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A B S T R A C T

Focusing on biodiversity risks, we perform an empirical asset pricing analysis and document three main
results. First, the factor going long on low biodiversity intensity assets and short on high biodiversity intensity
ones as well as the factors based on the biodiversity intensity subcomponents (land use, greenhouse gases—
GHG, air pollution, and water pollution) have heterogeneous dynamics but are not spanned by the Fama and
French (2015) and carbon factors. Second, the biodiversity factor excluding the GHG subcomponent (ex-GHG)
commands a positive risk premium on realized returns and a negative one on expected returns in the sector
highly exposed to the double materiality of biodiversity risks (i.e., physical and transition risks). Third, we
show that the negative premium of both the biodiversity and the ex-GHG biodiversity factors on expected
returns has materialized strongly from 2021 onward and that it amplifies with attention to biodiversity issues
and risk aversion.
1. Introduction

Biodiversity is defined by the UN Convention on Biological Di-
versity1 as ‘‘the variability among living organisms from all sources
including, inter alia, terrestrial, marine and other aquatic ecosystems
and the ecological complexes of which they are part.’’ The preservation
of biodiversity is a fundamental issue, not only because of the intrinsic
value of life on Earth, but also because biodiversity provides us with
key direct services (such as the production of food and raw materials
for medicines) and indirect services (such as pollination, water filtering,
or ecosystem balance).

Yet, despite its existential value, biodiversity has collapsed with
human activity, leading to a sixth mass extinction (Strona and Brad-
shaw, 2022), which has accelerated dramatically over the last two
hundred years (IPBES, 2019). For example, between 1970 and 2016,
populations of vertebrate and freshwater species declined by 68% and
84%, respectively (WWF, 2020). Today, a significant share of living
species is threatened with extinction: 41% of amphibian species, 35%
of reptile species, 35% of conifer species, one-third of coral species, and
more than a quarter of mammal species are threatened with extinction
(IPBES, 2019).

✩ We are grateful to Maxime Sauzet for fruitful discussions. We also thank the participants of the 2023 Green Finance Research Advances (GFRA) for their
valuable feedback.
∗ Corresponding author.
E-mail addresses: coqueret@em-lyon.com (G. Coqueret), thomas.giroux@ensae-paristech.fr (T. Giroux), olivier-david.zerbib@ensae.fr (O.D. Zerbib).

1 https://www.cbd.int/.
2 Transition risk refers to all the financial risks to which companies with a large biodiversity footprint are exposed (tightening in regulation to preserve

biodiversity, change in stakeholder preferences, technological risks, etc.).

Beyond the ecological challenges, the decline in biodiversity poses
a dual financial risk for businesses: a risk linked to their dependence
on ecosystem services (also known as physical risk) and a risk related
to their impact on biodiversity (also known as transition risk).2 Are in-
vestors incorporating these financial risks into their capital allocation?
In what way and with what dynamics?

We answer these questions in this paper by carrying out an empiri-
cal asset pricing study on US data, and we reach three main results.
First, from a biodiversity intensity measure based on Iceberg Data-
lab’s biodiversity footprint scaled by company revenue, we construct a
green-minus-brown factor, long of companies with low intensity (also
referred to as ‘‘green’’) and short of companies with high intensity
(also referred to as ‘‘brown’’). We show that, although this factor has
not delivered a positive financial performance since 2012 (flat when
constructed as equally weighted and negative when constructed as
value-weighted), its dynamics conceal a strong heterogeneity in the
long-short factors constructed from the biodiversity sub-components
(land use, greenhouse gases, air pollution, water pollution, total exclud-
ing greenhouse gas emissions). In addition, neither the green-minus-
brown carbon factor (e.g., Pástor et al., 2022) nor the Fama and French
(2015) factors span these biodiversity factors.
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Second, by analyzing both realized returns and expected returns
stimated from option prices by Chabi-Yo et al. (2023), and controlling

for Fama and French (2015) and carbon factors, we do not identify a
iodiversity risk premium on the entire universe of companies between

2012 and 2022. However, by focusing our analysis on sectors with high
exposure to the double materiality of biodiversity risks (transition and
physical risks), we show that realized returns command a positive risk
premium, while expected returns command a negative risk premium.
These results suggest the following interpretations: (i) an unexpected
increase in preferences for assets with a low biodiversity footprint has
pushed up their realized returns relative to those with a high footprint,
as documented by Pástor et al. (2022) and Bolton and Kacperczyk
(2023) for climate risks; (ii) a demand by investors to compensate for
holding assets with a high biodiversity footprint underpins the risk
premium on expected returns (Pástor et al., 2021, 2022; Pedersen et al.,
2021; Zerbib, 2022).

Third, to go beyond average risk premia, we conduct a dynamic
nalysis of the price of biodiversity risk on the expected returns of
ompanies in sectors highly exposed to the double materiality of bio-
iversity risks. We show that the expected returns of companies with
ow biodiversity footprints have fallen significantly relative to those
ith high biodiversity footprints from 2021 onward, reaching −10%

n 2022. This dynamic is true for both the biodiversity factor and
he biodiversity factor excluding the channel of greenhouse gases.
urthermore, by regressing the price of risk of these two biodiversity
actors on climate risk attention, biodiversity risk attention, consumer
entiment, oil price, and risk aversion, we explain 40% of its dynamics.
otably, attention to biodiversity risk and risk aversion contribute to

ncreasing the gap between the cost of capital of assets with a high
iodiversity footprint and those with a low biodiversity footprint.

This paper contributes to the literature on sustainable finance. First,
o the best of our knowledge, along with Giglio et al. (2023) and Garel
t al. (2024), it is one of the first three papers on biodiversity asset

pricing. While also using Iceberg Datalab data, Garel et al. (2024) study
he effect of biodiversity on asset prices and implied cost of capital for
 sample of international firms between 2019 and 2022. Although they
ind no effect of biodiversity on asset returns between 2018 and 2022,
hey show that asset prices fell and implied cost of capital increased
or companies with large biodiversity footprints following the Kunming
eclaration in October 2021. By constructing a news-based measure of
iodiversity risk, in the spirit of Engle et al. (2020) and Giglio et al.

(2023) find that returns of portfolios sorted on companies’ exposure
o biodiversity risk covary positively with innovations in biodiversity

risk. Our results extend this literature by showing that the cost of
capital, through expected returns approximated by option prices, is
increased for companies with a high biodiversity footprint compared
to those with a low footprint in the sectors most exposed to the
ouble materiality of biodiversity risks. In addition, we show that this
ffect has materialized from 2021 onward, and we identify biodiversity
ttention and risk aversion as drivers of the biodiversity risk premium.
inally, we verify that this effect is driven by biodiversity components
hat are different from GHG emissions. Although the literature on the
nterface between finance and biodiversity is still emerging (Karolyi
nd Tobin-de la Puente, 2023), it is worth noting that Flammer et al.

(2023) shed light on the financing of biodiversity conservation and
restoration by private capital.

We also contribute, more generally, to the literature on sustainable
asset pricing. To date, almost all of this literature has focused on
limate risks (Engle et al., 2020; Choi et al., 2020; Sautner et al., 2023)
nd shows that these command a risk premium that increases the cost

of capital of companies with a large carbon footprint (Pástor et al.,
2021; Pedersen et al., 2021; Zerbib, 2022; Bolton and Kacperczyk,
2021; De Angelis et al., 2023; Cheng et al., 2023; Ardia et al., 2023;
van der Beck, 2023). We complement this literature by documenting a
imilar phenomenon on the expected returns of assets with a strong
iodiversity footprint but on a narrower scope and a more recent
2 
period, namely, in the sectors most exposed to the double materiality
f biodiversity risks, from 2021 onward. We also show that low bio-
iversity footprint assets in these sectors have benefited from higher
ealized returns, consistent with an unexpected increase in preferences
or these assets, similar to what Pástor et al. (2022) find for low climate
ootprint assets.

The paper is organized as follows. We present the data in Section 2
and we perform the asset pricing analysis in Section 3. Section 4
concludes this paper.

2. Data

2.1. Corporate Biodiversity Footprint (CBF)

Several metrics have recently been developed to measure the bio-
iversity impact of financial investments.3 In this paper, we use the
orporate Biodiversity Footprint (CBF) metric developed by Iceberg

DataLab,4 with the support of several major institutional investors, in-
luding AXA IM, BNP Paribas AM, Mirova, and Sycomore AM. The CBF

is one of the most mature available indicators across different sectors
and offers multiple advantages: maturity of coverage, robustness of the
methodology, transparency, scalability, granularity, and comparability
across sectors and assets. In addition, its computation is supervised by a
scientific committee and endorsed by several key stakeholders, notably,
the asset managers supporting the development of this metric.

The CBF is a footprinting approach aiming to reflect the negative
mpact of corporate activities on biodiversity. It follows a science-based
pproach covering all the material impacts of the firms’ supply chain,
rocesses, and products.

The measure relies on the ‘‘Mean Species Abundance’’ (MSA) con-
cept, which calculates the average relative abundance of native species
in an ecosystem compared to an undisturbed one. The MSA scale ranges
from 0%, for areas with depleted biodiversity, to 100%, for regions
matching the original, undisturbed ecosystem. The indicator was in-
troduced during the development of the open-source database version
of the GLOBIO3 model (Alkemade et al., 2009) by the Netherlands
Environmental Assessment Agency (PBL). The GLOBIO model aims
to simulate the impact of various human pressures on biodiversity.
t has been endorsed by the international scientific community and
ultilateral institutions (IPBES, IPCC), and its use is recommended

y the United Nations for biodiversity measurement (Convention on
Biological Diversity, 1997).

The CBF methodology estimates the degradation of a company’s
activities on biodiversity per k m2, expressed as k m2 .MSA. This mea-
sure makes it easy for non-experts to comprehend the footprint. For
example, a value of −1 k m2 .MSA represents the biodiversity equivalent
found in a pristine tropical forest of 1 k m2 undisturbed by human
activities. The impacts of companies are modeled based on four pri-
mary environmental pressures affecting species and habitats: changes in
land use, climate change from greenhouse gas emissions, air pollution
through terrestrial eutrophication and acidification, and water pollu-
tion involving the release of toxic chemicals and plastic waste into the
environment. Similar to carbon dioxide accounting, all these pressures
are aggregated into scopes 1, 2, and 3 (upstream and downstream)
following the definition of the GHG Protocol.

The CBF calculation involves three steps. In the first step, the
urchases and revenues of the company are divided along the value

3 The Finance for Biodiversity Foundation lists six main metrics: the Corpo-
ate Biodiversity Footprint (Iceberg DataLab), Biodiversity Footprint Financial
nstitutions (CREM and Pre Sustainability), Species Threat Abatement (IUCN),
lobal Biodiversity Score For Financial Institutions (CDC Biodiversity), Explor-

ng Natural Capital Opportunities, Risk and Exposure (UNEP-WCMC, UNEP-FI
 NCFA).
4 https://icebergdatalab.com/.

https://icebergdatalab.com/
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Ecological Economics 228 (2025) 108435 
chain into quantities of physical goods and services, referred to as
‘‘commodities’’. This is done by using the Country × NACE Sector
segmentation of revenues and mapping them into quantities through
a proprietary physical input–output model called ‘‘Wunderpus’’, which
extends the open-source ‘‘EXIOBASE’’ model.

The second step involves mapping the company’s activity mix to
nvironmental pressures, using a life-cycle analysis (LCA). Based on
pen-source data and scientific literature, quantities of commodities are

transformed into quantified impacts on the four main environmental
ressures mentioned above. Each impact is expressed in a specific unit
elative to the environmental pressure; for instance, impacts on change
f land use are calculated in k m2, while impacts on climate change are
xpressed in t CO2e.

The third step translates these environmental pressures into a
nique biodiversity impact unit, which is expressed in k m2 .MSA. For
 given pressure, the CBF estimate is calculated as the product of
he pressure and its marginal impact on biodiversity. Pressure-impact
amage functions from the GLOBIO model enable the transformation of
nvironmental pressures expressed in physical quantities such as t CO2e,
 NOXe, or k m2 into k m2 .MSA. Importantly, the baseline MSA is not
ecessarily 100% per k m2, since areas may already be degraded on
verage. In the data, the loss is represented with a negative sign; hence,
he larger the absolute number, the more biodiversity degradation is
enerated by the firm.

The CBF is available from 2011 for over 500 companies worldwide,
nd the coverage is increasing over the years to reach over 2600
ompanies by 2022.5 For the data up to 2018, a top-down approach
s used by Iceberg DataLab to calculate the CBF: company footprints

are estimated based on average sector revenues. From 2018 onward,
footprints are calculated using company revenues through a bottom-up
pproach. Therefore, even if the type of data used changes from 2018,
he method for calculating the CBF remains the same; however, from
018 onward, the CBF is more discriminating at the intra-sector level.

Finally, to compare biodiversity footprints with carbon footprints,
in particular, to isolate the biodiversity effect from that of carbon, we
also retrieve carbon emissions and intensities (that is, emissions scaled
by revenues) from the S&P–Trucost database. Given the coverage of
companies in Trucost, we work on a final sample of 522 companies
that include both biodiversity and carbon footprints from January 2012
to December 2022. This scope is sizeable given the relatively low —
albeit growing — propensity of companies to disclose data; indeed, the
figures are not reported by the companies themselves, but compiled
by a third-party source. We refer to Marco-Fondevila and Álvarez-
Etxeberría (2023) for an analysis of the determinants of biodiversity
disclosure.

To further illustrate the nature of the data, we present use cases and
rovide external validation of the CBF in the following section.

2.2. CBF use cases and external validation

To exemplify the CBF score, we plot its decomposition for three
large U.S. firms in Fig. 1: Apple, Exxon Mobil, and Walmart.6 Three
points are noteworthy. First, the CBF scores are substantially different:
s expected, technology companies have much smaller footprints than
nergy or retail firms.

Second, the breakdown of intensities highlights the diversity of
ressure sources between sectors, with a significantly higher footprint
or retail (e.g., Walmart) and oil & gas (e.g., Exxon) than for telecom-
unications (e.g., Apple). Indeed, the biodiversity footprint of Walmart

5 In case of missing values, data are backfilled with a maximum of three
years.

6 As there is a size effect, which we address below by using intensities, we
consider here three very large companies to allow reasonable comparability of
the CBF scores between them.
3 
results mainly from the land occupied for growing vegetables and
raising livestock. As for Exxon, the company is one of the top ten
il and gas companies in terms of revenues: it vertically integrates all
ctivities in the value chain, from extraction to refining and distribution
f petroleum products. Its biodiversity footprint is, therefore, mainly
ue to changes in land use (scope 1, for 29%) and the impact on climate
hange of the end use of its products (downstream scope 3, for 26%).

Third, the dynamics of the biodiversity footprints of Walmart and
Exxon have diverged over the past ten years: a deterioration with an
increase in the footprint for the former versus a reduction for the latter,
specially for the land use and greenhouse gases dimensions. These

changes in the CBF can be explained notably by the improvement in
measurement accuracy over time and, in particular, the effect linked
o the use of firm revenues (switch to a bottom-up approach) in the
alculation of the footprint from 2018 onward. However, in the case
f our asset pricing study, these evolutions do not raise major issues
s we do not focus on an intra-sector analysis: we use either sector
ortfolios (which, by definition, average out sector-wide measures) or
ndividual firms across sectors. In addition, in Section 3.2, we perform

robustness checks suggesting that our conclusions are robust to the
change in methodology in 2018.

To provide external validation of the CBF, we compare it to four
lists of companies with a significant impact on biodiversity: the Nature
Action 100, a list of 100 companies in key sectors in terms of their
impact on biodiversity, to which a coalition of investors has committed
to engage as shareholders7; the WBA Nature Benchmark, a private
initiative rating over 1000 companies according to their impact on
ature8; the Forest 500 list, which identifies and rates 500 compa-
ies with the greatest influence on tropical deforestation, based on
heir exposure to forest-risk commodities or financing9; the Forest IQ

platform, which provides a score on over 2000 companies based on
their impact on deforestation.10 To compare the CBF with these lists
of companies, we proceed in three different ways. First, we calculate
statistics on the sectoral correlations between the CBF and the ratings
of the other lists. As expected, given that the CBF has a negative score,
we find negative correlations, with medians between −15% and −35%
(Fig. 9 in the Appendix). Second, we calculate the average CBF of
the quartile of companies with the highest impact on biodiversity for
each of the WBA Nature, Forest 500, and Forest IQ ratings (Table 4,
also in the Appendix): for all three lists, the average CBF of this
uartile of companies corresponds to a CBF percentile between 23%
nd 48%, confirming that the CBF identifies companies with a high
mpact on biodiversity. Third, we calculate the percentage of companies

in each of these lists belonging to the lowest quintile in terms of CBF
(i.e., having the greatest impact on biodiversity; Table 4). Depending
on the metric chosen, a substantial share of these lists belongs to this
quintile. In particular, approximately 70% of Action 100 and WBA
Nature companies have a CBF in the lowest quintile.

However, in most asset pricing studies, particularly in portfolio sort-
ng, it is customary to normalize the CBF scores by an approximation of

the company size to avoid size bias. Thus, we construct CBF intensities
by dividing raw CBF scores by company revenues. The distribution
of the absolute values of the intensities (also referred to as absolute
ntensities) for each sector is shown in Fig. 2.

We also categorize the sectors according to what we refer to as ‘‘dou-
le materiality:’’ (i) their exposure to physical biodiversity risk, and

(ii) their impact on biodiversity, which also captures their transition
risk. To construct these categories, we use two measures. (i) First, we
measure companies’ exposure to physical risk using the Sectorial Mate-
riality Tool — developed by The Taskforce on Nature-related Financial

7 https://www.natureaction100.org/.
8 https://www.worldbenchmarkingalliance.org/nature-benchmark/.
9 https://forest500.org/.

10 https://forestiq.org/about/.

https://www.natureaction100.org/
https://www.worldbenchmarkingalliance.org/nature-benchmark/
https://forest500.org/
https://forestiq.org/about/
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Fig. 1. Sample decomposition of CBF scores. This figure plots the evolution of the four dimensions of the Iceberg Data Lab CBF Scores for three large US corporations. Negative
values mean more biodiversity loss.
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Disclosure (TNFD) and the Science Based Targets Network (SBTN) —
hich provides materiality rankings at the industry level for 12 impact

ategories grouped by nature-related issues (land, water, and sea use
hange, resource exploitation, climate change, pollution, and invasive
 other).11 We apply a linear mapping to these ratings to translate them

nto a score (i.e., a percentile) ranging from 0% for no dependency to
00% for very high dependency. (ii) Second, to measure the impact on
iodiversity, we proceed similarly using the ranking of each industry

based on the absolute CBF intensity. We then construct an aggregated
composite double materiality score as the average of the two scores.
Lastly, we divide the universe into three terciles: from the tercile of
companies least dependent on and impacting biodiversity to the tercile
f companies most dependent on and impacting biodiversity. We refer
o the latter tercile as the universe of industries ‘‘highly exposed’’ to the
ouble materiality of biodiversity risks. The double materiality ranking
s presented in Table 6 in Appendix. The AFOLU (agriculture, forestry,
nd other land uses), construction, heat and water utilities, beverages,
nd electrical equipment sectors are among the most exposed to the

double materiality of biodiversity risks.
Fig. 2 shows the disparities between sectors according to their

egree of double materiality. Intensities in the telecommunications and
ealthcare sectors, which have a low degree of double materiality, are
ignificantly lower than those in the energy or industry sectors, which
ave a high degree of double materiality.

Finally, to analyze which dimensions of biodiversity loss are most
ritical, we present the absolute CBF intensities distribution for all dates
nd US companies in the sample in Fig. 3. Corporate land use induces
he heaviest biodiversity loss, consistent with Sun et al. (2022). This

effect is mainly materialized in the food consumption, manufacturing
products, shelter, and clothing sectors (Bjelle et al., 2021). Conversely,
water pollution is the least impactful pillar of the CBF, with many
observations associated with marginal losses.

11 These ratings aim to answer the following two questions: (i) How signif-
icant is the loss of functionality in the production process if the ecosystem
service is disrupted? (ii) How significant is the financial loss due to the loss of
functionality in the production process? The ratings are expressed as ‘‘Very
High’’, ‘‘High’’, ‘‘Medium’’, ‘‘Low’’, or ‘‘Very Low’’ dependency, with ‘‘Very
high’’ materiality rating meaning that both the loss of functionality and the

expected financial impact are extremely severe. c

4 
2.3. Biodiversity versus carbon footprints

One of the aims of this study is to disentangle the effect of bio-
diversity and climate on asset returns. In this section on data, we
carry out two preliminary analyses to highlight the commonalities and
divergences between these two types of metrics.

First, we calculate a series of correlations between combinations
of biodiversity intensity on each dimension, carbon intensity, as well
as market capitalizations and asset returns. In practice, we compute
cross-sectional correlation statistics over all dates of the period of
interest. Fig. 4 depicts these statistics ranked according to the median
correlation value. It shows two distinct blocks. The first one displays
extremely positive correlations and corresponds particularly to corre-
lations between biodiversity factors, which are strongly linked. The
second block shows values concentrated around zero and corresponds
to the correlations of biodiversity with carbon intensities, asset returns,
or market capitalization. Notably, it shows that correlations between
biodiversity and carbon intensities are weak and suggests that these
two metrics capture sufficiently different information.

Second, to analyze the similarity between biodiversity intensities
and carbon intensity, we study the overlap between the rankings ac-
ording to the two measures. In practice, we study the proportion of
ompanies in both the top 20% of carbon intensity and the top 20% of

biodiversity intensity, for each of the dimensions. Similarly, we study
the proportion of companies in both the bottom 20% of carbon intensity
and the bottom 20% of biodiversity intensity, for each dimension. Fig. 5
shows that these proportions are very different according to the bio-
iversity intensity dimensions considered. The ‘‘sky’’ components (air
ollution and GHGs) show the greatest overlap with carbon intensities,

with up to 60% overlap for the top 20% group. Conversely, there is
uch less overlap when it comes to water pollution. These patterns

learly suggest that biodiversity indices, although partially correlated
ith carbon emission indices, also capture different effects relevant to
ur study.

2.4. Realized versus expected returns

The theoretical literature on sustainable asset pricing (Pástor et al.,
2021; Pedersen et al., 2021; Zerbib, 2022) shows that climate risks
nd preferences for companies with low climate footprints affect ex-
ected returns by raising the cost of capital of companies that are the
argest emitters of greenhouse gases. Testing this hypothesis empirically
sing realized returns is valid in equilibrium. However, unexpected
hanges in investors’ climate preferences and risk expectations induce
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Fig. 2. Distribution of absolute CBF intensities across sectors. We show the distribution of the absolute CBF intensities across 11 sectors, depending on their double materiality
xposure to biodiversity loss (defined in Table 7). High scores correspond to large biodiversity dependence and impact. The denominator of the intensity is either the revenue

(solid line) or the market capitalization of the company, both expressed in million dollars (dashed density). The 𝑥-axis is in logarithmic scale.
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Fig. 3. Prominence of loss dimensions. This figure plots the smoothed density of
the absolute CBF score across its four dimensions. High values imply larger negative
footprints. The 𝑥-axis is in logarithmic scale.

an opposite effect on realized returns, favoring greener assets that
enefit from inflows over browner ones (Pástor et al., 2022; Bolton

and Kacperczyk, 2023). Therefore, by analogy with climate issues, we
choose to analyze both realized returns and a proxy for expected returns
ardly unaffected by these inflows.

To do so, we obtain daily stock realized returns from the CRSP
database, and we use the proxies built from option prices by Chabi-
Yo et al. (2023) to approximate expected returns.12 For each firm,
his metric is computed as the highest lower bound on average excess
eturns, which they obtain following a decomposition of excess returns
nto two components. The first one is directly quantifiable and stems
rom the information gathered in options prices that characterizes the
isk-neutral distribution; the second term is unobservable but can be
ounded. As this lower bound is tight, it serves as an unbiased proxy
or unconditional expected returns.

12 We are grateful to the authors for making the expected returns proxies
vailable in open access.
5 
In detail, after optimizing certain parameters (e.g., the level of risk
version), the authors end up with two degrees of freedom. The first

is the horizon of the option set: maturities range from 30 days to 365
days; the second choice concerns the approximation of the unknown
utility function: the authors use a second-order and a third-order Taylor
approximation, but they show that the latter adds little value compared
with the former. In total, the authors obtain five maturities and two
approximations, that is, ten sets of expected returns. As biodiversity
risks materialize over the medium to long term, we choose the series
based on the longest time horizon, that is, 365 days, with a second-
order Taylor expansion (GLB2-365D). However, the correlations across
dates and assets between the ten series are all above 89%.

In Fig. 6, we plot the time series of quantiles of monthly realized
returns (left panel) and yearly expected returns (right panel). Oscil-
lating around zero, and despite pronounced movements in 2011 and
2020, realized returns are more volatile in cross-section than expected
returns. However, the median of expected returns is always positive,
and the crash linked to the Covid-19 crisis at the beginning of 2020
generated a sharp spike in expected returns, which subsequently faded.

3. The biodiversity premia

In this section, we study the impact of biodiversity risks on asset
returns as part of an asset pricing exercise: we first construct long-
short biodiversity factors, and we estimate the risk premia associated

ith biodiversity risks. This asset pricing approach has a number of
dvantages, in particular enabling us to analyze the dynamics of the
rice of risk over time.

3.1. The biodiversity risk factors

We construct biodiversity factors defined as portfolios long of the
uintiles of firms with the highest CBF intensity (i.e., the smallest
iodiversity footprint) and short of the quintiles of firms with the
owest CBF intensity (i.e., the highest biodiversity footprint). We con-

struct factors based on (i) the total CBF, (ii) the four dimensions
of the CBF (land use, GHG, air pollution, water pollution), and (iii)
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Fig. 4. Correlation between intensities, revenue, returns, and capitalization. This figure represents the box plots of cross-sectional correlations between several variables, notably
arbon and biodiversity intensities. The correlations are computed each month in cross-section and their statistics are calculated across dates. The symbol || represents the separation
etween two variables that are used to calculate the correlation.
Fig. 5. Similarities in the distribution tails of the biodiversity footprint and carbon footprint. This figure plots the proportion of the bottom 20% (solid line) and top 20% (dotted
line) of stocks in terms of carbon intensities that are also among the worst (bottom 20%) and best (top 20%), respectively, in terms of the biodiversity footprint across its four
dimensions.
c

a

I

the CBF excluding GHG (‘‘ex-GHG’’). (iv) We also build similarly a
reen-minus-brown carbon factor, independent of biodiversity issues,
onstructed from S&P-Trucost data (henceforth called ‘‘total CO2’’). We
tudy market-cap weighted and equally weighted factors. The portfo-
ios are updated monthly, and their performances are evaluated the
ubsequent month.13

Fig. 7 shows the cumulative performance of all the factors sorted on
evenue-based intensity. Three comments are in order. First, the perfor-
ances of equally weighted biodiversity factors have been weaker than

alue-weighted ones, due to a steady decline since 2020. Second, the
ynamics of the biodiversity factors are very heterogeneous: the risk
actors linked to greenhouse gases and air pollution have the highest
erformance, while the one linked to land use has a very negative
erformance; the factor linked to water pollution is among the best per-
ormers when equally weighted but has an intermediate performance
hen value-weighted. Third, in both cases, the carbon factor dominates
ll biodiversity factors, reflecting the continuous interest in low-carbon

13 To mitigate the effect of outliers, the daily returns at winsorized at
+150%.
 G

6 
assets by sustainable investors, also referred to as ‘‘unexpected shift in
preferences’’ (Pástor et al., 2022).

The first way of comparing the various factors is to study their
orrelations with each other. The correlations are given in Table 5

in Appendix B.1 and lead to three conclusions. The performances of
the biodiversity factors are all highly positively correlated, to varying
degrees. Conversely, the biodiversity factors are only weakly correlated
with the carbon factor, which underlines the interest in studying the
impact of biodiversity on asset prices as a complement to existing work
on carbon risk (Engle et al., 2020; Bolton and Kacperczyk, 2021, 2024;
Pástor et al., 2022; Zhang, 2024). Third, biodiversity factors barely co-
move with the Fama and French (2015) factors, with the exception of
the HML factor, which has a strongly negative correlation, suggesting
proximity between the scope of companies with a low biodiversity
footprint and companies with a growth profile, in line with existing
findings on the carbon factor (Pástor et al., 2022).

In the second step, we investigate whether the biodiversity factors
re spanned by the Fama and French (2015) and carbon factors. To

do so, we regress each biodiversity factor on these factors (Table 1).
n the equally weighted case, the total CBF score with and without
HG (also referred to as ‘‘ex-GHG’’) has a significant alpha. This result
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Fig. 6. Dynamics of realized and expected returns. We plot the time series of the quantiles of one-month realized (left) and one-year expected (right) returns. The black line is the
edian, the light gray area excludes the extreme deciles (hence, shows the 10%–90% interval) while the dark gray area represents the inter-quartile range (25%–75% quantiles).
he expected returns are based on the second-order Taylor expansion described in Chabi-Yo et al. (2023) for options with one year maturity (GLB2-365D).
Fig. 7. Cumulative returns of the green-minus-brown biodiversity factors. We plot the cumulative returns of the biodiversity green-minus-brown factors along each dimension,
across two weighting schemes: equally-weighted in the upper panel and value-weighted in the lower one. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
v
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suggests that the biodiversity factors with and without GHG emissions
have dynamics that cannot be fully explained by the Fama French and
carbon factors. The fact that these alphas are insignificant in the value-
weighted case suggests that small-cap companies significantly drive
uch an effect. Some biodiversity sub-factors are at the root of this

result, notably the land use factor, which is significant in both the
equally-weighted and value-weighted cases. Thus, as the biodiversity
actors are not subsumed by the Fama and French (2015) and the

carbon factors, we proceed with the estimation of the biodiversity risk
premia in the next section.
f

7 
3.2. The biodiversity premia

In this section, we estimate the biodiversity and the ex-GHG biodi-
ersity risk premia through a two-pass regression (Fama and MacBeth,

1973). In the first pass, for each stock, at a weekly frequency, we
stimate the 1-year rolling betas, which we winsorize at the 2% level
o mitigate the effect of outliers; in the second pass, risk prices are
stimated as the average of the loadings estimated in the cross-sectional

regression of returns on betas each month. In all regressions, we control
or the Fama and French (2015) five factors, and when estimating
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Table 1
Factor exposure of green-minus-brown biodiversity factors. This table shows the coefficients and 𝑡-statistics (in brackets) of the Fama MacBeth regressions, with Newey–West
standard errors, of the green-minus-brown biodiversity factors on the Fama and French (2015) factors and the green-minus-brown carbon factor. The significance levels are coded
according to 𝑝-values as (***) < 0.001 < (**) < 0.01 < (*) < 0.1.

Sorting variable alpha MKT-RF SMB HML RMW CMA Carbon

Panel A: Equally-weighted portfolios

Total score −0.0004*** 0.074*** −0.076*** −0.506*** −0.095** −0.17*** 0.141***
(−4.455) (6.054) (−4.197) (−22.411) (−2.821) (−3.581) (6.208)

Air pollution −0.0001 0.124*** −0.02 −0.581*** −0.24*** −0.207*** 0.328***
(−0.641) (4.767) (−0.949) (−22.223) (−6.597) (−3.701) (11.349)

GHG −0.0001 0.089*** −0.029 −0.622*** −0.176*** −0.11* 0.334***
(−0.594) (3.923) (−1.292) (−23.836) (−5.08) (−2.141) (12.531)

Land use −0.0005*** 0.07*** −0.041* −0.49*** −0.184*** −0.184*** 0.106***
(−5.736) (6.146) (−2.181) (−23.308) (−6.036) (−4.798) (5.561)

Water pollution 0.0000 −0.019 −0.071* −0.499*** 0.034 −0.23*** 0.03
(−0.425) (−1.167) (−2.247) (−19.539) (0.981) (−4.099) (1.234)

Ex-GHG −0.0004*** 0.079*** −0.063** −0.475*** −0.1** −0.175*** 0.117***
(−4.992) (6.106) (−3.307) (−21.09) (−2.818) (−3.687) (5.351)

Panel B: Value-weighted portfolios

Total score 0.0000 0.049* 0.037 −0.391*** 0.09* 0.012 0.097*
(−0.024) (2.033) (1.54) (−8.837) (2.07) (0.161) (2.564)

Air pollution 0.0001 0.017 −0.074** −0.715*** −0.013 −0.005 0.358***
(0.783) (0.956) (−3.105) (−22.184) (−0.462) (−0.104) (5.812)

GHG 0.0001 −0.016 −0.066* −0.817*** 0.095** 0.164** 0.331***
(1.632) (−0.883) (−1.891) (−27.383) (2.781) (2.945) (5.632)

Land use −0.0004* 0.051* 0.045* −0.354*** 0.06 −0.01 0.085*
(−2.498) (2.52) (2.002) (−8.474) (1.418) (−0.137) (2.38)

Water pollution −0.0001 0.056*** −0.051 −0.576*** 0.059 −0.133* 0.017
(−0.903) (3.529) (−1.207) (−16.896) (1.358) (−1.876) (0.477)

Ex-GHG 0.0000 0.056* 0.048* −0.363*** 0.087* −0.003 0.085*
(−0.205) (2.2) (1.997) (−7.75) (1.987) (−0.038) (2.324)
o

c
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the ex-GHG biodiversity risk premium, we also control for the carbon
actor.

We perform the estimations on sector portfolios and consider two
main cases: a first estimation based on realized returns and a second
ne based on a proxy for expected returns derived from option prices.
he use of this proxy allows us to avoid capturing the impact of
nexpected changes in preferences on asset prices (Pástor et al., 2022).

The sector portfolios are those of Fama and French (2015) in the
case of realized returns, while we reconstruct expected returns at the
ector level from the expected returns of each stock. For each of these
wo cases, we consider both equally-weighted and market-cap-weighted
actors.

In the first approach, we carry out the estimation for all the sectors
n the universe (Panel A of Table 2). When using realized returns, in
ll the cases studied, neither the biodiversity factor nor the ex-GHG
iodiversity factor has a significant price of risk. Similarly, analysis of
he risk premium on expected returns gives non-significant results for
oth equally-weighted and value-weighted biodiversity factors.

Second, we focus on the sectors highly exposed to the double materi-
ality of biodiversity risks (transition and physical risks), as described in
ection 2.2. This double materiality analysis is natural and consistent

with current regulatory developments, such as those of the European
Commission, which require companies to disclose their impact and
dependencies on ecosystem services through the Sustainable Finance
Disclosure Regulation (SFDR). Therefore, we focus on companies in sec-
tors classified as ‘‘highly exposed’’. We work at the firm level because
the number of sectors is too limited. Specifically, we focus on the scope
f firms for which we have both realized and expected returns over the
ntire period, thereby ending up with 156 stocks spanning the scope of
ighly exposed industries.

The estimation based on realized returns shows a positive price of
risk of 7.2% on the value-weighted ex-GHG biodiversity factor (Panel
B of Table 2). This result highlights the financial outperformance of
ompanies with a low biodiversity footprint in the sectors most exposed

to the double materiality of biodiversity risks and echoes the results
of Pástor et al. (2022) on climate issues.

Panel B of Table 2 also shows the results of the same estimation
on expected returns. We document a significantly negative price of risk
8 
of −1.7% and −1.5% for the value-weighted biodiversity and ex-GHG
biodiversity factors, respectively.14 This result suggests that investors
require a higher cost of capital to hold assets with a large biodiversity
footprint compared to those with a smaller footprint in the highly
exposed sectors. This result is in line with the theoretical work on ESG
asset pricing (e.g., Pástor et al., 2021) as well as the empirical results
n the climate factor (e.g., Pástor et al., 2022).

We study the robustness of this result to the change in CBF cal-
ulation methodology, which occurred in 2018, in two different ways
Appendix B.3.2). First, we show that the percentage of companies
hanging quintile before and after 2018 remains stable, at around 25%.

The stability of this turnover rate before and after 2018 alleviates
concerns about the possibility that this change in methodology might
have had a significant effect on the construction of the biodiversity
factor. Second, we show that, even over a different period shaped by
the war in Ukraine and rising interest rates, the price of the biodiversity
risk factor remains significantly negative in industries highly exposed
to the double materiality of biodiversity risks.

This study, thus, contributes to the literature, notably by document-
ing a negative risk premium linked to the biodiversity footprint on
ectors most exposed to the double materiality of biodiversity risks.
his finding is consistent with the one of Garel et al. (2024), who

observe a negative price shock for companies with a high biodiversity
footprint following the UN Biodiversity Conference (COP15). It also
echoes the finding of Giglio et al. (2023) that returns of portfolios
sorted on companies’ exposure to biodiversity risk covary positively
with innovations in biodiversity risk. However, this result also raises
two other important questions: what are the dynamics of these pre-
mia, and can they be explained by certain factors? We answer these
questions in the next section.

14 The analysis using expected returns extracted from 30-day option prices
yields prices of risk with a similar order of magnitude but significance levels
lower than 10% (see Table 8 in the Appendix). This result is not surprising as
the horizon is too short to embed a significant pricing of biodiversity risks.
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Table 2
Annual biodiversity risk premium. This table gives the estimates of annualized biodiversity risk premia via a Fama MacBeth two-pass estimation with Newey–West standard errors.
In panel A, we use the returns of sector portfolios, while in panel B, we use those of single stocks in the sectors most exposed to the double materiality of biodiversity risks as
dependent variables. We focus on two factors: the biodiversity factor and the ex-GHG biodiversity factor. For both panels, we consider two main cases: monthly realized returns
and annual expected returns estimated from option prices (Chabi-Yo et al., 2023). Risk prices are annualized for realized returns. Finally, for each of the cases considered, we
ive risk prices based on green-minus-brown biodiversity factors constructed as value-weighted and equally weighted based on CBF intensities computed with firms’ revenues. The

𝑡-statistics are given in brackets and significance thresholds for 𝑝-values are coded as: (***) < 0.001 < (**) < 0.01 < (*) < 0.1.
Panel A: Entire universe

Realized returns Expected returns

EW VW EW VW EW VW EW VW

Biodiv 0.047 −0.015 0.001 0.007
(0.707) (0.132) (0.351) (1.141)

BiodivExGHG 0.013 −0.054 0.001 0.005
(0.209) (0.478) (0.501) (0.781)

Fama French (2015) controls Yes Yes Yes Yes Yes Yes Yes Yes
Carbon control No No Yes Yes No No Yes Yes

Panel B: Highly exposed industries to the double materiality biodiversity risks

Realized returns Expected returns

EW VW EW VW EW VW EW VW

Biodiv 0.016 0.036 −0.002 −0.017*
(0.419) (1.521) (1.157) (1.662)

BiodivExGHG 0.017 0.072** −0.001 −0.015*
(0.460) (3.194) (0.287) (1.718)

Fama French (2015) controls Yes Yes Yes Yes Yes Yes Yes Yes
Carbon control No No Yes Yes No No Yes Yes
Fig. 8. Dynamics of the annual price of risk of US stocks’ expected returns in industries highly exposed to the double materiality of biodiversity risks. This figure gives the
dynamics of the annual price of risk of US stocks in industries highly exposed to the double materiality of biodiversity risks estimated in Table 2 from the one-year expected
returns with a value-weighted factor. We plot the twelve-month additive trend decomposition for both the biodiversity and the biodiversity ex-GHG factors.
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3.3. Explaining time-variations of the biodiversity premia

In this section, we study and explain the dynamics of prices of risks
in the industries most exposed to the double materiality of biodiversity
risks. To do so, we display, in Fig. 8, the one-year rolling price of
risk estimated on expected returns using a value-weighted biodiversity
factor. Both the price of biodiversity and ex-GHG biodiversity risks
are fairly stable until 2021: they have been oscillating around zero
since the beginning of the analysis period and have fallen sharply from
2021 to reach −10% in 2022. Thus, they reflect the recent awareness
toward biodiversity risks and their impact on asset prices, which is
consistent with record-high public attention to biodiversity according
to the biodiversity attention index of Giglio et al. (2023). Therefore,
the negative price of risk estimated in the previous section is mainly
driven by its recent trend.

Next, we study the drivers of the dynamics of biodiversity risk
prices. To do so, for each of the two biodiversity dimensions 𝑖 (bio-
diversity and ex-GHG biodiversity), we consider the following linear
pecification:
𝜆𝑖,𝑡 = 𝜙1 + 𝜙2𝜆𝑖,𝑡−1 + 𝜙′
3𝑋𝑡−1 + 𝜖𝑖,𝑡, (1) v

9 
where 𝜆𝑖,𝑡 is the one-year rolling price of risk in month 𝑡 for biodiversity
factor 𝑖 and 𝜙2 accounts for the likely persistence of the price of risk
ver time. We consider the following independent variables denoted
y vector 𝑋𝑡−1: a biodiversity attention index and a climate risk index,
oth derived from Giglio et al. (2023), the oil prices, a consumer

sentiment index taken from the FRED-MD database (McCracken and
Ng, 2016) and a risk aversion index provided by Bekaert et al. (2022).

hese variables account for different possible channels, from climate
hange awareness to the general state of the economy and specific
arket conditions.

The results are given in Table 3. The estimations explain up to 40%
of the biodiversity price of risk dynamics.

First, attention to biodiversity very significantly lowers the price
of risk, and thus contributes to increasing the gap between expected
returns on stocks of companies with a low biodiversity footprint and
those of companies with a high biodiversity footprint. This result is
onsistent with the impact of investor awareness of biodiversity risks
n asset prices. Similarly, by significantly lowering the price of bio-
iversity risk, the increase in risk aversion appears to lead investors
o revise their expectations on returns according to companies’ biodi-
ersity footprints. As shown in Table 10 in the Appendix, the effect is
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Table 3
Drivers of the biodiversity risk premia This table gives estimates of the regression of
he residuals of an AR(1) on the price of risk of biodiversity and ex-GHG biodiversity

on several time series as independent variables. Significance thresholds for 𝑝-values are
coded as: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

Biodiversity BiodiversityExCarbon

(Intercept) 0.000 0.000
(0.002) (0.164)

Biodiversity attention −0.005*** −0.005***
(−5.478) (−5.037)

Climate attention 0.002** 0.002**
(2.646) (2.784)

Consumer sentiment 0.002** 0.002**
(2.912) (2.887)

Oil price 0.000 0.000
(0.132) (−0.151)

Risk aversion −0.002* −0.001+
(−2.464) (−1.889)

Num.Obs. 110 110
R2 0.415 0.386
R2 Adj. 0.381 0.350

similar when we replace the risk aversion with the VIX index which
captures forward-looking expectations on uncertainty.

Second, conversely, attention to climate risk has a positive impact
n the price of biodiversity risk, suggesting a possible reallocation of
ssets within environmental issues in favor of low-carbon footprint
ssets (Engle et al., 2020). Finally, consumer sentiment is associated
ith a positive and significant coefficient. This is consistent with pre-
ious findings on carbon risk premium (e.g., Lucia et al., 2022): when

investors are more confident about the future, they tend to revise
their preferences and assign less importance to future risks, thereby
owering the compensation required for holding ‘‘brown’’ firms in their
ortfolios.

4. Conclusion

Our results highlight the existence of a biodiversity risk premium on
xpected returns, in the US, in the sectors most exposed to the double
ateriality of biodiversity risks. A dynamic analysis shows that this

isk premium has recently materialized, notably from 2021, to reach an
nnual price of risk of −10% in 2022 on the factor going long on low-
iodiversity intensity stocks and short on high-biodiversity intensity
tocks. We also show that this biodiversity risk premium is distinct from
 carbon premium, already widely studied in the literature, and that it
ncreases with attention to biodiversity issues and risk aversion.

A natural question arising from this result concerns the impact that
investors can have on companies with a high biodiversity footprint by
increasing their cost of capital: do these companies have an incentive to
reduce their biodiversity footprint? To what extent? (De Angelis et al.,
2023) show that underweighting assets with a high carbon footprint
only leads to a slight reduction in their carbon footprints. There are
reasons to assume a similar hypothesis, given the similarity of the
mechanisms involved, but an in-depth analysis would be an interesting
avenue for future research.

In addition, there are several other major related topics worth
exploring in future research. First, it would be interesting to understand

hich investors are most committed to investing in firms with a low
iodiversity footprint, and to what extent these investment choices
eflect the preferences of their clients. Second, it would be useful
o learn how investors balance the biodiversity objective with the

climate objective. To this end, a dynamic multi-criteria model could
be developed and estimated. Finally, it would be interesting to analyze
shareholder engagement in favor of biodiversity and the reaction of
companies to it.
10 
Fig. 9. Correlation of the CBF with other public biodiversity assessments. This figure
shows the distribution of sector correlation between the CBF and other publicly
vailable scores. AS the CBF has negative values, the lower the correlation the closer
he two assessments are.
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Appendix A. Biodiversity corporate footprint (CBF): additional re-
sults

See Fig. 9 and Table 4.

Appendix B. The biodiversity premia: further results

B.1. Factors

See Table 5.

B.2. Materiality rankings

See Tables 6 and 7.

B.3. Robustness checks

B.3.1. Estimation of the biodiversity risk premia using expected returns
extracted from 30-day option prices

See Table 8.
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Table 4
Corporate Biodiversity Footprint (CBF) vs. Public biodiversity assessments For quantitative scores (denoted by *), we identify the companies
belonging to the worst quartile, while we keep the total list for Action 100. For each group, we display (i) the average CBF percentile relative
to the rest of the universe (upper part of the table) and (ii) the proportion of this group belonging to the worst quintile (20%) of the CBF
distribution (lower part of the table).

Action 100 WBA Nature* Forest 500* Forest IQ*

Average percentile CBF 23.13 23.90 30.55 40.51
Average percentile CBF/Revenues 39.13 37.60 44.18 48.69
Average percentile CBF Land Use 24.68 26.85 28.64 39.51
Average percentile CBF Land Use/Revenues 39.27 39.96 39.08 46.26

Worst 20% CBF 71% 70% 48% 36%
Worst 20% CBF/Revenues 39% 37% 26% 26%
Worst 20% CBF Land Use 69% 66% 50% 36%
Worst 20% CBF Land Use/Revenues 42% 37% 36% 26%
Table 5
Correlation between factors. This table provides the correlations between the factors sorted on the CBF intensities, the Fama and French (2015) factors, and the carbon factor.
The upper right (resp. lower left) panel uses equally-weighted (resp. value-weighted) factors. The upper left and lower right panels use value-weighted factors. Total refers to all
biodiversity components taken together.

Traditional factors Biodiversity factors

MKT-RF SMB HML RMW CMA Air Poll. GHG Land use Total Water Poll. no GHG CO2

MKT-RF 1.000 0.202 −0.045 −0.197 −0.290 0.242 0.173 0.190 0.173 0.017 0.190 −0.101
SMB 0.202 1.000 0.209 −0.251 −0.023 −0.071 −0.114 −0.108 −0.162 −0.201 −0.141 0.001
HML −0.045 0.209 1.000 0.317 0.615 −0.691 −0.715 −0.726 −0.721 −0.692 −0.700 0.246
RMW −0.197 −0.251 0.317 1.000 0.305 −0.386 −0.344 −0.371 −0.300 −0.187 −0.304 0.108
CMA −0.290 −0.023 0.615 0.305 1.000 −0.605 −0.573 −0.578 −0.566 −0.498 −0.557 −0.023

Air Pollution 0.131 −0.183 −0.713 −0.270 −0.514 1.000 0.972 0.848 0.861 0.729 0.843 0.087
GHG 0.046 −0.229 −0.747 −0.202 −0.456 0.957 1.000 0.824 0.843 0.724 0.819 0.093
LandUse 0.107 −0.029 −0.335 −0.111 −0.247 0.512 0.510 1.000 0.962 0.821 0.967 −0.073
Total 0.097 −0.046 −0.347 −0.097 −0.244 0.527 0.527 0.984 1.000 0.876 0.990 −0.038
WaterPollution 0.118 −0.158 −0.655 −0.188 −0.463 0.807 0.790 0.566 0.588 1.000 0.876 −0.112
no GHG 0.109 −0.032 −0.332 −0.097 −0.242 0.516 0.513 0.987 0.995 0.591 1.000 −0.054
CO2 0.264 0.076 0.157 −0.110 −0.143 0.201 0.129 0.034 0.032 −0.057 0.032 1.000
Fig. 10. Turnover rate of CBF intensities best-in-class quantiles. This figure shows the average turnover rate by quantile computed within GICS sector (Best-in-class), based on
BF intensities computed by enterprise value.
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B.3.2. Estimation of the biodiversity risk premia using data from 2018
onward

As elaborated in Section 2.1, the methodology for calculating the
BF was revised in 2018, thanks to the availability of more detailed
ata. To analyze the impact of the methodology revision on our biodi-
ersity factor, we calculate the turnover rate of companies by quintile,
efined as the percentage of companies that move from one quantile
o another each year (Fig. 10). Before and after 2018, the average
urnover is of the same magnitude, approximately 25%. The stability of
he turnover rate before and after 2018 alleviates concerns about the
ossibility that this change in methodology might have had a significant

effect on the construction of the biodiversity factor.
We also repeat the estimation of the biodiversity risk premium

between 2018 and 2022 (Table 9). It is worth noting that comparing the
stimates with those in the main case is irrelevant given the temporal
11 
inconsistency. However, although the price of risk of the biodiversity
factor is positive over the entire universe, consistent with the negative
effect of the war in Ukraine and rising rates on the asset prices of
ompanies with a low environmental footprint, the price of biodiversity
isk remains significantly negative on companies in industries with high
xposure to the double materiality of biodiversity risks.

B.3.3. Estimation of the drivers of the price of biodiversity risks using the
IX instead of the risk aversion

See Table 10.

Data availability

The authors do not have permission to share data.
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Table 6
Double materiality industry ranking. Industries are ranked by highest exposure to biodiversity loss. Average CBF/Sales and SBTN Scores are computed at the GICS Sub-Industry
evel then aggregated and matched to Fama & French 48 Industry portfolios. SBTN original ratings are transformed into quantitative scores following a linear scale.

FF 48
code

FF 48
name

FF 48 industry long name GICS industry CBF/
Revenue

SBTN ma-
teriality
score

CBF
ranking

SBTN
ranking

Average
ranking

Exposure

1 14 Chems Chemicals 151 010.00 −0.39 223.42 5.00 4.00 4.50 High
2 39 Boxes Shipping Containers 151 030.00 −0.72 159.33 4.00 5.00 4.50 High
3 38 Paper Business Supplies 151 050.00 −1.35 90.00 1.00 14.00 7.50 High
4 22 ElcEq Electrical Equipment 201 040.00 −0.23 105.57 8.00 10.00 9.00 High
5 1 Agric Agriculture 302 020.00 −0.84 81.29 2.00 18.00 10.00 High
6 2 Food Food Products 302 020.00 −0.84 81.29 3.00 19.00 11.00 High
7 17 BldMt Construction Materials 151 020.00 −0.10 154.38 18.00 6.00 12.00 High
8 31 Util Utilities 551 010.00 −0.06 310.00 27.00 1.00 14.00 High
9 9 Hshld Consumer Goods 303 020.00 −0.05 254.00 30.00 2.00 16.00 High
10 28 Mines Non-Metallic and Industrial Metal Mining 151 040.00 −0.13 78.77 13.00 20.00 16.50 High
11 36 Chips Electronic Equipment 252 010.00 −0.08 96.23 21.00 12.00 16.50 High
12 25 Ships Shipbuilding, Railroad Equipment 203 050.00 −0.04 247.00 31.00 3.00 17.00 High
13 10 Clths Apparel 252 030.00 −0.10 84.22 19.00 16.00 17.50 High
14 18 Cnstr Construction 201 030.00 −0.07 132.08 26.00 9.00 17.50 High
15 27 Gold Precious Metals 151 040.00 −0.13 78.77 14.00 21.00 17.50 High
16 29 Coal Coal 101 020.00 −0.08 103.86 24.00 11.00 17.50 High
17 4 Beer Beer & Liquor 302 010.00 −0.17 74.00 11.00 25.00 18.00 Medium
18 16 Txtls Textiles 252 030.00 −0.10 84.22 20.00 17.00 18.50 Medium
19 19 Steel Steel Works Etc 151 040.00 −0.13 78.77 15.00 22.00 18.50 Medium
20 3 Soda Candy & Soda 302 010.00 −0.17 74.00 12.00 26.00 19.00 Medium
21 13 Drugs Pharmaceutical Products 352 020.00 −0.23 49.00 9.00 31.00 20.00 Medium
22 34 BusSv Business Services 201 070.00 −0.07 89.38 25.00 15.00 20.00 Medium
23 21 Mach Machinery 201 060.00 −0.06 92.97 28.00 13.00 20.50 Medium
24 30 Oil Petroleum and Natural Gas 101 010.00 −0.02 136.00 34.00 7.00 20.50 Medium
25 37 LabEq Measuring and Control Equipment 352 030.00 −0.22 49.00 10.00 32.00 21.00 Medium
26 15 Rubbr Rubber and Plastic Products 251 010.00 −0.08 76.50 22.00 23.00 22.50 Medium
27 26 Guns Defense 201 010.00 −0.13 68.83 17.00 28.00 22.50 Medium
28 40 Trans Transportation 203 010.00 −0.01 135.80 38.00 8.00 23.00 Medium
29 41 Whlsl Wholesale 251 010.00 −0.08 76.50 23.00 24.00 23.50 Medium
30 43 Meals Restaurants, Hotels, Motels 253 010.00 −0.33 16.76 6.00 42.00 24.00 Medium
31 5 Smoke Tobacco Products 302 030.00 −0.13 45.00 16.00 33.00 24.50 Medium
32 44 Banks Banking 401 010.00 −0.24 6.00 7.00 43.00 25.00 Low
33 23 Autos Automobiles and Trucks 251 020.00 −0.03 71.00 32.00 27.00 29.50 Low
34 6 Toys Recreation 252 020.00 −0.02 62.00 33.00 29.00 31.00 Low
35 42 Rtail Retail 255 010.00 −0.01 50.67 37.00 30.00 33.50 Low
36 35 Comps Computers 452 020.00 −0.05 26.00 29.00 39.00 34.00 Low
37 33 PerSv Personal Services 253 020.00 −0.02 34.00 35.00 36.00 35.50 Low
38 7 Fun Entertainment 502 010.00 −0.00 40.38 41.00 34.00 37.50 Low
39 12 MedEq Medical Equipment 351 030.00 −0.00 34.00 39.00 37.00 38.00 Low
40 32 Telcm Communication 452 010.00 −0.01 26.00 36.00 40.00 38.00 Low
41 8 Books Printing and Publishing 502 010.00 −0.00 40.38 42.00 35.00 38.50 Low
42 11 Hlth Healthcare 351 020.00 −0.00 33.25 40.00 38.00 39.00 Low
43 45 Insur Insurance 403 010.00 −0.00 21.75 45.00 41.00 43.00 Low
44 47 Fin Trading 402 010.00 −0.00 6.00 43.00 44.00 43.50 Low
45 46 RlEst Real Estate 402 040.00 −0.00 6.00 44.00 45.00 44.50 Low
46 20 FabPr Fabricated Products Low
47 24 Aero Aircraft Low
48 48 Other Almost Nothing Low
Table 7
Double materiality GICS sectors ranking. Sectors are ranked by highest exposure to biodiversity loss. Average CBF/Sales and SBTN Scores are computed at the GICS Sub-Industry
level then aggregated at the Sector level. SBTN original materiality ratings are transformed into quantitative scores following a linear scale.

GICS sector GICS sector name CBF/Revenue SBTN score CBF rank SBTN rank Average rank Exposure

1 15 Materials −0.26 136.56 2.00 2.00 2.00 High
2 30 Consumer staples −0.33 75.51 1.00 6.00 3.50 High
3 55 Utilities −0.07 213.80 8.00 1.00 4.50 High
4 10 Energy −0.08 113.04 6.00 3.00 4.50 High
5 60 Real estate −0.08 106.00 5.00 4.00 4.50 Medium
6 25 Consumer discretionary −0.10 55.71 4.00 7.00 5.50 Medium
7 20 Industrials −0.07 99.20 7.00 5.00 6.00 Medium
8 40 Financials −0.13 9.94 3.00 11.00 7.00 Medium
9 35 Health care −0.05 43.50 9.00 8.00 8.50 Low
10 45 Information technology −0.03 38.96 10.00 9.00 9.50 Low
11 50 Communication Services −0.00 37.56 11.00 10.00 10.50 Low
12 
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Table 8
Annual biodiversity risk premium using 30-day expected returns. This table gives the estimates of annualized biodiversity risk premia via a
Fama MacBeth two-pass estimation with Newey–West standard errors. In the left panel, we use the returns of sector portfolios, while in the
right panel, we use those of single stocks in the sectors most exposed to the double materiality of biodiversity risks as dependent variables. We
focus on two factors: the biodiversity factor and the ex-GHG biodiversity factor. For both panels, we consider annual expected returns estimated
from option prices with a 30-day horizon (Chabi-Yo et al., 2023). Risk prices are annualized. Finally, for each of the cases considered, we
give risk prices based on green-minus-brown biodiversity factors constructed as value-weighted and equally weighted based on CBF intensities
computed with firms’ revenues. The 𝑡-statistics are given in brackets and significance thresholds for 𝑝-values are coded as: (***) < 0.001 < (**)
< 0.01 < (*) < 0.1.
Expected returns - Short Horizon 30 days

Entire universe Highly exposed industries

EW VW EW VW EW VW EW VW

Biodiv −0.005 0.003 −0.005 −0.016
(0.878) (1.621) (1.233) (1.399)

BiodivExGHG −0.007 0.003 −0.002 −0.010
(1.187) (1.325) (0.744) (1.067)

Fama French (2015) controls Yes Yes Yes Yes Yes Yes Yes Yes
Carbon control No No Yes Yes No No Yes Yes
Table 9
Annual biodiversity risk premium - 2018 onward. This table gives the estimates of annualized biodiversity risk premia via a Fama MacBeth two-pass estimation with Newey–West
tandard errors for the sub-sample of years 2018 to 2022. In panel A, we use the returns of sector portfolios, while in panel B, we use those of single stocks in the sectors most

exposed to the double materiality of biodiversity risks as dependent variables. We focus on two factors: the biodiversity factor and the ex-GHG biodiversity factor. For both panels,
e consider two main cases: monthly realized returns and annual expected returns estimated from option prices (Chabi-Yo et al., 2023). Risk prices are annualized for realized

returns. Finally, for each of the cases considered, we give risk prices based on green-minus-brown biodiversity factors constructed as value-weighted and equally weighted based
on CBF intensities computed with firms’ revenues. The 𝑡-statistics are given in brackets and significance thresholds for 𝑝-values are coded as: (***) < 0.001 < (**) < 0.01 < (*) <
.1.
Panel A: Entire universe

Realized returns Expected returns

EW VW EW VW EW VW EW VW

Biodiv −0.011 0.007 0.007 0.049*
(0.120) (0.038) (0.912) (2.049)

BiodivExGHG 0.164 0.101 0.014* 0.050*
(1.34) (0.575) (2.46) (2.289)

Fama French (2015) controls Yes Yes Yes Yes Yes Yes Yes Yes
Carbon control No No Yes Yes No No Yes Yes

Panel B: Highly exposed industries to the double materiality biodiversity risks

Realized returns Expected returns

EW VW EW VW EW VW EW VW

Biodiv −0.028 0.109 −0.001 −0.039*
(0.354) (0.637) (0.189) (1.882)

BiodivExGHG −0.010 0.139 0.005 −0.033
(0.141) (0.773) (1.041) (1.588)

Fama French (2015) controls Yes Yes Yes Yes Yes Yes Yes Yes
Carbon control No No Yes Yes No No Yes Yes
Table 10
Drivers of the biodiversity risk premia This table gives estimates of the regression of
he residuals of an AR(1) on the price of risk of biodiversity and ex-GHG biodiversity

on several time series as independent variables. Compared to the main estimation, this
ne includes the VIX in place of the risk aversion. Significance thresholds for 𝑝-values

are coded as: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
Biodiversity BiodiversityExCarbon

(Intercept) 0.000 0.000
(0.002) (0.161)

Biodiversity attention −0.005*** −0.005***
(−4.859) (−4.420)

Climate attention 0.002* 0.002*
(2.435) (2.589)

Consumer sentiment 0.002** 0.002**
(2.914) (2.871)

Oil price 0.000 0.000
(0.149) (−0.089)

VIX −0.001+ −0.001
(−1.903) (−1.371)

Num.Obs. 110 110
R2 0.408 0.379
R2 Adj. 0.374 0.343
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