed in Fig. 9 . As discussed pre viousl y, the initial 
ensemble design is a crucial step for ETKF-FWI. The diversity of 
the ensemble needs to be sufficient to avoid an ensemble collapse, 
w hich occur w hen all the models converge to the same point in the 
model space. Ho wever , the perturbations added to the mean model 
should be suf ficientl y small so that all the models sample the same 
global minimum valley. 

To generate this initial ensemble, we therefore rely on trial and 
error, and use as quality check the computation of the first ar- 
ri v al travel time within several of the ensemble members. We en- 
sure that the time shifts induced on the first-arri v al travel time by 
the velocity perturbation added to the initial model are smaller 
than half a reference period. This reference period is computed 
by considering the higher end of the frequency-band in which 
the inverted data are filtered. This makes sure cycle skipping will 
not occur during FWI starting from any of the members of the 
ensemble. 

Another a posteriori check consists in looking at the distribution 
of the ensemble for randomly selected points in the model space. 
The distribution should resemble a Gaussian and in any case be 
unimodal. A multimodal distribution is indicative of cycle skip- 
ping and/or violation of the Gaussian assumption behind the ETKF 

formalism. 
Until now we have not discussed the critical question of the size 
of the ensemble and of the quality of the estimated variance and 
covariance resulting from our ETKF-FWI. If our ensemble is too 
small we are at risk of both underestimating the variance of our 
models and to find spurious correlation within our models. In the 
next section, we are going to asses the quality of the result obtained 
by studying how certain feature, such as variance estimation, model 
distribution and correlation map in our models evolves with the 
size of the ensemble N . Observing some sort of ‘convergence’ of 
theses features for N ≥ 50 indicates that it should be possible to 
interpret the results obtained by the ETKF-FWI scheme for this 
size of ensemble. 

4.4 Conver g ence of the ETKF scheme 

We asses the quality of a reference ensemble with N = 50 models 
by comparing it to a ‘coarse’ ensemble with only N = 10 models 
and a ‘fine’ ensemble with N = 200 models. We want to see how 

certain features, such as average, variance and model distribution 
vary with the size of the ensemble. 

We first show, in Fig. 10 both average model and model vari- 
ances computed as well as the model distribution at a certain v o xel 
within the low-velocity anomaly for N = 10, 50 and 200. We do not 
see any difference in the model a verage. How ever, w e see that for 
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Figure 10. (a.i–c.i) Final mean V p model obtained by ETKF-FWI, (a.ii–c.ii) final variance, (a.iii–c.iii) distribution of the models at a given point marked in 
red. The results are obtained with three ensemble sizes N : (a) N = 10, (b) N = 50 and (c) N = 200. 
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 = 10, the variance is underestimated, especially at depth below
.5 km and within the low-velocity anomaly. The two ensembles
ith N = 50 and N = 200 yield similar variances. More interest-

ngly, looking at the final model distribution within the low-velocity
nomaly, we see a stark contrast between the ensembles with N =
0 and N = 200 models. We see, for the ensemble with 50 models,
hat could be interpreted, either as a bimodal distribution with a
rst peak around 1460 m s −1 and a second peak around 1500 m s −1 ,
r as a poor sampling of the Gaussian distribution with an average
f ≈1500 m s −1 . The former hypothesis would make it impossible
o properly analyse our results as it would violate a fundamental hy-
othesis of the ETKF, and potentially indicate some cycle skipping
ccurred during the successive FWI. Ho wever , the distribution ob-
ained with the ensemble with 200 models appears to be Gaussian,
ndicating the latter hypothesis to be valid. 

Following up theses observations, we then show, in Fig. 11 , the
odel distribution of our three ensembles along a vertical profile

or which a sonic log is available. Once again, we see that the
elocity models from our coarse ensemble are not as spread as
he velocity models from our reference and fine ensembles. This
s especially true when the V p models exhibit sudden changes. We
ome back later on the interpretation of this spread and the estimated
ariance. 

Using a higher number of models al wa ys allows for a better
pproximation of the covariance matrices. Ho wever , like for other
ow-rank approximation techniques such as SVD, a certain ‘cut-
ff’ has to be selected in order to reduce the computational burden
f our method. The results we show indicate the variance do not
rastically change when quadrupling the number of models from N
 50 to N = 200. We can thus assume our reference model ( N =

0) provides already a meaningful estimate of both mean model and
ariance. 

We now want to study how N influences the off-diagonal terms of
he correlation matrix . This is of particular interest as the correlation

atrix can be used to gain understanding of the interdependence
etween a given DoF and the other DoFs of the velocity model, thus
llowing one to characterize the local resolution of the FWI (Thurin
t al. 2019 ). 

The correlation matrix is obtained by scaling the covariance ma-
rix, making it dimensionless ranging from −1 to 1 (Feller 2008 ,
hapter 3): 

 = diag ( P 

) −
1 
2 P diag ( P 

) −
1 
2 . (22) 

 correlation coefficient close to 1 indicates a strong positive link
etween two parameters, implying they evolve in a similar man-
er. On the other hand, a coefficient close to −1 indicates a strong
e gativ e link between the two parameters, implying they evolves
n an opposite manner. A coefficient close to 0 indicates the ab-
ence of link between the two parameters. We show, in Fig. 12 ,
orrelation maps between a certain v o xel of interest near the low-
elocity anomaly and the rest of the velocity model. We observe
hat our coarse ensemble exhibits long range correlations that are
ot present in our reference and fine model. This leads us to be-
ieve that theses are spurious correlations, caused by the low rank
pproximation of the correlation matrix. We can also see that the
orrelation maps obtained both from the reference ensemble and
rom the fine ensemble are much better localized. One can still ob-
erve some spurious correlations in our reference ensemble with
 = 50 members, but these are localized and far from the v o xel
f interest. The resulting correlation maps are still interpretable as
ong as we restrict our analysis to neighbouring v o xels. 

We conclude that our reference ensemble ( N = 50) provides
ood enough results to be interpreted and is thus a good trade-off
etween computational cost and quality of the final ensemble. In
he remainder, we interpret the results obtained with N = 50. 

.5 Mean model obtained by ETKF-FWI 

he mean model obtained with our ETKF-FWI scheme is displayed
n Fig. 13 . We can see that the mean velocity model resembles the

art/ggae114_f10.eps


1368 A. Hoffmann et al . 

Figure 11. Top panel: the positions of the V p sonic log of interest overlapped with an horizontal section at 1 km depth of the mean V p model obtained by 
ETKF-FWI for N = 50. Bottom panels: comparison of V p profiles extracted from the mean model (in red), the sonic log (in grey) and the smoothed sonic log 
filtered in the 0–12 Hz frequency band (in black)n for three ensemble sizes, N = 10, 50 and 200. 
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inv erted v elocity model that can be found in the literature (Sirgue 
et al. 2010 ; Operto et al. 2015 ; Kamath et al. 2021 ; Pladys et al. 
2022 ). More precisely, we can see features such as a shallow channel 
at 200 m depth, scrapes presumably left by drifting icebergs at 500 m 

(Sirgue et al. 2010 ) and at 1 km depth, a low-velocity anomaly. 
This low-velocity anomaly can be visualized more in details in 
sections (d–g). 

In order to fur ther confir m the quality of our mean model, we 
compare the synthetic data recorded along two cables to the field 
data. We show, in Fig. 14 the data-fit for two common-receiver 
gathers in the initial tomography model and in the mean model. 
Similarly as what is observed in Kamath et al. ( 2021 ) and Pladys 
et al. ( 2022 ), we can see that the data fit from the initial to the final 
mean model is greatly improved. The transmitted events are fit even 
at large offsets and for arri v al times until 1.5 s from the first arri v al 
time. The reflected energy is also mostl y correctl y fit, apart from late 
reflections at short offsets. The visco-acoustic approximation with 
a fixed smooth density might explain why these events remain not 
predicted. Further assessment of our mean model can be done by 
comparison with sonic logs. We show in Fig. 15 both the positions of 
the wells in which the logs where drilled and a comparison between 
our model and the logs. Theses results are consistent with results 
found in the literature which can confirm that ETKF-FWI can yield 
a quality mean model, as long as the initial ensemble has a good 
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(a)

(b)
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(f)

(g)
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Figure 12. For different ensemble sizes, we show: (a, e and i) inline vertical sections of the final mean model obtained with ETKF-FWI for x = 2.95 km, lines 
of the correlation matrix corresponding to the points in orange, green and red boxes for (b–d) N = 10, (f–h) N = 50, (i-l) N = 200. 

e  

t  

m  

u  

t

4

4

W  

o  

V  

m  

d
 

c  

f  

d  

3  

j
4

 

z  

a  

b  

v  

m  

o  

e  

t  

e  

y  

v  

t  

c
 

t
b  

l  

n  

∼  

l  

M  

v  

a  

t  

t  

a  

c  

F
 

t  

t  

a  

w  

t
1

 

t  

m  

l
 

t  

m  

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/3/1353/7633449 by D

AR
N

AN
D

 JU
LIE user on 16 M

ay 2024
nough initial mean and the initial models of the ensemble are not
oo far from the initial mean to avoid cycle-skipping. But the mean
odel is only one output from ETKF-FWI. Now we analyse the

ncertainty attached to the reconstruction of this model thanks to
he ensemble statistics. 

.6 Variance estimation by ETKF-FWI 

.6.1 Variance maps 

e first compute the variance of our ensemb le, w hich can be mapped
nto the physical space in order to give us an idea of how much our
 p models differs from each other. The variance is measured in
 

2 s −2 and gives a measure of how a randomly sampled model will
iffer from the mean model. 

We display, in Fig. 16 , the horizontal sections of the variance. We
an see, as expected, the acquisition footprint at 200 m depth in the
orm of highly localized variance peaks. Moreover, we see at 500 m
epth, two zones with higher variance, the first one is between x =
 km to x = 4 km and y = 6 km to y = 9 km and the second one
ust below the largest scrape seen in Fig. 13 (a) at x ∼ 7 km and y ∼
 km. 

Additionally, at 1 km depth, we can see two very high variance
ones on top of the section. The first one is located at x < 2 km
nd y between 7 and 11 km and the second at x ≤ 1.5 km and y
etween 3 and 5 km. These high variance zones highlight a strong
ariability of the reconstruction of the velocity in these zones. This
ight be induced by the fact that these two areas are in the limit

f the illumination zone. Also, the initial tomography model is
xtrapolated in these zones (as can be seen in Fig. 9 ), which indicates
hat it is probably far from correct values there. These two factors
xplain the larger diversity of the model values in these two zones,
ielding a stronger variance. This is an indication that the low
elocity value appearing on the mean velocity model on top of
he depth section at 1 km ( cf . Fig. 13 c) should be interpreted with
are. 

We show, in Fig. 17 , both inline and crossline vertical sec-
ions of the variance. We see, for the inline vertical sections (a–
), that high variances are mostly distributed along vertical ve-
ocity contrasts, especially on top of the two low velocity layers
ear the low-velocity anomaly. This third low velocity layer at
1.25 km depth seems to be difficult to properly characterize, at

east with the resolution attached to the inversion of 5 Hz data.
oreover, we see that the interface below punctually exhibits high

 ariances, notabl y at depth ∼2.75 km for x = 2.95 km (section a)
nd y between 4 and 7 km. Theses local high variances indicate
hat it is difficult to properly characterize the interface between
he low-velocity anomaly and below. Nevertheless, the low-velocity
nomaly exhibits a fairly low variance, aside from some very lo-
alized peaks at the interface, indicating it is well characterized by
WI. 
Similar observations can be made on the crossline vertical sec-

ions (c–d) within the illuminated area. Ho wever , the boundary of
he illuminated area is more visible, especially for y = 6 km (d)
nd x ≤ 1.5 km. This is in part due to the lack of illumination,
hich leads to an unconstrained model, in theses areas. Ho wever ,

his alone does not explain the stark difference between the x ≤
.5 km and x ≥ 8 km for y = 6 km (d). 

This confirms what we observe in the horizontal sec-
ions ( cf . Fig. 16 c) and indicates that some parts where the initial
odel was extrapolated might be too far from the ground truth,

eading to cycle skipping occurring, at least for some models. 
We can get a better idea of how our variances changes according

o geological features by looking at the locations of local variance
aximums. We thus also show, in Fig. 17 , the maximum variance

eaks extracted with a maximum filter of radius 500 m. First, we can
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Figure 13. Slices of the final mean model obtained by ETKF-FWI. (a–c) Horizontal sections at (a) 200 m depth, (b) 500 m depth and (c) 1 km depth. (d and 
e) Inline vertical sections for (d) x = 2.95 km and (e) x = 3.95 km. (f and g) Crossline vertical sections at (f) y = 9 km and (g) y = 6 km. 
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see the variance peaks are focused on the two low velocity layers 
located in the shallower parts of the model. We also see peaks being 
distributed along the low velocity layers at ∼2 km depth. We can 
also see several of variance peaks within the low-velocity anomaly. 
More precisely, the peaks are mostly distributed along the features 
present within the low-velocity anomaly, indicating said features 
are difficult to properly recover. Finally, we see a lot of variance 
peaks along the layers within the reservoir, which is expected due 
to both the depth and the lack of illumination of this part of the 
model. 
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Figure 14. Common-receiver gathers along two cables aligned with the y -axis at (left-hand panel) x = 2.95 km and (right-hand panel) x = 5.5 km. The first 
cable crosses the low-velocity anomaly while the second is adjacent to it. The synthetic data, appearing in blue/white/red colour scale, is overlapped with the 
field data, in greyscale with transparency. On the top row, the synthetic data is computed in the initial tomography model. On the bottom row, the synthetic data 
is computed in the final mean model. 
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.6.2 Model distribution 

 v ariance map gi ves us an idea of where and how much each model
iffer from each other. Ho wever , it does not gives us an idea of how
he models are distributed and what is their actual range in m s −1 .

e first compare, in Fig. 18 , our various models to the sonic logs.
n the first log, which is far from the low-velocity anomaly, we see

hat our model distribution tends to spread below 1.5 km depth as
he V p models exhibit sudden changes. Ho wever , our models remain
elati vel y close to the mean model, even when the fit is relati vel y bad.
n the other hand, we see on the second log, which is located near

he low-velocity anomaly, that the models tend to disagree more,
specially around 1.5 km depth, where we see a difference between
he largest and smallest V p values, of ∼100 ms −1 . By looking at
he section (c) of the average model and of the model variance, we
ee that this part of the model correspond to the boundary of the
ow-velocity anomaly ( cf . Fig. 13 ), which exhibited a relati vel y high
ariance ( cf . Fig. 16 ). 

Finall y, as pre viousl y mentioned, the third lo g is near the bound-
ry of the acquisition, making it difficult to properly analyse. Our
odels remains relati vel y close to the average model between 0.5

nd 1.5 km depth and spread below 1.5 km depth but it is unclear
eather it is due to the model being extrapolated from a well il-

uminated area with little variance or if its because the variance is
ctually low in this region. 

The models range and variance we show are relati vel y small. This
ay be due to our initial model perturbations, which we kept low in

rder to prevent cycle skipping from occurring or to an underesti-
ation of the covariance in the data space. Moreover, we see, in all
hree cases, the models do not seem to spread more whenever they
re far from the sonic log profiles. The question behind is related to
he interpretation we shall give to the variance estimation. It could
e interpreted as variance with respect to a ‘ground truth’ (i.e. the
onic logs). In this case, it appears the variance is underestimated, as
he spread of the model do not encompass the velocity values from
he log. A second interpretation, which is to us more consistent, is
hat the variance is estimated with respect to a ‘best possible FWI

odel’ in the considered frequency band (here 2.5–5 Hz). It is well
nown that such a model, due to finite-frequency ef fects, is onl y a
ow-pass filtered version, or more precisely an homogenized version
Capdeville & M étivier 2018 ) of the ‘g round-tr uth’ in the inverted
requenc y band. Sharp v elocity jumps such as the one which can be
een on logs 1 and 3 at 2.7 km depth cannot be reconstructed from
he data in this frequency band, this is why none of the models from
he ensemble display such a jump. Our ETKF-FWI strategy makes
t possible to sample the covariance near our local minima but not
o explore models which are closer to the ground truth. 

This is further illustrated in Fig. 19 where we show both initial
nd final model distribution for some chosen points within the low-
elocity anomaly. We see that, for all of the sampled point near the
ow-velocity anomal y, FWI noticeabl y increase the model v ariance.
his is especially true for Figs 19 (b.iii) and (c.iii) where the models

ange approaches 150 ms −1 . Additionally, we see in Fig. 19 (c.iii)
 sort of multimodal distribution. Since the model distribution is
tudied at the interface of a low velocity layer, such a distribution
ndicate that our FWI resolution is too low to properly characterize
his lay er. F ig. 19 (f.iii) is very interesting as we see a clearly non
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Figure 15. Top: positions of the three V p sonic logs overlapped with an horizontal section at 1 km depth of the mean V p model obtained by ETKF-FWI. 
Bottom: comparison of V p profiles extracted from the mean model (in red), the sonic logs (in grey) and the smoothed sonic log filtered in the 0–12 Hz frequency 
band (in black). 
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Gaussian distribution as well as some outliers. The non Gaussian 
distribution can be explained by the fact that we bounded the values 
of V p during our FWI, which resulted in a lot of models being 
forced to the minimal V p value. The outliers are a more difficult 
to explain. On one hand they can be explained by cycle skipping 
occurring for some models. Alternati vel y, it could be caused by the 
analysis step of the ETKF. More precisely, ETKF first compute the 
ensemble’s mean and variance first and then compute an ensemble 
that satisfy said mean and variance. This can result in the apparition 
of outliers that enforces the desired variance (Lawson & Hansen 
2004 ; Leeuwenburgh et al. 2005 ). Since the initial perturbations 
are really small, it is unlikely that cycle skipping occurred, the 
most likely hypothesis is that the V p constraints resulted in a non 
Gaussianly distributed forecasted ensemb le, w hich in turn resulted 
into a bias in the analysis. 

This goes to show that FWI tends to spread the velocity models, 
which can be problematic especially when the initial model is close 
to the extremes values of V p . In our applications, we chose to reduce 
the initial model perturbation. This could also be remedied by using 
particle filter (PF), which do not make assumptions on the posterior 
distribution (Gordon et al. 1993 ), instead of KF. 

4.6.3 Variance in the data-space 

In this section we are going to discuss the variance in the data-space 
and to relate it to the variance in the model space. We show both 
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Figure 16. Horizontal sections of the variance (a.i–c.i) of the final models and the final mean model (a.ii–c.ii) obtained by ETKF-FWI at (a) 200 m depth, (b) 
500 m depth and (c) 1 km depth. 
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he observation associated to the average model and the variance in
he data space in Fig. 20 . We can distinguish three batches of high
ariance in the data space, a first batch for short times and short
ffset which can be explained by artefact from the inversion in the
hallow part of the model. A second batch at times between 3.5
nd 4.5 s and for medium offsets, which, as we can see in Fig. 20 ,
orresponds to the reflection of the di ving w ave onto the top of
he low-velocity anomaly at approximately 1.5 km depth. Finally,
he third batch at times between 6 and 6.5 s and for long offsets
orresponds to the reflections of the diving wave onto the reservoir
t approximately 3 km depth. We illustrate this by overlapping the
ave propagation and the average model in Fig. 21 , where we see
i ving w aves within a low velocity layer at t = 2 s, the reflections
rriving to the receiver line at t = 3.3 s, the interaction between
eflected waves and diving waves at t = 3.9 s and finally, the diving
aves reaching the reservoir interface. 
The third batch of high variance in the data space seen in Fig. 20

s due to the reflection of the diving wave onto the interface of the
eservoir. 

.6.4 Correlation as a measure of resolution 

hile studying the variance maps or, equivalently, the model
preading, can help to identify areas that are difficult to properly
haracterize via FWI, it only provides a point-wise metric and thus,
ielding little information about the actual resolution of the FWI.
n the other hand, the off-diagonal terms of the correlation matrix

an be used to gain understanding of the interdependence between a
iven DoF and the other DoFs of the velocity model, thus allowing
ne to characterize the local resolution of the FWI (Thurin et al.
019 ). 

It is thus possible to study the local resolution of FWI by exam-
ning the rows of the correlation matrix corresponding to a given
 o xel of the physical space. In this work, we study the local reso-
ution of our velocity model near the variance peaks identified in
ig. 17 thus allowing us to understand whether a variance spike is

ndicative of the difficulty to properly characterize a layer or to the
ifficulty to properly characterize the frontier between two layers.
e show, in Fig. 22 , the correlation map between the six variance

eaks pre viousl y identified and their neighbouring v o xels. We can
ee for the section x = 2.95 km (a), that low velocity lay ers (or -
nge and green boxes) are well characterized, with strong positive
orrelation to surrounding layers and ne gativ e correlation with the
est of the model. Ho wever , the v o xels above the low velocity layer
n the red box have a strong positive correlation with the v o xel
ithin the low velocity layer. On the other hand, the voxels be-

ow the low velocity la yer ha ve a strong negative correlation and
e even see positive correlation with the low velocity layer below

art/ggae114_f16.eps
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Figure 17. Slices of the variance of the models (a.i–d.i) and of the mean model (a.ii–d.ii) obtained by ETKF-FWI. Red dots denotes local maximum variance 
peaks, obtained with a 2-D maximum filter defined with a 1000 m radius. We show two inline vertical sections for (a) x = 2.95 km and (b) x = 3.95 km and 
two crossline vertical sections at (c) y = 9 km and (d) y = 6 km. 
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the v o xel under study. This indicates that the top interface of the 
low velocity layer is poorly characterized by our FWI scheme. It is 
worth mentioning this area is located directly below the source A 

which might explain one of the high variance patter n obser ved in 
Figs 14 and 20 . We see a similar phenomenon for the section y = 

9 km (b) with the low velocity layer in the red box, as for the top 
of the low-velocity anomaly (in orange box). On the other hand, the 
surface of the deep reflector (green box) seems to be properly re- 
covered. We can see that the lateral resolution of the top layer of the 
low-velocity anomaly is quite low, even-though we fit correctly the 
part of data corresponding to the reflection of the wavefield on said 
layer. 

From theses results, we could sketch a w orkflo w for detecting low 

resolution parts of the models. First we need to identify, from the 
variance in the data set, which components of the wavefield presents 
high variances. In this case, we would focus on reflections generated 
by the shallower part of the model. Then we can extract variance 
peaks and select the ones that might have the desired influence on 
the wavefield. In our case, we are looking at variance peaks located 
on the top sheet of the low-velocity anomaly and on the top of 
the reserv oir. F inally, we can compute the correlation between the 
v o xels corresponding to the variance and the surrounding v o xels 
helping us to identify low resolution areas. Note that this w orkflo w 
can help to find low-resolution part of the model that actually result 
in a good data fit, confirming our method can provide additional 
information to standard FWI quality control. 

5  D I S C U S S I O N  

We give in this section few comments on possible extension or im- 
provement of the scheme for a better efficiency of the ETKF-FWI 
scheme, and a general discussion paragraph based on the construc- 
tiv e e xchanges with the re vie wers during the re vision process of this 
study. 

5.1 R andom transf ormation matrix 

As mentioned earlier, the ETKF’s transformation matrix T is not 
unique and can be defined as follows: 

T = A 

1 
2 �, (23) 

where � is an arbitrary orthogonal mean-preserving matrix ( � 1 = 

1 ) (Sakov & Oke 2008 ; Livings et al. 2008 ). In our current work, 
we used � = I . Ho wever , a randomly generated � , as was pro- 
posed by T ödter & Ahrens ( 2015 ) might be a better option. Such 
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Figure 18. Comparison of V p profiles extracted from the ETKF-FWI models (in blue), V p profiles extracted from the mean model (in red), sonic logs (in grey) 
and smoothed sonic logs filtered in the 0–12 Hz frequency band (in black). The V p range was restricted so that we can get a better understanding of the model 
spreading in the region located above the reservoir. 
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ransformation matrix would allow us to ef fecti vel y redraw an en-
irel y ne w random ensemble with the correct mean and covariance
t each ETKF iteration. Such additional transformations have been
hown to potentially improve filter stability. A purely deterministic
pdate may enhance a situation in which the ensemble is nearly
ollapsed and where the correct moments are enforced by a few
utliers (Lawson & Hansen 2004 ; Leeuwenburgh et al. 2005 ). 

Such a modification of the analysis step could be very beneficial
o our ETKF-FWI as outlier in our velocity model may cause cycle
kipping to occur during our forecast step. Conversely, the presence
f outlier after the forecast step is a major indication that cycle
kipping did occur. It is thus important to ensure the analysis do not
reate outliers in our ensemble to ensure the potential outliers are
ndeed caused by cycle-skipping in our forecast step. 

.2 Alternative filters 

n our application, as explained in the previous section, the applica-
ion of the forecast operator is by far the most e xpensiv e part of the
TKF. It is worth mentioning that certain filters such as the Hier-
rchical matrix ( H 

2 -matrices) powered KF (HiKF) (Li et al. 2014 )
ay be the key to avoid performing several FWI as stated by Huang
 Zhu ( 2020 ). While, HiKF are not designed for non-linear forecast

nd observation operators, they can be a very good tool for assim-
lating data in a quasi-continuous manner, as applying the forecast
perator over ver y shor t period of time mitigate its non-linearities.
o wever , when the data are scarse and when dealing with a highly
on-linear operator such as FWI, EnKF are a better option as they
here initially designed for non-linear forecast operator. 
Another difficulty with ETKF-FWI comes from the high non-

inearity of both forecast and observation operators. The non-linear
ature of our forecast may result in forecasted ensemble that are not
aussianl y distributed, especiall y if cycle skipping occurs for some

lements of our ensemble. In such a case, the forecast posterior mean
nd covariance becomes uninterpretable. Additionally, because the
TKF assumes the forecasted ensemble to follow a Gaussian dis-

ribution, the analysis mean and covariance can become biased (Lei
 Bickel 2011 ). 
To overcome this difficulty, T ödter & Ahrens ( 2015 ) introduced

 square-root filter that uses mean and covariance computed from
 PF (Gordon et al. 1993 ) for it. The resulting non-linear ensemble
ransform filter (NETF) only makes assumptions on the distribution
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Figure 19. Different point of interest at which we display (a.i–f.i) the final mean V p model obtained by ETKF-FWI, (a.ii–f.ii) the final variance of the models, 
(a.iii–f.iii) the distribution of the model at a given point marked in red. (a–c) inline vertical section at x = 2.95 km (d–f) crossline vertical section at y = 9 km. 
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of the ensemble in the data space, making the filter robust to outlier 
in the model space. 

5.3 General discussion 

We complete the discussion with general comments arising from 

the exchanges with the re vie wers during the revision of this study. 
A first point is related to a potential underestimation of the variance, 
which is al wa ys a risk when using ensemble methods with relati vel y 
low number of elements. In this respect, the sonic logs comparison 
presented in Fig. 18 might be misleading. It appears that the spread 
of the models is too small to capture the values exhibited by the log, 
hence giving a false impression of low variability in a zone far from 

the ‘ground truth’. This interpretation should be performed with 
care: indeed the ‘ground truth’ might simply be inaccessible from 
the data available in this example. We would better interpret the 
estimated variance with respect to a ‘best achie v able FWI model’ 
which should be, in a given frequency band, a homogenized version 
of the subsurface mechanical parameters (Capdeville & M étivier 
2018 ). For the 3–5 Hz data we consider here, there is no chance to 
get really closer to the ground truth. 

This interpretation goes in hand with the fact that the ETKF-FWI 
scheme is dependent from the w orkflo w which is used to invert the 
data. Indeed, it should be noted that the variance estimation on 
the Marmousi II case study, depending on the choice of the time- 
offset windowing workflow or the source subsampling workflow, 
is not strictly the same, even if it exhibits similar patterns. This 
is the result of the uncertainty estimation we perform being local, 
around a mean FWI model. The ETKF-FWI takes into account 
all the w orkflo w design which is set up to invert a specific data 
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Figure 20. Variance of the common-receiver gathers, generated into the final V P models. 
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et: data hierarchy, initial model design, regularization/smoothing
trategy, misfit function design, not to speak about all the numerical
mplementation choices behind the solution of a FWI problem. 

Behind this question lies a more general one, related to the in-
erpretation we can give to the uncertainty estimation for the FWI
roblem. What we would qualify as an ‘abstract’ view is consid-
ring the FWI problem as the problem to find the model which
rovides the best fit to the data in an infinite-dimension space, with
 non conv e x misfit function exhibiting numerous geolo gicall y non-
nformative minima. In this framework, FWI is an ill-posed inverse
roblem, and characterizing the uncertainty attached to this prob-
em would require a sampling of the different minima of the misfit
unction. Ho wever , if we consider ‘practical’ applications of FWI,
he situation is different. Prior to the inversion, the design of the
pecific w orkflo w we just mentioned makes sure that FWI con verge
owards a geologically informative local minimum (potentially the
lobal minimum). In this context, FWI, seen as a whole, becomes
 relati vel y well-posed inverse problem. The ETKF-FWI strategy
e propose makes it possible to estimate locally the uncertainty
ttached to FWI seen as such a process. From the more ‘abstract’
oint of view, it amounts to explore locally the uncertainty of a given
inimum of the misfit function. This local exploration is however
ore efficient than methods based on inverse Hessian sampling

ecause it is inherently parallel (the FWI associated with each en-
emble members can be ran in parallel), and it is based on a sound
tatistical theory arising from the DA community. 

Of course this positioning might appear less ambitious than seek-
ng for global uncertainty quantification. Ho wever , for us, it ap-
ears as a pragmatical choice, adapted to a large variety of prob-
ems for which such FWI w orkflo w already exist, both in academy
nd industry, and applicable to 3-D FWI imaging. We should end
his discussion by restating that this study presents the first 3-D
eld data application of a systematic uncertainty quantification
cheme. 

 C O N C LU S I O N S  A N D  P E R S P E C T I V E S  

e have presented two synthetic and one 3-D OBC field data ap-
lication of our ETKF-FWI schemes which are based on popular
terative time-domain FWI schemes. On the synthetic example, our
cheme yields similar results to the one obtained by frequency do-
ain ETKF-FWI (Thurin et al. 2019 ). On the 3-D OBC field data

ata set, our ETKF-FWI produces a mean model that is similar to
he one obtained by FWI (Sirgue et al. 2010 ; Operto et al. 2015 )
n the same data set and fits relati vel y well the available sonic
ogs. 

Additionall y, our ETKF-FWI gi ves us insight on which part of
he model is correctly resolved and which part of the velocity model
uffers from a lack of illumination and is therefore ‘uncertain’. We
ho w ho w we can use the estimated variance map and correlation
atrix (derived from the covariance matrix) to assess the quality

nd reliability of the FWI solution. We can also link high variance
ones in the data space to low-resolution area in the velocity model
stimation. In thisse a ,relati vel y low frequency range which ex-
lains the low resolution of cer tain par ts of the model. Further work
hus include applying our scheme to higher frequency data with an
xpected challenge in terms of computational cost. 

From a methodological standpoint, further work on the analysis
tep could be considered. As mentioned earlier, the balance between
he background error and the observation error must be carefully
alibrated, in order to reduce the observation error while preserving
ome disparity in our model ensemble. In this work, using the MSD
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Figure 21. Wavefield super-imposed onto the average velocity model obtained by ETKF-FWI and, in red, the position of the receivers deployed along the line 
x = 2.95 km. The wavefield is displayed at times t = 2, 3.3, 3.9 and 5.1 s. 
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instead of the L 

2 distance in the analysis yielded satisfactory results. 
It is worth mentioning that, instead of using the MSD, we could 
simpl y di vide the data misfit by the number of (physical) time step, 
which would result in a similar scaling and would make sense from 

a physical point of view. While theses two options seem to make 
sense intuiti vel y, the DA community has proposed se veral tools in 
order to properly calibrate the analysis (e.g. Desroziers et al. 2005 ). 
A more in depth sate of the art on this specific topic could bring 
interesting alternatives. 

An open question is related to the application of the ETKF-FWI 
strategy in the context of multiparameter FWI. The difficult point 
might be the definition of the initial ensemble, to capture suffi- 
cient variety in the model space while still ensuring to converge 
in the same basin of attraction. This tuning is relati vel y easy in 
the context of mono-parameter velocity inversion, because natu- 
ral ‘physical’ criterion can be devised for the velocity in terms of 
cycle skipping, as is al wa ys done for FWI. When secondary pa- 
rameters are inverted, such as density or quality factor, the problem 

might become more dif ficult. Howe ver, there is a specific interest 
to go towards such multiparameter framework, because recent re- 
sults show that inverting the data in a broad frequency band might 
yield the required constraints to stably reconstruct multiple parame- 
ters (M étivier et al. 2024 ). In this specific multiparameters context, 
trade-offs are expected between parameters, and the covariance es- 
timation will provide a tool to analyse these trade-offs in a more 
systematic way. Accessing the correlation matrix in this case would 
bring additional information on these trade-offs. Preliminary results 
in this direction by Thurin et al. ( 2019 ) are encouraging. 

The fact that ETKF-FWI estimates the uncertainty associated 
with a given ‘w orkflo w’ to in vert seismic data naturally enables 
naturally enables the uncertainty quantification of hyperparameters 
defining the w orkflo w. The variance associated with regularization 
tuning parameters or misfit function choice for instance could bring 
cr ucial infor mation on the robustness of a chosen w orkflo w to in vert 
a specific data set. 

Finally, single application of 3-D FWI on field data set remains 
often challenging from a computational point of vie w, especiall y in 
the current context of broad frequency band FWI application and the 
beginning of 3-D elastic FWI applications. Running in parallel few 

tens of such FWI seems thus still computationally e xpensiv e. This 
calls for a rational usage of computational po wer , in the perspec- 
tive of using upcoming exascale machines. Codes running on such 
architecture need to be f ault-tolerant/f ault-resilient. We think the 
ETKF-FWI algorithm could be adapted to such platforms relati vel y 
easil y, b y using a task managing module overarching the ETKF- 
FWI scheme, with a subdivision of tasks in terms of shot-by-shot 
gradient computation, instead of a whole FWI as it is implemented 
by now. 
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Figure 22. (a.i) Inline vertical section of the average final model obtained by ETKF-FWI for x = 2.95 km and (a.ii–a.iv) local correlation maps in orange, 
green and red boxes. (b.i) Crossline vertical section of the average final model obtained by ETKF-FWI for y = 9 km and (b .ii–b .iv) local correlation maps in 
orange, green and red boxes. 
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P P E N D I X :  PA R A L L E L  

M P L E M E N TAT I O N  

TKF-FWI’s forecast and observation operator are very costly as
hey require to perform N FWI to forecast our model and to solve N
ave equations for each sources to apply our observation operator.
owever both operator can be computed in a fully parallel way. This

s a notable advantage of ETKF-FWI over Hessian based uncertainty
uantification approaches such as the SVD and Lanczos methods
hose complexity scale linearly with the rank of the covariance
atrix. It should thus be possible to exploit our method on exascale
achines in order to compute correlation matrices with a much

igher rank, allowing for a better uncertainty quantification. We
ill now fully describe our HPC framework. 
igure A1. Illustration of our parallel implementation of the ETKF-FWI in the tim
ather the results. An arrow from the root program symbolizes the root process ru
oot process gathering the output of said program. 
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permits unrestricted reuse, distribution, and reproduction in any medium, provided
Both FWI and modeling where performed with the TOYx-
 A C TIME code de veloped b y the SEISCOPE project, coupled
ith the SEISCOPE optimization tool-box M étivier & Brossier

 2016a ). The code uses a fourth-order staggered grid finite dif-
erence (FD) scheme for spatial discretization and a second-order
eap-frog scheme for the time discretization for the modeling. The
nversion is carried out by a l -BFGS (Byrd et al. 1995 ; Nocedal
 Wright 2006 ; M étivier & Brossier 2016b ) and uses the adjoint

tate method (Plessix 2006 ) to compute the gradient of the cost
unction. This code relies on source parallelization for both model-
ng and FWI. More precisely, one T OYxD A C TIME process w orks
n a single source and then combines the results with the message
assing interface (MPI) protocol. 

Ho wever , implementing a code that relies on both source and
odel parallelization is a technical challenge in itself which can

ead to require rapidly thousands of processors in a single instantia-
ion. We circumvent this dif ficulty b y using a root or master program
hat submit and monitor, on a given HPC facility, worker programs
hat runs the FWI code. The advantage of this additional level of par-
llelism is fourfold. First, worker codes can be run asynchronously,
hich drastically diminish the amount of resources required at a
i ven time. Secondl y, the resource management is delegated to the
PC facility . Thirdly , in the event of a node or cluster failure, the

oot code is able to track which workers finished their task and which
ne needs to be started again, making the code more robust to hard-
 are failure. Fourthl y, each indi vidual worker can be launched on
 given architecture, allowing us to run our ETKF-FWI on a very
eterogeneous architecture. 

The resulting framework is illustrated in Fig. A1 . 
Such methodology, while needing technical refinements, could

e used to tackle exascale type problems while being resilient to
otential hardware failure on the cluster. 
e domain. A root program run several FWI and modeling codes and then 
nning an other program. An arrow from any other program symbolizes the 
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