

Reliability-based settlement analysis of embankments over soft soils reinforced with T-shaped deep cement mixing piles

Chana Phutthananon, Pornkasem Jongpradist, Daniel Dias, Xiangfeng Guo, Pitthaya Jamsawang, Julien Baroth

▶ To cite this version:

Chana Phutthananon, Pornkasem Jongpradist, Daniel Dias, Xiangfeng Guo, Pitthaya Jamsawang, et al.. Reliability-based settlement analysis of embankments over soft soils reinforced with T-shaped deep cement mixing piles. Frontiers of Structural and Civil Engineering, 2022, 16 (5), pp.638-656. 10.1007/s11709-022-0825-1. hal-04791977

HAL Id: hal-04791977 https://hal.science/hal-04791977v1

Submitted on 19 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reliability-based settlement analysis of embankments over soft soils reinforced with T-shaped deep cement mixing piles

Journal:	Frontiers of Structural and Civil Engineering
Manuscript ID	FSCE-2021-0697
Manuscript Type:	Research Article
Date Submitted by the Author:	16-Nov-2021
Complete List of Authors:	Phutthananon, Chana; King Mongkut's University of Technology Thonburi, Department of Civil Engineering, Faculty of Engineering Jongpradist, Pornkasem; King Mongkut's University of Technology Thonburi, Department of Civil Engineering, Faculty of Engineering Dias, Daniel; University Grenoble Alpes Guo, Xiangfeng; University Grenoble Alpes Jamsawang, Pitthaya; King Mongkut's University of Technology North Bangkok, Department of Civil Engineering Baroth, Julien; University Grenoble Alpes
Keywords:	T-shaped deep cement mixing piles, Piled embankments, Settlement, Reliability analysis, Soil uncertainties
Speciality:	Foundations < Geotechnical and Underground Engineering, Computer Modeling < Geotechnical and Underground Engineering

1		
2		
3 ∕I	1	Reliability-based settlement analysis of embankments over soft
5		e e
6		
7	2	soils reinforced with 1-shaped deep cement mixing piles
8		
9	3	
10	U	
11	4	Chana Phutthananon ^a
12	•	
14	5	Postdoctoral Fellow
15	J	
16	6	Pornkasem Jongnradista,*
17	0	i of inkaseni songpi adist
18	7	Associate Professor
19 20	/	Associate Trolessor
20	8	Daniel Dias ^{b,c}
22	0	Daniel Dias
23	9	Professor
24	,	
25	10	Xiangfeng Guo ^b
20	- •	
28	11	Postdoctoral Fellow
29		
30	12	Pitthaya Jamsawang ^d
31		
32 33	13	Professor
34		
35	14	Julien Baroth ^b
36		
37	15	Associate Professor
38		
39 40	16	
41		
42	17	^a Construction Innovations and Future Infrastructures Research Center, Department of Civil
43		
44	18	Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi,
45 46		
47	19	Bangkok 10140, Thailand
48	•	
49	20	^b Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble 38000, France
50	0.1	
51	21	^c Antea Group, Antony 92160, France
52 53	22	
54	22	* Soll Engineering Research Center, Department of Civil Engineering, King Mongkut s
55	22	University of Technology North Panakok Panakok 10800 Theiland
56	23	University of Technology North Bangkok, Bangkok 10800, Thalland
57	24	
50 59	24	
60	25	Submitted to: Frontiers of Structural and Civil Engineering – Springer

2		
3 4	26	*Corresponding author: Dr. Pornkasem Jongpradist, Associate Professor
5	27	Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of
7 8 0	28	Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140,
9 10 11	29	Thailand, Phone: 662-470-9305, Fax: 662-427-9063, E-mail: pornkasem.jon@kmutt.ac.th
12 13	30	
14 15	31	Number of words in main text: 7,983 (excluded from Abstract, Acknowledgments, and
16 17 18	32	References)
19 20	33	Number of tables: 6
21 22	34	Number of figures: 13
23 24 25	35	
26 27	36	
28 29	37	
30 31 32	38	
33 34	39	
35 36	40	
37 38 39	41	
40 41	42	
42 43 44	43	
45 46	44	
47 48	45	
49 50 51	46	
52 53	47	
54 55	48	
56 57 58	49	
58 59 60	50	

51	Abstract
31	Abstract

A reliability-based settlement analysis of T-shaped deep cement mixing (TDM) pile-supported embankments over soft soils is presented in this paper. The uncertainties of the mechanical properties of the in-situ soil, pile, and embankment and the effect of the pile shape are considered simultaneously. The analyses are performed using Monte Carlo simulations in combination with an adaptive Kriging. Individual and system failure probabilities in terms of the differential and maximum settlements (serviceability limit state (SLS) requirements) are considered. The reliability results for the embankments supported by TDM piles with various shapes are compared and discussed together with the results for conventional deep cement mixing piled embankments with equivalent pile volumes. The influences of the inherent variabilities in the material properties (mean and coefficient of variation values) on the reliability of the piled embankments are also investigated. This study shows that large TDM piles, particularly those with a shape factor of greater than 3, can enhance the reliability of the embankment in terms of SLS requirements and even avoid unacceptable reliability levels caused by variability in the material properties.

Keywords: T-shaped deep cement mixing piles; Piled embankments; Settlement; Reliability analysis; Soil uncertainties

76 1. Introduction

77 1.1 Soil stabilization with T-shaped deep cement mixing piles

Soil stabilization with a cementitious mixture (refers to as deep cement mixing, DCM pile) is frequently used for soft soils treatment before constructing the transport infrastructures, particularly for the roadway embankments [1–6]. Generally, DCM piles are used as a reinforcing volume with a constant circular diameter for entire length of soft soil layers. They achieve to convey the loads persuaded by structures (e.g., embankments) to stronger soil layers at deeper levels. Previous studies on embankment constructions [1-3, 5, 7-9] showed that DCM piles are successful to reduce the settlements of soft soil foundation. However, due to the difference in stiffness between piles and unimproved surrounding soils, unfavorable differential settlements between piles and adjacent soils were found (e.g., [10, 11]). This differential settlement is classified as an important behavior of piled embankment over soft soils that can cause the high-risks to the transport infrastructures during operating period [12– 14]).

In recent decades, the T-shaped deep cement mixing (TDM) piles is an innovative technique that has recently been used to support embankments on soft soils [15, 16]. Unlike the DCM piles whose shapes are slender cylinders with a constant diameter throughout their length. TDM piles have a small diameter at their lower part (pile body) with a larger pile diameter at the upper part (pile head). The double-mixing technique (foldable mixing blades) is employed to construct TDM piles [15, 17]. TDM piles have been used to enhance the bearing capacity and reduce ground settlement, lateral displacement, construction costs, and especially to reduce the differential settlement between the piles and surrounding soil, as proven by several previous studies [15, 16, 18–25]. However, for embankments under service, excessive settlement (total and differential settlements) is still the most undesirable characteristic, which can lead to unexpected serviceability and damage to the embankments. Since the inherent

natural soil variability and complex mixing process of soil-cement mixing (SCM) for piles (DCM and TDM piles), high uncertainties in not only the natural soil properties but also the pile mechanical properties can be found in practice [3, 15, 18, 26]. Then, the strength and modulus values of cored soil-cement specimens sampled from the same project site can vary significantly (e.g., [15, 18]). The performance of structures placed on an improved ground can thus be unsafe or overly conservative if only a deterministic analysis is considered. Therefore, reliability assessments of SCM pile-supported embankments are of great importance and should be performed.

1.2 Previous studies of SCM material on reliability framework

Studies considering the spatial variability of the mechanical properties of soil-cement materials have been reported in the literature (e.g., [27–32]). However, most of these previous studies investigated only the effect of the variability of mechanical properties, mainly the unconfined compressive strength (q_{y}) and the modulus (E), in tested samples or piles observed in the field. These studies showed that the properties of soil-cement materials have large variations. Few studies have investigated the effect of the variability of soil-cement materials on the stability of field embankments. Al-Nagshabandy and Larsson [33] highlighted the influence of spatial variability in the soft soil and DCM piles on the safety factor of the embankment. Navin and Filz [34] showed that the safety factor of DCM pile-supported embankments obtained through a deterministic analysis is not sufficient for the design of these systems. A reliability analysis is thus imperative at the design stage. Relatively few investigations on reliability-based deformation analysis of embankments supported by DCM piles have been reported. Only the most recent studies by Wijerathna and Liyanapathirana [35, 36] included a reliability assessment of the lateral movement combined with the settlement using different reliability methods. They demonstrated that reliability assessments can help

provide adequate safety levels in terms of the deformation performance. Moreover, the random variable method was sufficient to capture the reliability level of piled embankment systems at the preliminary design stage. However, only the influence of the uncertainty in the DCM pile properties was investigated. Moreover, the differential settlement, which is of great concern for road or railway embankments, was not investigated in these studies.

For TDM piles, which are a relatively new technique, no attempt has been made to investigate the deformation of TDM piled embankments in a reliability framework, even though this method has been shown to be effective in reducing excessive differential settlement compared to DCM piles [20, 22, 23]. Furthermore, on the basis of volume control (representing the material cost), the deformation and performance of the embankments also depend on the TDM pile shape (i.e., the sizes of the cap and body) [21–23]. Thus, it is of interest to consider the pile shape during reliability-based deformation analyses to highlight the advantages of using TDM piles.

1.3 Objective of this study

The goal of this work is to apply the reliability framework into the piled embankment systems supported by the TDM piles which is relatively new kind of DCM pile for comprehensive investigation on serviceability behavior, especially for vertical displacements. The study employs the finite element analysis in the framework of two-dimensional axisymmetric numerical modeling to investigate the effect of material uncertainties on the behavior of differential and maximum settlements which is important to the serviceability of piled embankment systems. Reliability-based analysis based on random variable method conducted in this study focuses the long-term behavior of settlements that correspond to a consolidation degree of at least 90% and simultaneously considers the uncertainties in the mechanical properties of the soil, embankment fill, and the pile, as well as the effect of the pile

Page 7 of 56

shape. The uncertainties of strength parameters for soil and pile are correlated to the deformation parameters through empirical equations. The influences of the variabilities of these materials on the differential and maximum settlements of TDM piled embankment systems are discussed and highlighted. To reflect the influence of the TDM pile shape, various cap sizes are considered under an equivalent pile volume. Both individual and system failure modes are considered. A direct coupling analysis between the mechanical model (finite element modeling) and a reliability algorithm (MATLAB software) is considered to avoid manual operations during the probabilistic analysis. A metamodel is used to perform the Monte Carlo simulation (MCS). This is constructed using the Kriging theory combined with an adaptive experimental design algorithm. The performance of TDM piled embankments is evaluated based on the failure probability (P_{f}) , and a reliability analysis of DCM piled embankments is also performed for comparison. The effects of the coefficient of variation (COV) and mean (μ) values on the system are investigated. Note that the failure probabilities in terms of lateral responses of piled embankment systems such as lateral movements and stability embankments are not taken into consideration.

2. Incorporated assumptions and reliability analysis method

2.1 Type and method of the reliability analysis

In a reliability analysis, the methods used to account for the uncertainty in the soil properties can be broadly classified as two types: the random variable method (RVM) and the random field method (RFM). It has been established that the RFM can more effectively represent the uncertainty of soil properties than the RVM (e.g., [37]), particularly when the spatial variability must be considered. However, a high computational effort is required and the discretization effect for different RFM generations should be investigated. For a preliminary design stage considering a reliability assessment of DCM piled embankments, the

RVM is sufficient [36], and no spatial variability is considered. The advantages of the RVM
are that it is simpler than the RFM and allows results to be obtained more rapidly [36–39].
Therefore, for the sake of simplicity, the uncertainties of parameters of the soft soil, SCM
material, and embankment fill are considered as random variables in the TDM and DCM piled
embankment systems in this study.

For reliability analyses, MCS is usually considered the most robust method and is used as a benchmark to check the accuracy of the predicted results (i.e., P_{f}) obtained with other methods [38, 40]. Nevertheless, when the value of P_f is relatively small ($P_f < 10^{-4}$), reliability analysis using MCS requires very high computational effort and is time consuming, particularly if high accuracy (e.g., a small COV of P_f) is required [41, 42]. For this reason, it is imperative to use improved methods to estimate P_{f} that can consider a reduced number of iterations of the computational model. Recently, several metamodeling techniques have been developed for reliability analyses of engineering problems, such as artificial neural networks, Kriging, support vector machines, and polynomial chaos expansions. Among these methods, the Kriging metamodeling technique in combination with MCS, proposed by Echard et al. [43] and referred to as the Adaptive Kriging Monte Carlo simulation (AK-MCS), has been recommended [41, 44, 45]. The AK-MCS method can efficiently estimate P_f by constructing a metamodel based on a relatively small number of deterministic simulations. The AK-MCS method demonstrates high efficiency and can accurately provide P_f with a smaller number of iterations of the computational model than the MCS method. Recently, this method has been employed with good performance for reliability analyses of strip footings [41, 44], offshore monopile foundations [45], tunnels [46], and earth dams [39]. Therefore, AK-MCS is the reliability method selected to investigate the P_f of TDM and DCM piled embankments on soft soils presented in this study.

2.2 Random variables

Because the deformation parameters of soils and SCM materials can be correlated with their strength, their uncertainties are usually represented by the strength parameter. For soils, the soil strength $(s_{u, \text{ soil}})$ becomes the primary variable using these correlations. The details of these correlations are presented in Section 3.3. In the same fashion, the value of the pile modulus (E') was determined to be proportional to the value of the unconfined compressive strength of the pile $(q_{u, \text{pile}})$ as $E' = 100q_{u, \text{pile}}$ based on the empirical correlation reported in the literature (e.g., [1, 4, 5, 21, 26, 36, 47, 48]). According to several previous studies, c_u of the pile can be derived using $c_u = 0.5q_{u, \text{ pile}}$ (e.g., [3, 5, 36]). For the embankment fill, the stiffness is relatively high owing to the field compaction and the small contribution of the deformation of the fill layer to settlement of the embankment in the service stage. The embankment fill is present to apply the load on the improved soil. The embankment fill unit weight (γ_{emb}) parameter is thus chosen for analysis.

Based on previous studies [32, 33, 35, 36, 49], these three parameters, $s_{u, \text{soil}}$, $q_{u, \text{pile}}$, and γ_{emb} are frequently used in reliability analyses of DCM piled embankments. These three properties are assumed to be uncorrelated and are considered simultaneously in the reliability analyses. All of the random variables are assumed to follow a log-normal probability law. This law avoids generating negative values of the random variables [33, 35, 36]. The details of the three random variables used in the current study are listed in **Table 1**.

2.3 Performance function for the reliability analysis

⁵⁷ 222 A performance function, G(x), is used to define a criterion for assessing an unexpected ⁵⁹ 223 performance of the piled embankments considered in this study. This function is used to

classify the limit state surface separating the failure and safety domains, where x represents a random vector of the input random variables. Normally, the limit state surface can be defined mathematically as G(x) = 0, where G(x) < 0 represents the failure domain, and G(x) > 0represents the safety domain. Regarding the settlement reliability of piled embankments (i.e., the serviceability limit state (SLS) requirements), two performance functions have been adopted in the current study. The function for the differential settlement is defined as follows: $G_1(x) = \Delta s^a - \Delta s$ (1)The second function for the maximum settlement can be expressed as follows: $G_2(x) = s_{\max}^a - s_{\max}$ (2)where Δs^a and s^a_{max} are the allowable differential and maximum settlements, respectively, which are detailed in Section 4. The differential settlement is defined as the difference in settlements between pile head settlement (point C, see Fig. 1) and surrounding soil settlement (point D, see Fig. 1) while the maximum settlement is defined as the average settlement occurred on the top slab (line AB, see Fig. 1). Fig. 1 Layout of the simulated unit cell: (a) plan; (b) elevation view of the DCM piled embankment; and (c) elevation view of the TDM piled embankment Using MCS with N_{MCS} runs of the computational model, the failure probability, P_f , can be calculated as follows: $\mathbf{P}_f = \frac{1}{N_{MCS}} \times \sum_{i=1}^{N_{MCS}} I_{MCS}$ (3)where I_{MCS} is an indicator of failure; I_{MCS} is equal to 1 if the system fails (G(x) < 0) and I_{MCS} = 0 otherwise. N_{MCS} is the total number of MCS samples; N_{MCS} should be large enough to

 obtain an accurate P_f with a small value of the coefficient of variation for P_f (COV- P_f). 248 COV- P_f can be estimated as follows:

$$\text{COV-P}_f = \sqrt{\frac{1 - P_f}{N_{MCS} \times P_f}} \times 100\%$$
(4)

Taking into account the SLS requirements, the three random variables mentioned above are adopted in this study for the criteria of both the differential (P_f^{diff}) and maximum (P_f^{max}) settlements. Another failure mode is the system failure probability (P_f^{sys}) of the piled embankment addressed herein, which is satisfied if any individual failure criterion exceeds the allowable value [38].

2.4 Adaptive Kriging Monte Carlo simulation (AK-MCS)

To estimate P_f , AK-MCS is used for the reliability analysis. This method is an active learning reliability method comprising the combination of a Kriging metamodel and MCS, as proposed by Echard et al. [43]. The AK-MCS method is based on the Kriging theory, which guarantees the construction of a metamodel with high accuracy in the vicinity of the limit state surface. Using this method, it is possible to estimate the failure probability, P_f , by generating a small number of realizations of the metamodel (i.e., analytical function) instead of the large number required for computational models (i.e., finite element models). In this method, a small number of samples (designs of experiments, DoE) are used to construct the Kriging metamodel in the initial stage (e.g., a dozen samples have been used [43]). Then, this metamodel is updated by adding a new sample in each iteration following the conditions of a powerful learning function. This procedure is repeated until an imposed stopping condition is achieved. To choose the next candidate for the new sample with the highest probability, the U-function expressed in Eq. (5) is used as the powerful learning function:

$$U(x) = \frac{\left|\mu_G(x)\right|}{\sigma_G(x)} \tag{5}$$

where $\mu_G(x)$ and $\sigma_G(x)$ are the mean and standard deviation values of the Kriging predictions, respectively. To end the adjustment process for the Kriging model, the stopping criterion proposed by Schöbi et al. [50] is employed, which only considers the uncertainty of the P_f estimation:

$$\frac{\mathbf{P}_{f}^{+} - \mathbf{P}_{f}^{-}}{\mathbf{P}_{f}^{0}} \leq \varepsilon_{\mathbf{P}_{f}} \tag{6}$$

where P_f^0 is the mean estimation of the Kriging model, $\mu_G(x)$, used to identify I_{MCS} ($P_f^0 = \mathbf{P}(\mathbf{\mu}_G(x) \le 0)$); P_f^+ is the upper bound failure probability ($P_f^+ = \mathbf{P}(\mathbf{\mu}_G(x) + k\sigma_G(x) \le 0)$); and P_f^- is the lower bound failure probability ($P_f^- = \mathbf{P}(\mathbf{\mu}_G(x) - k\sigma_G(x) \le 0)$). A *k* value of 1.96 is selected based on a previous study [50]. In this study, the AK-MCS ends when the error estimation of the failure probability (ε_{P_f}) is less than 5%. This criterion value seems acceptable, as suggested and detailed by Schöbi et al. [50] and Guo and Dias [39].

283 2.5 Computational framework

In this study, the calculation of failure probabilities is facilitated by the UQLab software package [51]. The UQLab software is implemented within MATLAB and can be connected to the PLAXIS finite element software. A personal computer equipped with an Intel Core i7 running at 4.0 GHz and having 16 GB of RAM is used for the computations.

3. Deterministic analysis of piled embankments

3.1 Reference piled embankment cases

Page 13 of 56

Embankments supported by DCM or TDM piles are used as reference cases to construct the reliability analyses. A geological profile composed of a homogeneous soft clay layer with a thickness of 10 m is considered. This layer is situated above a nondeformable substratum. A 1.5-m-high embankment fill (weathered clay) is placed on top of the pile-improved subsoil foundation. A 0.2-m-thick concrete slab is located on top of the embankment fill to apply the loading. The ground water table is set at the original ground surface. Two different pile types, DCM and TDM piles, are chosen in the present study under the condition of a controlled pile volume. The reference DCM pile with a diameter (D_{DCM}) of 0.8 m and a pile length (L_{DCM}) of 6 m is selected based on the prototype case in a previous study [23]. Based on the past studies, a TDM pile with shape factor (α_s) of at least 3.0 is recommended to ensure the effectiveness of enlarging the pile caps for reducing the differential settlement [22] and improving of the pile capacity [21] compared with DCM piles under the same volume. The α_s parameter represents the ratio of the bearing area of the TDM pile to that of the DCM pile over the ratio of the skin area of the TDM pile to that of the DCM pile, as given by the following [21]:

$$\alpha_{s} = \frac{D_{TDM}^{2}/D_{DCM}^{2}}{\left[\left(D_{TDM} - d_{TDM}\right)H + d_{TDM}L_{TDM}\right]/D_{DCM}L_{DCM}}$$
(7)

where D_{TDM} is the pile head diameter of the TDM pile, d_{TDM} is the pile body diameter of the TDM pile, H is the thickness of the enlarged pile cap of the TDM pile, and L_{TDM} is the TDM pile length.

Consequently, a TDM pile with an α_s of 3.0 is chosen for this study as an additional reference case. A d_{TDM} of 0.5 m is selected based on previous studies [15, 18, 21, 22], and L_{TDM} is set as equal to L_{DCM} . Accordingly, D_{TDM} and H are equal to 1.31 m and 1.6 m, respectively. The piles are arranged in a square grid pattern with a center-to-center spacing (S) of 2.0 m, corresponding to an area improvement ratio (a_r) of 12.6% for the DCM pile case

and 33.7% for the TDM pile case. This a_r ratio falls within the range of 10–50% commonly used in engineering [5, 15, 16]. Based on the literature review, the unconfined compressive strength of SCM piles is in the range of 200–2700 kPa [3, 5, 15, 18, 52]. The minimum SCM pile strength value of 200 kPa is selected for both cases (DCM and TDM piles). Considering the symmetry condition, it is possible to investigate the settlement behavior of the pile-embankment system using a two-dimensional axisymmetric model (see Fig. 1(b) and 1(c)) with an equivalent diameter of 1.128S, as presented in Fig. 1(a). This modeling approach can provide results with good accuracy compared to three-dimensional modeling, while requiring less computational time [23, 53]. The problem is modeled as a single pile in a network situated far from the embankment slope. Fig. 1(b) and 1(c) also depict points A–D, which are used to monitor the settlement behavior of the piled embankment systems. Points A and B are located at the concrete slab crest, whereas points C and D are positioned at the ground surface. Line AB is chosen to investigate the maximum settlement, while line CD is selected for monitoring the differential settlement between the pile and the surrounding soil.

5 328

3.2 Numerical modeling

Two-dimensional axisymmetric numerical calculations were conducted using the PLAXIS 2D finite element modeling program [54] to analyze the piled embankment systems. Fifteen-node triangle elements were used for the mesh generation. A perfect bonding between the soft soil and SCM piles was adopted for this study because the shear strength at the interface between the SCM piles and the surrounding soil is greater than the soil shear strength, as commonly used in previous studies (e.g., [5, 8, 22]). FE analyses were carried out to simulate the consolidation behavior after finishing embankment construction using a coupled mechanical and hydraulic modeling that permitting a dissipation of excess pore pressures in the saturated clays as a function of time. A constant surcharge load of 25 kPa over the concrete

59 60

1

2		
3 4	339	slab was applied to consider the settlement behavior with an elapsed time of 1500 d,
5 6	340	corresponding to consolidation degree of not less than 90%. The simulation details for the piled
7 8	341	embankment system are summarized in Table 2. Fig. 2 shows an example of the FE mesh used
9 10 11	342	in this study. The bottom boundary of the finite element (FE) mesh was fixed in all directions
12 13	343	because the soft soil layer was placed on the rigid substratum, while the top boundary was left
14 15	344	free. The lateral boundaries were constrained in the normal direction. Water could drain freely
16 17	345	at the ground surface and the bottom boundary.
18 19 20	346	
20		
22	347	Fig. 2 Mesh of the piled embankment
23		
24	348	
25		
20 27	349	3.3 Constitutive models and model parameters
28		
29	350	In this study, the constitutive models and model parameters for the soft soil, SCM pile,
30		
31	351	and embankment fill were adopted from a previous study by Phutthananon et al. [22]. These
32		
33	352	parameter sets were well calibrated based on the oedometer and triaxial testing results for soil
34 25		
36	353	samples obtained from the actual site of a DCM piled embankment. Moreover, the simulated
37		
38	354	results for the DCM piled embankment were also validated based on monitoring data, and good
39		
40	355	agreement was obtained. A more detailed description of the calibration and validation are
41		
42	356	provided in the literature [22].
43 44		
45	357	
46		
47	358	3.3.1 Soft soil
48		
49	359	To model the soft soil behavior, the Hardening Soil (HS) model [55] was chosen.
50 51		
52	360	According to previous studies, the HS model is effective for predicting the deformation of soft
53		
54	361	soils [21, 22, 26, 56–59]. The set of soft soil material parameters for the HS model was adopted
55		- • •
56	362	from Phutthananon et al. [22], as listed in Table 3. The HS model parameters can be divided
57		
28 59	363	into two main groups: shear strength parameters and deformation parameters. The shear

https://mc.manuscriptcentral.com/fsce

strength parameters based on the Mohr-Coulomb shear criterion include the effective cohesion (c'), effective friction angle (ϕ') , and dilatancy angle (ψ') . Five basic deformation parameters were used for the HS model: the reference secant stiffness in standard drained triaxial tests (E_{50}^{ref}), reference tangential stiffness for a primary oedometer loading (E_{oed}^{ref}), reference unloading/reloading stiffness (E_{ur}^{ref}), Poisson's ratio for unloading/reloading ($v_{ur} = 0.2$ was used in this study [54]), and power of the stress-level dependency of the stiffness (m = 1 was suggested by Surarak et al. [59] for soft clayey soils). A value of $E_{50}^{ref} = 160s_{u, soil}$ was considered in this study. This relationship falls within the range of $60s_{u, \text{ soil}} - 330s_{u, \text{ soil}}$ used in several previous studies [21, 60, 61]. E_{oed}^{ref} and E_{ur}^{ref} were estimated as $E_{oed}^{ref} = E_{50}^{ref}$ and $E_{ur}^{ref} = E_{50}^{ref}$ $3E_{50}^{ref}$, respectively, as generally used in other works [8, 61–63]. Procedures similar those recommended by Jamsawang et al. [56] were adopted to determine the input HS model parameters; the calibration results for those parameters can be found in Phutthananon et al. [22].

378 3.3.2 SCM pile, embankment fill, and concrete slab

The SCM pile and embankment fill were modeled using linear elastic-perfectly plastic behavior with the Mohr-Coulomb failure criterion (named the MC model). This model has been successfully used to simulate the behavior of SCM piles and the embankment fill in the literature [3–5, 8, 12, 64–67]. In the present study, sets of material parameters for the SCM pile and embankment fill were adopted from the work of Phutthananon et al. [22]. Table 4 lists the input parameters for the MC model used in this study. For the input parameters of the SCM pile, the available procedure in PLAXIS, i.e., Undrained (B), was chosen for the analyses by using the effective elastic modulus (E') and undrained shear strength (c_u) [5, 22, 54]. The concrete slab was considered to be linear elastic (LE) with a unit weight (γ) of 25 kN/m³,

Young's modulus (*E*) of 10 GPa, and Poisson's ratio (ν) of 0.20. It should be noted that although the coefficients of permeability of SCM piles adopted in this study are relatively high; they have insignificant effect on the computed settlement results discussed herein because the consolidation analyses are performed until the consolidation degree of not less than 90% is achieved.

4. Settlement of the reference embankment cases using deterministic analysis

In this section, the behaviors of the embankments improved by DCM and TDM piles described in Section 3.1 are analyzed by assuming deterministic properties for all of the materials listed in Tables 3 and 4. Fig. 3 presents the results for the vertical stresses acting on the pile head and surrounding soil for both reference cases. As expected for both cases, the vertical stress acting on the surrounding soil is lower than that acting on the pile head. This can be attributed to the arching effect caused by the different moduli between the pile and the soil, as described in previous publications [16, 19]. Comparing the results for the DCM and TDM piles reveals that the induced vertical stresses on the TDM pile head are lower than those on the DCM pile head. This is caused by the larger cross-sectional area of the TDM pile head (higher value of a_r), as noted in previous studies [16, 20, 22].

3 405

406 Fig. 3 Stress distribution along line CD for the reference DCM and TDM piled embankments407

50408The changes in the settlement distribution inside the embankment fill and slab for both5152409cases are depicted in Fig. 4. Large settlements are found at the slab top, which then decay from5455410the slab top to the ground surface. For both cases, settlement arches are formed above the pile56411head and are approximately dome-shaped. The boundaries of the settlement arches are very59412close to the pile edge. The arch height above the DCM pile is higher than that above the TDM

 pile. As can be seen, the minimum settlements occur in the vicinity of the pile heads. A comparison of the pile types shows that the piled embankment system with DCM piles provides less settlement at both the slab top and ground surface. The settlements at the top of the slab (AB line, see Fig. 1) and ground level (CD line, see Fig. 1) are plotted in Fig. 5. Under the same loading and pile volume conditions, the settlements of the TDM piled embankment at both positions are greater than those of the DCM piled embankment. The maximum settlement $(s_{\rm max},$ the average settlement of the slab top) of the TDM piled embankment is 303.60 mm, while $s_{max} = 228.92$ mm for the DCM piled embankment. This trend is in good agreement with the computed results for embankments supported by DCM and TDM piles reported by Phutthananon et al. [22]. This can be explained by the fact that a greater portion of the embankment load is applied to the TDM piles owing to the larger pile head [15, 16, 20]. Once large settlements occur in the piles themselves, they can no longer inhibit the settlement of the surrounding soil, resulting in large soil settlements [22]. However, when considering the differential settlements (Δs) in these two cases, the TDM piled embankment can provide a markedly lower Δs compared with the DCM piled embankment. A Δs value of 12.95 mm is obtained for the TDM piled embankment, whereas the Δs for the DCM piled embankment is 44.41 mm. Interestingly, the use of TDM pile-supported embankments can reduce Δs by approximately 70% compared to the use of DCM piles. This result is in good agreement with the results of physical model tests reported by Yi et al. [16] and Phutthananon et al. [22] and numerical simulations reported by Yi et al. [20] and Phutthananon et al. [22]. Therefore, in this study, the values of $\Delta s = 12.95$ mm and $s_{max} = 303.60$ mm obtained from the TDM piled embankment ($\alpha_s = 3$) were defined as the allowable differential and maximum settlements, respectively, in the reliability analysis in the following section.

2		
- 3 4 5 6	437	Fig. 4 Settlements within the embankment fill and slab for different piled embankments: (a)
	438	settlement in the reference DCM piled embankment; and (b) settlement in the reference TDM
7 8	439	piled embankment
9 10	440	
11 12 13	441	Fig. 5 Settlements in the reference DCM and TDM piled embankments: (a) settlement along
14 15	442	line AB (at the top of the slab); and (b) settlement along line CD (at the ground surface)
17 18	443	
19 20	444	5. Reliability analysis results
21 22 23	445	5.1 Validation of the reliability results provided by AK-MCS
24 25 26 27 28 29 30 31	446	Although the AK-MCS method is robust and not very time-consuming [41, 44, 45], it
	447	is necessary to evaluate the accuracy of the P_f estimation obtained with this method. To this
	448	end, the P_f estimated using direct MCS is adopted as the benchmark. Fig. 6 illustrates the P_f^{diff}
32 33	449	for the reference TDM piled embankment case computed using direct MCS with various
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	450	number of samples. The result obtained using AK-MCS is also included. It can be seen that the
	451	direct MCS results provide an estimated P_f^{diff} of 0.413 with a coefficient of variation of P_f ,
	452	COV-P _f , of approximately 2.18% after approximately 3000 realizations. The estimated P_f^{diff}
	453	provided by the AK-MCS method is 0.416, which is very close to the result obtained with the
	454	direct MCS. Moreover, the COV- P_f obtained with the AK-MCS is very low compared with
	455	that of the direct MCS ($0.37\% \ll 2.18\%$). These results indicate that the constructed
	456	metamodel based on Kriging theory is efficient for estimating the settlement values of piled
51 52 53	457	embankment systems and thus providing reliability analysis results. Hence, by adopting the
54 55	458	AK-MCS method in this study, the failure probability can be estimated with reasonable
56 57	459	accuracy.
58 59	460	

Fig. 6 Comparison of the differential settlement failure probabilities (P_f^{diff}) for the reference TDM piled embankment case obtained with the direct MCS and AK-MCS reliability methods

5.2 Influence of the pile shape

An important independent variable in the design of TDM piled embankments is the pile shape factor, α_s , which is the significant parameter for controlling the ultimate bearing capacity and settlement of TDM piled embankments over soft soils [21, 22]. To investigate the effect of this factor on the failure probability while also considering the cost effectiveness, α_s is varied based on the condition of a controlled pile volume of the DCM pile ($D_{DCM} = 0.8 \text{ m}$ and $L_{DCM} = 6.0$ m). The TDM pile length (L_{TDM}) and pile body diameter (d_{TDM}) are kept constant and are 6.0 m and 0.5 m, respectively. TDM pile head diameters are considered in the range of 1.0–1.5 m, which corresponds to thicknesses of the enlarged pile cap in the range of 1.17-3.12 m. The pile shapes adopted in this study were carefully selected considering the available dimensions used in practice [5, 15, 18–23]. Hence, the reliability analyses are conducted for values of $\alpha_s = 1.0, 1.6, 2.2, 3.0, 3.5, and 4.0$. The detailed configurations of these pile shapes are presented in Table 5.

The results obtained with AK-MCS for the two limit state functions described above are displayed in **Fig. 7**. Three failure probabilities, P_f^{diff} , P_f^{max} , and P_f^{sys} , are plotted in this figure. Three random variables (i.e., $s_{u, \text{ soil}}$, $q_{u, \text{ pile}}$, and γ_{emb}) are considered simultaneously to investigate the failure probabilities by considering the mean (μ) values and coefficient of variation of mean (COV- μ) values, as listed in **Table 1**. As seen in **Fig. 7**, P_f^{diff} does not change significantly when α_s increases from 1.0 to 2.2 (small TDM piles with thicker pile caps). However, it is evident that P_f^{diff} decreases considerably with increasing α_s of greater than 2.2

(larger TDM piles with thinner pile caps). Interestingly, the use of TDM piles with $\alpha_s = 4.0$ can decrease P_f^{diff} by approximately 99% relative to the DCM pile case ($\alpha_s = 1.0$). This result is attributed to the larger pile head diameter, which can increase the load transfer to the piles through arching effects [5, 15]. Hence, a large pile settlement and small soil settlement are obtained, resulting in a decrease in the differential settlement [22]. This is in good agreement with the numerical results reported by Yi et al. [20]. In contrast, an increase in α_s leads to an increase in P_f^{max} . In the studied range, P_f^{max} for the case of TDM piles with $\alpha_s = 4.0$ ($P_f^{max} =$ 0.572) is approximately 1.26 times greater than that for $\alpha_s = 1.0$ (DCM pile, $P_f^{max} = 0.455$). Again, this result is attributed to the enlarged pile cap of the TDM pile, as described previously in Section 4. This tendency is in good agreement with the computational results for embankments supported by TDM and DCM piles obtained by Phutthananon et al. [22]. Inspecting the results for P_f^{sys} reveals that the use of TDM piles can reduce P_f^{sys} dramatically compared to the use of DCM piles, particularly when α_s is in the range of 2.2 to 4.0. Using TDM piles with $\alpha_s = 4.0$ can drastically reduce the value of P_f^{sys} from 0.99 (for the case of DCM piles) to 0.58. Based on these results, it can be concluded that the decrease of P_f^{sys} is mainly governed by the variation in P_f^{diff} . It is also noted that the decrease in P_f^{sys} is not as great as that of P_f^{diff} owing to the inclusion of P_f^{max} , which has a relatively large value. However, the rate of increase in P_f^{max} is much smaller than the rate of decrease in P_f^{diff} . Consequently, TDM piles with large heads can provide very low values of P_f^{sys} compared to those for DCM piles. This result is due to the fact that DCM piles induce a large value of P_f^{diff} (up to 0.94 in this study). The results of this study present a promising alternative of using TDM piles to support

2 3 4	505	embankments on soft soils with a high degree of safety. The use of this pile type can effectively
5 6	506	avoid undesired performance of the embankment in terms of serviceability (i.e., settlement).
7 8	507	
9 10 11	508	Fig. 7 Impact of the pile shape factor (α_s) on the differential settlement (P_f^{diff}), maximum
12 13 14	509	settlement (P_f^{max}), and system (P_f^{sys}) failure probabilities of the piled embankment
15 16 17	510	
17 18 19	511	6. Parametric studies
20 21 22	512	To investigate the effect of each random variable on the computed system failure
22 23 24 25 26 27 28 29 30 31 32	513	probabilities, P_f^{sys} of the embankments supported by TDM and DCM piles, parametric analyses
	514	were performed. The mean (μ) and coefficient of variation of mean (COV- μ) values for each
	515	random variable were varied in the reliability analysis, as listed in Table 6 .
	516	
32 33 34	517	6.1 Impact of the uncertainties of soft soil properties
34 35 36 37 38 39 40 41 42 43 44 45 46	518	The parametric analyses of the SCM piled embankment in this subsection aim to assess
	519	the impact of the variability in the μ -s _{u, soil} and COV-s _{u, soil} values (soft soil parameters) on the
	520	estimated reliability results. The values of μ -s _{u, soil} for very soft soils and soft soils are
	521	considered to be in the range of 5, 10 kPa and 15, 25 kPa, respectively [68, 60]. The ranges of
		considered to be in the range of 5–10 kr a and 15–25 kr a, respectively [08, 09]. The ranges of
47	522	the COV- $s_{u, \text{ soil}}$ values are adopted from Phoon and Kulhawy [70].
47 48 49	522 523	the COV- $s_{u, \text{ soil}}$ values are adopted from Phoon and Kulhawy [70]. The variation between the μ - $s_{u, \text{ soil}}$ and the P_f^{sys} of the embankments supported by SCM
47 48 49 50 51 52	522 523 524	the COV- $s_{u, \text{ soil}}$ values are adopted from Phoon and Kulhawy [70]. The variation between the μ - $s_{u, \text{ soil}}$ and the P_f^{sys} of the embankments supported by SCM piles for different α_s values, is shown in Fig. 8 . For the case of small α_s values, the P_f^{sys} value
47 48 49 50 51 52 53 54 55	522523524525	the COV- $s_{u, \text{ soil}}$ values are adopted from Phoon and Kulhawy [70]. The variation between the μ - $s_{u, \text{ soil}}$ and the P_f^{sys} of the embankments supported by SCM piles for different α_s values, is shown in Fig. 8 . For the case of small α_s values, the P_f^{sys} value decreases slightly with increasing μ - $s_{u, \text{ soil}}$. For example, for $\alpha_s = 1.0$ (DCM pile), the value
47 48 49 50 51 52 53 54 55 56 57 58	 522 523 524 525 526 	the COV- $s_{u, soil}$ values are adopted from Phoon and Kulhawy [70]. The variation between the μ - $s_{u, soil}$ and the P_f^{sys} of the embankments supported by SCM piles for different α_s values, is shown in Fig. 8 . For the case of small α_s values, the P_f^{sys} value decreases slightly with increasing μ - $s_{u, soil}$. For example, for $\alpha_s = 1.0$ (DCM pile), the value of P_f^{sys} declines from 1 to 0.935 with the increase in μ - $s_{u, soil}$ from 5 to 25 kPa. A similar trend

528	2.2, the P_f^{sys} value decreases substantially with increasing μ -s _{u, soil} . For instance, in the case of
529	$\alpha_s = 4.0$ (TDM pile with a large but thin cap), the value of P_f^{sys} decreases from 1 to 0.074 as
530	μ -s _{u, soil} increases from 5 to 25 kPa. Interestingly, increasing μ -s _{u, soil} from 10 to 25 kPa can
531	dramatically reduce P_f^{sys} by approximately 92%. From these results, it can be concluded that
532	the use of DCM and TDM piles to support embankments on very soft soils (i.e., $s_{u, \text{ soil}} = 5-10$
533	kPa) does not significantly change the reliability level (i.e., P_f^{sys}). This result is attributed to the
534	difference in stiffness between the soil and pile materials, as revealed by previous studies on
535	DCM piles [7] and TDM piles [22]. For this reason, unacceptably high failure probabilities
536	(large P_f^{sys}) are obtained for SCM piled embankments over very soft soils regardless of the pile
537	shape. However, when using this improvement system on soft soils (i.e., $s_{u, \text{ soil}} = 15-25$ kPa),
538	it is evident that the use of TDM piles (especially for cases where α_s exceeds 3.0) can
539	effectively provide good reliability levels (small P_f^{sys}) compared to the use of DCM piles.
540	Interestingly, the deterministic analysis [22] also reveals that the use of TDM piles with α_s of
541	greater than 3.0 can significantly reduce the differential settlement. As a result, the confidence
542	level of embankments supported by TDM piles can be increased. This finding suggests that the
543	use of TDM piles with large heads can significantly reduce the occurrence of undesired
544	settlement.
545	
546	Fig. 8 Impact of the mean value of $s = (u, s)$ in association with the nile shape factor (

Fig. 8 Impact of the mean value of $s_{u, \text{ soil}}$ (μ -s_{u, soil}) in association with the pile shape factor (α_s) on the system failure probability (P_f^{sys})

.9	Fig. 9 presents P_f^{sys} as a function of the COV- $s_{u, soil}$ values in association with α_s . The
50	results show that the influence of COV- $s_{u, \text{ soil}}$ on P_f^{sys} is almost insignificant. P_f^{sys} decreases
51	slightly with increasing COV- $s_{u, \text{ soil}}$ with α_s ranging from 1.0 to 2.2, i.e., the P_f^{sys} value at
52	COV- $s_{u, \text{ soil}} = 0.44$ decreases by approximately 1% compared that at COV- $s_{u, \text{ soil}} = 0.04$. Beyond
3	that ($\alpha_s = 3.0-3.5$), the value of P_f^{sys} gradually increases with increasing COV- $s_{u, soil}$. For the
54	case of $\alpha_s = 4.0$, it appears that the magnitude of P_f^{sys} becomes almost constant with varying
5	$\text{COV-}s_{u, \text{ soil}}$. Therefore, it can be concluded that $\text{COV-}s_{u, \text{ soil}}$ has a slight impact on the reliability
6	of SCM piled embankments in terms of P_f^{sys} .
57	
8	Fig. 9 Impact of the coefficient of variation of $s_{u, \text{ soil}}$ (COV- $s_{u, \text{ soil}}$) in association with the pile
59	shape factor (α_s) on the system failure probability (P_f^{sys})
50	
51	6.2 Impact of the uncertainties of SCM pile properties
51 52	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range
51 52 53	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range from 200–800 kPa, as is frequently used in practice [4, 26, 35, 36, 60].
51 52 53	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range from 200–800 kPa, as is frequently used in practice [4, 26, 35, 36, 60]. The variation in the value of P_f^{sys} with changing μ - $q_{u, pile}$ is presented in Fig. 10. It is
51 52 53 54	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range from 200–800 kPa, as is frequently used in practice [4, 26, 35, 36, 60]. The variation in the value of P_f^{sys} with changing μ - $q_{u, pile}$ is presented in Fig. 10. It is evident that for all values of μ - $q_{u, pile}$, P_f^{sys} decreases with increasing α_s , particularly for the
51 52 53 54 55 56	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range from 200–800 kPa, as is frequently used in practice [4, 26, 35, 36, 60]. The variation in the value of P_f^{sys} with changing μ - $q_{u, pile}$ is presented in Fig. 10. It is evident that for all values of μ - $q_{u, pile}$, P_f^{sys} decreases with increasing α_s , particularly for the cases of TDM piles with large caps (high α_s). The change in P_f^{sys} with varying μ - $q_{u, pile}$ for the
51 52 53 54 55 56 57	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range from 200–800 kPa, as is frequently used in practice [4, 26, 35, 36, 60]. The variation in the value of P_f^{sys} with changing μ - $q_{u, pile}$ is presented in Fig. 10. It is evident that for all values of μ - $q_{u, pile}$, P_f^{sys} decreases with increasing α_s , particularly for the cases of TDM piles with large caps (high α_s). The change in P_f^{sys} with varying μ - $q_{u, pile}$ for the same α_s shows that μ - $q_{u, pile}$ has a negligible effect on the change in P_f^{sys} when α_s is less than
51 52 53 54 55 56 57 58	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range from 200–800 kPa, as is frequently used in practice [4, 26, 35, 36, 60]. The variation in the value of P_f^{sys} with changing μ - $q_{u, pile}$ is presented in Fig. 10 . It is evident that for all values of μ - $q_{u, pile}$, P_f^{sys} decreases with increasing α_s , particularly for the cases of TDM piles with large caps (high α_s). The change in P_f^{sys} with varying μ - $q_{u, pile}$ for the same α_s shows that μ - $q_{u, pile}$ has a negligible effect on the change in P_f^{sys} when α_s is less than 2.2. In other words, the use of TDM piles with small pile caps cannot enhance the reliability of
51 52 53 54 55 56 57 58 59	6.2 Impact of the uncertainties of SCM pile properties The effect of μ - $q_{u, pile}$ on P_f^{sys} is investigated in this section. The values of μ - $q_{u, pile}$ range from 200–800 kPa, as is frequently used in practice [4, 26, 35, 36, 60]. The variation in the value of P_f^{sys} with changing μ - $q_{u, pile}$ is presented in Fig. 10. It is evident that for all values of μ - $q_{u, pile}$, P_f^{sys} decreases with increasing α_s , particularly for the cases of TDM piles with large caps (high α_s). The change in P_f^{sys} with varying μ - $q_{u, pile}$ for the same α_s shows that μ - $q_{u, pile}$ has a negligible effect on the change in P_f^{sys} when α_s is less than 2.2. In other words, the use of TDM piles with small pile caps cannot enhance the reliability of suppress the excessive settlement of the piled embankment within the range of μ - $q_{u, pile}$ values

571	seen, the value of P_f^{sys} can be increased from 0.863 to 0.983 with the increase in μ - $q_{u, pile}$ from
572	200 to 800 kPa. This increasing trend is similar to the results for the case of $\alpha_s = 3.5$. This
573	result is not surprising as a high $q_{u, pile}$ can restrain the large pile settlement, consequently
574	producing a large differential settlement [22] and resulting in an increase in P_f^{sys} . For the data
575	set with $\alpha_s = 4.0$, the magnitude of P_f^{sys} gradually decreases from 0.579 to 0.517 until μ - $q_{u, pile}$
576	reaches 400 kPa. Beyond that, P_f^{sys} continues to increase with μ - $q_{u, pile}$ up to 800 kPa (P_f^{sys} =
577	0.690). Interestingly, the use of TDM piles with $\alpha_s = 4.0$ for $\mu - q_{u, \text{ pile}} = 800$ kPa can reduce
578	P_f^{sys} by approximately 30% compared with using DCM piles at the same μ - $q_{u, pile}$. From these
579	results, it can be concluded that both the pile strength ($q_{u, pile}$) and enlarged pile cap shape (α_s)
580	play an important role in the reliability of SCM piled embankments, especially for large α_s
581	values. To ensure the effective enhancement of the reliability level, pile shapes with α_s values
582	of greater than 3 are recommended for all of the $q_{u, pile}$ values used in this study. Moreover, it
583	is also possible to use TDM piles with large caps ($\alpha_s > 3$) at high values of q_u to increase the
584	reliability level of SCM piled embankments or to avoid excessive settlement of the overlying
585	structure. This solution is very promising for soft soil improvement when the embankment is
586	required to support a super-structure (i.e., a high $q_{u, \text{ pile}}$ is needed).
587	
588	Fig. 10 Impact of the mean value of $q_{u, pile}$ (μ - $q_{u, pile}$) in association with the pile shape factor
589	(α_s) on the system failure probability (\mathbf{P}_f^{sys})

591 Fig. 11 illustrates the estimated P_f^{sys} with varying COV- $q_{u, pile}$ for different values of 592 α_s . The values of COV- $q_{u, pile}$ considered in this study are adopted from the previous study by

593	Wijerathna and Liyanapathirana [36]. Under the same COV- $q_{u, pile}$, the P_f^{sys} values initially
594	decrease gradually (α_s in the range of 1.0–2.2) and then rapidly approach a P_f^{sys} of less than
595	0.6 when α_s reaches 4.0. For the change in P_f^{sys} with identical values of α_s , the magnitude of
596	P_f^{sys} slightly decreases with increasing COV- $q_{u, pile}$ for α_s in the range of 1.0–3.0. The highest
597	degree of decrease in P_f^{sys} is approximately equal to 4%, which occurs with the change in
598	COV- $q_{u, \text{pile}}$ value from 0.3 to 0.7. This result is obtained with $\alpha_s = 1.6$. As the α_s value
599	increases (i.e., $\alpha_s = 3.5$ and 4.0), the magnitude of P_f^{sys} exhibits the opposite trend. For
600	instance, the magnitude of P_f^{sys} increases by approximately 6% with the change in COV- $q_{u, pile}$
601	from 0.3 to 0.7. These results imply that the influence of $\text{COV-}q_{u,\text{pile}}$ on the reliability of SCM
602	piled embankments is insignificant. Moreover, it seems that the influence of $\text{COV-}q_{u, \text{ pile}}$ on the
603	reliability level is less than that of μ - $q_{u, pile}$ presented above. Therefore, in the reliability
604	analysis of SCM piled embankments in terms of the system failure modes (considering both
605	the differential and maximum settlements), the effect of COV- $q_{u, pile}$ can be ignored.
606	
607	Fig. 11 Impact of the coefficient of variation of $q_{u, pile}$ (COV- $q_{u, pile}$) in association with the
608	pile shape factor (α_s) on the system failure probability (P_f^{sys})
609	
610	6.3 Impact of the uncertainties of embankment fill properties

611 For a better understanding of the effect of the uncertainty of γ_{emb} on P_f^{sys} , the μ - γ_{emb} 612 and COV- γ_{emb} values are varied here in association with α_s . The ranges of μ - γ_{emb} and 613 COV- γ_{emb} values reported by Phoon and Kulhawy [70] are applied in this study. Page 27 of 56

2 3 4 5	614	Fig. 12 displays the variation between P_f^{sys} and $\mu - \gamma_{emb}$ for different values of α_s . The
5 6 7	615	results with the same values of μ - γ_{emb} indicate that the value of P_f^{sys} remains almost constant
8 9 10	616	with an increase in α_s from 1.0 to 2.2 and then rapidly decreases with further increases in α_s .
11 12 13	617	For example, for $\mu - \gamma_{emb} = 14$ kPa, P_f^{sys} decreases from 1 to 0.398 with the increase in α_s from
14 15	618	2.2 to 4.0. In this range, the P_f^{sys} value decreases by approximately 60%. This is because the
17 18	619	use of TDM piles with large caps can significantly reduce the differential settlement [22].
19 20 21	620	Hence, lower P_f^{sys} values can be obtained with large α_s . Investigating the variability of μ - γ_{emb}
22 23 24	621	reveals that $\mu - \gamma_{emb}$ has a slight effect on P_f^{sys} for small α_s (DCM piles and small TDM piles
25 26	622	with thicker pile caps). However, $\mu - \gamma_{emb}$ has an important impact on P_f^{sys} when α_s is in the
27 28 29	623	range of 3.0 to 4.0 (TDM piles with large but thin caps). In this range, a decrease in μ - γ_{emb}
30 31 32	624	leads to a substantial decrease in P_f^{sys} . For $\alpha_s = 4.0$, P_f^{sys} decreases drastically from 0.850 to
33 34 35	625	0.398 as μ - γ_{emb} decreases from 20 to 14 kN/m ³ . This may be attributed to the decrease in the
35 36 37 38	626	applied load above the pile–soil system as a result of the reduction in μ - γ_{emb} . This phenomenon
38 39 40	627	leads to reduction of the settlement [5, 9]. From the results in this study, it is promising to
40 41 42 43	628	recommend that TDM piles with large heads (high α_s) can be used to provide a high reliability
43 44	629	of piled embankments compared to that of DCM piles with the same pile volume.
45 46 47	630	
48 49	631	Fig. 12 Impact of the mean value of γ_{emb} (μ - γ_{emb}) in association with the pile shape factor (
50 51 52	632	α_s) on the system failure probability (P_f^{sys})
53 54	633	
55 56 57	634	Fig. 13 presents the distribution of P_f^{sys} for three different values of COV- γ_{emb} and six
58 59 60	635	different pile shapes. The results show that the value of P_f^{sys} decreases with increasing α_s . It is

636	clear that P_f^{sys} for $\alpha_s = 4.0$ is approximately 40% smaller than that for $\alpha_s = 1.0$. This reduction
637	is observed for all of the COV- γ_{emb} values considered in this study. Investigating the effect of
638	$\text{COV-}\gamma_{\text{emb}}$ reveals that the change in $\text{COV-}\gamma_{\text{emb}}$ seems to have an insignificant influence on
639	P_f^{sys} when α_s is in the range of 1.0 to 2.2. When α_s is greater than 2.2, P_f^{sys} decreases slightly
640	with increasing COV- γ_{emb} . For example, for the case of $\alpha_s = 4.0$, P_f^{sys} decreases from 0.586
641	to 0.553 (a reduction of approximately 6%) when COV- $\gamma_{\rm emb}$ increases from 0.03 to 0.20.
642	Therefore, it seems that the reliability levels of the SCM piled embankments in term of P_f^{sys}
643	are not significantly affected by COV- γ_{emb} . Moreover, within the ranges of μ - γ_{emb} and
644	COV- γ_{emb} values considered in this study, μ - γ_{emb} has an impact on the reliability level, while
645	$\text{COV-}\gamma_{\text{emb}}$ does not. This implies that the reliability-based settlement analysis of the SCM piled
646	embankment is more sensitive to the uncertainty of μ - γ_{emb} . Hence, appropriate values of
647	μ - $\gamma_{\rm emb}$ should be carefully chosen for reliability-based settlement analyses in the design of
648	SCM piled embankments.
649	
650	Fig. 13 Impact of the coefficient of variation of γ_{emb} (COV- γ_{emb}) in association with the pile

emb (shape factor (α_s) on the system failure probability (P_f^{sys})

7. Discussion

The RVM is employed to simulate the uncertainty of material properties (soft soil, SCM pile, and embankment fill) for SCM piled embankments on soft soils. In the event that a direct MCS method is adopted to conduct the reliability-based settlement analysis for this problem (reference TDM pile case, $P_f^{diff} = 0.420$), at least 750 model calls are required for a target error,

 COV-P_{f} , of less than 5% (COV-P_f = 4.29%), requiring approximately 9.6 h to complete. By applying the framework proposed in this study to the aforementioned TDM piled embankment problem, the AK-MCS method requires a much smaller number of calls of the deterministic model used to construct the metamodel. This is highly significant for reducing the computational time of the reliability analysis. The P_f^{diff} value obtained with the AK-MCS method is 0.416, corresponding to a COV- $P_f = 0.37\%$ (much smaller than that obtained with the direct MCS method); moreover, a calculation time of only 0.4 h is required. This indicates that using the AK-MCS method can significantly reduce the computational time by at least 9 h compared to the direct MCS method, while providing reliability results with a higher confidence level. Therefore, the AK-MCS method used in this study for considering the uncertainty of SCM piled embankment systems could serve as a suitable alternative, as it is very efficient.

According to the results presented in Section 5.2, the failure probability related to the differential settlement (P_f^{diff}) is mainly controlled by α_s . The piles with large α_s can provide very small values of P_f^{diff} , particularly when α_s is greater than 3.0 (TDM piles with large but thin pile caps). Meanwhile, TDM piles with large caps can induce large failure probabilities for the maximum settlement (P_f^{max}). However, the increase in P_f^{max} with α_s is relatively small when compared to the decrease in P_f^{diff} . For an accurate design, serviceability requirements in terms of the differential and maximum settlement criteria must be taken into account to prevent undesired settlement characteristics. Hence, the system failure probability (P_f^{sys}) introduced in this study is a good indicator for capturing the failure modes in terms of both the differential and maximum settlements. The results presented in Fig. 7 indicate that compared to DCM piles with the same volume, the use of TDM piles can effectively enhance the reliability level of SCM piled embankments when the uncertainty of materials is taken into account. This finding

is very useful for geotechnical engineering to reduce undesired performance in terms of thesettlement of the piled embankment system.

Based on the parametric studies presented in Section 6, it is concluded that the mean values of all of the random variables (μ -s_{u, soil}, μ -q_{u, pile}, and μ - γ _{emb}) have important effects on P_{f}^{sys} when α_{s} is greater than 2.2 (TDM piles with large caps). Particularly, for α_{s} of greater than 3, the TDM piles can drastically reduce the influence of the material variability in terms of the μ values on P_f^{sys} . This is because the TDM piles with large caps can markedly decrease the differential settlement for any value of μ . On the other hand, for the P_f^{sys} considered in this study, the impacts of the three coefficients of variation (COV- $s_{u, \text{ soil}}$, COV- $q_{u, \text{ pile}}$, and $\text{COV-}\gamma_{\text{emb}}$) are insignificant. However, as an individual failure mode, P_f^{max} is still affected by the COV values of all materials. This result is in good agreement with the reliability results obtained by Wijerathna and Livanapathirana [35, 36], who reported that the variation in $COV-q_{u \text{ pile}}$ significantly affected the individual failure probabilities of the maximum settlement and lateral displacement of DCM pile-supported embankments on soft soils.

8. Conclusions

698 The main conclusions of this study can be drawn as follows:

(1) The AK-MCS method can considerably decrease the computational time required to
 conduct a reliability analysis with a high confidence level, although the failure probability
 result is lower. For the preliminary design stage, AK-MCS can be effectively adopted for
 reliability assessments that require a large number of iterations to computationally
 expensive mechanical models instead of a more general reliability method (i.e., MCS).

704 (2) The use of TDM piles with large caps ($\alpha_s > 3.0$) is recommended to ensure the 705 effectiveness of using TDM piles for the enhancement of the reliability level or reduction

of the system failure probability. These TDM piles can provide significantly lower estimations of the differential settlement failure probability compared to the use of DCM piles. However, the use of TDM piles with large caps should be handled carefully owing to a slight increase in the maximum settlement failure probability.

(3) A high reliability level in terms of the system failure probability can be found for the case of TDM piles with large heads but thinner caps. This promotes the use of TDM piles to reduce the undesired performance of settlement considering all of the material variabilities for piled embankment systems.

(4) The mean values of the materials considered in this study (μ -s_{u, soil}, μ -q_{u, pile}, and μ - γ _{emb}) are found to have a significant effect on the system failure probability of SCM piled embankments on soft soils. Importantly, these parameters should be carefully selected for consideration in reliability analyses in further investigations.

The above conclusions are drawn based on a simplified numerical analysis. To confirm and enhance the findings of the current study, a broader set of numerical investigations should be performed in more complex cases (e.g., complex subsoil profiles, a large number of embankment heights, and several values of the surcharge loading). Furthermore, a more complex model (three-dimensional numerical simulation) would also be suggested for the design of piled embankments over soft soils. This model could be used to capture other interesting failure modes related to piled embankments, such as lateral movement and the pile bending moment at the embankment toe and could also be used to explore the slope stability of the embankment. A reliability analysis considering the uncertainties of more material properties and/or the soil spatial variability (random field method) will be developed in future studies in order to better describe the input uncertainties and obtain more precise P_f estimates.

2 3 4	731	1
5	732	
7 8	733	~
9 10		
11 12	734	1
13 14	735	ł
15 16	736	1
17 18	737	-
19 20	738	ł
21 22	739	
23 24 25	740]
26 27	741	1
28 29	742	
30 31 22	743	
32 33 34	744	
35 36	745	_
37 38	773	
39	746	
40 41	747	
42 43	748	
44 45 46	749	
40	750	
48 49	/30	
50 51	751	Z
52	752	
53 54	753	
55 56	, <u>, , , , ,</u> ,	
57 58	754	
59	755	4

Acknowledgments

The authors gratefully acknowledge King Mongkut's University of Technology Thonburi (KMUTT) and National Research Council of Thailand (NRCT) through grant No. NRCT5-RSA63006 and Thailand Science Research and Innovation (TSRI) under Fundamental Fund 2022 (Project: Advanced Construction Towards Thailand 4.0). The authors would also like to acknowledge the financial support provided by King Mongkut's University of Technology North Bangkok (KMUTNB) and the National Science, Research and Innovation Fund (NSRF) under Contract No. KMUTNB-FF-65-38.

- 740 **References**
- Huang J, Han J, Oztoprak S. Coupled mechanical and hydraulic modelling of
 geosynthetic-reinforced column-supported embankments. Journal of Geotechnical and
 Geoenvironmental Engineering, 2009, 135(8): 1011–1021
- 4 744 2. Huang J, Han J. 3D coupled mechanical and hydraulic modeling of a geosynthetic-
- ⁵ 745 reinforced deep mixed column-supported embankment. Geotextiles and
- Geomembranes, 2009, 27(4): 272–280
- 747 3. Yapage N N S, Liyanapathirana D S, Kelly R B, Poulos H G, Leo C J. Numerical
 748 modeling of an embankment over soft ground improved with deep cement mixed
 749 columns: case history. Journal of Geotechnical and Geoenvironmental Engineering,
 750 2014, 140(11): 04014062
- 50 751 4. Yapage N N S, Liyanapathirana D S, Poulos H G, Kelly R B, Leo C J. Numerical
- ⁵² 752 modeling of geotextile-reinforced embankments over deep cement mixed columns
 - 753 incorporating strain-softening behavior of columns. International Journal of
- Geomechanics, 2015, 15(2): 04014047
- ⁵⁹ 755 5. Jamsawang P, Yoobanpot N, Thanasisathit N, Voottipruex P, Jongpradist P. Three-

Page 33 of 56

1			
2 3 4	756		dimensional numerical analysis of a DCM column-supported highway embankment.
5 6	757		Computers and Geotechnics, 2016, 72: 42-56
7 8	758	6.	Chai J C, Shrestha S, Hino T, Ding W Q, Kamo Y, Carter J. 2D and 3D analyses of an
9 10 11	759		embankment on clay improved by soil-cement columns. Computers and Geotechnics,
12 13	760		2015, 68: 28–37
14 15	761	7.	Huang J, Han J. Two-dimensional parametric study of geosynthetic-reinforced
16 17 18	762		column-supported embankments by coupled hydraulic and mechanical modeling.
19 20	763		Computers and Geotechnics, 2010, 37(5): 638-648
21 22	764	8.	Jamsawang P, Phongphinnittana E, Voottipruex P, Bergado D T, Jongpradist P.
23 24 25	765		Comparative performances of two- and three-dimensional analyses of soil-cement
25 26 27	766		mixing columns under an embankment load. Marine Georesources & Geotechnology,
28 29	767		2019, 37(7): 852–869
30 31	768	9.	Yu Y, Bathurst R J, Damians I P. Modified unit cell approach for modelling
32 33 34	769		geosynthetic-reinforced column-supported embankments. Geotextiles and
35 36	770		Geomembranes, 2016, 44(3): 332–343
37 38	771	10.	Lai Y P, Bergado D T, Lorenzo G A, Duangchan T. Full-scale reinforced embankment
39 40	772		on deep jet mixing improved ground. Proceedings of the Institution of Civil Engineers
41 42 43	773		- Ground Improvement, 2006, 10(4): 153–164
44 45	774	11.	Bergado D T, Jamsawang P, Tanchaisawat T, Lai Y P, Lorenzo G A. Performance of
46 47	775		reinforced load transfer platforms for embankments supported by deep cement mixing
48 49 50	776		piles. In: GeoCongress 2008: Geosustainability and Geohazard Mitigation. Louisiana,
50 51 52	777		USA, 2008, 628–637
53 54	778	12.	Han J, Oztoprak S, Parsons R L, Huang J. Numerical analysis of foundation columns
55 56	779		to support widening of embankments. Computers and Geotechnics, 2007, 34(6): 435-
57 58 59	780		448
60			

34

2			
3 4	781	13.	Borges J L, Marques D O. Geosynthetic-reinforced and jet grout column-supported
5 6 7	782		embankments on soft soils: numerical analysis and parametric study. Computers and
/ 8 0	783		Geotechnics, 2011, 38(7): 883-896
9 10 11	784	14.	Cheng Q, Wu J, Zhang D, Ma F. Field testing of geosynthetic-reinforced and column-
12 13	785		supported earth platforms constructed on soft soil. Frontiers of Structural and Civil
14 15	786		Engineering, 2014, 8(2): 124–139
16 17 18	787	15.	Liu S Y, Du Y J, Yi Y L, Puppala A J. Field investigations on performance of T-
19 20	788		shaped deep mixed soil cement column-supported embankments over soft ground.
21 22	789		Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 718-727
23 24 25	790	16.	Yi Y L, Liu S Y, Puppala A J. Laboratory modelling of T-shaped soil-cement column
25 26 27	791		for soft ground treatment under embankment. Géotechnique, 2016, 66(1): 85-89
28 29	792	17.	Yi Y L, Liu S Y, Puppala A J, Jing F. Variable-diameter deep mixing column for
30 31 32 33	793		multi-layered soft ground improvement: laboratory modeling and field application.
	794		Soils and Foundations, 2019, 59(3): 633-643
35 36	795	18.	Yi Y L, Liu S Y, Puppala A J, Xi P S. Vertical bearing capacity behaviour of single T-
37 38	796		shaped soil-cement column in soft ground: laboratory modelling, field test, and
39 40 41	797		calculation. Acta Geotechnica, 2017, 12(5): 1077–1088
42 43	798	19.	Yi Y L, Liu S Y, Puppala A J. Bearing capacity of composite foundation consisting of
44 45	799		T-shaped soil-cement column and soft clay. Transportation Geotechnics, 2018, 15: 47-
46 47	800		56
40 49 50	801	20.	Yi Y L, Ni P, Liu S Y. Numerical investigation of T-shaped soil-cement column
51 52	802		supported embankment over soft ground. In: Proceedings of China-Europe Conference
53 54	803		on Geotechnical Engineering. Vienna, Austria, 2018, 1068–1071
55 56 57	804	21.	Phutthananon C, Jongpradist P, Yensri P, Jamsawang P. Dependence of ultimate
58 59 60	805		bearing capacity and failure behavior of T-shaped deep cement mixing piles on

https://mc.manuscriptcentral.com/fsce

Page 35 of 56

1			
2 3 4	806		enlarged cap shape and pile strength. Computers and Geotechnics, 2018, 97: 27-41
5 6	807	22.	Phutthananon C, Jongpradist P, Jamsawang P. Influence of cap size and strength on
7 8 0	808		settlements of TDM-piled embankments over soft ground. Marine Georesources &
9 10 11	809		Geotechnology, 2020, 38(6): 686–705
12 13	810	23.	Phutthananon C, Jongpradist P, Jongpradist P, Dias D, Baroth J. Parametric analysis
14 15	811		and optimization of T-shaped and conventional deep cement mixing column-supported
16 17 18	812		embankments. Computers and Geotechnics, 2020, 122: 103555
19 20	813	24.	Phutthananon C, Jongpradist P, Dias D, Jamsawang P. Numerical study of the
21 22	814		deformation performance and failure mechanisms of TDM pile-supported
23 24 25	815		embankments. Transportation Geotechnics, 2021, 30: 100623
26 27	816	25.	Phutthananon C, Jongpradist P, Jongpradist P, Dias D, Jamsawang P, Bergado D T.
28 29 30 31 32 33 34	817		Performance-based design optimization of embankments resting on soft soil improved
	818		with T-shaped and conventional DCM columns. Acta Geotechnica, 2021, 16(10):
	819		3301–3326
35 36	820	26.	Jamsawang P, Voottipruex P, Jongpradist P, Bergado D T. Parameters affecting the
37 38	821		lateral movements of compound deep cement mixing walls by numerical simulations
39 40 41	822		and parametric analyses. Acta Geotechnica, 2015, 10(6): 797-812
42 43	823	27.	Omine K, Ochiai H, Yasufuku N. Evaluation of scale effect on strength of cement-
44 45	824		treated soils based on a probabilistic failure model. Soils and Foundations, 2005,
46 47 48	825		45(3): 125–134
49 50	826	28.	Larsson S, Stille H, Olsson L. On horizontal variability in lime-cement columns in
51 52	827		deep mixing. Géotechnique, 2005, 55(1): 33-44
53 54 55	828	29.	Namikawa T, Koseki J. Effects of spatial correlation on the compression behavior of a
56 57	829		cement-treated column. Journal of Geotechnical and Geoenvironmental Engineering,
58 59 60	830		2012, 139(8): 1346–1359

2 3	831	30.	Liu Y, Lee F H, Quek S T, Chen E J, Yi J T. Effect of spatial variation of strength and
4 5 6	832		modulus on the lateral compression response of cement-admixed clay slab.
0 7 8	833		Géotechnique, 2015, 65(10); 851–865
9 10	834	31	Zhang R I Hasan M S M S. Zheng I I Cheng Y S. Effect of spatial variability of
11 12	051	51.	Enang ice, masan wild wild, Eneng 9.9, Cheng 1.5. Eneet of spatial variability of
13	835		engineering properties on stability of a CSMC embankment. Marine Georesources &
14 15 16	836		Geotechnology, 2018, 36(1): 91–99
10 17 18	837	32.	Al-Naqshabandy M S, Bergman N, Larsson S. Strength variability in lime-cement
19 20	838		columns based on cone penetration test data. Proceedings of the Institution of Civil
21 22	839		Engineers - Ground Improvement, 2012, 165(1): 15-30
23 24	840	33.	Al-Naqshabandy M S, Larsson S. Effect of uncertainties of improved soil shear
25 26 27	841		strength on the reliability of embankments. Journal of Geotechnical and
28 29	842		Geoenvironmental Engineering, 2013, 139(4): 619-632
30 31	843	34.	Navin M P, Filz G M. Reliability of deep mixing method columns for embankment
32 33 34	844		support. In: GeoCongress 2006: Geotechnical Engineering in the Information
35 36	845		Technology Age. Georgia, USA, 2006, 1–6
37 38	846	35.	Wijerathna M, Liyanapathirana D S. Reliability-based performance of embankments
39 40	847		improved with deep mixing considering spatial variability of material properties.
41 42 43	848		ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
44 45	849		Engineering, 2018, 4(4): 04018035
46 47	850	36.	Wijerathna M, Liyanapathirana D S. Significance of variability of deep cement mixed
48 49 50	851		columns on the reliability of column supported embankments. International Journal of
51 52	852		Geomechanics, 2019, 19(8): 04019087
53 54	853	37.	Guo X, Dias D, Pan Q. Probabilistic stability analysis of an embankment dam
55 56	854		considering soil spatial variability. Computers and Geotechnics, 2019, 113: 103093
57 58 59 60	855	38.	Kroetz H M, Do N A, Dias D, Beck A T. Reliability of tunnel lining design using the

2 3	856		Hyperstatic Reaction Method. Tunnelling and Underground Space Technology, 2018,
4 5 6	857		77: 59–67
7 8	858	39.	Guo X, Dias D. Kriging based reliability and sensitivity analysis – Application to the
9 10	859		stability of an earth dam. Computers and Geotechnics, 2020, 120: 103411
11 12 13	860	40.	Guo X, Dias D, Carvajal C, Peyras L, Breul P. A comparative study of different
14 15	861		reliability methods for high dimensional stochastic problems related to earth dam
16 17	862		stability analyses. Engineering Structures, 2019, 188: 591-602
18 19 20	863	41.	Soubra A H, Al-Bittar T, Thajeel J, Ahmed A. Probabilistic analysis of strip footings
21 22	864		resting on spatially varying soils using kriging metamodeling and importance
23 24	865		sampling. Computers and Geotechnics, 2019, 114: 103107
25 26 27	866	42.	Pan Q, Dias D. Sliced inverse regression-based sparse polynomial chaos expansions
28 29	867		for reliability analysis in high dimensions. Reliability Engineering and System Safety,
30 31	868		2017, 167: 484–493
32 33 34	869	43.	Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method
35 36	870		combining Kriging and Monte Carlo Simulation. Structural Safety, 2011, 33(2): 145-
37 38	871		154
39 40 41	872	44.	Al-Bittar T, Soubra A H, Thajeel J. Kriging-based reliability analysis of strip footings
42 43	873		resting on spatially varying soils. Journal of Geotechnical and Geoenvironmental
44 45	874		Engineering, 2018, 144(10): 04018071
46 47 48	875	45.	El Haj A K, Soubra A H, Fajoui J. Probabilistic model of an offshore monopile
49 50	876		foundation taking into account the soil spatial variability. Computers and Geotechnics,
51 52	877		2019, 106: 205–216
53 54 55	878	46.	Zhou S, Guo X, Zhang Q, Dias D, Pan Q. Influence of a weak layer on the tunnel face
55 56 57	879		stability – Reliability and sensitivity analysis. Computers and Geotechnics, 2020, 122:
58 59 60	880		103507

2			
- 3 4	881	47.	Jongpradist P, Jamsawang P, Kongkitkul W. Equivalent void ratio controlling the
5 6	882		mechanical properties of cementitious material-clay mixtures with high water content.
/ 8 9	883		Marine Georesources & Geotechnology, 2019, 37(10): 1151–1162
) 10 11	884	48.	Jongpradist P, Homtragoon W, Sukkarak R, Kongkitkul W, Jamsawang P. Efficiency
12 13	885		of rice husk ash as cementitious material in high-strength cement-admixed clay.
14 15 16	886		Advances in Civil Engineering, 2018, 2018: 8346319
10 17 18	887	49.	Huang J, Kelly R, Sloan S W. Stochastic assessment for the behaviour of systems of
19 20	888		dry soil mix columns. Computers and Geotechnics, 2015, 66: 75-84
21 22	889	50.	Schöbi R, Sudret B, Marelli S. Rare event estimation using Polynomial-Chaos Kriging.
23 24 25	890		ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
26 27	891		Engineering, 2017, 3(2): D4016002
28 29	892	51.	Marelli S, Sudret B. UQLab: a framework for uncertainty quantification in Matlab. In:
30 31 32	893		Proceedings of the 2nd International Conference on Vulnerability, Risk Analysis and
33 34	894		Management (ICVRAM2014). Liverpool, United Kingdom, 2014, 2554–2563
35 36	895	52.	Kasama K, Whittle A J, Zen K. Effect of spatial variability on the bearing capacity of
37 38 30	896		cement-treated ground. Soils and Foundations, 2012, 52(4): 600-619
40 41	897	53.	Bhasi A, Rajagopal K. Geosynthetic-reinforced piled embankments: comparison of
42 43	898		numerical and analytical methods. International Journal of Geomechanics, 2014, 15(5):
44 45 46	899		04014074
40 47 48	900	54.	Brinkgreve R B J, Kumarswamy S, Swolfs W M, Zampich L, Ragi Manoj N. PLAXIS
49 50	901		2D Material model manual. Plaxis bv., The Netherlands, 2019
51 52	902	55.	Schanz T, Vermeer A, Bonnier P. The hardening soil model: formulation and
53 54 55	903		verification. In: Proceedings of 1st international PLAXIS symposium on beyond 2000
56 57	904		in computational geotechnics. Amsterdam, the Netherlands, 1999, 281-296
58 59 60	905	56.	Jamsawang P, Voottipruex P, Tanseng P, Jongpradist P. Effectiveness of deep cement

Page 39 of 56

906		mixing walls with top-down construction for deep excavations in soft clay: case study
907		and 3D simulation. Acta Geotechnica, 2019, 14(1): 225-246
908	57.	Waichita S, Jongpradist P, Jamsawang P. Characterization of deep cement mixing wall
909		behavior using wall-to-excavation shape factor. Tunnelling and Underground Space
910		Technology, 2019, 83: 243–253
911	58.	Wonglert A, Jongpradist P, Jamsawang P, Larsson S. Bearing capacity and failure
912		behaviors of floating stiffened deep cement mixing columns under axial load. Soils
913		and Foundations, 2018, 58(2): 446-461
914	59.	Surarak C, Likitlersuang S, Wanatowski D, Balasubramaniam A, Oh E, Guan H.
915		Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok
916		clays. Soils and Foundations, 2012, 52(4): 682-697
917	60.	Jamsawang P, Voottipruex P, Boathong P, Mairaing W, Horpibulsuk S. Three-
918		dimensional numerical investigation on lateral movement and factor of safety of slopes
919		stabilized with deep cement mixing column rows. Engineering Geology, 2015, 188:
920		159–167
921	61.	Goh A T C, Zhang F, Zhang W, Zhang Y, Liu H. A simple estimation model for 3D
922		braced excavation wall deflection. Computers and Geotechnics, 2017, 83: 106-113
923	62.	Hsiung B C B, Yang K H, Aila W, Ge L. Evaluation of the wall deflections of a deep
924		excavation in Central Jakarta using three-dimensional modeling. Tunnelling and
925		Underground Space Technology, 2018, 72: 84–96
926	63.	Waichita S, Jongpradist P, Schweiger H F. Numerical and experimental investigation
927		of failure of a DCM-wall considering softening behaviour. Computers and
928		Geotechnics, 2020, 119: 103380
929	64.	Okyay U S, Dias D. Use of lime and cement treated soils as pile supported load
930		transfer platform. Engineering Geology, 2010, 114(1-2): 34-44
	 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 	90690790857.90991091158.91291359.91459.91560.91891992061.92161.92262.92362.92453.92563.92764.93064.

2			
3 4	931	65.	Ma H, Luo Q, Wang T, Jiang H, Lu Q. Numerical stability analysis of piled
5 6	932		embankments reinforced with ground beams. Transportation Geotechnics, 2020, 26:
7 8	933		100427
9 10 11	934	66.	Zhuang Y, Wang K. Finite element analysis on the dynamic behavior of soil arching
12 13	935		effect in piled embankment. Transportation Geotechnics, 2018, 14: 8-21
14 15	936	67.	Hamrouni A, Dias D, Sbartai B. Soil spatial variability impact on the behavior of a
16 17 18	937		reinforced earth wall. Frontiers of Structural and Civil Engineering, 2020, 14(2): 518-
19 20	938		531
21 22	939	68.	Das B M. Fundamentals of geotechnical engineering. Cengage Learning, 2007
23 24 25	940	69.	Kulhawy F H, Mayne P W. Manual on estimating soil properties for foundation
25 26 27	941		design. Rep. No. EPRI-EL-6800. Ithaca, New York: Cornell University, 1990
28 29	942	70.	Phoon K K, Kulhawy F H. Characterization of geotechnical variability. Canadian
30 31	943		Geotechnical Journal, 1999, 36(4): 612-624
32 33 34	944		
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 			
52 53 54 55 56 57 58 59 60			

Variable	Unit	Distribution	μ	σ	COV		References
					Mean	Range	
$S_{u, \text{ soil}}$	kPa	Log-normal	15	3.6	24%	4-44%	Phoon and Kulhawy [70]
$q_{u,\mathrm{pile}}$	kPa	Log-normal	200	100	50%	30-70%	< 60% Larsson et al. [28] 20-40% Namikawa and Koseki [29] 25-55% Liu et al. [30] 22-67% Al-Naqshabandy et al. [32] 30-70% Wijerathna and Liyanapathirana [35,36]
$\gamma_{ m emb}$	kN/m ³	Log-normal	16	1.44	9%	3-20%	Phoon and Kulhawy [70]

Table 1 Summary of random variable parameters used in the reliability analysis

Note: μ = mean; σ = standard deviation; COV = coefficient of variation; $s_{u, \text{soil}}$ = undrained shear strength of soil; $q_{u, \text{pile}}$ = unconfined compressive strength of pile; γ_{emb} = unit weight of embankment.

Table 2 Simulation process of the numerical modeling

Stage	Details	Duration (days)
1	Generation of the initial stresses using the coefficient of lateral earth pressure at rest and soil unit weight	-
2	Installation of the soil-cement pile (disregard the pile installation effect)	-
3	Construction of a 1.5-m-high embankment fill and initialize the displacements at the end of this stage	-
4	Installation of a 0.2-m-thick concrete slab	-
5	Apply a surcharge load of 25 kPa on the top of the concrete slab	-
6	Consolidation after end of stage construction (> 90% degree of consolidation)	1500

3	
4	
5	
2	
0	
7	
8	
9	
1	٥
1	1
	1
1	2
1	3
1	4
1	5
1	6
1	7
1	, 0
1	ð
1	9
2	0
2	1
- ว	2
~	∠ ∽
2	3
2	4
2	5
2	6
2	7
2	/ ^
2	8
2	9
3	0
3	1
3	2
2	2
ר ר	ر ۸
3	4
3	5
3	6
3	7
3	8
3	g
ر ۸	ر م
4	1
4	1
4	2
4	3
4	4
4	5
⊿	6
1	7
4	/ C
4	8
4	9
5	0
5	1
5	2
5	- 2
כ ר	ر
5	4
5	5
5	6
5	7
5	8
5	á
2	~

1 2

Parameters	Symbols	Soft clay
Unit weight (kN/m ³)	γ	15
Secant stiffness (kPa)	$E_{50}^{\it ref}$	2,400 ($E_{50}^{ref} = 160s_{u, \text{ soil}}$)
Tangential stiffness (kPa)	$E_{\it oed}^{\it ref}$	2,400 ($E_{oed}^{ref} = E_{50}^{ref}$)
Unloading and reloading stiffness (kPa)	E_{ur}^{ref}	7,200 ($E_{ur}^{ref} = 3E_{50}^{ref}$)
Poisson's ratio for unloading-reloading (-)	V_{ur}	0.20
Power of the stress level dependency of the stiffness (-)	т	1
Effective cohesion (kPa)	c'	2
Effective friction angle (degree)	ϕ'	22
Over consolidation ratio (-)	OCR	1.1
Permeability-vertical direction (m/day)	k_{y}	0.1×10^{-3}
Permeability-horizontal direction (m/day)	k _x	0.2×10^{-3}

Note: $s_{u, \text{ soil}}$ = undrained shear strength; reference stress for stiffnesses (p^{ref}) = 100 kPa; at-rest earth pressure coefficient for over-consolidated clay (K_0^{OC}) = $(1 - \sin \phi') \times \text{OCR}^{\sin \phi'}$.

Table 4Material properties in the Mohr–Coulomb (MC) model used for the soil–cement
mixing (SCM) piles and embankment fill and in the linear elastic (LE) model used
for the concrete slab

Parameters	Symbols	SCM pile	Embankment fill ^a	Concrete slab
Material model	-	МС	MC	LE
Unit weight (kN/m ³)	γ	15	16	25
Elastic modulus (kPa)	E'	$100q_{u, \text{ pile}}$	3,000	1×10^{7}
Poisson's ratio (-)	ν'	0.33	0.25	0.20
Effective cohesion (kPa)	с'	$c_u = 0.5 q_{u, \text{ pile}}$	10	-
Effective friction angle (degree)	ϕ'	25	26	-
Permeability-vertical direction (m/day)	k_y	0.1×10^{-3}	-	-
Permeability-horizontal direction (m/day)	k_x	0.2×10^{-3}	-	-

Note: $q_{u, \text{pile}} = \text{pile}$ unconfined compressive strength; $q_{u, \text{pile}}$ of reference case is 200 kPa. ^aData of embankment fill from Phutthananon et al. [22].

Parameters	Unit	DCM	TDM#1	TDM#2	TDM#3	TDM#4	TDM#5
D_{TDM} or D_{DCM}	m	0.80	1.00	1.15	1.31	1.40	1.50
$d_{\scriptscriptstyle TDM}$	m	-	0.50	0.50	0.50	0.50	0.50
Н	m	-	3.12	2.18	1.60	1.37	1.17
L_{TDM} or L_{DCM}	m	6.00	6.00	6.00	6.00	6.00	6.00
V_p	m ³	3.02	3.02	3.02	3.02	3.02	3.02
$\alpha_{_{s}}$	-	1.0	1.6	2.2	3.0	3.5	4.0
a_r	%	12.57	19.63	25.97	33.70	38.48	44.18

Table 5Case investigated in the parametric study

Note: D_{TDM} = TDM pile head diameter; D_{DCM} = DCM pile head diameter; d_{TDM} = TDM pile body diameter; H = thickness of TDM pile cap; L_{TDM} = TDM pile length; L_{DCM} = DCM pile length; V_p = pile volume; α_s = pile shape factor; a_r = area improvement ratio at shallow depth.

Table 6 Parameters used in the parametric study to investigate the effects of the variabilities of soil parameters

Parameters	Unit	Range of values
μ - $S_{u, \text{ soil}}$	kPa	5, 10, 15, 20, 25
$\text{COV-}s_{u, \text{ soil}}$	-	0.04, 0.24, 0.44
μ - $q_{u,\mathrm{pile}}$	kPa	200, 300, 400, 500, 600, 700, 800
$\text{COV-}q_{u, \text{ pile}}$	-	0.3, 0.5, 0.7
μ - $\gamma_{\rm emb}$	kN/m ³	14, 15, 16, 18, 20
$\text{COV-}\gamma_{\text{emb}}$	-	0.03, 0.09, 0.20

Fig. 1 150x93mm (300 x 300 DPI)

60

Concrete slab

Fig. 2 74x179mm (300 x 300 DPI)

Fig. 3

74x51mm (300 x 300 DPI)

https://mc.manuscriptcentral.com/fsce

149x80mm (300 x 300 DPI)

- 57 58
- 59
- 60

Fig. 5 74x70mm (300 x 300 DPI)

Fig. 6 74x51mm (300 x 300 DPI)

https://mc.manuscriptcentral.com/fsce

Fig. 9 74x74mm (300 x 300 DPI)

60

Fig. 10 74x74mm (300 x 300 DPI)

https://mc.manuscriptcentral.com/fsce

Fig. 11 74x74mm (300 x 300 DPI)

Fig. 13 74x74mm (300 x 300 DPI)