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Abstract—The integration of information communication
technology with the power grid exposes it to cyber threats. The
state estimation process provides stability to the smart grid.
The communication network plays a major role in ensuring
the successful transmission of state information. However, these
network measurements are vulnerable to malicious attacks. This
subsequently affects the network measurement such as associ-
ated high transmission delays and packet losses affecting the
reliability of the smart grid. In this work, we propose a hybrid
physics-based data-driven model that uses data fusion from the
state-of-the-art physics-based Network State Estimation model
and a data-driven model to detect false data injection attacks
in the communication network layer of the smart grid. The
performance of the data fusion method is evaluated and the
simulation results show that the proposed model outperforms
the standalone approaches in the detection of bad data. This
shows that the proposed scheme is able to improve the cyber-
physical security of the communication network layer of the
smart grid.

Index Terms—cyber-physical security, smart grid, state esti-
mation, false data injection, communication network

I. INTRODUCTION

To provide a more efficient and dependable grid, the
conventional power grid has evolved through technological
advancements, leading to the adoption and prevalence of the
smart grid. Unlike the traditional power grid with a one-way
power flow, the smart grid utilizes a bidirectional flow of
power in the grid layer and data in the communication net-
work layer. This has demonstrated the potential of the modern
grid in different aspects of its operations including efficiency
and automation in monitoring and control [1]. The smart
grid leverages Information and Communication Technologies
(ICTs) to send instantaneous reports on the status of the
power grid to remote control facilities such as the Supervisory
Control and Data Acquisition (SCADA) system [2]. The
power grids mostly span across large geographical areas and
are connected to the control system through communication
networks such as Wide Area Networks (WANs) [3]. The
smart grid is thereby regarded as a cyber-physical system
since it integrates control, computation, and communication
[4].

Despite the benefits associated with the smart grid, the
reliance of the power grid on the communication network
increases its attack surface making it susceptible to cyber-
attacks. As the power system is typically far away from
the control center, it becomes vulnerable to attacks that
can target the power grid, control center, or communication
network. The newly introduced cyber-related issues in the
smart grid were non-existent in the traditional power grid.
Several cyber-attacks have proven successful in disrupting the
normal operations of the smart grid, and historical evidence

is the major Ukraine blackout in 2015 [5]. It is of critical
importance to ensure the confidentiality, integrity, and avail-
ability of the smart grid through guaranteed cyber-physical
security. Numerous research efforts and contributions have
been directed toward addressing the security challenges in
the smart grid to ensure its reliable operation.

State Estimation (SE) plays a major role in securing the
control and monitoring of the smart grid through its ability to
correct errors, hence its wide adoption in the power grid [4].
SE determines the current status of the power grid by using
remotely captured measurements and topology information
from SCADA for reactive control actions [6]. However,
the state estimation process faces vulnerabilities since the
measurements used for predicting the condition of the smart
grid can be corrupted. This can cause the state estimator to
make erroneous decisions.

Current research works are focused on efficient approaches
to estimate the state of the power grid [5], [7]–[11], while the
cyber-physical security of the communication network of the
smart grid is still developing. Our previous research considers
a cross-layered framework [12], [13]. In this framework, we
employ SE, which uses only power grid data, as well as a
machine learning model, Cross-Layer Ensemble CorrDet with
Adaptive Statistics (CECD-AS), which combines data from
both the power and historical data from the communication
network layers to estimate the state of the smart grid for
improved robustness against cyber-attacks. Other research
contributions facilitate the management of cyber-security in
the smart grid by presenting a distributed Software-Defined
Network (SDN) architecture as shown in Figure 1 [14]. A
distributed management framework was proposed in [15] to
demonstrate its resilience over a centralized framework.

In recent work, we have built on our prior findings and
introduced a proof of concept in to estimate the network
state of the smart grid communication network, keeping the
distributed software-defined network managed system [3].
The motivation for this study was the smart grid network
state is vulnerable to uncertainties within the network and to
adversaries that may modify communication network param-
eters to disrupt the operation of the smart grid network. In
this paper, we move from proof of concept in [3] to develop
(1) an implementation strategy for network state estimation,
(2) an emulation environment for a given bus system, and
(3) a performance analysis of the estimation and detection
strategy. The key contributions of this paper are highlighted
as follows:

• Emulated the network behavior in a False Data Injection
(FDI) attack in the communication network layer of the
smart grid;



• Developed a physics-based Network State Estimation
(N-SE) model and a data-driven Ensemble CorrDet with
Adaptive Network Statistics (ECD-ANS) model to detect
FDI attacks in the communication network;

• Implemented a data fusion-based hybrid framework that
combines both the physics-based NSE and the data-
driven ECD-ANS models to enhance the detection of
bad data.

The remaining sections of the paper are organized as
follows. Section II presents the background of the network
statistics of the communication network layer of the smart
grid. The concept of the physics-based network state estima-
tion (N-SE) model and the ECD-ANS approach are discussed.
Section III provides a detailed description of the proposed
hybrid framework for bad data detection. The numerical
results from the case study are outlined in Section IV. The
paper is finally concluded in Section V.

Fig. 1: Distributed, Flat SDN Controller Architecture used
for Network State Estimation. (Proof of concept presented

by the authors in [3])

II. BACKGROUND INFORMATION

A. Performance Statistics in the Communication Network
Layer

The communication network layer of the smart grid plays
a crucial role in transmitting measurement data and control
signals between various components of the grid. To ensure
reliable operation and detect potential cyber-attacks, it is
essential to monitor and analyze key performance statistics of
the network. These statistics provide valuable insights into the
network’s state and can help identify anomalies or malicious
activities. The following are some of the important network
parameters considered in this study:

• Inter-arrival time (IAT): IAT represents the time elapsed
between the arrival of two consecutive packets at a node.
It provides information about the traffic patterns and
load on the network. A shorter IAT indicates a higher
traffic volume, while a longer IAT suggests lower traffic.
Anomalies in IAT can indicate a potential FDI, Denial-
of-Service (DoS) attack, or other network disruptions.

• Transmission delay (TD): TD is the time taken for a
packet to be transmitted from the source to the destina-
tion node across the network. It is influenced by various
factors such as network congestion, available bandwidth,
distance between nodes, and processing delays. High

transmission delays can indicate network congestion or
potential routing issues, which may be caused by cyber-
attacks.

• Packet count (PC): PC represents the total number of
packets transmitted through the network over a specific
period. It provides a measure of the traffic volume
and can help detect sudden spikes or drops in network
activity. Anomalies in packet count can indicate data
injection or data theft attacks.

• Round-trip time (RTT): RTT is the time taken for a
packet to travel from the source to the destination and
back, including the time for the destination to process
the packet and send an acknowledgment. It is a measure
of the network’s latency and responsiveness. High RTT
values can indicate network congestion, long distances
between nodes, or processing delays, potentially caused
by cyber-attacks.

• Arrival rate (λ): The arrival rate represents the average
number of packets arriving at a node per unit time. It is a
key factor in determining the queuing delays and packet
loss probabilities in the network. An abnormally high
arrival rate can indicate a potential FDI or DoS attack,
while a low arrival rate may suggest data suppression or
tampering.

• Service rate (µ): The service rate represents the average
number of packets that can be processed or transmitted
by a node per unit time. It is determined by factors
such as link bandwidth and processing capabilities of
the nodes. The service rate affects the queuing delays
and the overall throughput of the network. Anomalies
in service rate can indicate resource exhaustion attacks
or unauthorized changes to network configurations.

By continuously monitoring these performance statistics,
the smart grid operators can gain valuable insights into the
health and security of the communication network layer.
Deviations from normal patterns or sudden changes in these
parameters can alert the operators to potential cyber-attacks,
enabling them to take timely corrective actions. The following
sections discuss how physics-based state estimation models
and data-driven machine learning approaches can leverage
these network statistics to detect anomalies and enhance the
cyber-physical security of the smart grid.

B. Physics-based State Estimation

Considering the communication network layer of the smart
grid for state estimation, the classical Weighted Least Squares
(WLS) approach is used due to its wide adoption in literature
[11]. The communication network is modeled as a set of non-
linear equations in Equation 1 based on the physics of the
network [16].

z = h(x) + e (1)

Where z = [z1, z2, ...zm]T ∈ R1×d is the measure-
ment vector from the communication network layer, x =
[x1, x2, ...xn]

T ∈ R1×N is a vector of state variables,
h : R1×N → R1×d is a non-linear differentiable func-
tion relating the measurements to the state variables and e
= [e1, e2, ...em]T ∈ R1×d is the measurements error vector,
where e ∼ N (0, σ2). Each measurement error ei is assumed
to have a Gaussian distribution with zero mean and standard
deviation, σi. Note that d is the number of measurements



comprising inter-arrival time, packet count, transmission de-
lay, and round trip time. whereas N is the number of state
variables consisting of arrival rate and service rate. These
are all parameters from the communication network for state
estimation.

The state variable vector from the communication network

is defined as x =

{︄
λ

µ
which is obtained using the

measurement vector z =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
IAT

TD

PC

RTT

The non-linear function that shows the relation between
the state variable vector and the network measurements is
provided in Equation 2 as in Equation 1.

z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

IAT

PC

TD

RTT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= h(x) + e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λ

λW

1
µ−λ

α+ 1
µ +Wq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ e (2)

The mean waiting time in the communication network
system is W and is expressed as W = 1

µ +Wq . The mean
waiting time in the queue, Wq is expressed as Wq = 1

µ−λ

similar to [17]. The propagation delay is given as α = d
s ,

where d is the distance traveled by a packet, and s is the
wave propagation speed of the network link.

The communication network state estimation is formulated
as a minimization problem in Equation 3 and solved with
WLS to find the best estimate of the state variable vector.

J(x) = [z− h(x)]TR−1[z− h(x)] (3)

Where R−1 is the measurement weight matrix, and R is
defined as the covariance matrix of the measurements. The
standard deviation of each measurement, σi is assumed to be
0.5% of the measurement magnitude. The Newton-Raphson
method is considered as the iterative approach to estimate the
state variable by solving Equation 4 since the measurement
model is non-linear.

∆x̂ = (HTR−1H)−1HTR−1∆z. (4)

Where H = ∂h
∂x is the Jacobian matrix of h at the current

state estimation x∗. ∆z = z − h(x∗) = z − z∗ and ∆x =
x−x∗ are the correction of the measurement vector and state
vector respectively. Equation 4 is solved in each iteration and
a new estimate for the state variable is obtained in Equation
5 as follows.

x∗
new = x∗ +∆x̂. (5)

The iteration converges when ∆x̂ in Equation 4 meets a
minimum tolerance error value. After convergence, the final
residual values in r = z − h(x̂) are used for detecting
malicious data. The bad data detection analysis is done
with the statistical Chi-Squared test using Equation 6 since
measurements are considered to be i.i.d.

J(x̂) =

m∑︂
i=1

(︃
zi − hix̂

σi

)︃2

>
<
χ2
(d−N),p (6)

Where m is the number of samples, (d−N) denotes the
degrees of freedom and p is the probability with a value of
0.95. An incoming sample is predicted to be anomalous if
J(x̂) is greater than the Chi-squared threshold, χ2

(d−N),p, and
vice versa.

C. Ensemble CorrDet with Adaptive Statistics

The machine learning model considered for this work is the
Ensemble CorrDet with Adaptive Statistics. ECD-AS is used
to learn from the network measurements to detect abnormal
behavior in the communication network. ECD-AS is an
extension of the CorrDet algorithm described in [18], which
assumes local CorrDet detectors with each corresponding to a
node for a local region to detect anomalies, then updates the
cloud layer to identify and isolate errors. ECD-AS first learns
the network statistics of the normal samples by obtaining the
mean, µm and inverse covariance matrix, Σ−1

m for training.
The estimated parameters are then used in the testing phase.
These are used as initialization for the testing phase. As new
samples, m arrive, the statistics are adapted to accommodate
the dynamics in the network measurements. The squared
Mahalanobis distance, δECD(z) for the sample is obtained
using Equation 7.

δECD(z) = (zm − µm)
T
Σ−1

m (zm − µm) (7)

Similar to the SE model, we conduct a Chi-Squared test to
detect abnormal behavior of the communication network. The
squared Mahalanobis distance, δECD(z) is compared with the
Chi-Squared threshold, χ2

(d−N),p.

δECD(z) = (zm − µm)
T
Σ−1

m (zm − µm)>
<
χ2
(d−N),p (8)

z =

⎛⎜⎜⎝Anomalous, if δECD(z) > χ2
(2(d−N)),p

Normal, if δECD(z) < χ2
(2(d−N)),p

(9)

If the decision score, δECD(z) is greater than the Chi-
Squared threshold, χ2

(d−N),p, then the sample is flagged to be
anomalous. Otherwise, it is considered normal if it is below
the threshold value. To reflect the dynamics in the network
measurements, the statistics which are mean, µm and inverse
covariance matrix, Σ−1

m are updated using Equations 10 and
11. Where α is a hyper-parameter between 0 and 1 obtained
from experimentation and determines the significance of a
new sample.

µm,new = (1− α)µm + α(zm − µm (10)

Σ−1
m,new =

1

1− α

(︄
Σ−1

m − (zm − µm)(zm − µm)T

1−α
α + (zm − µm)(zm − µm)T

)︄
(11)



III. BAD DATA DETECTION: HYBRID PHYSICS-BASED
DATA-DRIVEN MODEL

This work introduces a novel approach by changing the
state estimation focus to the smart grid network state and by
integrating the physics-based network state estimation (N-
SE) model with an updated data-driven Ensemble CorrDet
with Adaptive Network Statistics (ECD-ANS) model defined
in Sections II-B and II-C. The purpose of combining the
two models is to leverage their capabilities to enhance
anomaly detection in the communication network layer of
the smart grid. The decision scores J(x̂) and δECD(z) from
the physics-based N-SE and data-driven ECD-ANS models
respectively are fused to form a combined distance measure.
The decision score of the physics-based N-SE model is
defined in Equation 12 as follows.

J(x̂) =

m∑︂
i=1

(︄
zi − hi(x)̂

σi

)︄2

(12)

The N-SE portion of the combined distance measure is
obtained individually per sample as described in Section II-B.
A bad data is detected if the decision score, J(x̂) exceeds the
Chi-Squared threshold, χ2

(d−N),p.
The decision score of the data-driven ECD-ANS model is

provided in the following equation.

δECD(z) =

m∑︂
i=1

(︃
zi − µi

σi

)︃2

(13)

The squared Mahalanobis distance, δECD(z) discussed
in II-C forms the remaining part of the combined distance
measure. An incoming sample is detected to be anomalous
if the decision variable is above the Chi-Squared threshold,
χ2
(d−N),p.
For a new incoming sample, data fusion of the decision

scores is done by summing up J(x̂) and δECD(z) of the two
models. The combined decision score is given in Equation
14.

Jcomb = J(x̂) + δECD(z) (14)

The proposed hybrid physics-based data-driven model uses
an augmented Chi-Squared test for anomaly detection in
the communication network layer of the smart grid. The
combined decision score, Jcomb is compared with a Chi-
Squared threshold, χ2

(2(d−N)),p.

Jcomb = J(x̂) + δECD(z) > χ2
(2(d−N)),p (15)

z =

⎛⎜⎜⎝Anomalous, if Jcomb > χ2
(2(d−N)),p

Normal, if Jcomb < χ2
(2(d−N)),p

(16)

A sample is flagged as anomalous if the combined decision
variable, Jcomb is larger than the Chi-Squared threshold,
χ2
(2(d−N)),p. If the decision variable is below the defined

threshold, the sample is considered normal.

IV. CASE STUDY IMPLEMENTATION

In this work, the models presented for detecting anomalous
data in the communication network of the smart grid are
evaluated using the 14-bus network architecture comprising
14 nodes shown in Figure 2. The discrete-event simulation
framework, SimComponent, and SimPy libraries are utilized
to replicate the network traffic of the communication network
layer of the smart grid. The measurement samples of the
communication network are generated using the algorithm
described in our previous work [3]. Using the SimPy en-
vironment, the packet generator is used to generate pack-
ets with exponential inter-arrival times and exponentially
distributed packet sizes with defined port rates and queue
limits following the M/M/c queuing model where c≥1 as
in [19]. The packet sink records the network measurements
consisting of inter-arrival time, transmission delay, packet
count, and round-trip time. The dataset consists of 46 samples
and each sample has 164 measurements giving a total of
7, 544 measurements. A Gaussian noise with zero mean and
0.005 standard deviation is added to the measurements set to
introduce uncertainties.

Fig. 2: 14 Bus Network Architecture [3]

False Data Injection (FDI) attack in the smart grid targeting
the N-SE involves altering the measurements being sent to the
N-SE to mislead it in control decisions. FDI attacks affect the
behavior of the network parameters including our selected
measurement variables and its effect can cause an increase in
these parameters such as high transmission delays. This poses
significant threats, especially for such time-critical systems.
The FDI attack is implemented in this work by injecting an
error which is a Gaussian noise with zero mean and standard
deviation of 5% of the measurement magnitude. The error is
added to a randomly selected measurement for 10 consecutive
samples ranging from 11− 20. The size of the measurement
vector per sample, d is 164 and that of the state variable
vector, N is 82, which gives the degree of freedom (d −
N) as 82. Considering a confidence level of 95% gives the
Chi-Squared threshold value, χ2

(d−N),p for the physics-based
and the data-driven ECD-AS models to be 114.6949. For the
augmented Chi-Squared test, the measurement vector size per
sample, d is 328 and that of the state variable vector size, N
is 164, which gives the degree of freedom (d − N) as 164.
A confidence level of 95% gives the Chi-Squared threshold
value, χ2

(2(d−N)),p for the hybrid physics-based data-driven
ECD-ANS model to be 209.0474.



The results for the models in detecting FDI attacks are
shown in Figure 3. The graph plots in Figures 3(a.i)-(a.iii) il-
lustrate the prediction outcome of FDI attack detection on the
samples for the physics-based N-SE, data-driven ECD-ANS,
and hybrid physics-based data-driven model respectively. The
red line in the plots denotes the Chi-Squared threshold. Sam-
ples exceeding the threshold value show anomalous sample
predictions, while samples below the threshold value imply
normal sample predictions. A confusion matrix is used to
describe the models’ performances in classifying the datasets,
as seen in Figures 3(b.i)-(b.iii) for the physics-based N-
SE, data-driven ECD-ANS, and hybrid physics-based data-
driven model respectively. It shows the four outcomes for
each model. True Positives (TP) are instances where normal
samples are predicted to be normal. True Negatives (TN)
are instances where anomalous samples are predicted to be
anomalous. False Positives (FP) are instances where anoma-
lous samples are predicted to be normal while False Negatives
(FN) are instances where normal samples are predicted to be
anomalous. The physics-based N-SE has 36 TPs, 2 TNs, 0
FN and 8 FPs. The data-driven ECD-ANS has 36 TPs, 3
TNs, 0 FN and 7 FPs. The hybrid physics-based data-driven
model has 36 TPs, 8 TNs, 0 FN, and 2 FPs. Based on these,
it is evident from Figure 3 that the proposed hybrid physics-
based data-driven ECD-AS model outperforms the standalone
methods by demonstrating high values for TP and TN with
extremely low values for FP and FN. The data-driven ECD-
AS model has slightly higher performance than the physics-
based model in terms of TN and FP. The metrics considered
for evaluating the performance of the models are accuracy,
precision, recall, and f1-score, and these are presented in
Table I. Accuracy is the ratio of correct predictions to the
total number of predictions as seen in Equation 17.

TP + TN

TP + TN + FP + FN
(17)

Accuracy is a very good metric in the case where datasets
have balanced class sizes. However, in the real world, the
number of anomalous measurements is smaller than the
normal measurements. This implies that the measurements
are typically imbalanced in nature. Similarly, the datasets
used in this work are imbalanced. Hence accuracy as a metric
can be misleading and is not good at predicting the minority
class. For a comprehensive view of the performance of the
models in detecting bad data, we include additional metrics
which are precision, recall, and f1-score. Precision is the ratio
of correctly predicted normal samples to the total predicted
normal samples. It gives the proportion of predicted normal
samples that are correct out of all the predicted normal
samples. Precision is used when minimizing FP is important.

TP

TP + FP
(18)

Recall is the ratio of the correctly predicted normal samples
to the actual normal samples. This shows how the model
performs in correctly predicting normal samples. Recall is
used when minimizing FN is critical. The expression for
recall is given as follows.

TP

TP + FN
(19)

F1-score is the harmonic mean of precision and recall, as
provided in Equation 19. It assesses the general performance

of the model. F1-score balances precision and recall, and it
is useful to achieve a tradeoff between minimizing FP and
FN.

2 ∗ Precision ∗Recall

Precision+Recall
(20)

The data-driven ECD-AS model shows a moderate increase
in f1-score than the physics-based SE model. In all instances
in the classification report, the proposed hybrid physics-
based data-driven ECD-ANS model demonstrates the highest
performance in detecting normal or anomalous data than the
state-of-the-art SE and ECD-AS methods. The f1-score of
the proposed model in detecting anomalous data is twice the
standalone methods while yielding the highest performance
to indicate its ability to classify TP and TN. In general, the
proposed hybrid physics-based data-driven ECD-ANS model
enhances the detection of FDI attacks than the standalone
physics-based N-SE and ECD-ANS models.

V. CONCLUSION

This paper focuses on estimating the state of the commu-
nication network layer of the smart grid, which is a novel
concept. To extend our previous work which demonstrated
the proof of concept, we have implemented a hybrid physics-
based data-driven ECD-ANS model that utilizes the spatial
and temporal characteristics of both the physics-based N-
SE and the ECD-ANS models. A case study is presented to
analyze the performance of the proposed model in detecting
FDI attacks. We implemented an FDI attack by modifying
the measurements used in state estimation. An augmented
Chi-Squared test is conducted to detect errors in the network
measurements. The proposed method combines the decision
scores from the physics-based SE and the data-driven ECD-
AS model for bad data detection. The simulation results show
that the proposed model has the best overall performance
in detecting the FDI attack. This proves that the proposed
model can improve the detection of cyber threats like FDI
to boost the cyber-physical security of the communication
network layer of the smart grid.
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