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Intermittency as it occurs in fast dynamos in the MHD framework is evaluated through
the examination of relations between normalized moments at third order (skewness S)
and fourth order (kurtosis K) for both the velocity and magnetic field, and for their
local dissipations. As investigated by several authors in various physical contexts such as
fusion plasmas (Krommes (2008)), climate evolution (Sura & Sardeshmukh (2008)), fluid
turbulence or rotating stratified flows (Pouquet et al. (2023)), approximate parabolic
K(S) ∼ Sα laws emerge whose origin may be related to the applicability of intermittency
models to their dynamics. The results analyzed herein are obtained through direct
numerical simulations of MHD flows for both Taylor-Green and Beltrami ABC forcing
at moderate Reynolds numbers, and for up to 3.14× 105 turn-over times. We observe for
the dissipation 0.2 . α . 3.0, an evaluation that varies with the field, the forcing, and
when filtering for high-skewness intermittent structures. When using the She & Lévêque
(1994) intermittency model, one can compute α analytically; we then find α ≈ 2.5, clearly
differing from a (strict) parabolic scaling, a result consistent with the numerical data.

Key words: MHD; Fast dynamo; Intermittency; Kurtosis; Dissipation; Turbulence

1. Introduction

One striking property of turbulent flows is their lack of predictability, as well as
their intermittency, associated with the presence of intense and isolated patterns at
small scales, such as vortex filaments and current sheets, or coherent structures at
large scale. Such extreme events can be assessed through their probability distribution
functions (PDFs), and thus through their normalized moments such as the skewness and
kurtosis (definitions are given in §3). These intense structures have been identified in
many experiments, observations and direct numerical simulations (see for recent reviews
e.g. Matthaeus et al. (2015); Yeung et al. (2015); Chen (2016); Camporeale et al. (2018);
Ergun et al. (2020); Schekochihin (2022)). The ensuing dissipation is found in a reduced
volume of the system, in both neutral fluids (Bradshaw et al. (2019); Rafner et al.
(2021); Buaria et al. (2022)) and MHD (see e.g. Politano et al. (1995); Meneguzzi et al.
(1996); Mallet et al. (2017); Zhdankin et al. (2017); Adhikari et al. (2020)). This physical
intermittency volume can be in fact smaller than for fully developed turbulence (FDT) in
the presence of gravity waves (Marino et al. (2022)), as also found in clear air turbulence,
and similar observations are documented for plasma disruptions.

† Email address for correspondence: yannick.ponty@oca.eu
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Intermittency can be characterized in many ways, such as when evaluating anomalous
exponents of structure functions. Perhaps more directly, one can assess when and where
normalized third and fourth-order moments, skewness S and kurtosis K, differ from
their Gaussian value. There is a long history of such measurements; for example, both
skewness and kurtosis, have been used to map a flow, such as in meandering jets in the
ocean (Hughes et al. (2010)), or in climate data reanalysis (Petoukhov et al. (2008)).

One way to condense the data further is to look for K(S) relations, often found to
be close to parabolic in a variety of contexts (see Pouquet et al. (2023) and references
therein for a recent review), for the Navier-Stokes (NS) equations, in presence or
not of stratification and/or rotation, as relevant to the atmosphere, the ocean and
climate (Lenschow et al. (1994); Sura & Sardeshmukh (2008)). Such quasi-parabolic
laws were also found in laboratory and astrophysical plasmas (see e.g. Labit et al.
(2007); Krommes (2008); Sattin et al. (2009); Garcia (2012); Guszejnov et al. (2013);
Mezaoui et al. (2014); Furno et al. (2015); Miranda et al. (2018)). More recently,
Sladkomedova et al. (2023) analysed the intermittency of the density in MAST (Mega
Ampere Spherical Tokamak) plasmas, and found that the data agrees with the K(S)
model given by Garcia (2012) (see also Guszejnov et al. (2013); Losada et al. (2023)). †

Detailed knowledge of intermittency in plasmas and turbulent systems in general may
lead to a better understanding of their PDFs and of the dissipation mechanisms at play.
It is in this context that we want to examine in this paper the intermittent properties
of MHD through the possible relationship between excess kurtosis and skewness for the
velocity and magnetic field, as well as for their local dissipation. MHD has, of course,
many different regimes, and we concentrate here on one subset, namely that of the fast
dynamo in its nonlinear phase and at moderate Reynolds number for which long runs
are available, up to in excess of 105τnl, where τnl = Lint/Vrms is the turn-over time of
the turbulence based on the large-scale velocity Vrms and on the integral length scale
Lint. In the next section, we summarize the framework utilizing Langevin equations to
yield such intermittency, and in §3 are written the equations and definitions needed for
our analysis of MHD numerical data for a fast dynamo regime, as well as information on
the direct numerical simulations (DNSs) employed herein. In Section §4, we analyze the
results and give an interpretation within a specific model of intermittency, and the last
section presents a discussion and our conclusions.

2. A Langevin framework for a K(S) parabolic behavior

2.1. The linear case

A K(S) parabolic law has been derived explicitly in Sura & Sardeshmukh (2008) for
a model of oceanic sea-surface temperature anomalies (SST), based on the dynamics of
a specific linear Langevin model with both additive and multiplicative noises. Analyzing
the corresponding Fokker-Planck equation for the stationary PDF, these authors can
show analytically that in the limit of weak multiplicative noise, K(S) ∼ 3S2/2. Multiple
other studies show the plausibility of a Langevin model for parabolic K(S) behaviors
in different contexts as exemplified in Hasselmann (1962); Sattin et al. (2009) (see also
Farago (2002); Farrell & Ioannou (2009)), with a fast and weak multiplicative noise due
to the emergence of rapid small-scale and thus (on average) low-amplitude eddies. The
kinematic dynamo equations, with a given fixed possibly stochastic and delta-correlated

† The model is based on moments up to fourth order as well as on an estimate of the number
of the intermittent events that are observed simultaneously.
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in time velocity field, lend themselves naturally to the Langevin framework (see e.g.

Watkins et al. (2016) for a link with self-organized criticality).

Models in the case of fusion plasmas have also been written, for example in the context
of magnetically-confined experiments. In Garcia (2012), the dynamics, as for dissipation
events, is viewed as a random sequence of bursts as opposed to a quasi-continuum. These
bursts are occurring independently and following a Poisson process. When taking for the
shape of these bursts a sharp rise and a slow exponential decay, one can compute K(S)
relations which, for an exponential distribution of burst amplitudes, becomes K(S) =
3S2/2 where the 3/2 coefficient can be modified by the presence of added noise (see also
Theodorsen et al. (2017)).

2.2. The nonlinear regime of the dynamo

In the saturation phase of the dynamo, the equations are now nonlinear. Nonlinear
Langevin equations are already studied in Zwanzig (1973). Several Langevin approaches
in MHD have been derived as well in the nonlinear case. For example, a sub-diffusive
behavior was unraveled in Balescu et al. (1994), from first principles, in the context of
a stochastic magnetic field. One can also choose to add a cubic term in the induction
equation (cubic so that the symmetry of the axial magnetic field be preserved), in order
to mimic the effect the Lorentz force has on the velocity (see e.g. Boldyrev (2001);
Leprovost & Dubrulle (2005)), in particular for large magnetic Prandtl numbers. On the
other hand, it was shown in Nazarenko et al. (2000) that in the case of the fast dynamo,
the feed back of the growing induction is through the creation of counter-rotating vortices,
a point not included in a saturation involving only the magnetic field equation.

One can also consider the role of Alfvén waves in the nonlinear regime by introducing in
a linear Langevin equation an oscillatory term (Bandyopadhyay et al. (2018)). Certainly,
one of the main effect of a magnetic field, in both the linear and nonlinear regimes, is
that its large-scale component is responsible for bringing into equipartition large-scale
and small-scale velocity and induction, as shown already using a non-helical version of
a two-point closure in MHD (Kraichnan & Nagarajan (1967)). However, in the present
paper examining a chaotic small-scale dynamo regime, the large-scale magnetic field is
not expected to be strong in the absence of overall helicity, and of scale separation, and
thus the Alfvén waves it would produce are not likely going to be substantially faster
than the eddy turn-over time τnl or, said differently, we are not in a regime of weak
MHD turbulence so that the waves will likely not modify or impede significantly the
turbulence regime and the ensuing intermittency. In a Langevin equation, in a sense, one
is getting rid of the closure problem for turbulent motions since it is linear, with the
complex nonlinear small-scale dynamics bundled up in a rapid stochastic forcing with an
assumption of (mostly) local interactions among these fast motions.

Another question is whether the intermittency of the early dissipation range dominates
the statistics, at least at moderate Reynolds numbers. Indeed, one could argue that the
intermittency of the dissipation is mostly located in the beginning of the range, due to the
ensuing fast decay. In Wu et al. (2023), a near-dissipation range intermittency is exam-
ined using Solar Wind data obtained with the Parker Solar Probe. The authors conclude
that they find evidence for log-Poisson scaling as modeled for MHD in Grauer et al.
(1994); Politano & Pouquet (1995), and that such structures are also almost entirely
responsible for the intermittency anisotropy (see also Bian & Li (2024)). This may be
consistent with stating, as developed already in Kraichnan (1967), that most of the
intermittency is in fact at the beginning of the dissipative range.
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3. Equations and numerical set-up

3.1. Equations and definitions

The equations for MHD in the incompressible case are written as usual as:

[∂t + u · ∇]u ≡ Dtu = −∇P ⋆ + b · ∇b+ ν∆u+ FV , (3.1)

[∂t + u · ∇]b ≡ Dtb = b · ∇u+ η∆b, (3.2)

together with ∇ · u = 0,∇ · b = 0; u,b are the velocity and magnetic field (in Alfvén
velocity units), P ⋆ is the total pressure, ν, η are the viscosity and magnetic diffusivity,
and FV is a forcing term. We will use in this paper two types of forcing. The first one
is the ABC (Arnold-Beltrami-Childress) forcing, which is a superposition of Beltrami
vortices and thus fully helical; it is defined as:

fABC = [cos(y) + sin(z)] x̂+ [sin(x) + cos(z)] ŷ + [cos(x) + sin(y)] ẑ. (3.3)

The ABC flow is an eigenfunction of the curl, and it is an exact solution of the Euler
equations; thus, for large enough viscosity, it is stable but turbulence develops as the
Reynolds number RV increases. We also take the Taylor-Green (TG) forcing written as:

fTG = f tg
0

{[sinx cos y cos z] x̂− [cosx sin y cos z] ŷ + 0ẑ} , (3.4)

with f tg
0

= 3. This forcing is globally nonhelical, but it can be viewed in fact as an
assembly of helical patches of both signs and varied intensities.

We solved numerically our MHD system in a fully periodic box using a classic pseudo-
spectral solver, involving a 2/3 dealiasing technique with a parallel CPU-MPI code
(CUBBY; Ponty et al. (2005)). With these two forcings, we compute four simulations
altogether, for up to hundreds of thousands of eddy turn over times, and we record the
same amount of snapshots for the six three-dimensional field components. Some of the
data and a few of the statistical properties of these runs are given in Table.3.1.

3.2. Rapid description of the runs

The dynamo problem, concerning the generation of magnetic fields at both large and
small scales, is a long-standing topic (see Brandenburg & Subramanian (2005); Rincon
(2019) for thorough recent reviews). In the context of this paper, we analyze four
simulation runs, focusing on the turbulent dynamo regime. In these simulations, the
(fast) dynamo is triggered when the magnetic Reynolds number RM exceeds a threshold
that depends on the magnetic Prandtl number Pm = ν/η (Ponty et al. (2005)), as seen
in run TG3. Sub-critical dynamos can also be observed, where magnetically-induced
changes to the velocity field play a role, such as in run TG1 which is close to the onset of
dynamo action, and living on the sub-critical branch (Ponty et al. (2007)). It is also worth
noting that the Lorenz force’s feedback on the velocity field can influence the so-called
”on-off” intermittency of the dynamo, as explored in detail by Alexakis & Ponty (2008)
in the context of the ABC runs ABC1 and ABC2. These runs are notable for their
short off phases, during which the magnetic field becomes weak enough to revert the
system back to a hydrodynamic state. The dynamo comes back quickly, with a return
to a MHD equilibrium (see Fig. 1 below). We thus finally have two different types of
dynamo turbulence, with a large amount of fluctuations which are analyzed in the next
section making use of their third and fourth-order normalized moment statistics using
the full-space field data.
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Run – np ν RV Rλ RN Tmax τnl RM Pm r

TG1 – 64 0.07 65.5 25.5 2.98 50× 103 2.23 111 0.7 1.05

TG3 – 64 0.1 60. 24.3 3.35 130× 103 1.86 430 3.3 5.26

ABC1 – 64 0.16 210. 45.8 2.4 60× 103 1.14 32 1.45 1.18

ABC2 – 64 0.2 175. 41. 1.4 314.254 × 103 1.12 21 1.42 1.21

Table 1. Characteristics of the runs, with the linear resolution np of the cubic grid, ν the
viscosity, the Reynolds number RV = LVrms/ν, and Taylor Reynolds number Rλ = λVrms/ν;
RN = ηvnp/3 is the so-called Kaneda criterium based on the resolution in terms of the
Kolmogorov dissipation length ηv . TG denotes Taylor-Green runs, and ABC denotes ABC
runs (see text). Tmax is the maximum time of the run, with the turn-over time τnl being
of order 1 or 2 in terms of Tmax. For the magnetic part, we give the magnetic Reynolds
RM = LVrms/η, the magnetic Prandtl number Pm = ν/η and r = RM/RC

M the ratio of
the magnetic Reynolds number to the (approximate) critical value for the threshold of the
dynamo. All these non-dimensional numbers need different definition of scales, like the integral
scale L = 2π

∑

E(k)/k/
∑

E(k) defined using the isotropic energy spectrum computed along

the simulation at each wave number k, the Taylor scale λ =
√
10ηvR

1/4
V =

√
10LintR

−1/2
V

in the inertial range, and the Kolmogorov scale ηv =
[

ǫv
ν3

]

−1/4
= LintR

−3/4
V at the onset of

the dissipation range. We need also one characteristic velocity which is usually taken as the
root mean square of the kinetic energy Vrms =

√

2
∑

E(k). The non-linear time is taken as
τnl = L/Vrms. All the scales and velocity are averaged in time as the simulations develop.

4. Analysis of the results

4.1. Field gradient tensors, skewness and kurtosis

Concerning the data points for measurements, which must be statistically independent,
they are taken approximately every τnl; we recall that measurement errors go as

√

6/Ns

with Ns the number of independent data points (see e.g. Sura & Sardeshmukh (2008)).
Large samples are needed also because a parabolic fit is quite sensitive to extreme values.
Note that it is shown in Wan et al. (2010), in the context of two-dimensional (2D) MHD
turbulence, that an estimate of the kurtosis at small scales requires, in the framework
of the DNSs analyzed in that paper, that the (Kolmogorov) dissipation scale be at least
twice as large as the cut-off kmax = np/3; this condition is well fulfilled by the runs of
Table 3.1 (see parameter RN ).
We analyze the data using the point-wise rates of dissipation of the kinetic and

magnetic energy given by ǫv(x) = u · ∂tu , ǫm(x) = b · ∂tb. They are expressed in
terms of the symmetric part of the velocity gradient tensor, namely the strain tensor Sv

ij :

Sv
ij(x) =

∂jui(x) + ∂iuj(x)

2
, ǫv(x) = ΣijS

v
ij(x)S

v
ij(x) , (4.1)

and of the magnetic current density, viz. ǫm(x) = j2(x). For completion, we also define
the symmetric part of the magnetic field gradient tensor, namely:

Sm
ij (x) =

∂jbi(x) + ∂ibj(x)

2
, σm(x) = ΣijS

m
ij (x)S

m
ij (x) . (4.2)
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Figure 1. Run ABC2: temporal evolutions of the kinetic energy (blue, top) and magnetic energy
(red, middle). Bottom: Probability density functions of the kinetic energy (left) and magnetic
energy (right). Note the different units on the axes, and the lin-log scale for the magnetic energy.

Note that Sm
ij is a pseudo (axial) tensor. The integrated space-averaged, kinetic and

magnetic energy dissipation rates and their sum can respectively be written as:

ǫV = ν
〈

|ω|2
〉

, ǫM = η
〈

|j2|
〉

, ǫT = ǫV + ǫM . (4.3)

with ω = ∇×u the vorticity. Finally, the skewness and excess kurtosis are written below
for a scalar field f , with Sf = 0,Kf = 0 for a Gaussian distribution, with the kurtosis
(or flatness) being Ff := Kf + 3:

Sf =
〈

f3
〉

/
〈

f2
〉3/2

, Kf =
〈

f4
〉

/
〈

f2
〉2

− 3 . (4.4)

4.2. Temporal and statistical data

We give for the ABC2 flow (Figure 1) and for the TG3 case (Figure 2) the temporal
evolution of the kinetic (top) and magnetic (middle) energy as a function of time; note
that time is expressed in output counts, with a turn-over time being roughly twice that.
At the bottom are given the energy PDFs for the velocity (left) and the magnetic field
(right). In both cases, there are sustained fluctuations in the amplitude of the fields, and
with in the case of the ABC run, lapses in both kinetic and magnetic energy corresponding
to the on-off mechanism. This is directly related to the fact that the PDFs, in that case,
have two relative maxima (with one peak close to zero for the magnetic field), whereas
in the case of the TG forcing, the structure of the PDFs is simpler.
Fig. 3 gives K(S) for various fields; at top, we display the K(S) relationship for the

z-component of the velocity, the square vorticity and the kinetic energy dissipation,
namely vz(x),ω

2(x) and ǫv(x); at bottom we plot the equivalent fields for the magnetic
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Figure 2. Run TG3: kinetic (top) and magnetic (middle) energy as a function of time.
Bottom: Probability density function of the kinetic (left) and magnetic (right) energy.

induction, namely bz(x), σm(x) and j2(x). The blue lines correspond to K = [3/2][S2−1]
as mentioned before (see §2.1, and Sura & Sardeshmukh (2008)).
For each field variable, the data is collected roughly every turn-over time τnl, for in

excess of 5×104 outputs, the time arrow of the data points being indicated by a rainbow
color code as given by the color bar at left, with purple at early times and red at late
times. For each temporal data point on these K(S) plots, the space-dependent three-
dimensional field we analyze is computed at each location in the n3

p data cube and its
second, third and fourth moments are evaluated to construct skewness and kurtosis for
that time index. Having in excess of 104 time stamps, the error on the skewness is less
than 0.025, and twice that for the kurtosis.
We note the following: whereas for Navier-Stokes turbulence, the three components

of the velocity field are Gaussian (Pouquet et al. (2023)), here the peak in values for
K at S ≈ 0 for vz is up to K ≈ 6.5, and rather narrowly centered around Svz ≈ 0;
high K values are also present for bz. The hydrodynamic case analysed in Pouquet et al.
(2023) is computed at comparable Rλ and np (but not TM ), and both S and K for the
velocity are close to 0. On the other hand, for stratified flows with or without rotation, the
vertical component of the velocity, vz, can have high kurtosis and high values itself; this
is associated with the intermittency of dissipation because of the variability of the system
dominated by waves and all of a sudden developing small dissipative scales through shear-
related instabilities. For this MHD run, the x and y components of the velocity behave
approximately in the same way (not shown), with a skewness comparable to that of vz
but smaller K (with a maximum of ≈ 4 instead of 8), and similarly for bx, by.
The symmetric and anti-symmetric parts of both the velocity and magnetic field

gradient tensors have both high skewness and high kurtosis, and for them, a quasi-
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Figure 3. Top: For run TG3, K(S) for the vertical velocity vz (left), the square vorticity

density ω
2 (middle), and the point-wise kinetic energy dissipation ǫv (right). Bottom: K(S) for

bz (left), σm (middle), and j2 (right). The color bar at left indicates the temporal clock in units
of turn-over times, with early (late) times in blue (red). The blue lines follow K(S) = 3/2[S2−1].

parabolic fit is appropriate. The magnetic dissipation has higher kurtosis and thus is likely
more intermittent than its kinetic counterpart, whereas vorticity dominates σm. On the
other hand, both kinetic and magnetic dissipations have lower skewness and kurtosis than
for the other part of their gradient tensors, although their statistics overall are similar. We
recall that double exponential (Laplace), or Weibull distributions have small S of either
sign and high kurtosis (Bertin & Clusel (2006); Biri et al. (2015); Aschwanden et al.

(2016)). In that context, we note that it is shown in Sorriso-Valvo et al. (2018) that
a proxy of energy transfer for the solar wind can be defined based on exact laws for
MHD corresponding to the conservation of energy and cross-helicity HC = 〈v · b〉; these
proxy fields display high intermittency in Helios 2 (and Ulysses) data, with plausible
stretched exponential fits. A final remark is that data points with [K,S] ≈ 0 must be
dominated by random noise at these times; they could correspond to relaxation intervals
following sharp bursts in energy dissipation.

We now check whether this behavior is observed as well for another type of forcing.
In Fig. 4 are plotted the K(S) relationships at the top for vz (left), ω2 (middle) and ǫv
(right) and (bottom), bz (left), σm (middle) and j2 (right), as in Fig. 3 but now for run
ABC2 with a fully helical ABC forcing. Values for (S,K) for both runs are comparable
except for the vertical component of the velocity due to its specific structure.

Finally, due to the strong symmetries of the initial conditions and forcing of the
dynamos analyzed in this paper, one could wonder whether the addition of a small noise
would change the results. On the other hand, in view of the length of the computations,
well beyond what can be estimated for a reasonable Lyapounov time of separation of
trajectories, it is unlikely that the overall results, and in particular the quasi-parabolic
law for dissipation, would be altered. Indeed, one can find estimates of the first Lyapounov
exponent λ1, in the ABC dynamo for example, with λ1 ∼ 0.073 for a run with RV ≈
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Figure 4. Same as Fig. 3 for run ABC2 with RV ≈ 175 and Tmax ≈ 3.14× 105.

60, PM = 4, comparable to what we have here (Zienicke et al. (1998); Alexakis & Ponty
(2008)), meaning that after roughly 14τnl, the initial conditions have been forgotten.

4.3. Kurtosis-Skewness law as given by an intermittency model

We can in fact compute the scaling exponent αf in the relationship K(S) ∼ Sαf ,
assuming the usual formulation for the structure functions of order p for a scalar field f ,
namely the field differences over a distance r, 〈δf(r)p〉 ∼ rζp ; one obtains for αf :

αf =
ζ4 − 2ζ2

ζ3 −
3

2
ζ2

. (4.5)

Within the framework of the standard multi-fractal She & Lévêque (1994) (SL) model
generalized for MHD in Grauer et al. (1994); Politano & Pouquet (1995), one has:

ζslfp =
p

9
+ 2

[

1−

(

2

3

)p/3
]

; αslf =
2[1− 2(2/3)2/3 + (2/3)4/3]

7/3− 3(2/3)2/3
≈ 2.56 ; (4.6)

ζslmp =
p

8
+ 1−

(

1

2

)p/4

; αslm =
3− 4(1/2)1/2

1 + 2(1/2)3/4 − 3(1/2)1/2
≈ 2.53 . (4.7)

In building these SL models for fluid turbulence (slf) and MHD (slm), an assumption is
made that a hierarchy of flux structures exists compatible with a Kolmogorov transfer
timescale and with vortex filaments (or in MHD, an isotropic Iroshnikov-Kraichnanwave-
eddy interaction and current sheets). This leads to a specific non-linear relation in p
for the ζps. Note that a parabolic scaling, α = 2, is obtained when considering the
generalized versions of these log-Poisson models – derived in Politano & Pouquet (1995)
both for fluids and for MHD – as the intermittency becomes maximal with extreme flux
structures (see Pouquet et al. (2024)).
In this context, we compute power law fits, |K| = κ|S|α (see Figs. 5 and 6) for the

TG3 and ABC2 runs for the kinetic and magnetic dissipations, and for both full and
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Figure 5. Log-log plot for |K|(|S|) = κ|S|α, runs TG3 (top) and ABC2 (bottom), for kinetic
(left) and magnetic (right) dissipation. Thresholds in S are displayed in different colors.

thresholded data. There are clear variations of α with the strength of the intermittency as
evaluated through the level of the skewness. Specifically, the chosen thresholds are S < 2
(black), 2 6 S < 3 (blue), 3 6 S < 5 (green) and S > 5 (red). Power-law fits in these
intervals are given using the same colors. The high S,K values reached here are related
to the very long integration times allowing for a thorough exploration of configuration
space. We note that the velocity field has a broad range with non-intermittent values
(black dots) in the sense that both S and K are quite low; it also undergoes a change
of sign of the skewness at low values for TG3. We also observe that S and K can be
substantially higher for j2 than for the point-wise kinetic energy dissipation, and with
less scatter for K at a given S. This difference might be related to the dynamo that
controls the behavior of the magnetic field and its dissipation, whereas the velocity, at
these resolutions, still feels the effect of the forcing, but the fit that includes these low-S
points does not represent the behavior of the more intermittent data.
We give more quantitative information in Fig. 6, looking at variations with thresholds

in skewness for the fit parameters of ǫV (first and third rows) and j2 (second and fourth
rows), for runs TG1 (solid blue lines) and TG3 (dashed red lines, first two rows), as well
as for runs ABC1 (solid blue lines) and ABC2 (dashed red lines, last two rows). The α
and κ coefficients are given in the first two columns, and the percentage of data points
as a function of the threshold in skewness is in the third column; note that a 10% sample
level still corresponds to 1.3× 104 data points for TG3, and 3× 104 points for ABC2.
We note first that the run TG3 has a higher RM , and the two ABC runs have higher

Rλ. The power-law index for ǫv has a substantially larger range of variation, with 0.2 .
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Figure 6. Given a fit |K(S)| ∼ κ|S|α, variations with filter level in S of the parameters α (left),
κ (middle) and the percentage of available data points per filter level in S (right), for ǫv (first
and third rows) and j2 (second and fourth rows), for the two TG runs (first two rows) and the
two ABC runs (last two rows), with line and colors indicated in the inserts.

αǫv . 3.0 overall. For the current, αj2 decreases systematically towards αj2 ≈ 2 when
the threshold in S is increased. If we exclude the points filtered with S > 2 for TG3 for
which less than 10% of the data is relevant, we see a systematic decreasing trend in α
towards a value of 2 or slightly lower, a value that can be recovered with the extension of
the SL model to more varied dissipative structures (Pouquet et al. (2024)). The constant
κ is of order unity in all cases, and increases with threshold as long as enough data is
available. We also note its quasi-constancy at lower S values.
Indeed, a common feature of all these plots is that the variation with threshold in

S starts abruptly at 1 . S for kinetic variables, and rather 2 . S for the magnetic
ones for all the runs. This could indicate an effect on the velocity of the influence of the
forcing at these moderate Reynolds numbers and that, at the modest Reynolds numbers
achieved here, the velocity is not necessarily changed by the magnetic field which remains
somewhat weak (see Figs. 1 and 2) and that for fluid turbulence, the skewness has a value
of ≈ 0.5. Also, with the ratio r < 5.3 given in Table 3.1 indeed close to unity, we are still
rather close to the threshold of the onset of the dynamo.
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5. Discussion, conclusion and perspectives

We have found in this paper, for the fast dynamo regime, that a now classical quasi-
parabolic behavior between kurtosis and skewness is present for kinetic and magnetic
variables. The numerical data we analyzed represent but one aspect of the study of
intermittency in the dynamo regime, and many questions remain. One issue concerns
the effect a fully turbulent velocity will have on K(S) scaling and the turbulence of
the magnetic field itself. For example, using wavelets, Camporeale et al. (2018) could
estimate in high-resolution 2D DNS of Hall-MHD that only 25% of the volume supports
50% of the energy transfer, giving thus a quantitative estimate of the intermittency of
energy dissipation; we note that, for stratified fluids, this proportion can go as low as 11%
of the kinetic energy dissipation for high kurtosis of the vertical velocity (Marino et al.

(2022)). It will be of interest to examine as well these statistics in the case of fast dynamos
at higher Reynolds numbers.

One might also want to study the role of cross-helicityHC in the small scales, and in the
nonlinear regime the role of magnetic helicity in the large scales, with HM = 〈A · b〉 and
b = ∇×A. This requires sufficient scale separation in computations to be performed for
long times, with forcing at an intermediate scale. Moreover, space plasmas are turbulent
and, at small scale, magnetic reconnection plays an important role, although in the
particular context of a K(S) law, it is not known how reconnection would influence the
specific scaling, nor how the introduction of small-scale kinetic effects would, but analysis
of experiments in various plasma regimes do indicate the presence of such scaling laws.

Another issue is whether or not there is a dynamical consequence of K(S) being
close to its Cauchy-Schwarz limit. These inequalities linking K and S can be viewed
as a limitation both on skewness (which has to be smaller than some value) and
kurtosis, which cannot be too small. It shows that non-Gaussianity and intermittency are
unavoidable (except for the trivial (K = 0, S = 0) solution), but also that intermittency
is limited in the sense that K and S are not independent, and at least for the NS
case, the skewness is constrained by the exact law stemming from energy conservation
(Kolmogorov (1941)), the laws in MHD involving cross-correlations (see for a recent
review Marino & Sorriso-Valvo (2023)). Furthermore, as noted by several authors, K(S)
laws may put some limitation on the type of PDFs that a particular intermittent field
follows. Similarly, some of these K(S) relationships may contribute insight as to the
relevance of Large Eddy Simulation (LES) parametrizations by providing constraints on
the flow characteristics.

In view of a possible high Reynolds number universality of the KF (SF ) law for a
variety of functionals F of the velocity and magnetic field, and within possible classes
to be determined, as apply in particular to the dissipation, one can wonder whether a
renormalization group (RNG) framework might be helpful. Such a theory has already
been developed for fluid turbulence (Forster et al. (1976)), as well as for MHD, but
it is not clear how one will approach the quest for the K(S) relationship in that
framework. One might further remark that the so-called model-A forcing ∼ k2 in the
RNG corresponds to a Langevin model of the turbulence close to equilibrium in the case
of a linearized version of the NS or MHD equations. It might well apply to the case of
intermittency of the dissipative range (Kraichnan (1967)), but it is not clear how it would
apply to the intermittency of the nonlinear inertial range.

The role of anisotropy in interpreting the dynamics of turbulent flows is complex,
including at larger RV such as that encountered in the atmosphere (Lovejoy et al.

(2001)). For example, it is shown in Galtier (2023) that it affects in different ways
the amplitude of the energy distribution and the spectral indices, so more work will
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be needed in that direction as well; we already know that, for anisotropic fluid flows
in the presence of stratification, the skewness and kurtosis of velocity components can
be direction-dependent (Bos et al. (2007); see also Homann et al. (2014) for the fast
dynamo), and that anisotropic scaling laws can be developed phenomenologically and
found observationally (Nazarenko & Schekochihin (2011); Bian & Li (2024)).

When the velocity field is chaotic but not yet fully turbulent, and close to threshold
for dynamo action, Sweet et al. (2001) identified a temporal bursty ‘on-off” behavior of
the dynamo-generated magnetic field which grows on average linearly with the control
parameter, i.e. the distance in RM from the threshold (see also Ponty et al. (2007);
Alexakis & Ponty (2008), but these authors did not give indications on the behavior of
the first few moments of the growing field). In Alexakis & Ponty (2008), the Lorentz
force feed-back on the flow is studied in detail with DNS ran for up to 105τnl and for
various PM ; they find that the Lorentz force strongly modifies the temporal evolution
of the growing field through a control of the noise. We already know that the noise
can alter the coefficients in a parabolic relation (Theodorsen et al. (2017); Losada et al.

(2023)), so we might be able to observe a change of scaling once we enter a turbulent
saturation regime for the dynamo at higher Reynolds numbers, as we did for stratified
flows (Pouquet et al. (2023)). This is left for future work.

Acknowledgements: Yannick Ponty thanks A. Miniussi for computing design assistance
on the CUBBY code. The authors are grateful to the OPAL infrastructure from Université
Côte d’Azur, the Université Côte d’Azur’s Center for High-Performance Computing, and
to the national French computer facilities (GENCI) for providing resources and support.
Annick Pouquet is thankful to Bob Ergun for his encouragement.

REFERENCES

Adhikari, S., Shay, M. A., Parashar, T. N., Pyakurel, P. S., Matthaeus, W., Godzieba,
D., Stawarz, J., Eastwood, J. P. & Dahlin, J. T. 2020 Reconnection from a
turbulence perspective. Phys. Plasmas 27, 042305.

Alexakis, A. & Ponty, Y. 2008 Effect of the Lorentz force on on-off dynamo intermittency.
Phys. Rev. E 77, 056308.

Aschwanden, M. J., Crosby, N. B., Dimitropoulou, M., Georgoulis, M. K.,
Hergarten, S., McAteer, J., Milovanov, A. V., Mineshige, S., Morales, L.,
Nishizuka, N., Pruessner, G., Sanchez, R., Sharma, A. S., Strugarek, A. &
Uritsky, V. 2016 25 years of self-organized criticality: Solar and astrophysics. Space
Sci. Rev. 198, 47–166.

Balescu, R., Wang, H.-D. & Misguich, J. 1994 Langevin equation versus kinetic equation:
Subdiffusive behavior of charged particles in a stochastic magnetic field. Phys. Plasmas
1, 3826–3833.

Bandyopadhyay, R., Matthaeus, W. H. & Parashar, T. N. 2018 Single-mode nonlinear
Langevin emulation of magnetohydrodynamic turbulence. Phys. Rev. E 97, 053211.

Bertin, E. & Clusel, M. 2006 Generalized extreme value statistics and sum of correlated
variables. J. Phys. A 39, 7607–7619.

Bian, N. H. & Li, G. 2024 Lagrangian perspectives on the small-scale structure of Alfvénic
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