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Abstract
Generating truncated multivariate normal distributions is widely used in Bayesian constrained

statistical modeling. This technique is applied in various fields, including ecology, economics,
physics, computer science, biology, geosciences, and machine learning. In this paper, the effi-
cient approach developed by [37] for generating positive Gaussian vectors is considered. Their main
idea is to incorporate a smooth relaxation of the complex constraints appearing in the constrained
density function into the likelihood and to employ a highly efficient Markov Chain Monte Carlo
(MCMC) sampler. Our contributions are fourfold. First, we extend this approach to address linear,
quadratic, and nonlinear inequality constraints, which can be applied individually or in combina-
tion. The functions generating the nonlinear inequality constraints can be piecewise continuous or
continuously differentiable of any order. Second, we propose updating the approximate parameter
in the likelihood at each MCMC iteration to enhance the stability and ensure the convergence of the
algorithm. This allows the proposed approach to handle extreme cases that are beyond the reach of
existing samplers. Third, for boundedness constraints with constant bounds, we develop an efficient
formula for the log-likelihood function, which reduces computational complexity and improves effi-
ciency in high-dimensional settings with respect to computational running time. Fourth, we explore
flexibility and performance of the proposed approach through studies on both synthetic and real
data within the context of Bayesian shape-restricted function estimation. A comparison with the
efficient Hamiltonian Monte Carlo (HMC) sampler is included. In contrast to the HMC sampler,
the starting point of the proposed MCMC does not need to satisfy the inequality constraints.

Keywords Truncated Gaussian · Elliptical slice sampling · Smooth relaxation · Nonlinear con-
straints · MCMC

1 Introduction

Sampling truncated multivariate normal (tMVN) distribution is commonly used in Bayesian con-
straints statistics [15, 24, 40, 47] and is applied in many fields such as econometrics [5, 8, 9], nuclear
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physics [46], and machine learning [17, 44]. For instance, in the context of shape-restricted func-
tion estimation, structured shape constraints such as monotonicity, boundedness, and convexity are
often addressed by expanding the function space using an appropriate basis, where the shape con-
straints are enforced by imposing linear inequality constraints on the basis coefficients. Examples
of such bases include constrained splines [4, 30], Bernstein polynomials [11, 43], piecewise linear
functions [13], and compactly supported basis [24, 26]. Other settings where the tMVN distribution
has been investigated include multinomial probit and logit models [1, 29], Bayesian bridge [36], and
unmixing of hyperspectral data [12].

Generating high-dimensional tMVN distribution is an active area of research [20], for which
existing efficient algorithms include Gibbs sampling [18, 21, 38, 41], Metropolis-Hastings (MH)
[7, 32], the minimax tilting method [2], and the highly efficient Hamiltonian Monte Carlo (HMC)
sampler [35]. All of these algorithms address only linear inequality constraints except for the HMC
sampler implemented in the R-package tmg, which handles both linear and quadratic inequality
constraints. We refer the reader to [14] for statistical applications in the cases involving quadratic
constraints.

The Markov Chain Monte Carlo (MCMC) approach developed in the present paper is general
in the sense that it can generate a Gaussian vector subject to linear, quadratic, and nonlinear
inequality constraints. This technique is based on sampling from the prior, which can offer significant
computational advantages, particularly when the covariance structure of the prior respects certain
properties such as stationarity, sparsity or Toeplitz. For example, the authors in [6] proposed a fast
algorithm for generating a hyperplane-truncated multivariate normal (MVN) distribution when
the covariance matrix can be expressed as a positive-definite matrix minus (or plus) a low-rank
symmetric matrix. The main idea of the approach developed in the present paper is to approximate
the indicator function of the set of hard constraints appearing in the posterior probability density
function (pdf) by a smooth function and use efficient Elliptical Slice Sampling (ESS) [31] to generate
samples from the resulting posterior distribution. It allows incorporating linear, quadratic, and
nonlinear inequality constraints, either applied individually or in combination. Furthermore, it
handles functions that are piecewise continuous and of any order continuously differentiable, which
generate nonlinear inequality constraints. Finally, it demonstrates high flexibility and successfully
generates samples with complex constraints in extreme cases—cases that are impossible for all
other samplers. This is due to the approximate parameter, which can be updated at each MCMC
iteration. As the proposed approach is based on sampling before conditioning rather than after,
we refer the reader to [42], where the authors provide a complete review and a comparison of
computational approaches for generating high-dimensional Gaussian vectors proposed in various
communities, ranging from iterative numerical linear algebra to MCMC approaches.

In this paper, we consider the methodology for generating the tMVN distribution using ESS
and a smooth relaxation of the set of constraints originally proposed by [37]. This methodology
has been employed by [28, 27] in the contexts of large-scale and high-dimensional shape-restricted
function estimation, respectively. We extend this methodology in four different directions:

• First, we generalize this methodology to address linear, quadratic, and nonlinear inequality
constraints, either applied individually or in combination. To the best of our knowledge,
this is the only approach in the literature that handles general nonlinear constraints. The
functions appearing in the nonlinear constraints can be piecewise continuous and continuously
differentiable to any order.

• Second, we update the approximate parameter of the set of constraints at each MCMC it-
eration, which allows us to handle extreme cases that are impossible for all other existing
approaches. Furthermore, we propose projecting the samples onto the set of linear constraints
in order to strictly enforce them.
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• Third, we develop a new efficient formula for the log-likelihood function for boundedness
constraints, which reduces the computational complexity of the proposed approach in high-
dimensions. Additionally, we compare its efficiency with the state-of-the-art HMC approach
in terms of computational runtime.

• Fourth, we explore the applicability and flexibility of the proposed MCMC approach in the
context of Bayesian estimation for shape-restricted functions.

The rest of the article is structured as follows. Section 2 is dedicated to the proposed gen-
eral methodology for sampling from the tMVN distribution, constrained by linear, quadratic, and
nonlinear constraints. We also highlight the challenges involved in sampling a tMVN distribution.
In Section 3, the challenges associated with sampling tMVN distribution are investigated and an
updating strategy of the approximate parameter in the likelihood is proposed. Section 4 is de-
voted to several numerical illustrations for both fixed and updated η. In Section 5, we explore the
performance of the proposed approach within the context of Bayesian shape-restricted function es-
timation. Additionally, we provide a comparison with the HMC sampler in terms of computational
running time and prediction accuracy.

2 Truncated Gaussian vectors under nonlinear constraints

Let ζ ∈ Rd be a d-dimensional Gaussian vector with mean vector µ ∈ Rd and symmetric, positive-
definite covariance matrix Γ ∈ Rd×d, i.e., ζ ∼ Nd(µ,Γ). In this section, we are interested in
sampling from a constrained pdf with the following form:

f(ζ|ζ ∈ C) ∝ exp

(
−1

2
[ζ − µ]>Γ−1[ζ − µ]

)
1C(ζ), ζ ∈ Rd, (1)

where C is any convex or non-convex set in Rd representing the set of m ∈ N∗ linear, quadratic and/or
nonlinear inequality constraints on the Gaussian vector ζ. This problem appears in many Bayesian
constrained statistical modeling. The indicator function in the above pdf, as shown in Equation (1),
represents the restricted set of inequality constraints. The density f in (1) corresponds to a tMVN
distribution T N d(µ,Γ; C), where the parameters µ, Γ, and C represent the mean, covariance, and
restricted convex and non-convex sets, respectively. Here, d represents the dimension of the prior
random vector ζ. Let us consider the following notations:

C =


Clin :=

{
ζ ∈ Rd : a>κ ζ + bκ ≥ 0, κ = 1, . . . ,m

}
Cquad :=

{
ζ ∈ Rd : ζ>Cκζ + d>κ ζ + eκ ≥ 0, κ = 1, . . . ,m

}
Cnlin :=

{
ζ ∈ Rd : gκ(ζ) ≥ 0, κ = 1, . . . ,m

} (2)

which corresponds to m linear, quadratic and nonlinear inequality constraints, respectively. Let us
mention that the m linear inequality constraints, given by a>κ ζ + bκ ≥ 0 for κ = 1, . . . ,m in (2),
can be expressed in matrix form as follows:

Aζ + b ≥ 0,

where aκ ∈ Rd represents the κth row of the m × d matrix of constraints A, bκ represents the κth

component of the vector b ∈ Rm, and 0 represents the m-dimensional zero vector. For the quadratic
inequality constraints Cquad in (2), Cκ is a d×d matrix, dκ is a d-dimensional vector and eκ is a real
number. Finally, for the nonlinear inequality constraints Cnlin, gκ represents any nonlinear piecewise
continuous or any order continuously differentiable function, for any κ = 1, . . . ,m.

Let us mention that sampling tMVN distribution is an active area of research, for which existing
algorithms include Gibbs sampling [41], MH [7, 32], the minimax tilting method accept-reject
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sampler [2], the exact rejection sampling from the mode [23], and the highly efficient HMC sampler
[35]. The approach developed in the present paper is quite different, as sampling is performed before
conditioning rather than after. This can offer significant computational advantages, particularly
when the covariance matrix of the prior respects certain properties such as sparsity or block circulant
(Toeplitz), or when it can be decomposed as a positive-definite matrix minus (plus) a low-rank
symmetric matrix [6]. These advantages will be highlighted in the numerical examples of the
present paper, within the context of Bayesian shape-restricted function estimation.

2.1 Methodology development

The methodology developed in the present paper draws inspiration from the recent efficient approach
developed by [37] for generating samples from the MVN distribution ζ ∼ Nd(µ,Γ) restricted to
the positive orthant (i.e., ζ ∼ Nd(µ,Γ) such that ζ ∈ [0,+∞[d or ζ ∼ T N d(µ,Γ; C), where C is
the positive orthant [0,+∞[d). Their main interesting idea is to approximate the indicator function
1[0,+∞[(·) appearing in the constrained pdf (1) with a smooth function and incorporate it into a
likelihood function. They used the logistic sigmoid function 1/[1 + exp(−x)], which represents the
cumulative distribution function (cdf) of the logistic distribution. To be more precise, they used a
scaled logistic sigmoid function:

1[0,+∞[(ζ) ≈ 1

1 + e−ηζ
, ∀ζ ∈ R, (3)

where η > 0 is a parameter controlling the quality of the approximation. The approximation in
(3) is enhanced with a large value of η. The parameter η will play a key role in investigating
the flexibility of the proposed approach. Furthermore, in the context of shape-restricted function
estimation, the parameter η can be seen as a trade-off between the quality of the prediction and
mitigating the mass-shifting phenomenon described in [47]. From (3), one can deduce the following:

1[0,+∞[d(ζ) ≈
d∏

κ=1

1

1 + e−ηζκ
, ∀ζ ∈ Rd,

where ζκ is the κth component of the vector ζ.
Our aim in this paper is to generalize this approach to handle sets of m ∈ N∗ linear, quadratic,

and nonlinear inequality constraints given by (2), either applied individually or in combination. This
enables the proposed approach to handle both convex and non-convex restricted sets. Moreover, it
broadens the applicability of the proposed approach to include more general Bayesian constrained
models and to address more complex problems, such as nonlinear optimization and multiple and
high-dimensional shape restricted function estimation. We pay carefully attention on the choice
of the approximate parameter η in order to ensure stability and convergence of the proposed ap-
proach. We show later in this paper how this parameter, η, can be updated at each MCMC iteration.

First, let us present the following result, which generalizes the findings in [37] for nonlinear
inequality constraints:

Proposition 1 (Approximation of indicator function of inequality constraints). Let g be any piece-
wise continuous function defined on Rd. Then, the indicator function 1{g(·)≥0} can be approximated
by a scaled logistic sigmoid function as follows:

1{g(·)≥0}(x) ≈ 1

1 + exp[−ηg(x)]
, x ∈ Rd, (4)
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where the parameter η > 0 controls the quality of the approximation. As η increases, the quality
of the approximation improves. The approximate function in (4) possesses the same degree of
differentiability as g and we have∣∣∣∣1{g(·)≥0}(x)− 1

1 + e−ηg(x)

∣∣∣∣ ≤ 1

1 + eη|g(x)|
,

for any x ∈ Rd.

Proof. Let us consider two cases. When g(x) < 0, then 1{g(x)≥0} = 0, for any x ∈ Rd. Thus,∣∣∣∣1{g(·)≥0}(x)− 1

1 + e−ηg(x)

∣∣∣∣ ≤ 1

1 + e−η|g(x)|
⇐⇒ 1

1 + e−ηg(x)
≤ 1

1 + eη|g(x)|
.

The second case, when g(x) ≥ 0, holds since 1 − 1/[1 + exp{−ηg(x)}] = 1/[1 + exp{ηg(x)}], and
thus completing the proof of the proposition.
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Figure 1: Smooth approximations of the indicator function 1{g(·)≥0}(x) on [−2π, 2π] for different
values of η, where g(x) = x cos(x) (black curve in the left panel).

Figure 1 displays smooth approximations of the indicator function 1{g(·)≥0}(x) on the interval
[−2π, 2π] for different values of η using (4), where g(x) = x cos(x) is the nonlinear continuous
function represented by the black curve in the left panel.

x1

x2

g
(x

1
,x

2
)

−10

−5

0

5

10

−6 −4 −2 0 2 4 6

0
.0

0
.4

0
.8

x2

smooth approximation of the indicator function
at x1 = −2 and x2 between −2pi and 2pi

Figure 2: The two-dimensional continuous function g(x1, x2) = x1 cos(x1) + x2 on [−2π, 2π]2 (left
panel). Smooth approximation of the indicator function 1{g(·,·)≥0}(x1, x2) at x1 = −2 and x2 ∈
[−2π, 2π] for η = 5 (right panel).

Figure 2 displays a smooth approximation of the indicator function 1{g(·,·)≥0}(−2, x2), for x2 ∈
[−2π, 2π] using (4) with η = 5, where g(x1, x2) = x1 cos(x2) + x2 is the two-dimensional nonlinear
continuous function shown in the left panel.
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Now, when applying m linear, quadratic or nonlinear inequality constraints, the associated
indicator function, i.e., 1Clin(·), 1Cquad(·) and 1Cnlin(·), can be approximated as follows:

1Clin(ζ) ≈
m∏
κ=1

1

1 + exp[−η(a>κ ζ + bκ)]
= γη(ζ), ∀ζ ∈ Rd,

1Cquad(ζ) ≈
m∏
κ=1

1

1 + exp[−η(ζ>Cκζ + d>κ ζ + eκ)]
= γη(ζ), ∀ζ ∈ Rd,

1Cnlin(ζ) ≈
m∏
κ=1

1

1 + exp[−ηgκ(ζ)]
= γη(ζ), ∀ζ ∈ Rd, (5)

where γη will act as a likelihood function.
Let us first focus on the nonlinear inequality constraints Cnlin, which can be seen as a general-

ization of other inequality constraints, such as linear and quadratic constraints. Consequently, the
constrained pdf in (1) can be expressed as follows:

f(ζ|ζ ∈ Cnlin) ∝ exp

(
−1

2
[ζ − µ]>Γ−1[ζ − µ]

)
1Cnlin(ζ), ζ ∈ Rd. (6)

By substituting the above approximate γη from Equation (5) into Equation (6), we obtain the
following density approximation f̃η of f :

f̃η(ζ|ζ ∈ Cnlin) ∝ exp

(
−1

2
[ζ − µ]>Γ−1[ζ − µ]

)
γη(ζ)

∝

[
m∏
κ=1

1

1 + exp[−ηgκ(ζ)]

]
︸ ︷︷ ︸
Lη(ζ) : likelihood function

exp

(
−1

2
[ζ − µ]>Γ−1[ζ − µ]

)
︸ ︷︷ ︸

MVN prior

, (7)

for any ζ ∈ Rd. By a simple change of variable ξ = ζ − µ, the expression in (7) become[
m∏
κ=1

1

1 + exp[−ηgκ(ξ + µ)]

]
︸ ︷︷ ︸

Lη(ξ) : likelihood function

exp

(
−1

2
ξ>Γ−1ξ

)
︸ ︷︷ ︸

zero mean MVN

. (8)

The approximate pdf in (8) is proportional to the product of a likelihood function, denoted Lη(ξ),
and an untruncated prior, which is a zero-mean Gaussian vector ξ ∼ Nd(0,Γ). It is worth noting
that the change of variables in Equation (8) enables the use of the ESS approach and ensures that
the term within the square brackets is a likelihood function.

Proposition 2 below extends the result in [37] for nonlinear inequality constraints.

Proposition 2. Assume λd(∩mκ=1{gκ = 0}) = 0, where λd is the Lebesgue-measure on Rd. Let f
and f̃η be respectively defined as in (6) and (7). Then,

lim
η→+∞

∫
Rd

∣∣∣f(ζ)− f̃η(ζ)
∣∣∣ dζ = 0.

This means that the L1 distance between f̃η and f converges to 0 as η goes to infinity.
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Proof. Suppose first that m = 1, then∫
Rd

∣∣∣f(ζ)− f̃η(ζ)
∣∣∣ dζ ∝ ∫

Rd
e−

1
2
[ζ−µ]>Γ−1[ζ−µ]

∣∣∣∣1g1(·)(ζ) − 1

1 + e−ηg1(ζ)

∣∣∣∣ dζ
≤

∫
Rd
e−

1
2
[ζ−µ]>Γ−1[ζ−µ] 1

1 + eη|g1(ζ)|
dζ.

The last inequality holds by Proposition 1. Since λd(g1 = 0) equals zero, we can apply the dominated
convergence theorem to get the result, as

∀η > 0, e−
1
2
[ζ−µ]>Γ−1[ζ−µ] 1

1 + eη|g1(ζ)|
≤ e−

1
2
[ζ−µ]>Γ−1[ζ−µ],

and

e−
1
2
[ζ−µ]>Γ−1[ζ−µ] 1

1 + eη|g1(ζ)|
−→
η→0

0,

λd-almost everywhere, since λd(g1 = 0) is equal to zero. The result holds for m ≥ 2 by using the
fact that ∣∣∣∣∣1{gκ(·)≥0, κ=1,...,m}(ζ)−

m∏
κ=1

1

1 + e−ηgκ(ζ)

∣∣∣∣∣ ≤ 1, (9)

and observing that the left-hand side of the inequality (9) tends to zero almost everywhere with
respect to λd, as η tends to infinity.

2.2 Algorithm development

The approximate density function f̃η in (8) is proportional to a product of a likelihood function
Lη(·) and a zero-mean prior Gaussian vector ξ:

f̃η(ξ) ∝ Lη(ξ)Nd(ξ; 0,Γ). (10)

In this context, sampling from (10) can be performed using the efficient ESS developed by [31]
which can be seen as a parametrization of the MH proposals [7, 32]:

ξ′ = sin(θ)ν + cos(θ)ξ, ν ∼ Nd(0,Γ), (11)

where ξ is the current state, ξ′ is the proposal state, and ν is an auxiliary variable. The ESS is a
variant form of slice sampling [33] that leverages the Gaussian prior to enhance mixing efficiency
and remove the need for parameter tuning. Let us recall that the ESS acceptance ratio α =
min {1, Lη(ξ′)/Lη(ξ)} relies only on the likelihood ratio and is independent of θ. The angle θ is
uniformly generated from a [θmin, θmax] interval which is shrunk exponentially fast until an acceptable
state is reached. The authors in [31] provide details instructions on how to shrink the bracket. The
new state ξ′ is accepted if it satisfies ULη(ξ) ≤ Lη(ξ

′), where U ∼ U([0, 1]). Hence, the acceptance
ratio is

P

(
U ≤ Lη(ξ

′)

Lη(ξ)

)
= min {1, Lη(ξ′)/Lη(ξ)} .

From (8), the associated logarithm function of Lη(ξ) is given by

log(Lη(ξ)) = −
m∑
κ=1

log (1 + exp[−ηgκ(ξ + µ)]) , ∀ξ ∈ Rd. (12)
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Now, sampling from the approximate density in (10) using ESS involves sampling from a Gaus-
sian prior distribution ν ∼ Nd(0,Γ) (auxiliary variable), which admits a computational complexity
of order O(d3) in general. We refer the reader to [42] for a complete review on various approaches
for generating high-dimensional MVN distribution. However, in some situations, such as in high-
dimensions, the covariance matrix of the prior, Γ, exhibits particular structures like sparsity or
stationarity. In that case, existing highly efficient algorithm can be employed such as the Fast
Fourier Transform [45] and the recent large-scale approach [25] (see Section 5 for more details).

Lemma 1 (Boundedness constraints). Let us suppose that the Gaussian vector ζ ∼ Nd(µ,Γ) is
bounded between lower and upper vectors l ∈ Rd and u ∈ Rd, respectively. In that case, the set
of linear inequality constraints is Clin = {ζ ∈ Rd : l ≤ ζ ≤ u}. In matrix form, we obtain:

Aζ + b ≥ 0, where A =

(
Id
−Id

)
∈ R2d×d and b =

(
−l
u

)
∈ R2d, with Id the d × d identity matrix.

Furthermore, we have

1Clin(ζ) ≈
2d∏
κ=1

1

1 + exp(−η[Aζ + b]κ)
, ∀ζ ∈ Rd,

where [Aζ + b]κ represents the κth component of the 2d-dimensional vector Aζ + b and η > 0 is
a given approximate parameter. Then, according to (7), the logarithm of the associated likelihood
function has the following form:

log(Lη(ζ)) = −
m∑
κ=1

log
[
1 + e−η(ζ−l) + e−η(u−ζ) + e−η(u−l)

]
, (13)

which eliminates the necessity of performing matrix products and hence, reducing the computational
complexity of evaluating the log-likelihood in (13) to O(d) instead of O(d2).

The significant advantages of the results in Lemma 1 have been explored in high-dimensions
(Table 1 below). It is worth noting that these results remain valid when the lower and upper bound
vectors, l and u, take on infinite values.

Proof of Lemma 1. The idea of the proof is based on the following: suppose that ζ ∈ R is bounded
between lb ∈ R and ub ∈ R, i.e., lb ≤ ζ ≤ ub. Then,

1{lb≤ζ≤ub} ≈
1

1 + exp(−η[ζ − lb])
× 1

1 + exp(−η[ub − ζ])

=
1

1 + exp(−η[ζ − lb]) + exp(−η[ub − ζ]) + exp(−η[ub − lb])
,

for a given approximate parameter η > 0 and for any ζ ∈ R. The two real numbers lb and ub
represent the lower and upper bounds, respectively.

Figure 3 display contour plots of the pdf f in (1) of a zero-mean bivariate normal distribution
truncated to the positive orthant (last column) along with those for f̃η for various values of η,
with η increasing from left to right. Each row corresponds to a different value of the correlation ρ.
Figure 4 shows the same contour plots in the situation where the mean of the prior bivariate normal
distribution µ = [−2,−1]> lies outside the positive orthant. It is clear that the approximation
improves quickly as η increases, and η = 50 provides a good approximation and numerical stability,
as we will show in the simulation studies of this paper. Furthermore, we develop a strategy to update
the approximate parameter η at each MCMC iteration, ensuring the stability and convergence of the
proposed algorithm, and addressing extreme cases. Additionally, we propose a projection strategy
to ensure that the resulting posterior samples strictly respect the linear inequality constraints.
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Figure 3: Contour plots of the pdf f in (1) of a zero-mean bivariate normal distribution truncated
to the positive orthant (third column) and its approximate f̃η for η = 10 and η = 50 (first and
second columns).

Remark 1 (Posterior Mode). In most real-world applications, the mean of the prior does not
belong to the restricted domain (set of inequality constraints). As mentioned previously in this
section, the starting point of the proposed MCMC approach does not necessitate the verification of
inequality constraints. However, we recommend using the posterior mode, denoted as µ∗, as the
initial point for the MCMC sampler, especially when the probability of the MVN distribution in
the restricted domain is too low (i.e., the mean of the prior µ lies outside the restricted domain).
This is an interesting strategy since we start with the higher-probability point. In that case, the
proposed MCMC sampler converges faster and avoids numerical instability. This is because when
using the posterior mode as a starting point in the MCMC sampler, the first proposal ξ′ satisfying
the inequality ULη(ξ) ≤ Lη(ξ

′) is closer to the restricted domain than when starting with the mean
of the prior, µ. Hereafter, we describe how the posterior mode µ∗ can be computed.

Let µ∗ denotes the posterior mode that maximizes the constrained pdf (1). Thus, maximizing
(1) is equivalent to solving the quadratic optimization problem:

µ∗ := arg max
ζ∈C

{
−1

2
[ζ − µ]>Γ−1[ζ − µ]

}
, (14)

with C the set of inequality constraints (2). For instance, when C is the set of linear inequality
constraints Clin in (2), the optimization problem in (14) becomes a quadratic optimization problem
subject to linear inequality constraints [3, 19], known as quadratic programming (QP):

µ∗ := arg min
ζ s.t. Aζ+b≥0

{
1

2
ζ>Γ−1ζ − µ>Γ−1ζ

}
. (15)
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Figure 4: Same as Figure 3, with a mean of the prior µ = [−2,−1]> lying outside the positive
orthant.

In the numerical examples of this paper, the efficient R-package quadprog has been used to compute
the posterior mode µ∗ in (15). Furthermore, since the proposed approach is based on an approxi-
mation, some of the generated samples may not strictly satisfy the linear inequality constraints. To
address this, we propose projecting those samples onto the set of linear constraints at each MCMC
iteration.

Algorithm 1 outlines the scheme for generating n samples from the tMVN ζ ∼ T N d(0,Γ; Clin),
where Clin = {ζ ∈ Rd : Aζ + b ≥ 0}, using the proposed MCMC approach.

3 Sampling challenges for tMVN distributions

The aim of this section is to highlight the challenges associated with sampling from tMVN distri-
butions and to propose an improved solution. Two cases are considered. The first is referred to
as the ‘extreme’ case, in which the mean of the prior is located far outside the restricted domain.
This results in a very low probability for the MVN distribution within the restricted domain. The
second is called the ‘normal’ case, where the mean of the prior distribution is near or within the
restricted domain.

3.1 Low or high value of the approximate parameter η

As mentioned previously, the approximate parameter η, which appears in Equation (3), plays a
crucial role in the proposed approach, as it ensures the stability of the developed algorithm, the
convergence of the posterior distribution, and addresses extreme cases. As proved in Proposition 2,
the L1 distance between the resulting approximated posterior pdf f̃η and the target posterior pdf

10



Algorithm 1: Sampling scheme of the tMVN ζ ∼ T N d(0,Γ; Clin), where Clin = {ζ ∈ Rd :
Aζ + b ≥ 0} using the proposed MCMC approach for n samples.

Input: current state ζ = µ∗ in (15) for µ = 0, Γ ∈ Rd×d, A ∈ Rm×d, b ∈ Rm, η ∈ R∗+, and
n ∈ N∗ MCMC iterations.

• For i from 1 to n, do

1. Generate ν ∼ N (0,Γ).

2. Compute the new state ζ ′(i) in (11) using the ESS in [31]:

– Compute the log-likelihood functions:

log(L(ζ)) = −
m∑
κ=1

log (1 + exp{−η[Aζ + b]κ})

log y = log(L(ζ)) + log u, u ∼ U([0, 1]).

– Define an initial bracket [θmin, θmax]:

θ ∼ U([0, 2π]);

θmin = θ − 2π and θmax = θ.

– Compute the proposal
ζ ′(i) = sin(θ)ν + cos(θ)ζ.

– While log(L(ζ ′(i))) < log y;

∗ shrink the bracket [θmin, θmax] as in [31] and generate θ ∼ U([θmin, θmax]);

∗ compute:
ζ ′(i) = sin(θ)ν + cos(θ)ζ.

if [Aζ ′(i) + b]κ < 0, for any κ ∈ {1, . . . ,m} then

project ζ ′(i) on Clin.
else

accept ζ ′(i).
end if

3. Reinitialization: ζ = ζ ′(i).

4. Update η.

• EndFor

Output: return
[
ζ ′(1), . . . , ζ

′
(n)

]
∈ Rd×n.

f converges to zero as η goes to infinity.

On one hand, a low value of the approximate parameter η involves two problems:

• First, a low value of η involves a poor approximation of the indicator function, hence, a poor
approximation of the likelihood.

• Second, a low value of η results in a poor approximation of the posterior truncated distribution,
as shown in Figures 3, 4, and 5 (left panel), and leads to poor convergence of the proposed
MCMC algorithm (left panel in Figure 13).
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Figure 5: Low & high η (normal case): 20,000 samples (black dots) from T N 2(µ,Γ; C) using the
proposed approach, where C = Clin (red dashed triangle). The first 5,000 samples are discarded as
burn-in. The mean of the prior is µ = [0, 0]>, and the correlation is ρ = 0.4. A low value of the
approximate parameter η is employed in the left panel, while a high value is employed in the right.

In Figure 5, the effect of the approximate parameter, η, on the posterior truncated distribution
is highlighted. The aim in this example is to generate a zero-mean bivariate normal distribution,

ζ, with covariance matrix Γ =

(
1 ρ
ρ 1

)
, where the correlation ρ is fixed at 0.4, and restrict it to a

triangle with vertices (0,0), (1,0) and (0,1) (red dashed triangle). The black dots represent 20,000
samples generated using the proposed approach, with η fixed at 20 in the left panel and 500 in the
right panel. The first 5,000 samples are discarded as burn-in. As expected, we observe that a low
value of the approximate parameter, η, results in a poor approximation of the posterior truncated
distribution. It is worth noting that some samples are located outside the triangle even when η
is very high. This is because the projection strategy into the restricted domain at each MCMC
iteration (see the second step in Algorithm 1) is not employed in this example. Finally, let us men-
tion that this numerical example addresses a ‘normal’ case, and a high value of the approximate
parameter η has no impact on the stability of the proposed algorithm (see the first point below for
high value of η).

On the other hand, when η is high, two problems occur:

• First, in the tMVN distribution framework, a high value of η results in instability in the
proposed algorithm for extreme cases, as the log-likelihood function approaches infinity. The
extreme case occurs when the mean of the prior is located far outside the restricted domain
(right panel in Figure 6).

• Second, in Bayesian shape-restricted function estimation, a high value of η accentuates the
mass-shifting phenomenon quantified in [47] (see Sections 3.3 and 5.2 below), as tMVN priors
lead to biased posterior inference when the underlying function contains flat regions.

In Figure 6, the same settings as in Figure 5 are considered, except that the mean of the prior
µ is fixed at [−6,−2]>. This is referred to as an ‘extreme’ case. As expected, due to the divergence
of the logarithm of the likelihood function in (12), a high value of the approximate parameter η
(right panel) leads to instability in the proposed MCMC algorithm, causing the samples to fail to
respect the constraints. It is worth noting that a low value of η (left panel) effectively ensures the
stability and convergence of the proposed algorithm; however, it results in a poor approximation of
the posterior distribution.
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Figure 6: Low & high η (extreme case): the caption is the same as in Figure 5, except that the

mean of the prior is fixed at µ = [−6,−2]> (red cross).

3.2 Updating η at each MCMC iteration

On one hand, a high value of the approximate parameter η improves the precision of the proposed
approach in approximating the target posterior distribution. However, it accentuates the mass-
shifting phenomenon (see Sections 3.3 and Section 5) and fails to ensure the convergence in extreme
cases. On the other hand, a low value of η in the tMVN distribution avoids numerical instability and
addresses extreme cases, such as when the mean of the prior distribution lies outside the acceptance
region. However, it produces a poor approximation of the target truncated posterior distribution
(left panel of Figure 5). As a result, we develop a strategy that updates the approximate parameter η
at each MCMC iteration in order to take advantage of both low and high values: numerical stability
when the parameter is low, and precision when the parameter is high. The main idea is to start the
MCMC algorithm with a low value and increase it at each iteration to ensure convergence to the
target posterior distribution, as the initial iterations can be discarded as burn-in. For example, the
approximate parameter η can be multiplied by 1 + ε at each MCMC iteration (see the right panel
of Figure 13, where ε is fixed at 0.01%). This leads to a robust approach that handles extreme
cases while ensuring the convergence of the proposed posterior distribution (see Figures 13 and 14).
This strategy also works well and is coherent with projecting the samples into the linear restricted
domain. The numerical efficiency of the updating strategy is shown in Section 4.2.

3.3 Mass-shifting phenomenon of tMVN

In this section, we explore the mass-shifting phenomenon of the tMVN distribution highlighted
by [47]. In fact, the mass-shifting phenomenon appears in the low-dimensional marginal densities
of a dependent zero-mean multivariate normal distribution restricted to the positive orthant. The
marginal density of a tMVN distribution having the mode at the origin exhibits small mass near
the origin as the dimension increases. Furthermore, this phenomenon becomes more pronounced
with stronger correlations between the random variables. This unexpected behavior has significant
implications for Bayesian shape-restricted function estimation. As empirically observed by [11,
26, 34], tMVN priors lead to biased posterior inference when the underlying function contains
flat regions. Before presenting the mass-shifting phenomenon, let us recall the following well-known
result: suppose that X1 and X2 are two normal random variables with means µ1 and µ2, respectively,
and variances Σ11 = Var(X1) and Σ22 = Var(X2), respectively. Then,

{X1|X2} ∼ N (µ,Σ), where,{
µ = µ1 + Σ11Σ

−1
12 (X2 − µ2);

Σ = Σ11 − Σ12Σ
−1
22 Σ21;

13



with Σ12 = Σ21 = Cov(X1, X2). Now, we consider a zero-mean bivariate Gaussian vector X =
[X1, X2]

> truncated within the positive orthant. Suppose that X admits a covariance matrix Γ =(
1 ρ
ρ 1

)
, where ρ ∈ [−1, 1] is the correlation parameter. This means that Var(X1) = Var(X2) = 1

and Cov(X1, X2) = Cor(X1, X2) = ρ.
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Figure 7: Histogram of the marginal distribution of a two-dimensional zero-mean TMVN restricted
to the positive orthant at different correlation. The approximate parameter η is updated at each
MCMC iteration. The blue dashed curve represents the pdf of the true truncated marginal distri-
bution.

In Figure 7, we illustrate the histograms of the marginal distribution of the two-dimensional
zero-mean Gaussian vector X = [X1, X2]

> restricted to the positive orthant for different values
of the correlation parameter ρ. As expected, a mass-shifting phenomenon as highlighted by [47]
of the marginal distribution of a zero-mean tMVN distribution is observed. The histograms of
the first variable x1 are based on 20,000 MCMC iterations of the proposed approach developed in
the present paper, where the first 5,000 as discarded as burn-in. The approximate parameter η is
updated at each MCMC iteration, which increases fast to infinity. The blue dashed curve represents
the pdf of the true truncated marginal distribution. One can observe that for high correlations, the
histograms shift to the right compared to the true truncated marginal distribution, a phenomenon
known as mass-shifting. This effect becomes more pronounced as correlations increase. The impact
of the mass-shifting phenomenon is highlighted in Section 5 for shape-restricted function estimation,
when the unknown target function admits a flat region. In this context, this phenomenon involves
a biased Bayesian estimator.

4 Numerical illustrations

The aim of this section is to provide performance illustrations of the approach developed in the
present paper (Section 2.1) for a combination of linear, quadratic, and nonlinear inequality con-
straints, both when η is fixed and when it is updated. In all the numerical examples in this section,
except where mentioned otherwise, ζ is a bivariate Gaussian vector with mean vector µ = [µ1, µ2]

>

and covariance matrix Γ =

(
1 ρ
ρ 1

)
, where ρ ∈ [−1, 1] is the correlation parameter.

4.1 Illustrations with fixed η

In this section, the parameter η in (7) is fixed at 50, providing a good approximation (Figures 3 and
4) of the posterior pdf (1) and avoiding numerical instability, especially when the logarithm of the
likelihood function Lη(·) tends to infinity. This is referred to as the ‘normal’ case, which occurs in
most applications. It is worth noting that in this case, a fixed large value of η is enough to ensure
stability and convergence of the proposed MCMC approach.

Example 1 (Nonlinear inequality constraints). In this example, the set of inequality constraints
C is the non-convex set Cnlin = {x ∈ R2 : gκ(x) ≥ 0, κ = 1, 2}, with g1(x) = cos(x1) + x2 − 1
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and g2(x) = − cos(x1) − x2 + 2 two nonlinear continuous functions, and x = (x1, x2) ∈ R2. The
aim is to generate a bivariate normal distribution ζ ∼ Nd(µ,Γ) restricted to Cnlin, where d = 2,
i.e., ζ ∼ T N 2(µ,Γ; Cnlin). This is the so-called tMVN distribution subject to nonlinear inequality
constraints.
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Figure 8: 20,000 samples (black dots) from T N 2(µ,Γ; C) using the proposed approach, where
C = Cnlin. The mean of the prior µ = [0, 0]> (red star) and the correlation is ρ = 0.5. The two
dashed curves form the set of nonlinear inequality constraints C. The right panel displays the values
of x1 for the first 500 MCMC iterations.

Figure 8 shows a performance illustration of the proposed approach for handling nonlinear in-
equality constriants. The black dots in the left panel represent the 20,000 samples from a two-
dimensional normal distribution N2(µ,Γ) constrained by the non-convex set C = Cnlin formed by
the two dashed curves (lower and upper bound functions, respectively). The mean of the prior is
µ = [0, 0]> indicated by the red star, and the correlation parameter ρ is fixed at 0.5. The compu-
tational running time of generating 20,000 MCMC samples is displayed in main of the left panel.
The right panel displays the values of the first variable x1 for the first 500 MCMC iterations which
oscillate rapidly around the posterior mean (red dashed line), as desired.
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Figure 9: Same as Figure 8 for a different lower piecewise continuous function. The mean of the
prior µ is fixed at [−1,−2]>.

Similar to Figure 8, the left panel of Figure 9 displays 20,000 samples (black dots) from a two-
dimensional normal distribution constrained by nonlinear inequality constraints. The correlation
and the computational running time are displayed in the main panel. The mean of the prior is
fixed at µ = [−1,−2]> and is represented by the red star. The first function g1(·) of the nonlinear
inequality constraints is defined as follows:

g1(x) = p(x1) + x2, x = (x1, x2) ∈ R2,
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where p(·) is the piecewise nonlinear continuous function defined as cos(2x1)− 0.5 if x1 > 0 and 1
otherwise (the lower dashed curve). In the right panel, we illustrate the values of x1 for the first
500 MCMC iterations, which rapidly oscillate around the posterior mean indicated by the red dashed
line.

Example 2 (Linear and quadratic constraints). In this example, the set of inequality constraints C
is the intersection between linear and quadratic inequality constraints, i.e., C = Clin ∩ Cquad, where

Clin = {x ∈ R2 : x1 + x2 ≥ 0 and x2 ≥ 0}; (16)

Cquad = {x ∈ R2 : x>Cκx+ d>κx+ eκ ≥ 0, κ = 1, 2}; (17)

where C1 =

(
−1/8 0

0 −1/2

)
, C2 =

(
4 −1
−1 8

)
, d1 = [0.5, 0.5]>, d2 = [0, 5]>, e1 = 0.75, and e2 =

−1. Let us mention that the linear inequality constraints in (16) can be expression as Aζ + b ≥ 0,
where

A =

(
1 1
0 1

)
and b =

(
0
0

)
.

This numerical example involves two linear and two quadratic inequality constraints.
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Figure 10: Left: 20,000 samples (black dots) from a zero-mean bivariate normal distribution re-
stricted to linear and quadratic inequality constraints (16)-(17). The correlation parameter ρ is
fixed at 0.5. Right: the first 500 values of x1 oscillating around the posterior mean (red horizontal
dashed line), as desired.

The left panel of Figure 10 displays 20,000 samples (black dots) from the zero-mean two-dimensional
normal distribution N2(µ,Γ) restricted to the linear and quadratic inequality constraints given in
(16) and (17). The correlation and the computational running time of generating 20,000 MCMC
samples are displayed in the main panel. The red star represents the mean of the prior µ = [0, 0]>.
In the right panel, we illustrate the first 500 values of x1 which oscillate rapidly around the posterior
mean (represented by the red dashed line), as desired.

Example 3 (Extreme case). The aim of this example is to highlight the efficiency of the proposed
approach through an extreme case example that is impossible for other MCMC samplers. To do this,
we fix the mean vector µ of the bivariate normal distribution at [5, 13]> and the correlation parameter
ρ at 0.5. The set of linear constraints is Clin = {x ∈ R2 : 10 ≤ x1 ≤ 13 and 8 ≤ x2 ≤ 11} (dashed
square in Figure 11). This is a difficult situation because the probability of the MVN distribution
restricted to the rectangle Clin is too low.

In Figure 11, we generate 20,000 samples (black dots) from a bivariate normal distribution
with mean µ = [5, 13]> (red star in the left panel) restricted by linear constraints represented by
the dashed square. The first 5,000 samples are discarded as burn-in. The correlation between the
variables x1 and x2 is fixed at 0.5. The approximate parameter η is fixed at 50. The right panel is
a zoom-in of the left one within the restricted domain. This represents a very difficult situation (an
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Figure 11: 20,000 samples (black dots) from a bivariate normal distribution with mean µ = [5, 13]>

restricted to linear inequality constraints (dashed square). The first 5,000 samples are discarded as
burn-in. The correlation parameter ρ is fixed at 0.5. The right panel is a zoom-in of the left panel
within the acceptance region.

extreme case) because the mean of the prior ζ does not belong and is far from this restricted domain.
Using the proposed approach, generating 20,000 samples takes 0.6 seconds. It is worth noting that
the HMC sampler fails to generate samples in this extreme case.

Example 4 (High-dimensions). In this example, we investigate the effectiveness of the proposed
approach in high-dimensions. To do this, we consider a Gaussian process (GP) denoted by (Y (x))x∈D
with mean function m(·) and covariance function k(·, ·), i.e., Y ∼ GP(m(·), k(·, ·)). Without loss of
generality, we assume the domain D is the unit interval [0, 1]. Let {tj}, j = 1, . . . , d be a uniform
discretization of D. Then, ζ = [Y (t1), . . . , Y (td)]

> ∈ Rd is a Gaussian vector with mean vector
µ = [m(t1), . . . ,m(td)]

> and covariance matrix Γ = (k(tj, tl))1≤j,l≤d. Let

Clin =
{
x ∈ Rd : 0 ≤ xi ≤ 10, i = 1, . . . , d

}
= [0, 10]d

be a set of linear inequality constraints, where d is fixed at 1,000.
Figure 12 displays the first two coordinates and the first and the last coordinates (top and

bottom panels, respectively) of 20,000 samples generated from a tMVN distribution with mean
µ = [−5, . . . ,−5]> ∈ Rd. The covariance matrix Γ is extracted from a Matérn covariance function:

k(x, x′) = τ 2
21−ν

Γ(ν)

(√
2ν

`
|x− x′|

)ν

Bν

(√
2ν

`
|x− x′|

)
, x, x′ ∈ D, (18)

where Γ(·) is the Gamma function and Bν(·) denotes the modified Bessel function of the second
kind of order ν [39]. The smoothness parameter ν regulates the degree of smoothness of the GP
sample paths/functions. Let us recall that a process with the Matérn kernel of order ν is dν − 1e
times differentiable (see Section 4.2.1 in [44]). The parameters τ 2 and `, which are positive, are
commonly known as the signal variance and correlation length-scale, respectively. The smoothness
parameter ν and the length-scale parameter ` in this example are fixed at 1.5 and 0.4, respectively.
The first 5,000 samples are discarded as burn-in. The red star in the left panels represents the mean
of the prior and the dashed square represents the restricted domain. The dimension of the Gaussian
vector d is fixed at 1,000. Using the proposed approach and Lemma 1, generating 20,000 samples
with dimension d = 1, 000 takes approximately 11 seconds. In the top panels, the correlation between
the first two coordinates is close to 1 (i.e., k(t1, t2) ≈ 1), while in the bottom panels, the correlation
k(t1, t1000) = 0.07 is close to 0.

Table 1 shows the computational running time in seconds for generating 20,000 samples from
a tMVN distribution as a function of the dimension d. The proposed ESS sampler is faster than
the HMC sampler for both low and high-dimensions. It is worth noting that the Gibbs sampling
approach from the R-package restrictedMVN suffers from the converge for d ∈ {100, 250, 500, 1000}.
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Figure 12: 20,000 samples of a MVN distribution ζ ∈ Rd restricted to [0, 10]d, where d is fixed
at 1,000 and the first 5,000 samples are discarded as burn-in. The mean of the prior is µ =
[−5, . . . ,−5]>. The right panels are the zoom-in of the left panels. The red star represents the
mean of the prior and the dashed square represents the restricted domain. The top panels illustrate
the first two coordinates, where the correlation k(t1, t2) is close to 1. The bottom panels display
the first and the last coordinates, where the correlation k(t1, td) = 0.07 is close to 0.

Computational running time (s)
d = 50 d = 100 d = 250 d = 500 d = 1000

ESS sampler 0.90 1.17 2.09 4.50 11.10
HMC sampler 1.51 3.82 12.90 61.60 210.93

Table 1: The computational running time in seconds for generating 20,000 MCMC samples as a
function of the dimension d for the two competing approaches, ESS and HMC.

4.2 Illustrations with updated η

The aim of this section is to investigate the case when the approximate parameter η is updated at
each MCMC iteration.

We consider an extreme case where the mean of the prior, µ, is fixed at [−31,−10]>, which is
located far from the restricted domain Clin = {x ∈ R2 : 10 ≤ x1 ≤ 13 and 8 ≤ x2 ≤ 11}, considered
in Example 3. We fix the correlation parameter at ρ = 0.5. Two cases are considered: the first is
when the approximate parameter η is fixed at 20 and the second is when the approximate parameter
η is updated at each MCMC iteration. It is worth noting that the parameter η is fixed at 20 to
avoid numerical instability. Larger values provide instability, and the log-likelihood goes to −∞ in
(12).

Figure 13 shows the evolution of the proposed ESS sampler in an extreme case with two different
strategies (fixed and updated η). The aim is to generate a bivariate normal distribution with mean
µ = [−31,−10]> restricted to a linear set Clin = {x ∈ R2 : 10 ≤ x1 ≤ 13 and 8 ≤ x2 ≤ 11}
(dashed square in Figure 11). We generate 15,000 samples (black dots) using the proposed approach
without discarding any samples. In the left panel, the approximate parameter η is fixed at 20 to
avoid numerical instability. In the right panel, η is updated at each MCMC iteration, starting at
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Figure 13: Evolution of convergence for fixed (left) and updated (right) η: 15,000 samples (black

dots) from a bivariate normal distribution with mean µ = [−31,−10]> (red star) restricted to linear
inequality constraints (dashed square) without any discarded samples. The black ball represents
the first accepted sample. The correlation parameter ρ is fixed at 0.5. The proposed approach has
been employed with a fixed η at 20 in the left panel and updated η at each MCMC iteration in the
right panel.

20 and increasing by 0.01%, so that it converges to infinity. The red star represents the mean of
the prior and the black ball represents the first accepted proposal. We observe that when η is fixed,
the proposed MCMC sampler fails to reach the restricted domain. However, when η is updated,
the proposed MCMC successfully reaches the restricted domain. This occurs because, with the
updating strategy, the parameter η can start with low values and gradually converge to infinity.
This ensures the convergence and stability of the proposed ESS approach, effectively addressing
extreme cases. It is worth noting that in both cases, the proposal sample is not projected into the
restricted domain at each MCMC iteration, in order to display the scheme of the proposed MCMC
sampler. Finally, let us recall that this is an extreme case, and it is evident that the HMC sampler
and other existing samplers, such as those cited in the introduction, fail to generate samples from
the corresponding posterior distribution.
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Figure 14: Histogram of the proposed posterior distribution for the first variable x1 when the
projection strategy is applied at each MCMC iteration. The approximate parameter η is fixed at
20 in the left panel and updated at each MCMC iteration in the right panel.

Figure 14 shows the histogram of the proposed posterior distribution based on 20,000 samples,
where the first 5,000 samples are discarded as burn-in. The projection into the restricted domain
is applied at each MCMC iteration. In the left panel, the approximate parameter η is fixed at
20, while in the right panel, it is updated at each MCMC iteration, as shown in the right panel
of Figure 13. Unlike the case when η is updated, we observe a mass of probability at the lower
bound of the restricted domain, x1 = 10, when η is fixed at 20. This is due to the low value of
the approximate parameter η and the projection phenomenon employed at each MCMC iteration
to obtain samples that verify the linear constraints. It is worth noting that this mass of probability
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at x1 = 10 is interesting in situations such as approximating a monotone function with a flat region
within the context of Bayesian shape restricted function estimation, as well highlighted in [47].

4.3 Measuring independence of samples

MCMC techniques remain the gold standard for approximate Bayesian inference, but they are only
approximate methods, which may suffer from several problems such as convergence and correlation
among samples [10]. In this section, a comparison between the efficient HMC and the proposed
approach based on the ESS, developed in Section 2.1, is investigated. The HMC sampler [35] has
been very successful in recent years due to its efficiency in simulating high-dimensional tMVN dis-
tributions. As HMC is limited to linear and quadratic constraints, only linear inequality constraints
are considered in this section. The efficiency of the two competing approaches, HMC and ESS, can
be quantified via the effective sample factor (ESF) [22]. If we denote ζ(j) the jth sample, then the
variance a function f(ζ) using ns samples is

Var

(
f(ζ(1)) + . . .+ f(ζ(ns))

ns

)
=

Var(f(ζ))

ns

[
1 +

ns−1∑
j=1

(
1− j

ns

)
ρj

]
, (19)

where ρj is the autocorrelation function (ACF) with lag j and ns is the number of samples. The
ESF is defined as follows:

ESF =

[
1 +

ns−1∑
j=1

(
1− j

ns

)
ρj

]−1
.

A sampling scheme is considered more efficient when it has a higher ESF, as this results in lower
variance in (19). The ESF indicator depends on several parameters such as the position of the
mean of the prior µ, the probability of the MVN distribution in the restricted domain, the set of
inequality constraints C, and the covariance structure Γ of the prior ζ.

As in Section 4, we consider here a bivariate Gaussian vector ζ with mean vector µ = [−2, 1]>

and covariance matrix Γ =

(
1 ρ
ρ 1

)
, where ρ ∈ [−1, 1] is the correlation parameter. Let C =

Clin = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}, the positive orthant. The aim is to investigate the
performance of the two competing approaches, ESS and HMC, when generating ζ restricted to C,
i.e., ζ ∼ T N 2(µ,Γ; C) using the ESF indicator.
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Figure 15: Performance illustration of the effective sample factor (ESF) for the two competing
approaches (HMC blue and ESS red) based on 20,000 samples, with the first 5,000 discarded as
burn-in. The sampling scheme is repeated 50 times for different values of the correlation parameter
ρ. The mean of the prior µ is fixed at [−2, 1]> and the set of constraints is the positive orthant.
The proposed ESS approach outperforms HMC as it admits a higher ESF.

Figure 15 shows the ESF boxplots of the first variable x1 for the two competing approaches
(HMC blue and ESS red) for different correlation parameter and based on 20,000 samples, where
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the first 5,000 are discarded as burn-in. The sampling scheme is repeated 50 times. In that case,
the proposed ESS approach outperforms the HMC sampler as it admits a higher ESF for different
values of the correlation parameter ρ ({ρ = 0.2, ρ = 0.4, ρ = 0.8}, representing low, moderate, and
high correlation, respectively). As in Section 4.1, the approximate parameter η for the proposed
approach is fixed at 50.
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Figure 16: Performance illustration of the effective sample factor (ESF) for the two competing
approaches (HMC blue and ESS red) based on 20,000 samples, with the first 5,000 discarded as
burn-in. The sampling scheme is repeated 50 times for different values of the correlation parameter
ρ. The mean of the prior µ is fixed at [5, 5]> and the set of constraints is the positive orthant.

Now, we investigate the numerical convergence of the two competing approaches (ESS and
HMC). To do this, we consider in Figure 16 the case where the mean of the prior µ lies inside the
positive orthant such that the linear inequality constraints have no impact on the prior distribution.
As with Figure 15, Figure 16 displays the ESF for the two competing approaches when the mean
of the prior µ is fixed at [5, 5]>. As expected, both approaches provide equivalently high values of
the ESF.
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Figure 17: Performance illustration of the ESF using the proposed ESS approach for different values
of η and based on 20,000 samples, where the first 5,000 are discarded as burn-in. The sampling
scheme is repeated 50 times for different values of the correlation parameter ρ. The mean of the
prior µ is fixed at [−2, 1]> and the set of constraints is the positive orthant.

Figure 17 displays the evolution of the ESF of the proposed ESS approach as a function of
the approximate parameter η for different values of the correlation parameter ρ. Under the same
settings as Figure 15, the ESF of the proposed approach remains stable for different values of η.

Based on the results obtained in this section, the proposed ESS algorithm can be seen as a
general, efficient, and flexible approach for generating tMVN distributions in both extreme and
non-extreme cases. As discussed, the approximate parameter η should be updated at each MCMC
iteration to ensure the stability, precision, and convergence of the proposed approach.

5 Application to constrained Gaussian process regression

The aim of this section is to demonstrate the performance of the algorithm developed in Section 2.1
within the context of Bayesian shape-restricted function estimation. A comparison with the highly
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efficient HMC sampler in terms of computational running time is included. To accomplish this,
we consider the nonparametric function estimation through GP regression, where the unknown
function satisfies structured shape constraints such as monotonicity, boundedness, or convexity, or
any combination of these. Let {(xi, yi)}ni=1 be a set of n noisy samples. The following regression
problem is considered

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2), (20)

i = 1, . . . , n, where f represents an unknown function that generates the data y = [y1, . . . , yn]> and
respects shape constraints such as monotonicity, convexity, and boundedness, either applied indi-
vidually or in combination. The d-dimensional vector xi ∈ Rd is a covariate, and εi is an additive,
independent and identically distributed (i.i.d.) zero-mean Gaussian noise with constant variance
σ2. Throughout this section, the noise variance σ2 is estimated at each MCMC iteration using
an inverse Gamma distribution. Gaussian processes (GPs) are powerful Bayesian models widely
employed in machine learning for solving regression problems. This is due to efficient sampling
algorithms, a rich methodological literature, and a strong theoretical foundation [44]. It is based on
assuming a GP prior distribution (Y (x))x∈D on the unknown function f , where we consider D to be
the unit interval for simplicity. We also assume, without loss of generality, that Y is a zero-mean
GP with covariance function k, denoted as Y ∼ GP(0, k(·, ·)). A GP, in general, is characterized
by its covariance function k, which plays a crucial role in incorporating assumptions such as differ-
entiability, sparsity, and periodicity. In this section, the Matérn family of covariance functions (18)
is employed, which is widely used in machine learning community. The parameters τ 2 and `, which
are positive, are commonly known as the signal variance and correlation length-scale, respectively.
Since these parameters are typically unknown, they must be estimated from available data. For
further details on parameter estimation techniques, we refer the reader to [16, 44].

Structural constraints, such as monotonicity, boundedness, and convexity, appear in many real-
world data applications [9, 26] and are commonly enforced by expanding the function in a suitable
basis. These constraints can be induced by imposing linear inequality constraints on the basis
coefficients. Examples of such bases include piecewise linear functions [13], splines [4, 30], and
Bernstein polynomials [11, 43]. In this section, our focus is on the compactly supported bases
developed in [24, 26]:

yi =
N∑
j=1

ζjφj(xi) + εi, i = 1, . . . , n, (21)

where ζj = Y (tj) represents the value of the parent GP Y at a uniform grid point {tj} for j =
1, . . . , N and {φj} are the compactly supported basis functions of class C0(D,R)4, see [24] for more
details on the properties of these basis functions. Since Y is a zero-mean GP with covariance
function k, we deduce that ζ = [ζ1, . . . , ζN ]> is a zero-mean Gaussian vector with covariance matrix
τ 2Γ such that Γj,l = 1

τ2
k(tj, tl), for any j, l = 1, . . . , N . Since k is a stationary covariance function

and {tj} are equally spaced, the covariance Γ exhibits Toeplitz structure. This property is explored
in the numerical examples of this section. In [24], the authors propose several bases where various
structured constraints are equivalently translated into linear inequality constraints on the basis
coefficients {ζj}. Furthermore, in [26], additional smoothness basis functions are introduced with
the aim of generalizing the approach in [24] to deal with higher orders of smoothness paths. Through
Model (21) and the compactly supported bases from [24], monotonicity, boundedness, and convexity

4 C0(D,R) represents the set of continuous functions from D into R.
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E =


Em = {f ∈ C0(D,R) : f(x) ≤ f(y), ∀x < y} (monotonicity)
Eb = {f ∈ C0(D,R) : lb ≤ f(x) ≤ ub, ∀x ∈ D} (boundedness)

Ec =
{
f ∈ C0(D,R) : f(x′)−f(x)

x′−x ≤ f(x′′)−f(x′)
x′′−x′ , x < x′ < x′′

}
(convexity)

(22)

are equivalent to the following linear inequality constraints on the basis coefficients ζj:

C =


Cm =

{
ζ ∈ RN : ζj−1 ≤ ζj, j = 2, . . . , N

}
;

Cb =
{
ζ ∈ RN : lb ≤ ζj ≤ ub, j = 1, . . . , N

}
;

Cc =
{
ζ ∈ RN :

ζj−1−ζj−2

tj−1−tj−2
≤ ζj−ζj−1

tj−tj−1
, j = 3, . . . , N

}
;

(23)

which corresponds to monotonicity, boundedness, and convexity constraints, respectively. It is
worth noting that the above linear inequality constraints on the basis coefficients can be expressed
in matrix form Aζ + b ≥ 0, where A is an m×N matrix and b is an m-dimensional vector. Thus,

Y N(x) :=
N∑
j=1

ζjφj(x) ∈ E ⇔ ζ ∈ C,

where E and C are given in (22) and in (23), respectively. Given the noisy observations y =
[y1, . . . , yn]>, sampling Y N conditionally on y and respecting shape constraints is equivalent to
generating {ζ|Xζ + ε = y, ζ ∈ C}, where ε = [ε1, . . . , εn]> is a zero-mean Gaussian noise vector
with covariance matrix σ2In, and X is an n × N matrix such that X i,j = (φj(xi)). In that case,
we have

{ζ|y, ζ ∈ C} ∼ T NN(m,Σ; C), where, (24)

m =
(
X>X/σ2 + Γ−1/τ 2

)−1
X>y/σ2;

Σ =
(
X>X/σ2 + Γ−1/τ 2

)−1
;

and C is the set of linear inequality constraints (23). Let us mention that sampling from the
posterior tMVN distribution in (24) can be achieved through the highly efficient HMC sampler
developed by [35] and implemented in the R-package tmg. However, in situations where N is large,
(X>X/σ2+Γ−1/τ 2) changes during each MCMC iteration due to updates in σ2 and τ 2, necessitating
an N×N matrix inversion at every iteration. Moreover, within a large MCMC algorithm, updating
the unknown covariance function parameters involves computing the inversion of an N ×N matrix
at each step. To apply the proposed approach developed in Section 2 which avoids matrix inversion,
we first compute the pdf of the tMVN distribution (24):

p(ζ|y, ζ ∈ C) ∝ exp

(
− 1

2σ2
‖y −Xζ‖2

)
︸ ︷︷ ︸

likelihood function

exp

(
− 1

2τ 2
ζ>Γ−1ζ

)
︸ ︷︷ ︸

Gaussian prior

1C(ζ)︸ ︷︷ ︸
constraint

, ζ ∈ RN . (25)

The above constrained posterior pdf (25) is proportional to a likelihood function derived from the
data, a prior MVN distribution, and an indicator function representing the set of linear inequality
constraints (23). Using the approximate γη(·) of 1C proposed in Section 2.1, the above posterior
pdf (25) can be approximated as follows:

p̃η(ζ|y, ζ ∈ C) ∝ exp

(
− 1

2σ2
‖y −Xζ‖2

)
γη(ζ)︸ ︷︷ ︸

new likelihood function

exp

(
− 1

2τ 2
ζ>Γ−1ζ

)
︸ ︷︷ ︸

Gaussian prior

, ζ ∈ RN (26)

= exp

(
− 1

2σ2
‖y −Xζ‖2

) m∏
κ=1

1

1 + exp(−η[a>κ ζ + bκ])︸ ︷︷ ︸
Lη(ζ)

exp

(
− 1

2τ 2
ζ>Γ−1ζ

)
︸ ︷︷ ︸

Gaussian prior

,

23



where m represents the number of linear inequality constraints on the basis coefficients (23). For
instance, when boundedness constraints are imposed (i.e., ζ ∈ Cb), we obtain m = 2N linear
constraints. Furthermore, if monotonicity non-decreasing and upper bound constraints are imposed
together (i.e., ζ ∈ Cm ∩ Cb), we obtain only m = N linear inequality constraints (i.e., ζ1 ≤ ζ2 ≤
. . . ≤ ζN ≤ ub, where ub ∈ R is the upper bound). Now, the approximate posterior density in
(26) is proportional to a new likelihood function Lη(ζ) and a zero-mean MVN prior. In that case,
the efficient ESS described in Section 2.1 can be employed. From (26), the logarithm of the new
likelihood function Lη(ζ) is given as follows:

log(Lη(ζ)) = − 1

2σ2
‖y −Xζ‖2 −

m∑
κ=1

log(1 + exp{−η[a>κ ζ + bκ]}).

Hence, it admits a computational complexity of order O(nN), where n represents the number of
samples and N represents the dimension of the Gaussian prior ζ. Consequently, this approach which
avoid matrix inversion, can handle large data sets. Furthermore, with this approach, there is no
need to compute the posterior distribution as in (24), as sampling is performed before conditioning
rather than after. This can be an advantage, as it simplifies the computational process, reduces
the overall complexity, and can lead to more efficient sampling, particularly in high-dimensional
spaces where evaluating the posterior distribution directly can be computationally prohibitive. For
example, in our case, the covariance matrix of the prior ζ exhibits Toeplitz structure. Additionally,
ζ is extracted from a stationary GP. In that case, several highly efficient samplers can be employed
such as the Fast Fourier Transform developed by [45] and the recently fast large-scale sampler
developed by [25].

5.1 Performance illustration (multiple shape-constraints)

The aim of this example is to investigate the performance of the approach developed in Section 2
for multiple shape-restricted function estimation using Model (21). To do this, we consider the
target function x 7→ x2, x ∈ D, which is increasing, bounded between 0 and 1, and convex. This is
an interesting case since one can incorporate multiple shape constraints into Model (21) in order to
improve the prediction accuracy and obtain more realistic confidence intervals.
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Figure 18: Performance illustration of the proposed approach through Model (21) under only mono-
tonicity constraints (left), under both monotonicity and boundedness (middle), and under mono-
tonicity, boundedness and convexity (right). The gray shaded area represents the 95% credible
interval based on 15,000 MCMC iterations, where the first 5,000 are discarded as burn-in. The
dashed horizontal lines represent the lower and upper bound constraints.

In Figure 18, we randomly generate n = 100 samples (black stars) from (20) using the target
function f(x) = x2 (black curve) and a noise standard deviation σ = 0.1. The covariate {xi},
i = 1, . . . , n are generated uniformly between 0 and 1. The Matérn covariance function (18) is
employed with a smoothness parameter ν = 2.5. The length-scale parameter ` has been chosen
such that the correlation at the maximum possible separation between the covariates equals 0.05.
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The noise and signal variance parameters σ2 and τ 2 are updated at each MCMC iteration using
an inverse Gamma distribution. Figure 18 illustrates the performance of the proposed approach
developed in Section 2 using Model (21) with multiple shape constraints and N = n/4 = 25 basis
functions to avoid overfitting [26, 34]. Only monotonicity (non-decreasing) constraints are imposed
in the left panel; monotonicity and boundedness between 0 and 1 are imposed in the middle;
and monotonicity, boundedness and convexity are imposed in the right panel. The blue dashed
line represents the mean of the posterior paths, which is computed numerical based on 15,000
MCMC iterations. While, the black solid curve represents the target function. The red horizontal
lines represent the lower and upper bound constraints. The algorithm developed in Section 2.1 is
employed with η = 50. The average of the noise variance parameter is 0.013 for the left and middle
panel situations, and 0.014 for the right panel situation. It is visually clear that the incorporation
of multiple shape constraints improves the prediction accuracy and reduces the confidence interval.

5.2 Numerical example: flat problem

The aim of this section is to investigate the prediction accuracy of the proposed ESS approach when
applied to a Bayesian shape restricted function estimation. To do this, we consider the following
monotone (nondecreasing) function:

f(x) =
3

1 + exp{−10x+ 2.1}
, x ∈ [0, 1]. (27)

This is a difficult situation because the function f is nondecreasing and approximately flat on [0.7, 1].
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Figure 19: Prediction accuracy of the proposed ESS approach (left) and HMC (right) when using
Model (21) under monotonicity constraints. The gray shaded area represents the 95% credible
interval based on 15,000 MCMC iterations, where the first 5,000 are discarded as burn-in.

As in Section 5.1, the black stars in Figure 19 represents the n = 100 training data, which are
randomly generated from (20) using the target function f in (27) (black curve) and a noise standard
deviation σ = 0.5. Figure 19 shows a performance illustration of the two competing approaches,
ESS (left panel) and HMC (right panel), when using Model (21) under monotonicity constraints
with N = n/4 = 25 basis functions to avoid overfitting [26, 34]. Both approaches fit the data well
on the interval where the function is increasing. However, the HMC sampler fails to capture the
flat region on the interval [0.7, 1]. Furthermore, the running time in seconds of generating 15,000
monotonic curves is displayed in the main of each panel.

Table 2 summarizes the average RMSE (×102) over 50 replicates of the posterior mean and the
running time in seconds of generating 15,000 monotonic curves. The simulation study is based on
a dataset of size 150 generated from (20) using the target function f (27) and a noise standard
deviation σ = 0.5. The dataset is split into a training set of size 100 and a testing set of size 50.

25



Average RMSE Running time (s)
Posterior mean (ESS sampler) 58.71 1.75

Posterior mean (HMC sampler) 59.33 2.51

Table 2: Average RMSE (×102) over 50 replicates of the posterior mean and the computational
running time in seconds for generating 15,000 MCMC monotone sample paths for the two competing
approaches, ESS and HMC.

As expected and based on 50 replicates, the proposed approach outperforms the HMC sampler in
terms of prediction accuracy and computational running time. This is due to the mass-shifting
phenomenon, which is more pronounced when the HMC sampler is employed.

5.3 Real application

The aim of this section is to demonstrate the performance of the algorithm developed in Section 2.1
in terms of computational running time through a real world data application.

Electricity usage and temperature data
The data set used has 55 observations on monthly electricity usage (kilowatt-hours) and average

temperature (degrees Fahrenheit) for a house in Westchester County, New York, USA. The aim
is to estimate the electricity usage as a function of temperature. The data suggests that the
true underlying function exhibits a monotone (non-increasing) constraints. This dataset serves to
highlight the superiority of the proposed approach, denoted as LS-ESS, over the HMC sampler in
terms of computational running time.
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Figure 20: Estimation accuracy of the two competing methods applied on the electricity usage and
temperature data. The computational running time for generating 15,000 monotonic trajectories
is displayed for both proposed and HMC approaches. The dimension of the prior Gaussian vector
in Model (21) is fixed at N = 27. The gray shaded area represents the 95% credible interval based
on 15,000 MCMC iterations, where the first 5,000 are discarded as burn-in. The WAIC criterion is
equal to 912.84 and 912.60 for LS-ESS and HMC approaches, respectively.

Figure 20 demonstrates the performance of the proposed approach (left panel) compared to the
HMC sampler (right panel) in terms of computational running time. The proposed approach is
denoted as LS-ESS. The same parameters as in Figure 18 are used, except for the number of basis
function, which is set to N = 27, approximately half the number of samples. The average of the noise
variance parameter σ2 is 41.91 and 42.56 for the LS-ESS and the HMC sampler, respectively. The
gray shaded area represents the 95% credible interval based on 15,000 MCMC iterations, where
the first 5,000 are discarded as burn-in. The proposed LS-ESS approach outperforms the HMC

26



sampler in terms of computational running time. It is worth noting that the computational running
time of the HMC sampler depends on the smoothness parameter ν of the Matérn covariance kernel.
It performs poorly for small values of ν. Furthermore, with the proposed approach, sampling is
performed through an approximate posterior distribution. This leads to high flexibility and enables
handling tasks that are impossible for the HMC sampler. Finally, let us mention that the proposed
approach avoids matrix inversion, as sampling is performed before conditioning rather than after,
allowing us to handle large data sets.

6 Conclusion

In this paper, we develop an efficient approach for generating multivariate normal distribution re-
stricted to linear, quadratic, and nonlinear inequality constraints. It is based on incorporating a
smooth relaxation of the set of complex constraints from the constrained density function into a like-
lihood function, and then applying a highly efficient Markov Chain Monte Carlo (MCMC) approach
to sample from the resulting distribution. The theoretical convergence of the proposed approach is
provided. The proposed approach extends the recent literature on nonlinear inequality constraints,
including both convex and non-convex sets. We pay careful attention to updating the approximate
parameter at each MCMC iteration, allowing us to effectively address very extreme cases while
ensuring the precision and convergence of the proposed approach. Additionally, we developed an
efficient formula for the log-likelihood function when the restricted domain is defined by constant
bounds, resulting in a significant reduction in computational complexity in high-dimensions. The
excellent effectiveness and adaptability of the proposed approach have been showcased within the
framework of Bayesian shape-restricted function estimation.
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