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Abstract. An efficient and modular numerical prediction model is presented to predict vi-

brations in the free field due to metro trains in the tunnel. The three-dimensional dynamic

tunnel-soil interaction problem is solved with a subdomain formulation, using a finite element

formulation for the tunnel and a boundary element method for the soil. The periodicity of the

tunnel and the soil in the longitudinal direction is exploited using the Floquet transform, limiting

the discretization effort to a single bounded reference cell. The Craig-Bampton substructuring

technique is used to efficiently incorporate a track in the tunnel. The track-tunnel-soil interac-

tion problem is solved in the frequency-wavenumber domain and the wave field radiated into

the soil is computed.

The numerical model can also account for moving loads and various excitation mechanisms,

including quasi-static loads, random loads due to the rail and wheel unevenness, impact ex-

citation due to the rail joints and wheel flats, and parametric excitation excitation due to the

sleeper periodicity. In this paper, only the excitation due to rail unevenness and a moving

harmonic load are considered. A general analytical formulation is discussed to compute the

response of three-dimensional invariant and periodic media that are excited by moving loads.

To demonstrate the efficiency of the approach, an invariant tunnel with a concrete lining,

embedded in a homogeneous full space is considered. The system is excited by a vehicle mov-

ing on an uneven rail. The free field vibrations are predicted, by first computing the contact

forces generated by the wheel-track interaction and then solving the dynamic track-tunnel-soil

interaction problem.
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1 INTRODUCTION

Vibrations induced by underground railways are of a major environmental concern in ur-

ban areas. The study of these vibrations require three-dimensional models that account for

the dynamic interaction between the track, the tunnel and the soil. Three-dimensional numer-

ical models are developed by some researchers to model vibration from underground railways

[1, 2, 3]. As three dimensional finite element models become prohibitively large, a boundary el-

ement formulation [4] is often preferred to model the soil as a horizontally layered medium. An

excellent review of the boundary element technology applied to the dynamic analysis of three-

dimensional underground structures is available [5, 6]. The main disadvantage of these models

is that they are computationally expensive. This has been the main motivation to exploit the lon-

gitudinal invariance or periodicity of the track-tunnel-soil system. The Floquet transformation

allows to limit the computational effort to a single bounded reference cell. This paradigm has

been used for the study of the dynamic response of structures subjected to three-dimensional

seismic loading [7].

In the coupled periodic finite element-boundary element (FE-BE) model, the three-dimensional

dynamic tunnel-soil interaction problem is solved with a subdomain formulation, using a finite

element method for the tunnel and boundary elements method for the soil, modelled as a hor-

izontally layered elastic half space. The problem is formulated in the frequency-wavenumber

domain on a reference cell using the Floquet transformation. The Craig-Bampton substructur-

ing technique [8] is used to model a track in the tunnel. The numerical model is also capable of

dealing with various types of moving loads, including quasi-static loads, random loads due to

rail and wheel unevenness, impact excitation due to rail joints and wheel flats, and parametric

excitation due to sleeper periodicity. A general analytical formulation is used to compute the re-

sponse of three-dimensional invariant and periodic media that are excited by moving loads. The

advantage of the approach is that the response is directly deduced from the transfer functions in

the frequency-wavenumber domain calculated in the generic cell.

To demonstrate the efficiency of the approach, an invariant concrete tunnel embedded in a

homogeneous full space is modelled as a periodic structure. The track is modelled as an infinite

double beam on an elastic foundation and is coupled to the tunnel via a uniform support. The

transfer functions of the track-tunnel-soil system have been validated with the semi-analytical

solution, which is available from a so-called pipe-in-pipe model [9, 10, 11]. In the present

paper, the same example is dealt with for the case of the excitation due to a moving harmonic

load and the unevenness excitation due to rail roughness. After a short overview of the model,

numerical results are presented.

2 COUPLED PERIODIC FE-BE MODEL

The coupled periodic FE-BE model is an effective prediction tool that accounts for the com-

plex periodic geometry of the tunnel and the layering of a semi-infinite soil medium. A finite

element method is used to model a tunnel reference cell, while a boundary element method is

used to model the soil, as a horizontally layered elastic half space.

2.1 Floquet transform

An infinite periodic structure can be analyzed using the Floquet transform method. If the

spatial period is L, then the position x of any point in the problem domain Ω is decomposed as

x = x̃ + nLey, where x̃ is the position in the reference cell Ω̃ and n is the cell number. The

Floquet transformation f̃(x̃, κ) of a non-periodic function f(x) = f(x̃ + nLey) defined on a
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domain Ω, that is periodic in the direction ey with period L, transforms the distance nL between

the n-th cell and the reference cell Ω̃ to the wave number κ ∈ [−π/L, π/L] and is defined as

[7]:

f̃(x̃, κ) =
+∞
∑

n=−∞

f(x̃ + nLey) exp (+inLκ) (1)

The complex valued function f̃(x̃, κ) is a periodic function of κ with a period 2π/L (or a

periodic function of the first kind with respect to κ), as the following periodicity condition

holds:

f̃(x̃, κ+
2π

L
) = f̃(x̃, κ) (2)

This complex function f̃(x̃, κ) is also periodic of the second kind with a periodL in the direction

ey since the following condition holds for all x̃:

f̃(x̃ + Ley, κ) = exp (−iκL)f̃(x̃, κ) (3)

The inverse Floquet transform is defined as:

f(x̃ + nLey) =
L

2π

∫

+π/L

−π/L
f̃(x̃, κ) exp (−inLκ)dκ (4)

This definition will be used to synthesize the solution on the problem domain Ω if it is known

on the reference cell Ω̃.

2.2 Dynamic tunnel-soil

The numerical solution of the dynamic tunnel-soil interaction problem is obtained using the

classical domain decomposition approach based on the finite element method for the tunnel and

the boundary element method for the soil.

As the tunnel is bounded, the displacement field ũt(x̃, κ, ω) in the tunnel can be decomposed

on a basis of functions ψ̃m(x̃, κ):

ũt(x̃, κ, ω) =
N
∑

m=1

ψ̃m(x̃, κ)αm(κ, ω) (5)

where ψ̃m(x̃, κ) is the kinematical basis that obeys the periodicity condition of the second kind

(equation (3)).

The soil displacements ũs(x̃, κ, ω) can be written as the superposition of waves that are

radiated by the tunnel into the soil:

ũs(x̃, κ, ω) = ũsc(ũt)(x̃, κ, ω) =
M
∑

m=1

ũsc(ψ̃m)(x̃, κ, ω)αm(κ, ω) (6)

The weak or variational formulation of the problem results in the following system of equa-

tions in the frequency-wavenumber domain: [7, 12, 13, 14]:

[

Kt(κ) − ω2
Mt(κ) + Ks(κ, ω)

]

α(κ, ω) = Ft(κ, ω) (7)
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where Kt(κ) and Mt(κ) are the projection of the finite element stiffness matrix and mass matrix

of the tunnel reference cell on the tunnel modes ψ̃m(x̃, κ) (which are periodic of the second

kind). Ks(κ, ω) is the dynamic stiffness matrix of the soil calculated with a periodic boundary

element formulation with Green-Floquet functions defined on the periodic structure with period

L along the tunnel [7, 12, 13, 15].

The Craig-Bampton substructuring technique is used to efficiently incorporate a track in the

tunnel, describing the kinematics of the track-tunnel system as a superposition of the track

modes on a rigid base and the quasi-static transmission of the free tunnel modes into the track.

The advantage of this approach is that the soil impedance only depends on the periodic tunnel

modes and does not change when alternative track structures are considered.

Equation (7) is solved to obtain the displacement field in the reference cell in the frequency-

wavenumber domain. When the displacements ũt(x̃, κ, ω) and the stresses t̃t(x̃, κ, ω) on the

tunnel-soil interface are known, the wave field radiated into the soil is computed using the

dynamic representation theorem in the unbounded soil domain corresponding to the reference

cell. The displacement field in the frequency domain at any point x in another cell is obtained

after evaluation of the inverse Floquet transform (equation (4)).

3 THE RESPONSE DUE TO MOVING LOADS

In the fixed frame of reference, the distribution of n vertical axle loads on the coupled track-

tunnel-soil system is written as the summation of the product of Dirac functions that determine

the time-dependent position x
S = {xS, yk + vt, zS}T and the time history gk(t) of the k-th axle

load:

F(x, t) =
n
∑

k=1

δ(x− xS)δ(y − yk − vt)δ(z − zS)gk(t)ez (8)

yk is the initial position of the k-th axle that moves with the train speed v along the y-axis and

ez denotes the vertical unit vector.

A Fourier transformation is applied to equation (8) to obtain the representation in the frequency-

spatial domain:

F̂(x, ω) =
1

v

n
∑

k=1

gk(
y − yk

v
) exp [ − i

ω

v
(y − yk)]δ(x− xS)δ(z − zS)ez (9)

The response in the frequency domain ûi(x, ω) at the receiver point x due to k-th axle load is

written as the superposition of the load distribution along the source line:

ûi(x, ω) =
∫

∞

−∞

F̂kz(x
′, ω)ĥzi(x

′,x, ω)dy′ (10)

where F̂kz is the vertical component of the k-th axle load and ĥzi(x
′,x, ω) is the transfer func-

tion, expressing the displacement at x in the ei direction, due to a unit load applied at x
′ in

the ez direction. Substituting equation (9) in equation (10) and omitting the dependance on the

source coordinates x′ and z′ gives:

ûi(x, ω) =
1

v

∫

∞

−∞

gk(
y′ − yk

v
) exp [ − i

ω

v
(y′ − yk)]ĥzi(y

′,x, ω)dy′ (11)

=
∫

∞

−∞

gk(τ)ĥzi(yk + vτ,x, ω) exp (−iωτ)dτ (12)
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The response due to a moving load on the track can therefore be calculated from the receptance

of the track-tunnel-soil system describing the displacement at a point x due to a load at position

x
′. In case of an invariant or a periodic geometry, the expressions (11) and (12) can be further

simplified.

3.1 Invariant domains

In the case of invariant geometries, the transfer function ĥzi only depends on the relative

position between the source and the receiver:

ûi(x, ω) =
∫

∞

−∞

gk(τ)ĥzi(x, y − yk − vτ, z, ω) exp (−iωτ)dτ (13)

The Fourier transformation of the longitudinal coordinate y to the wavenumber ky gives the

response in the frequency-wavenumber domain:

ũi(x, ky, z, ω) = ĝk(ω − kyv)h̃zi(x, ky, z, ω) exp (ikyyk) (14)

The frequency shift kyv between the circular frequency at the receiver and at the source corre-

sponds to the Doppler effect. The response in the space-frequency domain is obtained as the

inverse Fourier transform of equation (14):

ûi(x, ω) =
1

2π

∫

∞

−∞

ĝk(ω − kyv)h̃zi(x, ky, z, ω) exp [− iky(y − yk)]dky (15)

=
1

2πv

∫

∞

−∞

ĝk(ω̃)h̃zi(x,
ω − ω̃

v
, z, ω) exp [− i(

ω − ω̃

v
)(y − yk)]dω̃ (16)

where ky = (ω − ω̃)/v. Compared to equation (13), this approach offers the advantage that

the transfer function is evaluated in the frequency-wavenumber domain. This approach was

developed and used by Lombaert [16] for the prediction of free field vibrations induced by road

traffic.

3.2 Periodic domains

A periodic geometry has a spatial period L and it is assumed that the receiver point is in the

generic cell x = x̃. The axle load gk((y
′ − yk)/v) in equation (11) is expressed in terms of its

Fourier transform, so that the response becomes:

ûi(x̃, ω) =
1

2πv

∫

∞

−∞

∫

∞

−∞

ĝk(ω̃) exp
[

−i
ω − ω̃

v
(y′ − yk)

]

ĥzi(y
′, x̃, ω)dy′ dω̃ (17)

Substituting y′ = ỹ′ + nL gives:

ûi(x̃, ω) =
1

2πv

∫

∞

−∞

ĝk(ω̃)
∫ L/2

−L/2

∞
∑

n=−∞

exp
[

−i
ω − ω̃

v
(ỹ′ + nL− yk)

]

× ĥzi(ỹ
′ + nL, x̃, ω) dỹ′ dω̃ (18)

Due to the geometric periodicity, the following equation holds:

ĥzi(ỹ
′ + nL, x̃, ω) = ĥzi(ỹ

′, x̃− nLey, ω) (19)
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From equations (18) and (19) and the definition of the Floquet transform (1), the following

expression is obtained:

ûi(x̃, ω) =
1

2πv

∫

∞

−∞

ĝk(ω̃) exp [i(
ω − ω̃

v
)yk]

×
∫ L/2

−L/2

exp [ − i(
ω − ω̃

v
)ỹ′]

˜̂
hzi(ỹ

′, x̃, κ0, ω) dỹ′ dω̃ (20)

where κ0 = ω−ω̃
v

− 2mπ
L

with κ0 ∈] − π/L, π/L[ and m is an integer.
˜̂
hzi(ỹ

′, x̃, κ0, ω) is the

Floquet transform of the transfer function ĥzi(ỹ
′, x̃ + nLey, ω). The response at another point

x = x̃ + nLey is obtained using the periodicity of the second kind (3) on the transfer function.

Hence, the response in the periodic domain due to the k-th axle load gk(t) is given by:

ûi(x̃ + nLey, ω) =
1

2πv

∫

∞

−∞

ĝk(ω̃) exp [−i(
ω − ω̃

v
)(nL− yk)]

×
∫ L/2

−L/2

exp [ − i(
ω − ω̃

v
)ỹ′]

˜̂
hzi(ỹ

′, x̃, κ0, ω) dỹ′ dω̃ (21)

A change of variables according to ky = (ω − ω̃)/v yields:

ûi(x̃ + nLey, ω) =
1

2π

∫

∞

−∞

ĝk(ω − kyv) exp [−iky(nL− yk)]

×
∫ L/2

−L/2

exp [ − ikyỹ
′]

˜̂
hzi(ỹ

′, x̃, κ0, ω) dỹ′ dky (22)

where κ0 = ky − 2mπ/L.

Comparison of these results with the case of invariant domains (equations (15) and (16))

demonstrates that an additional integral over the cell has to be evaluated in order to obtain the

response in periodic domains. The advantage of the present approach is that the response due

to moving loads is directly deduced from the transfer functions in the frequency-wavenumber

domain, calculated in the generic cell.

4 EXCITATION MODEL

Significant vibrations in buildings near railway tracks and subway tunnels are attributed to

moving trains. The excitation models developed under CONVURT [17, 18] account for three

excitation mechanisms: the unevenness excitation due to wheel and rail roughness, the impact

excitation due to rail joints and wheel flats, and the parametric excitation due to sleeper period-

icity. In this paper, only forces due to rail roughness are considered.

Roughness is probably the main excitation source in the generation of vibrations from mov-

ing trains. According to the Remington’s theory [19], undulations in the surface profile of both

wheel and rail introduce relative motion between wheel and rail that excite the wheel-rail sys-

tem. In Remington’s model, the surface unevenness is described by a spectrum giving the r.m.s

roughness level uw/r (in dB) versus the wavelength. The resolution is carried out in the fre-

quency domain using the relation f = v/λy, where f is the excitation frequency, v is the speed

and λy is the roughness wavelength.

Alternatively, the rail roughness is expressed as a stochastic process characterized by a

single-sided power spectral density (PSD) S̃w/r(ky), written as a function of the wavenumber
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ky = ω/v = 2π/λy [20]:

S̃w/r(ky) = S̃w/r(ky0)

(

ky

ky0

)

−w

(23)

The parameters S̃w/r(ky0) and w depend on the quality of the rail unevenness. For railway un-

evenness, ky0 = 1 rad/m and w = 3.5 are commonly assumed. The upper and lower bound of

the rail unevenness are S̃w/r(ky0) = 5.0 × 10−7 m3/rad and S̃w/r(ky0) = 1.0 × 10−9m3/rad,

respectively. An artificial profile is generated from the PSD-curve based on the superposition

of simple random processes with known statistical properties. The PSD Ŝw/r(ω) of the uneven-

ness in the frequency domain is found as 1/vS̃w/r(−ω/v) and increases with the vehicle speed

proportional to v2.5, where w = 3.5 in equation (23). Thus, an increase in speed is expected to

give rise to higher dynamic axle loads and higher vibration levels.

For a linear system which is not varying, the equation of motion can be expressed in the

frequency domain. This cannot be done in the case of impact excitation, where the phenomenon

is non-linear due to the separation between the wheel and the rail. The impact force calculations

are then performed in the time domain. The simple case of vertical interaction between the

wheel and the rail is considered. The contact force ĝ(ω) in the frequency domain, generated

due to an uneven profile is given by [21]:

ĝ(ω) =
ûw/r(ω)

Ĉv(ω) + Ĉc(ω) + Ĉt(ω)
(24)

ûw/r(ω) is the relative displacement (roughness) between the wheel and the rail, and Ĉv(ω),

Ĉc(ω), Ĉt(ω) are the compliance of the vehicle, the contact spring and the track, respectively.

The force deflection relation of the contact stiffness is assumed to follow the Hertz law and

can be given in the form:

g = GH(uw − ur − uw/r)
3/2 (25)

where g is the wheel-rail contact force, uw and ur are the wheel and rail displacement respec-

tively, uw/r is the roughness and GH is the Hertzian constant. This nonlinear equation can be

linearized for small displacement relative to the quasi-static deflection, to give an approximate

stiffness for the contact spring [21].

When the wave speed in the rail is much higher than the train speed, assuming that the wheel

is stationary is an acceptable approximation. This has been used in the analysis here, as a low

speed approximation to compute the track receptance for a static unit load applied on the rail.

4.1 Track receptance

The excitation model considers the track-bed as a rigid foundation, which is suitable for

modelling of modern tracks where the stiffness of the slab bearings is much smaller than the

stiffness of the track-bed. This approach can be used, for example, to model a floating slab track,

which is an effective measure of vibration isolation in underground tunnels. Figure 1 shows a

floating slab track, where rubber bearings (or steel springs) are accommodated between the slab

and the tunnel bed.

The model consists of two infinite Euler beams, representing the (two) rails and the slab,

respectively. The rail has a bending stiffness EIr and a mass mr per unit length, and the slab

has a bending stiffness EIsl and a mass msl per unit length. The rail pads are modelled with

7
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Figure 1: A floating-slab track: the concrete track slab is mounted on rubber bearings.

Figure 2: Infinite double beam on elastic foundation

a continuous support between both beams, while the subgrade is modelled with a continuous

support below the lower beam (figure 2).

It is assumed in the following that the geometry of the track is invariant with respect to the

longitudinal coordinate y. A Fourier transformation of the coordinate y to the wavenumber

ky can be performed to formulate the problem in the frequency-wavenumber domain. The

equations of motion of the track can be written in a general form:

[

2(K̃r + K̃rp) −2K̃rp

−2K̃rp K̃sl + K̃s + 2K̃rp

]{

ũrz

ũsz

}

=

{

2f̃r

0

}

(26)

where K̃r denotes the rail impedance EIrk
4
y − mrω

2 in the frequency-wavenumber domain,

and K̃rp is the dynamic stiffness k̄rp(1 + iηrp) of the rail pads, with k̄rp and ηrp the smeared

stiffness and hysteretic damping factor of the rail pads, respectively. K̃sl is the slab impedance

EIslk
4
y −mslω

2, and K̃s is the dynamic stiffness k̄s(1 + iηs) of the slab bearings, with k̄s and

ηs the smeared stiffness and hysteretic damping factor of the slab bearings, respectively. f̃r is

the force applied on a rail. The factor of two appears in the above equation to account for the

two rails in the model. This modelling considers identical inputs on both rails. Equation (26)
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is solved for the displacements of the rail ũrz and the slab ũsz in the frequency-wavenumber

domain. The response in the frequency-spatial domain is obtained by evaluating the inverse

Fourier transform with respect to wavenumber ky:

ûz(y, ω) =
1

2π

∫

∞

−∞

ũz(ky, ω) exp (−ikyy)dky (27)

The vertical point receptance of the rail is calculated for a unit impulse on both rails (f̃r = 1) as

Ĉt(ω) = ûrz(0, ω).

4.2 Wheel receptance

The wheel receptance depends on the intrinsic dynamic behavior of the wheel, but also on the

axle bending modes and on the bogie and carriage suspension. Therefore, it is more judicious

to use the rolling stock receptance at the contact point between the wheel and the rail.

The rolling stock receptance at the wheel-rail contact point is calculated using a transfer

matrix method, relating the forces and displacements at the top of the rolling stock and at the

contact point by the product of elementary transfer functions [18].

The rolling stock is decomposed into several subsystems (masses, springs and dampers),

representing, for example, the mass of the wheel tread (M1), the wheel web and axle per wheel

(M2), the bogie (M3) and the carriage (M4), as well as the stiffness of the resilient ring (K∗

1 ), the

primary suspension (K2) and the secondary suspension (K3). Figure 3 shows this spring-mass-

damper model. C2 and C3 are the viscous damping factors of the primary and the secondary

suspensions.

Figure 3: Rolling stock decomposition into subsystems

Each elementary sub-system is described by a 2 by 2 transfer matrix T, which relates the

displacements and forces at one end of the unit to the other end:

{

F̂i+1

ûi+1

}

= T

{

F̂i

ûi

}

(28)

9
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The subscript z is omitted here, though, the transfer matrix approach is limited to vertical dis-

placements and forces. The corresponding transfer matrices for a mass M , a damped spring K∗

and a spring-dashpot system characterized by K and C, are given as:

TM =

[

1 −Mω2

0 1

]

TK∗ =

[

1 0
1/K∗ 1

]

(29)

TKC =

[

1 0
1/(K + iωC) 1

]

Thus, the forces and displacements at the top of the rolling stock and at the contact point are

linked by the product of the elementary transfer matrices. For the subsystem decomposition

shown in figure 3, the forces at the two ends of the system are related as:

{

F̂8

û8

}

= TM4
TK3C3

TM3
TK2C2

TM2
TK∗

1
TM1

{

F̂1

û1

}

(30)

The receptance at the contact point Ĉv = û1 in the frequency domain, is obtained by setting

F̂8 = 0 and F̂1 = 1.

The advantage of this methods is that it allows to include several complex subsystems with

user-defined transfer matrices, obtained from finite element analysis or experiments. This al-

lows, for example, to account for the effect of a flexible wheel-set in the rolling stock receptance.

5 Numerical example

To demonstrate the efficiency of the approach, an invariant tunnel embedded in homoge-

neous full space is considered. The transfer functions of the track-tunnel-soil system have been

validated with the analytical solution of this problem, which is readily available from the pipe-

in-pipe model [9, 10, 11]. Presently, the response due to moving harmonic load and a rolling

stock moving on a rough rail are computed.

5.1 Problem outline

An invariant tunnel is considered, embedded in homogeneous soil that is modelled as a full

space without the presence of a free surface. The invariant tunnel is idealized as a periodic

system with a spatial period L = 0.5 m. The tunnel has an internal radius ri = 2.75 m and a

wall thickness t = 0.25 m. The tunnel has material properties of concrete: a Young’s modulus

Et = 50 × 109 Pa, a Poisson’s ratio νt = 0.3 and a density ρt = 2500 kg/m3. The soil

has a shear wave velocity Cs = 309 m/s, a longitudinal wave velocity Cp = 944 m/s, a density

ρ = 2000 kg/m3 and a hysteretic material damping ratio βs = βp = 0.03 in shear and volumetric

deformation.

The track is modelled as an infinite double Euler-Bernoulli beam on an elastic foundation,

where the upper beam represents the rails with bending stiffnessEIr = 6.4×106 Nm2 and mass

per unit length mr = 60 kg/m, and the lower beam represents the slab with bending stiffness

EIsl = 1430×106 Nm2 and mass per unit lengthmsl = 3500 kg/m. A soft rail pad with stiffness

krp = 14.2 MN/m and the vertical damping factor ηrp = 0.5 is considered in this example. This

stiffness is smeared along the longitudinal direction of the track, accounting for the sleeper

10
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distance d = 0.6 m. Thus, the vertical stiffness of the continuous support representing the rail

pad is k̄rp = krp/d = 23.68 MN/m2. A soft rail pad is purposely chosen for the computations,

to make the resonance of the rail on rail pads fall below 200 Hz, the maximum frequency which

will be considered here. The floating slab tracks has an isolation frequency fiso = 20 Hz. Hence,

the stiffness per unit length of the subgrade is k̄s = 55.27 MN/m2 . The loss factor ηs = 0.5 is

used for damping in the subgrade under the slab.

5.2 Response to a non-moving harmonic load

The results are presented in the frequency range 1-200 Hz for the tunnel-soil interaction

without the track and for the dynamic interaction including the track. The performance of the

floating slab track as a vibration counter measure is assessed in the following.
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Figure 4: Vertical response at the tunnel invert due to a unit impulse applied at the tunnel invert for the case of the

tunnel without the track.
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Figure 5: Vertical response at (a) 10 m and (b) 20 m above the tunnel due to a unit impulse applied at the tunnel

invert for the case of the tunnel without the track.

Figure 4 shows the vertical transfer function at the tunnel invert for a unit impulse applied

at the tunnel invert. The response does not exhibit any peak or resonance. The presence of soil

as an infinite full space around the tunnel suppresses the resonance of the tunnel, as energy is

dissipated due to the geometrical and material damping in the soil. Figure 5 shows the vertical

response at 10 m and 20 m above the tunnel. The response is characterized by an undulat-

ing behavior giving rise to crests and troughs at constant frequency steps. This is due to the

interference of the compression and shear waves at a particular distance from the source.

Next, the floating slab track is considered inside the tunnel. It is subjected to a symmetrical

loading with f̃r = 0.5 N on each rail and is equivalent to 2f̃r = 1 N load on the track-tunnel-

soil system. Figure 6 compares the vertical response of the rail, computed from the track model

11
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Figure 6: Vertical response of the rails for f̃r = 0.5 N applied on each rail, computed with the track model on

a rigid base (solid line) and with the coupled periodic FE-BE model accounting for dynamic track-tunnel-soil

interaction (dashed line).
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Figure 7: Vertical response at (a) the slab and (b) the tunnel invert due to the load f̃r = 0.5 N applied on each rail.
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Figure 8: Vertical response at (a) 10 m and (b) 20 m above the tunnel due to the load f̃r = 0.5 N applied on each

rail.

consisting of two Euler-Bernoulli beams on a rigid base and from the coupled periodic FE-

BE model accounting for the additional flexibility of the tunnel and supporting soil. The good

agreement between the two cases justifies the assumption of using a rigid base model for the

calculation of the interaction force due to rail and wheel unevenness (cfr. section 4). Two

peaks appear in the response of the rail. The first peak appears at a value less than the isolation

frequency of the slab, which corresponds to the uncoupling of the track on the stiffness of

the subgrade. This frequency can be approximately calculated as 1/(2π)
√

k̄s/(msl + 2mr) =
19.66 Hz. The second peak is the cut-on frequency, where the waves propagate only in the

rail, while the slab does not move. Again, the value of the second cut-on frequency can be

12
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approximately calculated using the mass per unit length mr of the rail and the smeared stiffness

of the rail pads k̄rp, as 1/(2π)
√

k̄rp/mr = 100.00 Hz.

Figure 7 shows the response at the slab and the tunnel invert, when the track is installed inside

the tunnel. Unlike the response of the tunnel without the track, a resonance peak is observed at

approximately the isolation frequency of the slab. Similarly, figure 8 shows the response at 10

m and 20 m above the tunnel. It can be observed that the response has reduced in the free field

due to the installation of the floating slab. The energy propagates along the slab, before being

transmitted to the tunnel and then soil.

A useful way to evaluate the effectiveness of the floating slab track is to take the ratio of

the response with and without the resilient bearings inserted between the slab and tunnel invert.

The concept of insertion gain in dB will be used, which indicates the increase in vibration

levels caused by the bearings. The insertion gain is defined as the ratio of the response uiso of

the isolated and the response uuniso of the unisolated system:

IG [dB] = 20 log

(

uiso

uuniso

)

(31)

Figure 9 shows the insertion gain at 10 m and 20 m above the tunnel. For a 20 Hz floating

slab track, the insertion gain becomes negative at frequencies greater than 27 Hz, indicating the

isolation.
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Figure 9: Insertion gain for 20 Hz floating slab at (a) 10 m and (b) 20 m above the tunnel.

5.3 Response to a moving harmonic load

Firstly, the response of the coupled track-tunnel-soil structure is presented for a moving

harmonic load. The frequency content of the loading for this case is ĝ(ω) = 2πPδ(ω− ω̄). The

response due to a moving load on a periodic medium is given by equation (22). This equation

now modifies to:

ûi(x̃ + nLey, ω) =
P

v
exp [−i(

ω − ω̄

v
)(nL− yk)]

×
∫ L/2

−L/2

exp [ − i(
ω − ω̄

v
)ỹ′]

˜̂
hzi(ỹ

′, x̃, κ0, ω) dỹ′ (32)

where κ0 = (ω−ω̄)/v−2mπ/L. A moving harmonic load with an excitation frequency f̄ = 40
Hz, a magnitude P = 0.5 N and a speed v = 27 m/s is considered on each rail.
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Figure 10: Vertical response at the driving point due to a moving harmonic load.
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Figure 11: Vertical response at (a) the slab and (b) the tunnel invert due to a moving harmonic load.
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Figure 12: Vertical response at (a) 10 m and (b) 20 m above the tunnel due to a moving harmonic load.

Figures 10 and 11 show the vertical response of the rail, slab and tunnel invert for a moving

harmonic load on the rails. There are two peaks in the response corresponding to the contri-

bution of the bending waves in the track during the approaching and receding of the source.

The frequency content is mainly situated in the range of the two peaks. This range of domi-

nant frequencies increases, if the speed of the source increases and the Doppler effect is more

clearly observed. Figure 12 shows the vertical response at 10 m and 20 m above the tunnel.

The response has a distinct frequency content at the excitation frequency of 40 Hz and does not

exhibit two peaks due to the Doppler effect. This is due to the fact that the speed of the source

considered in the example is much less than the wave speeds in the soil.
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5.4 Response due to rail roughness

Next, the excitation due to a more general moving load is considered. The wheel-rail inter-

action and vibrations are investigated using an artificial roughness profile, generated from the

PSD curves. In this case, wheel-rail interaction is determined by the dynamic response of three

components: the track, the wheel and the contact spring. The frequency response functions

of the wheel and the track have a significant influence on the wheel-rail interaction as can be

seen from equation (24). Typically, roughness levels are found to be high for long wavelengths

(causing low frequency excitation) and low for short wavelengths (causing high frequency ex-

citation) [22]. Figure 13a shows the PSD of the rail unevenness for different quality of rails. An

intermediate curve (solid line) with reference value S̃w/r(ky0) = 1.5×10−8 m3/rad between the

two bounds of the PSD curves is chosen for generating the artificial roughness profile uw/r(y)
as the superposition of cosine functions with random phase angles in the interval [0, 2π] [23].

Figure 13b shows the magnitude of the roughness as a function of frequency for a speed v = 27
m/s.
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Figure 13: a) PSD curve of the unevenness of the rail (solid line) and its upper (dashed line) and lower (dashed-

dotted line) bounds. (b) Magnitude of the roughness as a function of the frequency.

Mass parameters Mass (kg)

Wheel tread mass (M1) 0

Axle mass per wheel (M2) 675

Bogie mass per wheel (M3) 2750

Coach mass per wheel (M4) 3300

Spring parameters Stiffness (N/m) damping (Ns/m)

Resilient ring of the wheel (K∗

1 ) 0 0

Primary suspension (K2, C2) 2 × 106 5230

Secondary suspension (K3, C3) 1.4 × 105 2300

Table 1: Rolling stock parameters.

The properties of the track are the same as considered in the previous sections. Figure 14a

shows the vertical point receptance of the rail calculated from the double beam model on an

elastic foundation. Two peaks can be identified at the resonance frequencies, corresponding to

the uncoupling of the track on the subgrade and the uncoupling of the rail on the rail pads, as

explained before.
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Figure 14: (a) Track receptance calculated from the double beam model on an elastic foundation. (b) Wheel

receptance calculated from the rolling stock model.

Figure 14b shows the wheel receptance calculated according to the rolling stock parameters

given in table 1. The first peak corresponds to the uncoupling of the coach on the bogie, which

can be calculated as 1/(2π)
√

K3(1/M3 + 1/M4) = 1.5 Hz. The second resonance peak appears

at 1/(2π)
√

K2(1/M2 + 1/M3) = 9.6 Hz, corresponding to the uncoupling of the bogie on the

axle.

The contact receptance Ĉc = 7.97 × 10−10 m/N is calculated from the linearized Hertzian

theory [21] using the contact parameters; the wheel radius of curvature in the rolling direction

rW = 0.46 m and the rail radius in the transverse direction rR = 0.3 m.
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Figure 15: Contact force due to the wheel-rail interaction.

The contact force due to the wheel-rail interaction for the artificial roughness profile is cal-

culated according to equation (24). Figure 15 shows the frequency content of the contact force

applied on one rail. The first peak appears at 1/(2π)
√

(K2 +K3)/M3 = 4.4 Hz, the anti-

resonance of the primary suspension and secondary suspension on the bogie mass. The second

peak appears at about 43 Hz, which corresponds to the wheel-track resonance. This can be

evaluated considering the resonance of the unsprung mass of the rolling stock (wheel and axle)

on the track stiffness. The static stiffness of the track Kt = 4.1583 × 107 N/m is obtained by

inverting the receptance of the rail at zero frequency. The total unsprung mass in this case is

the mass of axle M2 = 675 kg. The resonance frequency can approximately be calculated as

1/(2π)
√

Kt/M2 = 39.5 Hz.

After the computation of the excitation force, equation (22) is used to compute the response

due to moving load. It should be noted that the net excitation force is double the contact force

shown in figure 15, as the model accounts for two rails with identical inputs. The rolling stock is
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Figure 16: Vertical response at the rail due to a vehicle moving on a rough rail.
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Figure 17: Vertical response at (a) the slab and (b) the tunnel invert due to a vehicle moving on a rough rail.
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Figure 18: Vertical response at (a) 10 m and (b) 20 m above the tunnel due to a vehicle moving on a rough rail.

assumed to be moving at the speed of v = 27 m/s. Figures 16 and 17 show the vertical response

at the rail, slab and tunnel invert due to this moving load. The maximum frequency content is

around 4.4 Hz and 40 Hz, approximately at the position of the peaks in the contact force (figure

15). Figure 18 shows the vertical response at 10 m and 20 m above the tunnel. Response in the

free field also exhibits peak at a first resonance frequency of the contact force. The frequency

content is mainly situated between 0 and 45 Hz, with a shift towards the lower frequencies for

an increasing distance from the source.
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6 CONCLUSIONS

The main objective of the work presented in this paper is to prosper a better understanding

of vibration from underground railways. A computational tool is presented which can be used

to design the tracks in the tunnel and to assess the performance of vibration counter measures.

Moreover, this tool can also be used to predict the free field vibrations due to a moving train.

The periodic finite element-boundary element formulation offers full modelling flexibility

on a reference cell of the tunnel, which is an important advantage with respect to full three-

dimensional or invariant models that are the two extremes of modelling complexities. In this

paper, an invariant tunnel embedded in a homogeneous full space is modelled as a periodic

structure.

The excitation due to rail unevenness and moving harmonic loads are considered. It is

emphasized that the wheel/track interaction strongly depends on the dynamic response of the

wheel, the rail and the contact springs. The track receptance is computed from the track model

consisting of an infinite double beam on an elastic foundation, while the wheel receptance is

obtained from the transfer matrix method applied on a rolling stock. The wheel-track interac-

tion is first considered to estimate the excitation forces and then the track-tunnel-soil interaction

problem is solved to compute the vibrations in the free field.
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