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Main objectives

Introducing an uncertainty quantification method for full waveform inversion applicable to 3D field data
at an operational level.

New aspects covered

1. Concise formalism for the coupling between Ensemble Kalman Transform Strategy (ETKF) and full
waveform inversion (FWI)

2. Implementation of this formalism in the frame of a decomposition of the dataset following a shot
subsampling strategy

3. Application of the proposed method to a 3D field data set from the North Sea: interpretation of the
variance and covariance estimations

4. Analysis of the covariance estimation sensitivity to the size of the ensemble with 3 experiments ran
with ensemble sizes of 10, 50, and 200.

Summary

Gaining knowledge on the variability of the FWI solutions is crucial. It shall help control their quality
and guide their geological interpretation. The main obstacle for designing efficient uncertainty quan-
tification strategy remains the computational cost. We propose in this study an adaptation to FWI of a
low-rank approach developed in the data assimilation community named Ensemble Transform Kalman
Filter. The method works in a predictor-corrector manner for an ensemble of models instead of con-
sidering a single model. In our strategy, the prediction step implies solving the FWI problem for each
model of the ensemble. The correction step involves only low-rank linear algebra operations and is thus
computationally feasible. We present the application of this strategy to a 3D OBC dataset from the North
Sea. We show how we gain insight on the variability of the solution through the estimated variance, and
on the local resolution through the estimated covariance. We also test the sensitivity of the method with
respect to the ensemble size and find that a number of 50 models makes it possible to capture most of
the information.



2024
OSLO |  NORWAY

Uncertainty quantification for 3D FWI at an operational level: an Ensemble Transform Kalman
Filter approach

Uncertainty quantification (UQ) remains crucial for seismic imaging using full waveform inversion
(FWI). The latter is an ill-posed inverse problem with non-unique solutions. UQ should provide nec-
essary tools to control the quality of FWI solutions and give confidence indices to enhance the inter-
pretation of FWI outputs. The main obstacle so far remains the design of a computationally efficient
and reliable UQ strategy. Conventional methods either rely on an estimation of the posterior covariance
through an approximation of the inverse Hessian operator in the final estimated model (see Mulder and
Kuvshinov, 2023, for a recent example), or on global sampling Monte-Carlo based strategies, with lim-
itations on problem sizes (Gebraad et al., 2020). More recently, the Stein Variational gradient (SVG)
approach, developed in statistics community, has emerged for solving geophysics inverse problems (Iz-
zatullah et al., 2023; Lomas et al., 2023), showing interesting properties and an ability to target larger
scale application than other aforementioned methods.

What we propose in this study is an adaptation to FWI of another UQ method set up in the frame of data
assimilation, known as the Ensemble Transform Kalman Filter (ETKF). ETKF relies on the evolution
of an ensemble of models, instead of a single one as is usually considered for FWI applications. From
this ensemble of models, first-order (mean) and second-order (covariance) statistics can be inferred with
a low-rank approximation. This ensemble description of the solution space is shared with the SVG
methods. What differs is how the models within the ensemble are updated. In ETKF it is based on a
prediction-correction scheme, namely forecast and analysis steps. In the implementation we propose,
the forecast amounts to a FWI run for each member of the ensemble. Our methods makes it possible
to compute local uncertainty in the basin of attraction associated with a given initial model. It means
that it can be ran as soon as a FWI workflow is set up to converge towards a meaningful estimate
of the subsurface mechanical parameters. We summarize first the methodology, then we illustrate its
application on a 3D OBC dataset from the North Sea.

ETKF-FWI method

A complete description of the ETKF-FWI method is proposed in Thurin et al. (2019) and Hoffmann et al.
(2024). We propose here a brief summary. The first step is to decompose the data into K subsets. This
decomposition can be done in many ways: according to the frequency band (sequence of increasing
frequency data), time-offset windowing, or shot subsampling for instance. ETKF-FWI considers an
ensemble of Ne models m1,m2, . . .mNe . The statistics, i.e. mean model m and covariance P are extracted
from this ensemble of models following:

m =
1

Ne

Ne

∑
i=1

mi, P = MMT , where M =
[
m1−m, . . . , mNe−m

]
, (1)

under Gaussian assumptions. Consider one model mi as a discrete vector in RN . The covariance P is
a square matrix of size N. The matrix M is a square root of P, with N rows and Ne columns. The
kth iteration of the ETKF-FWI strategy consists in the interpretation of the kth subset of data. This
interpretation is done in two steps: a forecasting step, and an analysis step. We define the forecasting
operator as one FWI on the considered subset of observed data dobs,k, starting from an initial guess minit:

min
m

1
2
‖dcal,k[m]−dobs,k‖2, starting from a given initial model minit, (2)

where dcal,k[m] corresponds to data calculated through the solution of partial differential equations rep-
resenting the wave propagation in a subsurface model m. The forecasting step at iteration k consists in
solving approximately the minimization problem (2) for each model mi of the ensemble, considering mi

is the initial model minit.

The analysis step takes into account the information from each member and performs a balance between
the fit to the data and the deviation to the mean model m. From a mathematical standpoint, each member
of the population is updated following

mi = mi +
√

Ne−1MA1/2, i = 1, . . . ,Ne, (3)
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where A1/2 is the transformation matrix such that

A−1 =
(
(Ne−1) INe +Y T R−1Y

)
, (4)

with

Y =
[
dcal[m1]−dcal, . . . , dcal[mNe ]−dcal

]
, dcal =

1
Ne

Ne

∑
n=1

dcal[mi]. (5)

In equation (5), dcal is the mean calculated data, and Y is the zero-mean calculated data matrix. Consid-
ering dcal[mi] as a discrete vector in RNobs , the matrix Y has Nobs rows and Ne columns. In equation (4),
INe is the identity matrix of size Ne and R is a square matrix of size Nobs called measurement noise matrix.
In this work we assume it is diagonal and estimate it from the signal-over-noise ratio of the observed
data. The matrix A is a square matrix of size Ne. In practice, we first compute A−1, then perform a SVD
of A−1, and build the square root A1/2. The essence of ETKF-FWI is to have Ne� N, typically Ne to the
order of few tens, while N can reach hundreds of millions for 3D FWI applications to field data. This
ensures computationally feasible linear algebra operations to perform the analysis step.

Application to a 3D OBC data from the North Sea

The 3D OBC data we consider in this study has been acquired in a shallow water environment in the
North Sea. We select 2048 receivers deployed along cables and 50 000 shot positions. We use reci-
procity to decrease the computation cost. We also focus on a narrow frequency band between 3 - 5 Hz to
keep a coarse 70 m grid for modeling and inversion. The ETKF-FWI workflow starts by the definition
of an initial ensemble. To generate it, we start with a smooth reflection tomography velocity model to
which we add zero mean random perturbations, such that the initial mean m is equal to the reflection
tomography model. The perturbations are spatially correlated to make sure the wavenumber content of
the perturbed model is compatible with the considered frequency band. The amplitude of the perturba-
tions is controlled so as to generate no cycle skipping. Doing so, we ensure each model of the ensemble
converge towards the same main basin of attraction. The aim of ETKF-FWI is to sample this attraction
basin. The initial mean model and the corresponding initial variance (the diagonal of the estimated co-
variance matrix P) are presented in Figure 1. We consider here and in the following an ensemble size
Ne = 50.

The second step is to decompose the available dataset into subsets which we interpret sequentially in
the ETKF-FWI scheme. It is usual to rely on shot subsampling strategy when addressing 3D field data
applications to decrease computational cost. This method can be readily employed for ETKF-FWI.
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Figure 1 Left: sections of the average initial model obtained by
reflection tomography. Right, sections of the variance of the ini-
tial normally distributed random models. (a-c) Horizontal sec-
tions at (a) 200 m depth, (b) 500 m depth, (c) 1 km depth. (d and
e) Inline vertical sections for (d) x= 2.95 and (e) x= 3.95 km. (f
and g) Crossline vertical sections for (f) y=9 km and (g) y= 6 km.
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Figure 2 Final mean model after
ETKF-FWI in the same display
as in Figure 1.
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The initial pool of 2048 shots (after reciprocity) is divided into K = 16 batches of 128 randomly selected
shots. With this decomposition, the forecast step at stage k of ETKF-FWI consists in performing 3 FWI
iterations for each of the ensemble members to invert for the kth batch of shots.

The final mean model obtained using the ETKF-FWI scheme is presented in Figure 2. It exhibits ex-
pected features in this frequency band considering previous work on the same dataset (see Pladys et al.,
2022, for instance), in particular a low-velocity-anomaly at 1000 m depth appearing in black in the black
and white constant depth section. This low velocity anomaly is also visible in the inline and crossline
vertical sections as the blue layered structure. This result show that the ETKF-FWI scheme is able to
produce a mean model similar to what would be obtained performing a conventional FWI.

The estimated variance in the inline vertical section at x=2.95 km (crossing the low velocity anomaly)
is presented in Figure 3. We present together the mean, variance, and the distribution of models for
three different pixels in this section. The variance helps identifying zones where the reconstruction is
more uncertain. Variance peaks corresponds to zones where the spread of the model is higher as in ex-
amples b(iii) and c(iii). Note that the model distribution approximately follows a Gaussian distribution,
indicating we satisfy the Gaussian assumption on which relies the ETKF-FWI scheme.

From the low-rank posterior covariance matrix, we build the correlation matrix as

C = diag(P)−
1
2 Pdiag(P)−

1
2 . (6)

The rows of the correlation matrix encodes the information about the links between the pixel associated
with the row and all other pixels. A correlation coefficient close to 1 indicates that the pixels are pos-
itively correlated. When it is close to -1 it indicates an anticorrelation. When it is close 0 it indicates
no correlation. We see how we can use this information as a proxy for a local resolution analysis. In
Figure 4 we present three rows of the correlation matrix, for threes points belonging to a given layer. For
the orange and green points, the strong correlation with the pixels in the same layer indicates that these
layers are well resolved. For the red point, the strong correlation with the large zone above the layer
indicates a local lower resolution.

Finally, we investigate the effect of the parameter Ne on the mean, variance, and covariance estimation.
This parameter is crucial as it controls the whole computational cost of the ETKF-FWI scheme. Basi-
cally, the computational cost of ETKF-FWI compared to a conventional FWI is Ne times larger, as Ne
FWI have to be ran instead of 1. This is the reason why it is important that Ne remains in an accept-
able limit. We thus perform an experiment where Ne is equal to 10,50 and 200. In Figure 5, we can
observe that the mean model does not change and is already quite well estimated with Ne = 10. How-
ever, the variance for Ne = 10 is clearly underestimated, an expected feature for ETKF strategies. The
corresponding distribution of models for the selected pixel also exhibit a very poor sampling of a Gaus-
sian distribution. What is interesting to note is that when Ne increases to 50 and 200, the distribution
converges to a Gaussian distribution, indicating that the Gaussian assumption behind the ETKF-FWI
scheme holds.
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Figure 3 (a.i-f-i) final mean Vp model, (a.ii-f.ii) final
variance, (a.iii-f.iii) model distribution at a given point
marked in red.

Figure 4 (a.i) Inline vertical section of the
mean model, (a.ii-a.iv) local correlation
maps from the correlation matrix C in or-
ange, green and red boxes.
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On top of that, the variation of the variance from Ne = 50 to Ne = 200 is mild, indicating that Ne = 50
provides already a good approximation of the variance and covariance. For this experiment, the number
of discrete points in the model space is N ' 2× 106. It is worth noting that Ne = 50 provides an al-
ready acceptable low-rank representation of the covariance, meaning that there exists a low dimensional
subspace encoding most of the model features in the considered frequency band.
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Figure 5(a.i-c.i) Inline
vertical section of the fi-
nal mean Vp model, (a.ii-
c.ii) final variance, (a.iii-
c.iii) distribution of the
models at a given point
marked in red. The results
are obtained with three
ensemble sizes (a) Ne =
10, (b) Ne = 50, (c) Ne =
200.

Conclusions
We present an uncertainty quantification scheme for FWI based on an Ensemble Transform Kalman filter
we name ETKF-FWI. Instead of running a single FWI from an initial model, an ensemble of models
perturbed around the initial models are inverted jointly following a data assimilation strategy. From
the final ensemble, we can infer first-order and second-order statistics: mean and covariance, in the
Gaussian approximation. We show on a 3D OBC data from the North Sea how this method can help
better qualifying the final results in terms of local variability and resolution. For a problem involving
approximately 2× 106 discrete points in the model space, we find that a small ensemble of Ne = 50
members already captures most of the required features to provide a reliable covariance estimation. The
computational cost of the ETKF-FWI is Ne times larger than for a single FWI however the Ne FWI
required at each forecast step can be ran in parallel: in the forecast they are independent process. This
makes the method a good candidate for the incoming generation of exascale HPC structures.
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