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Abstract The evolutionary origins of Bilateria remain enigmatic. One of the more enduring 
proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flat-
worms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other 
bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). 
Genome data can provide important comparative data and help understand the evolution and 
biology of enigmatic species better. Here, we assemble and analyze the genome of the simple, 
marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilate-
rian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 
chromosome-like scaffolds, with repeat content and intron, exon, and intergenic space comparable 
to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilat-
erians and to have retained ancestral metazoan synteny. Key bilaterian signaling pathways are also 
largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has 
a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body 
plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group 
of the rest of the Bilateria.
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Editor's evaluation
The authors provide a high-quality genome of the xenacoelomorph worm Xenoturbella bocki and 
discuss its structure and evolution. Understanding the genomic structure of this group provides 
important insights into bilaterian evolution. The authors make a solid case that the data they present 
is consistent with Xenacoelomorpha being a secondarily simplified member of Deuterostomia rather 
than a primitively simple sister group to all other bilaterians.

Introduction
Xenoturbella bocki (Figure 1) is a morphologically simple marine worm first described from specimens 
collected from muddy sediments in the Gullmarsfjord on the west coast of Sweden. There are now 
six described species of Xenoturbella – the only genus in the higher-level taxon of Xenoturbellida 
(Telford, 2008). X. bocki was initially included as a species within the Platyhelminthes (Westblad, 
1949), but molecular phylogenetic studies have shown that Xenoturbellida is the sister group of the 
Acoelomorpha, a second clade of morphologically simple worms also originally considered Platy-
helminthes: Xenoturbellida and Acoelomorpha constitute their own phylum, the Xenacoelomorpha 
(Philippe et al., 2019; Cannon et al., 2016). In addition to multiple phylogenetic studies that support 
the monophyly of the phylum, Xenacoelomorpha is convincingly supported by classical analysis in the 
field of evolution of development, for example, their sharing unique amino acid signatures in their 
Caudal genes (Philippe et al., 2019) and a Hox4/5/6 gene (Ueki et al., 2019). Here we analyze our 
data in this phylogenetic framework of a monophyletic taxon.

The simplicity of xenacoelomorph species compared to other bilaterians is a central feature of 
discussions over their evolution. While Xenacoelomorpha are clearly monophyletic, their phylogenetic 
position within the Metazoa has been controversial for a quarter of a century. There are two broadly 
discussed scenarios: a majority of studies have supported a position for Xenacoelomorpha as the 
sister group of all other Bilateria (the Protostomia and Deuterostomia, collectively named Nephrozoa) 
(Jimenez-Guri et al., 2006; Ryan et al., 2006; Jékely, 2013); work we have contributed to Telford, 
2008; Philippe et al., 2019; Philippe et al., 2011; Bourlat et al., 2006, has instead placed Xenacoe-
lomorpha within the Bilateria as the sister group of the Ambulacraria (Hemichordata and Echinoder-
mata) to form a clade called the Xenambulacraria (Philippe et al., 2011).

X. bocki has neither organized gonads nor a centralized nervous system. It has a blind gut, no body 
cavities, and lacks nephrocytes (Nakano, 2015). If Xenacoelomorpha is the sister group to Nephrozoa, 
these character absences can be parsimoniously interpreted as representing the primitive state of the 
Bilateria. According to advocates of the Nephrozoa hypothesis, these and other characters absent in 
Xenacoelomorpha must have evolved in the lineage leading to Nephrozoa after the divergence of 
Xenacoelomorpha. More generally, there has been a tendency to interpret Xenacoelomorpha (espe-
cially Acoelomorpha) as living approximations of Urbilateria (Hejnol et al., 2009; Hejnol and Martin-
dale, 2008).

An alternative explanation for the simple body plan of xenaceolomorphs is that it is derived from 
that of more complex urbilaterian ancestors through loss of morphological characters. The loss or 
remodeling of morphological complexity is a common feature of evolution in many animal groups 
and is typically associated with unusual modes of living (Martynov et al., 2020; Westheide, 1987) 
– in particular, the adoption of a sessile (sea squirts, barnacles) or parasitic (neodermatan flatworms, 
orthonectids) lifestyle, extreme miniaturization (e.g., tardigrades, orthonectids), or even neoteny (e.g., 
flightless hexapods).

The biology of Xenoturbella is difficult to study in vivo – they are hard to collect and mostly inac-
tive in culture: knowledge of their embryology is restricted to one descriptive paper of a handful of 
embryos (Nakano et al., 2013). One route to better understanding the biology of this key taxon in 
the phylogeny of the animals is to read and study their genome.

In the past, some genomic features gleaned from analysis of various Xenacoelomorpha have been 
used to test these evolutionary hypotheses. For example, the common ancestor of the protostomes 
and deuterostomes has been reconstructed with approximately eight Hox genes but only four have 
been found in the Acoelomorpha (Nemertoderma) and five in Xenoturbella. This has been interpreted 
as a primary absence with the full complement of eight proposed to have appeared subsequent to 
the divergence of Xenacoelomorpha and Nephrozoa. Similarly, analysis of the microRNAs (miRNAs) of 

https://doi.org/10.7554/eLife.94948
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an acoelomorph, Symsagittifera roscoffensis, found that many bilaterian miRNAs were absent from its 
genome (Sempere et al., 2006). Some of the missing bilaterian miRNAs, however, were subsequently 
observed in Xenoturbella (Philippe et al., 2011).

The few xenacoelomorph genomes available to date are from the acoel Hofstenia miamia (Gehrke 
et al., 2019) – like other Acoelomorpha it shows accelerated sequence evolution relative to Xenotur-
bella (Philippe et al., 2019) – and from two closely related species Praesagittifera naikaiensis (Arimoto 
et al., 2019) and Symsagittifera roscoffensis (Martinez et al., 2023). The analyses of gene content 
of Hofstenia showed similar numbers of genes and gene families to other bilaterians (Gehrke et al., 
2019), while an analysis of the neuropeptide content concluded that most bilaterian neuropeptides 
were present in Xenacoelomorpha (Moroz et al., 2021).

In order to infer the characteristics of the ancestral xenacoelomorph genome, and to complement 
the data from the Acoelomorpha, we describe a highly scaffolded genome of the slowly evolving 
xenacoelomorph X. bocki. Our data allow us to contribute knowledge of Xenacoelomorpha and Xeno-
turbella in particular of genomic traits, such as gene content and genome structure and to help recon-
struct the genome structure and composition of the ancestral xenacoelomorph. Our data suggest 
that, while Xenoturbella is generally described as having a very simple body (interpreted by many as 
primitively simple), its genome is of a similar complexity to many other bilaterians, perhaps lending 
support to the idea that the simplicity of X. bocki is derived.

Results
Assembly of a draft genome of X. bocki
We collected X. bocki specimens (Figure 1) from the bottom of the Gullmarsfjord close to the biolog-
ical field station in Kristineberg (Sweden). These adult specimens were starved for several days in 
tubes with artificial sea water, and then sacrificed in lysis buffer. We extracted high molecular weight 
(HMW) DNA from single individuals for each of the different sequencing steps below.

We assembled a high-quality draft genome of X. bocki using one short read Illumina library and one 
TruSeq Synthetic Long Reads (TSLR) Illumina library. We used a workflow based on a primary assembly 
with SPAdes (‘Materials and methods’; Bankevich et al., 2012). The primary assembly had an N50 of 
8.5 kb over 37,880 contigs with a maximum length of 206,709 bp. After using the redundans pipeline 

eLife digest Xenoturbella bocki is a small marine worm predominantly found on the seafloor of 
fjords along the west coast of Sweden. This simple organism’s unusual evolutionary history has long 
intrigued zoologists as it is not clear how it is related to other animal groups. The worm may belong 
to one of the earliest branches of the animal kingdom, which would explain its simple body. On the 
other hand, it could be related to a more complex group, the deuterostomes, which includes a wide 
range of animals, from mammals and birds to sea urchins and starfish.

Understanding X. bocki’s evolution could provide valuable insights into how bilaterians evolved 
as a whole. Unlike its close relatives, the acoelomorphs, X. bocki evolves more slowly, which makes it 
simpler to study its genome. As a result, it serves as a starting point for investigating the evolutionary 
processes and genetics underpinning the broader group of bilaterians.

To better understand the evolution of X. bocki’s simple body, Schiffer et al. asked whether its 
genome is simpler or differs in other ways from that of more complex bilaterian organisms. Sequencing 
the entire X. bocki genome revealed that it has a similar number of genes to that of other animals 
and includes the genes required for complex biochemical pathways. Reconstructing the worm’s chro-
mosomes – the structures that house genetic information – showed that the X. bocki genes are also 
distributed in a manner similar to those in other animals.

The findings suggest that, despite its simple body plan, X. bocki has a complex genome that is 
typical of bilaterians. This challenges the idea that X. bocki belongs to a more primitive, simplified 
sister group to Bilateria and provides a starting point for further studies of how this simple worm 
evolved.

https://doi.org/10.7554/eLife.94948
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(Pryszcz and Gabaldón, 2016), this increased to an N50 of ~62 kb over 23,094 contigs and scaffolds 
spanning ~121 Mb, and a longest scaffold of 960,978 kb (Table 1).

The final genome was obtained with Hi-C scaffolding using the program instaGRAAL (Baudry et al., 
2020). The scaffolded genome has a span of 111 Mbp (117 Mbp including small fragments unincor-
porated into the HiC assembly) and an N50 of 2.7 Mbp (for contigs >500 bp). The assembly contains 
18 megabase-scale scaffolds encompassing 72 Mbp (62%) of the genomic sequence, with 43% GC 
content. The original assembly indicated a repeat content of about 25% after a RepeatModeller-
based RepeatMasker annotation (‘Materials and methods’). As often seen in non-model organisms, 
about 2/3 of the repeats are not classified.

We used BRAKER (Hoff et al., 2019, Hoff et al., 2016) with extensive RNA-seq data, and addi-
tional single-cell UTR enriched transcriptome sequencing data to predict 15,154 gene models. A 
total of 9575 gene models (63%) are found on the 18 large scaffolds (which represent 62% of the 
total sequence). A total of 13,298 of our predicted genes (88%) have RNA-seq support. Although this 
proportion is at the low end of bilaterian gene counts, we note that our RNA-seq libraries were all 
taken from adult animals and thus may not represent the true complexity of the gene complement. 
We consider our predicted gene number to be a lower bound estimate for the true gene content.

The predicted X. bocki genes have a median coding length of 873 nt and a mean length of 1330 
nt. Median exon length is 132 nt (mean 212 nt) and median intron length is 131 nt (mean 394 nt). 
Genes have a median of 4 exons and a mean of 8.5 exons. A total of 2532 genes have a single exon, 
of which 1381 are supported as having a single exon by RNA-seq (TPM > 1). A comparison of the 
exon, intron, and intergenic sequence content in Xenoturbella with those described in other animal 
genomes (Francis and Wörheide, 2017) shows that X. bocki falls within the range of other similarly 
sized metazoan genomes (Figure 2) for all these measures.

Table 1. Improvement of assembly and scaffolding metrics.

Assembly step # seqs # reals # Ns Max length N50

Redundans contigs 37,880 113,212,556 38,3327 206,709 8544

Redundans scaffolds 24,538 117,405,089 3,021,351 952,321 52,073

Pre instaGRAAL 23,094 117,396,873 3,534,582 960,978 61,989

Final scaffolds 27,939 107,712,917 3,328,069 8,757,424 2,730,651

Assessed with the jvci toolbox: https://github.com/tanghaibao/jcvi (Tang, 2010).
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Figure 1. Schematic drawings of X. bocki showing the simple body organization of the marine vermiform animal. ant, anterior; post, posterior; If, lateral 
furrow; rf, ring furrow; m, mouth opening.
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The genome of a co-sequenced Chlamydia species
We recovered the genome of a marine Chlamydia species from Illumina data obtained from one X. 
bocki specimen and from Oxford Nanopore data from a second specimen supporting previous micro-
scopic analyses and single-gene PCRs suggesting that X. bocki is host to a species in the bacterial 
genus Chlamydia. The bacterial genome was found as five contigs spanning 1,906,303 bp (N50 of 
1,237,287  bp), which were assembled into two large scaffolds. Using PROKKA (Seemann, 2014), 
we predicted 1738 genes in this bacterial genome, with 3 ribosomal RNAs, 35 transfer RNAs, and 1 
transfer-messenger RNA. The genome is 97.5% complete for bacterial BUSCO (Simão et al., 2015) 
genes, missing only one of the 40 core genes.

Marine chlamydiae are not closely related to the group of human pathogens (Dharamshi et al., 
2020), and we were not able to align the genome of the Chlamydia-related symbiont from X. bocki 
to the reference strain Chlamydia trachomatis F/SW4, nor to Chlamydophila pneumoniae TW-183. To 
investigate the phylogenetic position of the species co-occurring with Xenoturbella, we aligned the 
16S rRNA gene from the X. bocki-hosted Chlamydia with orthologs from related species including 
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Figure 2. A comparison of total length of exons, intrans, and intergeneic space in the X. bocki genome with other metazoans (data from Francis and 
Wörheide, 2017). X. bocki does not appear to be an outlier in any of these comparisons.
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sequences of genes amplified from DNA/RNA extracted from deep-sea sediments. The X. bocki-
hosted Chlamydia belong to a group designated as Simkaniaceae in Dharamshi et al., 2020, with the 
sister taxon in our phylogenetic tree being the Chlamydia species previously found in X. westbladi (X. 
westbladi is almost certainly a synonym of X. bocki) (Rouse et al., 2016; Figure 3).

To investigate whether the X. bocki-hosted Chlamydia might contribute to the metabolic pathways 
of its host, we compared the completeness of metabolic pathways in KEGG for the X. bocki genome 
alone and for the X. bocki genome in combination with the bacteria. We found only slightly higher 
completeness in a small number of pathways involved in carbohydrate metabolism, carbon fixation, 
and amino acid metabolism (see supplementary material), suggesting that the relationship is likely to 
be commensal or parasitic rather than a true symbiosis.

A second large fraction of bacterial reads, annotated as Gammaproteobacteria, were identified 
and filtered out during the data processing steps. These bacteria were also previously reported as 
potential symbionts of X. bocki (Kjeldsen et al., 2010). However, these sequences were not suffi-
ciently well covered to reconstruct a genome, and we did not investigate them further.

HGT into the X. bocki genome is low
Given the close association with bacteria, we were curious to see whether the X. bocki genome 
contains an elevated number of horizontally acquired genes. We did not find this to be the case. We 
were able to detect 56 potential horizontal gene transfer (HGT) events. Phylogenies generated using 
closest blast hits for each HGT candidate unveiled one of the 56 genes to be of chlamydial origin 
and thus likely originating from a bacterial contig. A number of HGT candidates appear to be of 
proteobacterial origin, coding for a functionally diverse set of proteins. In summary, 0.35% of the X. 
bocki genes we have identified might be horizontally acquired. See supplementary online material for 
alignments and gene trees.

A phylogenetic gene presence/absence matrix supports 
Xenambulacraria
The general completeness of the X. bocki gene set allowed us to use the presence and absence of 
genes identified in our genomes as a source of information to find the best supported phylogenetic 
position of the Xenacoelomorpha. We conducted two separate phylogenetic analyses of gene pres-
ence/absence data: one including the fast-evolving Acoelomorpha and one without. In both analyses, 
the best tree grouped Xenoturbella with the Ambulacraria (Figure 4a). The analysis including acoels, 
however, placed the acoels as the sister group to Nephrozoa separate from Xenoturbella (Figure 4b). 
There are two explanations for this finding. The first would be that the Xenacoelomorphs are para-
phyletic; that Xenoturbella is the sister group of the Ambulacraria and Acoelomorpha the sister group 
of Nephrozoa. Because many other studies have shown the monophyly of Xenacoelomorpha to be 
robust (Philippe et  al., 2019; Cannon et  al., 2016; Rouse et  al., 2016; Srivastava et  al., 2014; 
Philippe et al., 2011; Bourlat et al., 2006; Ueki et al., 2019), we do not think this a plausible expla-
nation. The second explanation of this observation is that it is the result of systematic error caused 
by a high rate of gene loss or by orthologs being incorrectly scored as missing due to higher rates of 
sequence evolution in acoelomorphs (Natsidis et al., 2021). Under this second scenario, we consider 
it more likely that, of the two clades, it is the Acoelomorpha not Xenoturbella that are wrongly placed 
and that the position of Xenoturbella represents the more likely position of the entire phylum of Xena-
coelomorpha. We note that under both scenarios the focus of our work, Xenoturbella, is the sister 
group of the Ambulacraria though the implied error suggests that using gene presence/absence may 
not be the ideal way to solve difficult phylogenetic problems.

The X. bocki molecular toolkit is typical of bilaterians
One of our principal aims was to ask whether the Xenoturbella genome lacks characteristics otherwise 
present in the Bilateria. We found that for the Metazoa gene set in BUSCO (v5) the X. bocki proteome 
translated from our gene predictions is 82.5% complete and ~90% complete when partial hits are 
included (82 and 93%, respectively, for the Eukaryote gene set). This estimate is even higher in the 
acoel H. miamia, which was originally reported to be 90% (Gehrke et al., 2019), but in our re-analysis 
was 95.71%. In comparison, the morphologically highly simplified and fast-evolving annelid Intoshia 
linei (Schiffer et al., 2018) has a genome of fewer than 10,000 genes (Mikhailov et al., 2016) and in 

https://doi.org/10.7554/eLife.94948
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Figure 3. X. bocki harbors a marine Chlamydiae species as potential symbiont. In the phylogenetic analysis of 
16S rDNA (ML: GTR + F + R7; bootstrap values included) the bacteria in our X. bocki isolate (arrow) are sister lo a 
previous isolate from X. westbladi. X. westbladi is most likely a mis-identification of X. bocki.
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our analysis is only ~64% complete for the BUSCO (v5) Metazoa set. The model nematode Caenor-
habditis elegans is ~79% complete for the same set. Despite the morphological simplicity of both 
Xenoturbella and Hofstenia, these Xenacoelomorpha are missing few core genes compared to other 
bilaterian lineages that we perceive to have undergone a high degree of morphological evolutionary 
change (such as the evolution of miniaturization, parasitism, sessility, etc.).

Using our phylogenomic matrix of gene presence/absence (see above), we identified all orthologs 
that could be detected both in Bilateria (in any bilaterian lineage) and in any non-bilaterian; ignoring 
HGT and other rare events, these genes must have existed in Urbilateria (and, of less interest to us, 
in Urmetazoa). The absence of any of these bilaterian genes in any lineage of Bilateria must there-
fore be explained by loss of the gene. All individual bilaterian genomes were missing many of these 
orthologs but Xenacoelomorphs and some other bilaterians lacked more of these than did other taxa. 
The average numbers of these genes present in bilaterians = 7577; Xenoturbella = 5459; Hofstenia = 
5438; Praesagittifera = 4280; Drosophila = 4844 and Caenorhabditis = 4323.

To better profile the Xenoturbella and xenacoelomorph molecular toolkits, we used OrthoFinder 
to conduct orthology searches in a comparison of 155 metazoan and outgroup species, including the 

Xenambulacraria

Acoelomorpha

Xenambulacraria

b

Xenambulacraria

a

Figure 4. A phylogeny based on the presence and absence of genes calculated with OMA. Both analysis (a) and (b) confirm Xenambulacraria, that is, 
Xenoturbellida in a group with Echinoderms and Hemichordates. Inclusion of the acoel flatworms places these as sister to all other Bilateria (b). This 
placement appears as an artifact due to the very fast evolution in this taxon, in particular as good evidence exists for uniting Xenoturbellida and Acoela 
(Philippe et al., 2019; Cannon et al., 2016; Rouse et al., 2016; Srivastava et al., 2014; Philippe et al., 2011; Bourlat et al., 2006; Ueki et al., 
2019).

https://doi.org/10.7554/eLife.94948
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transcriptomes of the sister species Xenoturbella profunda and a draft genome of the acoel Parato-
mella rubra we had available, as well as the Hofstenia and Praesagittifera proteomes (Supplemen-
tary file 1). For each species, we counted, in each of the three Xenacoelomorphs, the number of 
orthogroups for which a gene was present. The proportion of orthogroups containing an X. bocki 
and X. profunda protein (87.4 and 89.2%) are broadly similar to the proportions seen in other well-
characterized genomes, for example, S. purpuratus proteins (93.8%) or N. vectensis proteins (84.3%) 
(Figure 5). In this analysis, the fast-evolving nematode C. elegans appears as an outlier, with only ~64% 
of its proteins in orthogroups and ~35% unassigned. Both Xenoturbella species have an intermediate 
number of unassigned genes of ~11–12%. Similarly, the proportion of species-specific genes (~14% of 
all genes) corresponds closely to what is seen in most other species (with the exception of the parasitic 
annelid I. linei, Figure 5).

Idiosyncrasies of Xenoturbella
In order to identify sets of orthologs specific to the two Xenoturbella species, we used the kinfin 
software (Laetsch and Blaxter, 2017a) and found 867 such groups in the OrthoFinder clustering. We 
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Figure 5. In our orthology screen, X. bocki shows similar percentages of genes in orthogroups, unassigned genes, and species-specific orthogroups as 
other well-annotated enomes.

https://doi.org/10.7554/eLife.94948
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profiled these genes based on Pfam domains and GO terms derived from InterProScan. While these 
Xenoturbella specific proteins fall into diverse classes, we did see a considerable number of C-type 
lectin, Immunoglobulin-like, PAN, and Kringle domain containing Pfam annotations. Along with the 
cysteine-rich secretory protein family and the G-protein-coupled receptor activity GO terms, these 
genes and families of genes may be interesting for future studies into the biology of Xenoturbella in 
its native environment.

Gene families and signaling pathways are retained in X. bocki
In our orthology clustering, we did not see an inflation of Xenoturbella-specific groups in comparison 
to other taxa, but also no conspicuous absence of major gene families (Figure 6). Family numbers of 
transcription factors like Zinc-fingers or homeobox-containing genes, as well as, for example, NACHT-
domain encoding genes seem to be neither drastically inflated nor contracted in comparison to other 
species in our InterProScan-based analysis.

To catalogue the completeness of cell signaling pathways, we screened the X. bocki proteome 
against KEGG pathway maps using GenomeMaple (Takami et al., 2016). The X. bocki gene set is 
largely complete in regard to the core proteins of these pathways, while an array of effector proteins 
is absent (Figure 6). In comparison to other metazoan species, as well as to a unicellular choanofla-
gellate and a yeast, the X. bocki molecular toolkit has significantly lower KEGG completeness than 

t-test

a b

Figure 6. The heatmaps show a comparative measure of relative completeness of signaling pathways based on KEGG and assessed with 
GenomeMaple or abundance of genes in a given gene-family based on lnterProsScan annotations. (a) Cell signaling pathways in X. bocki are 
functionally complete, but in comparison to other species contain less genes. The overall completeness is not significantly different to, for example, the 
nematode C. elegans (inset, t-test). (b) The number of family members per species in major gene families (based on Pfam domains), like transcription 
factors, fluctuates in evolution. The X. bocki genome does not appear to contain particularly less or more genes in any of the analyzed families. Due to 
the comparative nature of the assay, no ‘true’ scale can be given: darker colors indicate higher comparative completeness. Schematic cladograms are 
drawn by the authors.

https://doi.org/10.7554/eLife.94948
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morphologically complex animals such as the sea urchin and amphioxus (t-test; Figure 6). Xenotur-
bella is, however, not significantly less complete compared to other bilaterians considered to have 
low morphological complexity and which have been shown to have reduced gene content, such as C. 
elegans, the annelid parasite I. linei, or the acoel H. miamia (Figure 6).

Clustered homeobox genes in the X. bocki genome
Acoelomorph flatworms possess three unlinked HOX genes, orthologs of anterior (Hox1), central 
(Hox4/5 or Hox5), and posterior Hox (HoxP). In contrast, previous analysis of X. bocki transcriptomes 
identified one anterior, three central, and one posterior Hox genes. We identified clear evidence of a 
syntenic Hox cluster with four Hox genes (centHox1, postHox, centHox3, and antHox1) in the X. bocki 
genome (Figure 7). There was also evidence of a fragmented annotation of centHox2, split between 
the four gene Hox cluster and a separate scaffold (Figure 7). In summary, this suggests that all five 
Hox genes form a Hox cluster in the X. bocki genome, but that there are possible unresolved assembly 
errors disrupting the current annotation. We also identified other homeobox genes on the Hox cluster 
scaffold, including Evx (Figure 7).

Along with the Hox genes, we surveyed other homeobox genes that are typically clustered in 
Bilateria. The canonical bilaterian ParaHox cluster contains three genes Cdx, Xlox (=Pdx), and Gsx. 
We identified Cdx and a new Gsx annotation on the same scaffold, as well as a previously reported 
Gsx paralog on a separate scaffold. This indicates partial retention of the ParaHox cluster in X. bocki 
along with a duplication of Gsx. On both of these ParaHox-containing scaffolds, we observed other 
homeobox genes.

Hemichordates and chordates have a conserved cluster of genes involved in patterning their 
pharyngeal pores – the so-called ‘pharyngeal cluster’. The homeobox genes of this cluster (Msxlx, 
Nk2-1/2/4/8) were present on a single X. bocki scaffold. Another pharyngeal cluster transcription 
factor, the Forkhead containing Foxa, and ‘bystander’ genes from that cluster including Egln, Mipol1, 
and Slc25a21 are found in the same genomic region. Different subparts of the cluster are found in 
non-bilaterians and protostomes, and the cluster may well be plesiomorphic for the Bilateria rather 
than a deuterostome synapomorphy (Kapli et al., 2021).

Figure 7. X. bocki has five HOX genes, which are located in relatively close proximity on one of our chromosome-size scaffolds. Similar clusters exist 
for the ParaHox and ‘pharyngeal’ genes. Numbers between genes are distance (below) and number of genes between (below). Colors indicate gene 
families. Red box marks the position of a partial Hox gene. The ‘?’ gene has an unresolved homeodomain identity.

https://doi.org/10.7554/eLife.94948
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The X. bocki neuropeptide complement is larger than previously 
thought
A catalog of acoelomorph neuropeptides was previously described using transcriptome data (Thiel 
et  al., 2018a). We have discovered 12 additional neuropeptide genes and 39 new neuropeptide 
receptors in X. bocki adding 6 bilaterian peptidergic systems to the Xenoturbella catalog (NPY-F; 
MCH/Asta-C; TRH; ETH; CCHa/Nmn-B; Np-S/CCAP), and 6 additional bilaterian systems to the Xena-
coelomorpha catalog (Corazonin; Kiss/GPR54; GPR83; 7B2; Trunk/PTTH; NUCB2), making a total of 
31 peptidergic systems (Figure 8).

 

Among the ligand genes, we identified six new repeat-containing sequences. One of these, the 
LRIGamide-peptide, had been identified in Nemertodermatida and Acoela and its loss in Xenoturbella 
had been proposed (Thiel et al., 2018a). We also identified the first 7B2 neuropeptide and NucB2/
Nesfatin genes in Xenacoelomorpha. Finally, we identified three new X. bocki insulin-like peptides, 
one of them sharing sequence similarity and an atypical cysteine pattern with the Ambulacrarian 
octinsulin, constituting a potential synapomorphy of Xenambulacraria (see https://doi.org/10.5281/​
zenodo.6962271).

Our searches also revealed the presence of components of the arthropod moulting pathway 
components (PTTH/trunk, NP-S/CCAP, and Bursicon receptors), which have recently been shown to 
be of ancient origin (de Oliveira et al., 2019). We further identified multiple paralogs of the Tachy-
kinin, Rya/Luquin, tFMRFa, Corazonin, Achatin, CCK, and Prokineticin receptor families. Two complete 
X. bocki Prokineticin ligands were also found in our survey (Figure 8).

Chordate Prokineticin ligands possess a conserved N-terminal ‘AVIT’ sequence required for the 
receptor activation (Negri and Ferrara, 2018). This sequence is absent in arthropod Astakine, which 
instead possess two signature sequences within their Prokineticin domain (Ericsson and Söderhäll, 
2018). To investigate Prokineticin ligands in Xenacoelomorpha, we compared the sequences of their 
Prokineticin ligands with those of other bilaterians (Figure 8). Our alignment reveals clade-specific 
signatures already reported in Ecdysozoa and Chordata sequences, but also two new signatures 
specific to Lophotrochozoa and Cnidaria sequences, as well as a very specific ‘K/R-RFP-K/R’ signature 
shared only by ambulacrarian and X. bocki sequences. The shared Ambulacrarian/Xenacoelomorpha 
signature is found at the same position as the Chordate sequence involved in receptor activation – 
adjacent to the N-terminus of the Prokineticin domain (Figure 8).

The X. bocki genome contains most of the bilaterian miRNAs reported 
missing from acoels
microRNAs have previously been used to investigate the phylogenetic position of the acoels and 
Xenoturbella. The acoel S. roscoffensis lacks some protostome and bilaterian miRNAs, and this lack 
was interpreted as supporting the position of acoels as sister group to the Nephrozoa. Based on 
shallow 454 microRNA sequencing (and sparse genomic traces) of Xenoturbella, some of the bilate-
rian miRNAs missing from acoels were found – 16 of the 32 expected metazoan (1 miRNA) and bila-
terian (31 miRNAs) microRNA families – of which six could be identified in genome traces (Philippe 
et al., 2011).

By deep sequencing two independent small RNA samples, we have now identified the majority 
of the missing metazoan and bilaterian microRNAs and identified them in the genome assembly 
(Figure  9). Altogether, we found 23 out of 31 bilaterian microRNA families (35 genes including 
duplicates); the single known Metazoan microRNA family (MIR-10) in two copies; the Deuterostome-
specific MIR-103; and 7 Xenoturbella-specific microRNAs, giving a total of 46 microRNA genes. None 
of the protostome-specific miRNAs were found. We could not confirm in the RNA sequences or new 
assembly a previously identified, and supposedly xenambulacrarian-specific, MIR-2012 ortholog.

The X. bocki genome retains ancestral metazoan linkage groups
The availability of chromosome-scale genomes has made it possible to reconstruct 24 ancestral linkage 
units broadly preserved in bilaterians (Simakov et al., 2020). In fast-evolving genomes, such as those 
of nematodes, tunicates, or platyhelminths, these ancestral linkage groups (ALGs) are often dispersed 

https://doi.org/10.7554/eLife.94948
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
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Figure 8. X.bocki genome contains genes for most bilaterian specific peptidergic system and a prokineticin gene containing a signature sequence 
shared with ambulacraria. (a) Sequence alignment of Cnidarian Colipase-like protein, Ecdysozoan Astakine-like protein and Spiralian, Chordates 
and Xenacoelomorpha Prokineticin-like proteins show conserved cysteine positions (highlighted by red triangle), as well as clade specific signature 
sequences sequences among which a “K/R-RFP-K/R” sequence shared only by ambulacrarians and X. bocki. The signature previously reported 
for Ecdysozoa and chordata, as well as new signatures we found in Spiralia and Cnidaria is absent from ambulacrarians and X. bocki prokineticin 
ligand sequences. Sequences are available as Figure 8—source data 1; alignment files are available at https://doi.org/10.5281/zenodo.6962271. (b) 
Peptidergic systems found in Xenoturbella (X), Nemertodermatida (N) and Acoelomorpha (A). Novel findings are highlighted in the top right inset. 
Color of schemes and inset cladogram nodes on grey background depicts the evolutionary origin of peptidergic systems in accordance with our 
analysis: bilaterian, protostomian, chordate, xenacoelomorph + ambulacrarian last common ancestors respectively. 7B2, Neuroendocrine protein 
7B2; AKH, adipokinetic hormone; Asta-A, Allatostatin-A; Asta-C, Allatostatin-C; AVP, arginine vasopressin; AVT, Arginine vasotocin; CCAP, crustacean 
cardioactive peptide; CCHa, CCHamide peptide; CCK, cholecystokinin; CRF, Corticotropin-releasing factor; DH31, diuretic hormone 31; DH44, diuretic 
hormone 44; EH, eclosion hormone; GlycH A5, Glycoprotein Hormone alpha5; GlycH B2, Glycoprotein Hormone beta2; GnRH, Gonadotropin Releasing 
Hormone; GPR54, G Protein-Coupled Receptor 54; GPR83, G Protein-Coupled Receptor 83; ILP, Insulin-like peptide; Kiss, Kisspeptine; MCH, melanin 
concentrating hormone; Nmn-B, Neuromedin B; Np-S, Neuropeptide S; NP-Y/F, Neuropeptide Y/F; NucB2, nucleobindin 2; PDF, Pigment-dispersing 
factor; PEN, neuroendocrine peptide PEN; PTTH, Prothoracicotropic hormone; RYa, RYamide peptide; t-FMRFa, trochozoan-FMRFamide peptide. 

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Xenoturbella bocki neuropeptide sequences.

Source data 2. Xenoturbella bocki neuropeptide receptor sequences.

Figure 8 continued on next page
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and/or extensively fused (supplementary material). We were interested in testing whether the general 
conservation of the gene content in X. bocki is reflected in its genome structure.

We compared the genome of Xenoturbella to several other metazoan genomes and found that it 
has retained most of these ancestral bilaterian units: 12 chromosomes in the X. bocki genome derive 
from a single ALG, 5 chromosomes are made of the fusion of 2 ALGs, and 1 Xenoturbella chromosome 
is a fusion of 3 ALGs, as highlighted with the comparison of ortholog content with amphioxus, the sea 
urchin, and the sea scallop (Figure 10 and supplementary material).

One ALG that has been lost in chordates but not in ambulacrarians nor in mollusks (ALG R in sea 
urchin and sea scallop) is detectable in X. bocki (Figure 10), while X. bocki does not show the fusions 
that are characteristic of lophotrochozoans.

We also attempted to detect some pre-bilaterian arrangement of ancestral linkage: for instance, 
Simakov et al., 2022 predicted that several pre-bilaterian linkage groups successively fused in the 
bilaterian lineage to give ALGs A1, Q, and E. These ALGs are all represented as single units in X. bocki 
in common with other Bilateria. None of the inferred pre-bilaterian chromosomal arrangements that 
could have provided support for the Nephrozoa hypothesis were found in X. bocki, although of course 
this does not rule out Nephrozoa.

One X. bocki chromosomal fragment appears aberrant
The smallest of the 18 large scaffolds in the X. bocki genome did not show strong 1:1 clustering with 
any scaffold/chromosome of the bilaterian species we compared it to. To exclude potential contami-
nation in the assembly as a source for this contig, we examined the orthogroups to which the genes 
from this scaffold belong. We found that X. profunda (Rouse et al., 2016), for which a transcriptome 
is available, was the species that most often occurred in the same orthogroup with genes from this 
scaffold (41 shared orthogroups), suggesting the scaffold is not a contaminant.

Figure supplement 1. Radial tree representation of the phylogenetic analysis of bilaterian glycoprotein hormone and Bursicon.

Figure supplement 2. Radial tree representation of the sequence similarities analysis of bilaterian insulin-related peptides.

Figure supplement 3. Circular tree representation of the phylogenetic analysis of bilaterian Leucine-rich repeat-containing G-protein coupled 
Receptors (Rhodopsin type G-protein coupled Receptors delta).

Figure supplement 4. Circular tree representation of the phylogenetic analysis of bilaterian Rhodopsin type G-protein coupled Receptors beta and 
gamma.

Figure supplement 5. Circular tree representation of the phylogenetic analysis of bilaterian Tyrosine kinase Receptors.

Figure supplement 6. Circular tree representation of the phylogenetic analysis of bilaterian Secretin type G-protein coupled Receptors.

Figure 8 continued

Figure 9. The rev sed microRNA complement of X. bocki has a near-complete set of metazoan, bilaterian, and deuterostome families and genes. 
Presence (color) and absence (black) of microRNA families (column), paralog numbers (values and heatmap coloring) organized in node-specific blocks 
in a range of representative protostome and deuterostome species compared with Xenoturbella (species from MirGeneDB 2.1; Fromm et al., 2022). 
The bottom row depicts 2011 complement by Philippe et al., 2011 (blue numbers on black depict detected miRNA reads, but lack of genomic 
evidence). Red ‘x’ in the pink box highlights the lack of evidence for an Ambulacraria-specific microRNA in X. bocki.

https://doi.org/10.7554/eLife.94948
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We did observe links between the aberrant scaffold and several scaffolds from the genome of the 
sponge Ephydatia muelleri , but could not detect distinct synteny relationships to a single scaffold 
in other species. In line with this, genes on the scaffold show a different age structure compared to 
other scaffolds, with both more older genes (pre bilaterian) and more Xenoturbella-specific genes 
(Figure 11; supported by Ks statistics, supplementary material). This aberrant scaffold also had signifi-
cantly lower levels of methylation than the rest of the genome.
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Figure 10. A comparison of scaffolds in the X. bocki genome with other Metazoa. 17 of the 18 large scaffolds in the X. bocki genome are linked via 
synteny to distinct chromosomal scaffolds in these species.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Conservation of metazoan synteny and methylation in X. bocki.

Figure supplement 2. Intergenomic comparison of X. bocki and E. muelleri highlighting synteny connections between the aberrant scaffold c1896 and 
scaffolds across the sponge genome.

https://doi.org/10.7554/eLife.94948
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Discussion
The phylogenetic positions of Xenoturbella and the Acoelomorpha have been controversial since the 
first molecular data from these species appeared over 25 years ago. Today we understand that they 
constitute a monophyletic group of morphologically simple worms (Telford, 2008; Philippe et al., 
2011; Hejnol, 2015), but there remains a disagreement over whether they represent a secondarily 
simplified sister group of the Ambulacraria or a primitively simple sister group to all other Bilateria. 
Here we wanted to analyze the genome of X. bocki to glean insights into their biology from a new 
perspective.

Previous analyses of the content of genomes, especially of Acoela, have found a small number of 
Hox genes and of microRNAs of acoels, and this has been interpreted as representing an intermediate 
stage on the path to the ~8 Hox genes and 30 odd microRNAs of the Nephrozoa. A strong version 
of the Nephrozoa idea would go further than these examples and anticipate, for example, a genome-
wide paucity of bilaterian genes, GRNs, and biochemical pathways and/or an arrangement of chromo-
somal segments intermediate between those of the Eumetazoa and the Nephrozoa.
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Figure 11. Phylostratigraphic age distribution of genes on all major scaffolds in the X. bocki genome. One scaffold 
(c1896), which showed no synteny to a distinct chromosomal scaffold in the other metazoan species, also had a 
divergent gene age structure in comparison to other X. bocki scaffolds.

https://doi.org/10.7554/eLife.94948
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One criticism of the results from analyses of acoel genomes is that the Acoelomorpha have evolved 
rapidly (their long branches in phylogenetic trees showing high rates of sequence change). This rapid 
evolution might plausibly be expected to correlate with other aspects of rapid genome evolution 
such as higher rates of gene loss and chromosomal rearrangements, leading to significant differences 
from other Bilateria. The more normal rates of sequence evolution observed in Xenoturbella therefore 
recommend it as a more appropriate xenacoelomorph to study with fewer apomorphic characters 
expected.

We have sequenced, assembled, and analyzed a draft genome of X. bocki. To help with annotation 
of the genome, we have also sequenced miRNAs and small RNAs as well as using bisulfite sequencing, 
Hi-C, and Oxford Nanopore Technologies sequencing. We compared the gene content of the Xeno-
turbella genome to species across the Metazoa and its genome structure to several other high-quality 
draft animal genomes.

We found the X. bocki genome to be fairly compact, but not unusually reduced in size compared to 
many other bilaterians. It appears to contain a similar number of genes (~15,000) as other animals, for 
example, from the model organisms Drosophila melanogaster (>14,000) and C. elegans (~20,000). The 
BUSCO completeness, as well as a high level of representation of X. bocki proteins in the orthogroups 
of our 155 species orthology screen, indicates that we have annotated a near-complete gene set. 
Surprisingly, there are fewer genes than in the acoel Hofstenia (>22,000; BUSCO_v5 score ~95%). 
This said, of the genes found in Urbilateria (orthogroups in our presence/absence analysis containing 
a member from both a bilaterian and an outgroup), Xenoturbella and Hofstenia have very similar 
numbers (5459 and 5438, respectively). Gene, intron, and exon lengths all also fall within the range 
seen in many other invertebrate species (Francis and Wörheide, 2017). It thus seems that basic 
genomic features in Xenoturbella are not anomalous among Bilateria. Unlike some extremely simpli-
fied animals, such as orthonectids, we observe no extreme reduction in gene content.

All classes of homeodomain transcription factors have previously been reported to exist in Xena-
coelomorpha (Brauchle et al., 2018). We have identified five HOX-genes in X. bocki and at least 
four, and probably all five of these are on one chromosomal scaffold within 187 Kbp. X. bocki also 
has the ParaHox genes Gsx and Cdx; while Xlox/pdx is not found, it is present in Cnidarians and must 
therefore have been lost (Jimenez-Guri et al., 2006). If block duplication models of Hox and ParaHox 
evolutionary relationships are correct, the presence of a complete set of ParaHox genes implies the 
existence of their Hox paralogs in the ancestor of Xenacoelomorphs, suggesting the xenacoelomorph 
ancestor also possessed a Hox 3 ortholog. If anthozoans also have an ortholog of bilaterian Hox 2 
(Ryan et al., 2006), this must also have been lost from Xenacoelomorphs. The minimal number of Hox 
genes in the xenacoelomorph stem lineage was therefore probably 7 (AntHox1, lost Hox2, lost Hox 3, 
CentHox 1, CentHox 2, CentHox 3, and postHoxP).

Based on early sequencing technology and without a reference genome available, it was thought 
that Acoelomorpha lack many bilaterian microRNAs. Using deep sequencing of small RNAs and 
our high-quality genome, we have shown that Xenoturbella shows a near-complete bilaterian set 
of miRNAs including the single deuterostome-specific miRNA family (MIR-103) (Figure 9). The low 
number of differential family losses of Xenoturbella (8 of 31 bilaterian miRNA families) inferred is the 
same as the number lost in the flatworm Schmidtea, and substantially lower than the number lost in 
the rotifer Brachionus (which has lost 14 bilaterian families). It is worth mentioning that X. bocki shares 
the absence of one miRNA family (MIR-216) with all Ambulacrarians, although if Deuterostomia are 
paraphyletic this could be interpretable as a primitive state (Kapli et al., 2021).

The last decade has seen a re-evaluation of our understanding of the evolution of the neuropeptide 
signaling genes (Jékely, 2013; Mirabeau and Joly, 2013). The peptidergic systems are thought to 
have undergone a diversification that produced approximately 30 systems in the bilaterian common 
ancestor (Jékely, 2013; Mirabeau and Joly, 2013). Our study identified 31 neuropeptide systems in 
X. bocki, and for all of these either the ligand, receptor, or both are also present in both protostomes 
and deuterostomes, indicating conservation across Bilateria. It is likely that more ligands (which are 
short and variable) remain to be found with better detection methods. It appears that the Xenotur-
bella genome contains a nearly complete bilaterian neuropeptide complement with no signs of simpli-
fication but rather signs of expansions of certain gene families. Our analyses also reveal a potential 
synapomorphy linking Xenacoelomorpha with Ambulacraria (Figure 8 and https://doi.org/10.5281/​
zenodo.6962271).

https://doi.org/10.7554/eLife.94948
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
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We have used the predicted presence and absence of genes across a selection of metazoan 
genomes as characters for phylogenetic analyses. Our trees reconfirm the findings of recent phylog-
enomic gene alignment studies in linking Xenoturbella to the Ambulacraria. We also used these data 
to test different bilaterians for their propensity to lose otherwise conserved genes (or for our inability 
to identify orthologs; Natsidis et al., 2021). While the degree of gene loss appears similar between 
Xenoturbella and acoels, the phylogenetic analysis shows longer branches leading to the acoels, most 
likely due to faster evolution, gain of lineage-specific genes, and some degree of gene loss in the 
branch leading to the Acoelomorpha. Recent work has shown the tendency of rapidly evolving genes 
(in particular those belonging to rapidly evolving species) to be missed by orthology detection soft-
ware (Natsidis et al., 2021; Weisman et al., 2020).

This pattern of conservation of evolutionarily old parts of the Metazoan genome is further rein-
forced by the retention in Xenoturbella of linkage groups present from sponges to vertebrates. It is 
interesting to note that X. bocki does not follow the pattern seen in other morphologically simpli-
fied animals such as nematodes and platyhelminths, which have lost and/or fused these ALGs. We 
interpret this to be a signal of comparably slower genomic evolution in Xenoturbella in comparison 
to some other bilaterian lineages. The fragmented genome sequence of Hofstenia prevents us from 
asking whether the ancient linkage groups have also been preserved in the Acoelomorpha.

One of the chromosome-scale scaffolds in our assembly showed a different methylation and age 
signal, with both older and younger genes, and no clear relationship to metazoan linkage groups. 
By analyzing orthogroups of genes on this scaffold for their phylogenetic signal and finding X. bocki 
genes to cluster with those of X. profunda, we concluded that the scaffold most likely does not 
represent a contamination. It remains unclear whether this scaffold is a fast-evolving chromosome or 
a chromosomal fragment or arm. Very fast evolution on a chromosomal arm has, for example, been 
shown in the zebrafish (Howe et al., 2016).

Apart from DNA from X. bocki, we also obtained a highly contiguous genome of a species related 
to marine Chlamydia species (known from microscopy to exist in X. bocki); a symbiotic relationship 
between Xenoturbella and the bacterium has been thought possible (Pillonel et al., 2018; Robertson 
et al., 2024). The large gene number and the completeness of genetic pathways we found in the 
chlamydial genome do not support an endosymbiotic relationship.

Overall, we have shown that, while Xenoturbella has lost some genes – in addition to the reduced 
number of Hox genes previously noted, we observe a reduction of some signaling pathways to the 
core components – in general, the X. bocki genome is not strikingly simpler than many other bilaterian 
genomes. We do not find support for a strong version of the Nephrozoa hypothesis that would predict 
many missing bilaterian genes. Bilaterian Hox and microRNA absent from Acoelomorpha are found 
in Xenoturbella eliminating the impact of two character types that were previously cited in support of 
Nephrozoa. The Xenoturbella genome has also largely retained the ALGs found in other bilaterians 
and does not represent a structure intermediate between Eumetazoan and bilaterian ground states. 
Overall, while we can rule out a strong version of the Nephrozoa hypothesis with many Bilaterian char-
acteristics missing in xenacoelomorphs, our analysis of the Xenoturbella genome cannot distinguish 
between a weak version of Nephrozoa and the Xenambulacraria topology.

Materials and methods
Genome sequencing, assembly, and scaffolding
We extracted DNA from individual Xenoturbella specimens with a standard and additionally worked 
with a Phenol–Chloroform protocol specifically developed to extract HMW DNA (dx.doi.org/10.​
17504/protocols.io.mrxc57n). The extracted DNA was quality controlled with a Nanodrop instrument 
in our laboratory and subsequently a TapeStation at the sequencing center. Worms were first starved 
and kept in repeatedly replaced salt water, reducing the likelihood of food or other contaminants 
in the DNA extractions. First, we sequenced Illumina short paired-end reads and mate pair libraries 
(see Philippe et al., 2019 for details). As the initial paired-read datasets were of low complexity and 
coverage, we later complemented these data with an Illumina HiSeq 2000/2500 series paired-end 
dataset with ~700 bp insert size and 250 bp read lengths, yielding ~354 million reads. Additionally, 
we generated ~40 million Illumina TruSeq Synthetic Long Reads (TSLR) for high-confidence primary 
scaffolding.

https://doi.org/10.7554/eLife.94948
https://dx.doi.org/10.17504/protocols.io.mrxc57n
https://dx.doi.org/10.17504/protocols.io.mrxc57n
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After read cleaning with Trimmomatic v.0.38 (Bolger et al., 2014), we conducted initial test assem-
blies using the clc assembly cell v.5 and ran the blobtools pipeline (Laetsch and Blaxter, 2017b) to 
screen for contamination (Figure  12). Not detecting any significant numbers of reads from suspi-
cious sources in the HiSeq dataset, we used SPAdes v. 3.9.0 (Bankevich et al., 2012) to correct and 
assemble a first draft genome. We also tried to use dipSPAdes but found the runtime to exceed 
several weeks without finishing. We submitted the SPAdes assembly to the redundans pipeline to 
eliminate duplicate contigs and to scaffold with all available mate pair libraries. The resulting assembly 
was then further scaffolded with the aid of assembled transcripts (see below) in the BADGER pipeline 
(Elsworth et al., 2013). In this way, we were able to obtain a draft genome with ~60 kb N50 that could 
be scaffolded to chromosome scale super-scaffolds with the use of 3C data.

We also used two remaining specimens to extract HMW DNA for Oxford Nanopore Technologies 
GridION sequencing in collaboration with the Loman Laboratory in Birmingham. Unfortunately, the 

Figure 12. Blobplot analysis of the primary lllumina genome assembly. The assembly shows no major microorganismal contamination, apart from the 
Chlamydia and Gammaproteobacteria described in the main text. The diamond tool was used to blast against the UniProt database for this analysis.

https://doi.org/10.7554/eLife.94948
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extraction failed for one individual, with the DNA appearing to be contaminated with a dark-colored 
residue. We were able to prepare a ligation and a PCR library for DNA from the second specimen and 
obtain some genomic data. However, due to pore blockage on both flow cells, the combined data 
amounted to only about 0.5-fold coverage of the genome and was thus not useful in scaffolding. We 
suspect that the dark coloration of the DNA indicates a natural modification to be present in X. bocki 
DNA that inhibits sequencing with the Oxford Nanopore method.

Library preparation for genome-wide bisulfite sequencing was performed as previously described 
(Lewis et al., 2020). The resulting sequencing data were aligned to the X. bocki draft genome using 
Bismark in non-directional mode to identify the percentage of methylation at each cytosine genome-
wide. Only sites with >10 reads mapping were considered for further analysis.

Preparation of the Hi-C libraries
The Hi-C protocol was adapted at the time from Lieberman-Aiden et al., 2009, Sexton et al., 2012, 
and Marie-Nelly et al., 2014. Briefly, an animal was chemically cross-linked for 1 hr at room tempera-
ture (RT) in 30 ml of PBS 1× added with 3% formaldehyde (Sigma – F8775 – 4 × 25 ml). Formaldehyde 
was quenched for 20 min at RT by adding 10 ml of 2.5 M glycine. The fixed animal was recovered 
through centrifugation and stored at –80°C until use. To prepare the proximity ligation library, the 
animal was transferred to a VK05 Precellys tubes in 1× DpnII buffer (New England Biolabs; 0.5 ml) 
and the tissues were disrupted using the Precellys Evolution homogenizer (Bertin-Instrument). SDS 
was added (0.3% final) to the lysate and the tubes were incubated at 65°C for 20 min, followed by 
an incubation at 37°C for 30 min and an incubation of 30 min after adding 50 µl of 20% triton-X100. 
A total of 150 units of the DpnII restriction enzyme were then added and the tubes were incubated 
overnight at 37°C. The endonuclease was inactivated 20 min at 65°C and the tubes were then centri-
fuged at 16,000 × g during 20 min, supernatant was discarded, and pellets were resuspended in 
200 µl NE2 1× buffer and pooled. DNA ends were labeled using 50 µl NE2 10× buffer, 37.5 µl 0.4 mM 
dCTP-14-biotin, 4.5 µl 10 mM dATP-dGTP-dTTP mix, 10 µl klenow 5 U/µl, and incubation at 37°C for 
45 min. The labeling mix was then transferred to ligation reaction tubes (1.6 ml ligation buffer; 160 µl 
ATP 100 mM; 160 µl BSA 10 mg/ml; 50 µl T4 DNA ligase [New England Biolabs, 5 U/µl]; 13.8 ml H2O) 
and incubated at 16°C for 4 hr. A proteinase K mix was added to each tube and incubated overnight 
at 65°C. DNA was then extracted, purified, and processed for sequencing as previously described 
(Baudry et al., 2020). Hi-C libraries were sequenced on a NextSeq 500 (2 × 75 bp, paired-end using 
custom-made oligonucleotides as in Marie-Nelly et al., 2014). Libraries were prepared separately 
on two individuals in this way but eventually merged. Note that a more recent version of the HI-C 
protocol than the one used here has been described elsewhere (Lafontaine et al., 2021).

instaGRAAL assembly preprocessing
The primary Illumina assembly contains a number of very short contigs, which are disruptive when 
computing the contact distribution needed for the instaGRAAL proximity ligation scaffolding (pre-
release version, see Marie-Nelly et al., 2014 and Baudry et al., 2020 for details). Testing several Nx 
metrics, we found a relative length threshold that depends on the scaffolds’ length distribution to be 
a good compromise between the need for a low-noise contact distribution and the aim of connecting 
most of the genome. We found N90 a suitable threshold and excluded contigs below 1308 bp. This 
also ensured no scaffolds shorter than three times the average length of a DpnII restriction fragment 
(RF) were in the assembly. In this way, every contig contained enough RFs for binning and were 
included in the scaffolding step.

Reads from both libraries were aligned with bowtie2 (v. 2.2.5) (Langmead and Salzberg, 2012) 
against the DpnII RFs of the reference assembly using the hicstuff pipeline (https://github.com/​
koszullab/hicstuff; koszullab, 2018) and in paired-end mode (with the options: -fg-maxins 5 -fg-very-
sensitive-local), with a mapping quality >30. The preprocessed genome was reassembled using insta-
GRAAL. Briefly, the program uses a Markov Chain Monte Carlo method that samples DNA segments 
(or bins) of the assembly for their best relative 1D positions with respect to each other. The quality of 
the positions is assessed by fitting the contact data first on a simple polymer model, then on the plot 
of contact frequency according to the genomic distance law computed from the data. The best rela-
tive position of a DNA segment with respect to one of its most likely neighbors consists in operations 
such as flips, swaps, merges, or a split of contigs. Each operation is either accepted or rejected based 

https://doi.org/10.7554/eLife.94948
https://github.com/koszullab/hicstuff
https://github.com/koszullab/hicstuff
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on the computed likelihood, resulting in an iterative progression toward the 1D structure that best 
fits the contact data. Once the entire set of DNA segments is sampled for position (i.e., a cycle), the 
process starts over. The scaffolder was run independently for 50 cycles, long enough for the chromo-
some structure to converge. The corresponding genome is then considered stable and suitable for 
further analyses (Figure 13). The scaffolded assemblies were then refined using instaGRAAL’s instaP-
olish module to correct small artifactual inversions that are sometimes a by-product of instaGRAAL’s 
processing.

Genome annotation
Transcriptome sequencing
We extracted total RNA from a single X. bocki individual and sequenced a strand-specific Illumina 
paired-end library. Extraction of total RNA was performed using a modified Trizol & RNeasy hybrid 
protocol for which tissue had to be stored in RNAlater. cDNA transcription reaction/cDNA synthesis 
was done using the RETROscript kit (Ambion) using both Oligo(dT) and Random Decamer primers. 
Detailed extraction and transcription protocols are available from the corresponding authors. The 
resulting transcriptomic reads (deposited under SRX20415651) were assembled with the Trinity pipe-
line (Haas et al., 2013; Trinity, 2015) into 103,056 sequences (N50: 705; BUSCO_v5 Eukaryota scores: 
C: 65.1%, [S: 34.1%, D: 31.0%], F: 22.0%, M: 12.9%) for initial control and then supplied to the genome 
annotation pipeline (below).

Repeat annotation
In the absence of a repeat library for Xenoturbellida, we first used RepeatModeller v. 1.73 to establish 
a library de novo. We then used RepeatMasker v. 4.1.0 (https://www.repeatmasker.org) and the Dfam 
library (Wheeler et al., 2013; Hubley et al., 2016) to soft-mask the genome. We mapped the repeats 
to the instaGRAAL scaffolded genome with RepeatMasker.
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Figure 13. Hi-C based genome scaffolding with instaGRAAL. (a) Contact frequency map of the largest 18 scaffolds and (b) distribution of contact 
frequency as a function of distance (distance law).

The online version of this article includes the following figure supplement(s) for figure 13:

Figure supplement 1. Kmer profile of the X. bocki Illumina WGS reads obtained with GenomeScope2 (Ranallo-Benavidez et al., 2020).

https://doi.org/10.7554/eLife.94948
https://www.ncbi.nlm.nih.gov/sra/SRX20415651%5baccn%5d
https://www.repeatmasker.org
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Gene prediction and annotation
We predicted genes using AUGUSTUS (Stanke and Waack, 2003) implemented into the BRAKER 
(v.2.1.0) pipeline (Hoff et al., 2019; Hoff et al., 2016) to incorporate the RNA-seq data. BRAKER 
uses spliced aligned RNA-seq reads to improve training accuracy of the gene finder GeneMark-ET 
(Lomsadze et al., 2014). Subsequently, a highly reliable gene set predicted by GeneMark-ET in ab 
initio mode was selected to train the gene finder AUGUSTUS, which in a final step predicted genes 
with evidence from spliced aligned RNA-seq reads. To make use of additional single-cell transcrip-
tome data allowing for a more precise prediction of 3’-UTRs, we employed a production version 
of BRAKER (August 2018 snapshot). We had previously mapped the RNA-seq data to the genome 
with gmap-gsnap v. 2018-07-04 (Wu et al., 2016) and used samtools (Li et al., 2009) and bamtools 
(Barnett et al., 2011) to create the necessary input files. This process was repeated in an iterative way, 
visually validating gene structures and comparing with mappings loci inferred from a set of single-
cell RNA-seq data (published elsewhere, see Robertson et al., 2022) in particular regarding fused 
genes. Completeness of the gene predictions was independently assessed with BUSCO_v5 (Simão 
et al., 2015) setting the metazoan and the eukaryote datasets as reference respectively on gVolante 
(Nishimura et al., 2017). We used InterProScan v. 5.27-66.0 standalone (Jones et al., 2014; Mulder 
and Apweiler, 2007) on the UCL cluster to annotate the predicted X. bocki proteins with Pfam, 
SUPERFAM, PANTHER, and Gene3D information.

Horizontal gene transfer
To detect horizontally acquired genes in the X. bocki genome, we used a pipeline available from 
https://github.com/reubwn/hgt (Nowell, 2016). Briefly, this uses blasts against the NCBI database, 
alignments with MAFFT (Katoh and Standley, 2013), and phylogenetic inferences with IQTREE (Minh 
et al., 2020; Nguyen et al., 2015) to infer most likely horizontally acquired genes, while trying to 
discard contamination (e.g., from co-sequenced gut microbiota).

Orthology inference
We included 155 metazoan species and outgroups in our orthology analysis. We either downloaded 
available proteomes or sourced RNA-seq reads from online repositories to then use Trinity v 2.8.5 and 
Trinnotate v. 3.2.0 to predict protein sets. In the latter case, we implemented diamond v. 2.0.0 blast 
(Buchfink et al., 2015; Buchfink et al., 2021) searches against UniProt and Pfam (Finn et al., 2016) 
hmm screens against the Pfam-A dataset into the prediction process. We had initially acquired 185 
datasets, but excluded some based on inferior BUSCO completeness, while at the same time aimed 
to span as many phyla as possible. Orthology was then inferred using OrthoFinder v. 2.2.7 (Emms and 
Kelly, 2019; Emms and Kelly, 2015), again with diamond as the blast engine.

Using InterProScan v. 5.27-66.0 standalone on all proteomes, we added functional annotation and 
then employed kinfin (Laetsch and Blaxter, 2017a) to summarize and analyze the orthology tables. 
For the kinfin analysis, we tested different query systems in regard to phylogenetic groupings (see 
supplementary material).

To screen for inflation and contraction of gene families, we first employed CAFE5 (Han et  al., 
2013), but found the analysis to suffer from long branches and sparse taxon sampling in Xenambu-
lacraria. We thus chose to query individual gene families (e.g., transcription factors) by looking up 
Pfam annotations in the InterProScan tables of high-quality genomes in our analysis.

Through the GenomeMaple online platform, we calculated completeness of signaling pathways 
within the KEGG database using GhostX as the search engine.

Presence/absence phylogenetics
We used a database of metazoan proteins, updated from Leclère et al., 2018, as the basis for an 
OMA analysis to calculate orthologous groups, performing two separate runs, one including Xeno-
turbella and acoels, and one with only Xenoturbella. We converted OMA gene ​OrthologousMatrix.​
txt files into binary gene presence absence matrices in Nexus format with datatype = restriction. We 
calculated phylogenetic trees on these matrices using RevBayes (see https://github.com/milliescient/​
metazoa-gene-content; Walker, 2017 for RevBayes script), as described in Mulder and Apweiler, 
2007 with corrections for no absent sites and no singleton presence, using the reversible, not the 
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Dollo model, as it is more likely to be able to correct for noise related to prediction errors (Pett et al., 
2019; Buchfink et al., 2015). For each matrix, two runs were performed and compared and consensus 
trees generated with bpcomp from Phylobayes (Lartillot et al., 2009).

Hox and ParaHox gene cluster identification and characterization
Previous work has already used transcriptomic data and phylogenetic inference to identify the 
homeobox repertoire in X. bocki. These annotations were used to identify genomic positions and 
gene annotations that correspond to Hox and ParaHox clusters in X. bocki. Protein sequences of 
homeodomains (Evx, Cdx, Gsx, antHox1, centHox1, centHox2, cent3, and postHoxP) were used 
as TBLASTN queries to identify putative scaffolds associated with Hox and ParaHox clusters. Gene 
models from these scaffolds were compared to the full-length annotated homeobox transcripts from 
Brauchle et al., 2018 using BLASTP, using hits over 95% identity for homeobox classification. There 
were some possible homeodomain-containing genes on the scaffolds that were not previously char-
acterized and were therefore not given an annotation.

There were issues concerning the assignment of postHoxP and Evx to gene models. To ascertain 
possible CDS regions for these genes, RNA-seq reads were mapped with HISAT2 to the scaffold and 
to previous annotation (Brauchle et al., 2018), were assembled with Trinity, and these were combined 
with BRAKER annotations.

Some issues were also observed with homeodomain queries matching genomic sequences that 
were identical, suggesting artifactual duplications. To investigate contiguity around genes, the ONT 
reads were aligned with Minimap2 to capture long reads over regions and coverage.

Small RNA sequencing and analysis
Two samples of starved worms were subjected to 5’ monophosphate-dependent sequencing of RNAs 
between 15 and 36 nucleotides in length, according to previously described methods (Sarkies et al., 
2015). Using miRTrace (Kang et al., 2018) 3.3, 18.6 million high-quality reads were extracted and 
merged with the 27,635 high-quality 454 sequencing reads from Philippe et al. The genome sequence 
was screened for conserved miRNA precursors using MirMachine (Umu et al., 2022), followed by 
a MirMiner run that used predicted precursors and processed and merged reads on the genome 
(Wheeler et al., 2009). Outputs of MirMachine and MirMiner were manually curated using a uniform 
system for the annotation of miRNA genes (Fromm et al., 2015) and by comparing to MirGeneDB 
(Fromm et al., 2022).

Neuropeptide prediction and screen
Neuropeptide prediction was conducted on the full set of X. bocki predicted proteins using two 
strategies to detect neuropeptide sequence signatures. First, using a custom script detecting the 
occurrence of repeated sequence patterns: RRx(3,36)RRx(3,36)RRx(3,36)RR,RRx(2,35)ZRRx(2,35)ZRR, 
RRx(2,35)GRRx(2,35)GRR, RRx(1,34)ZGRRx(1,34)ZGRR where R = K  or R; x = any amino acid; Z = 
any amino acid but repeated within the pattern. Second, using HMMER3.1 (Johnson et al., 2010) 
(http://www.hmmer.org/), and a combination of neuropeptide HMM models obtained from the PFAM 
database (http://pfam.xfam.org/) as well as a set of custom HMM models derived from the alignment 
of curated sets of neuropeptide sequences (Jékely, 2013; Mirabeau and Joly, 2013; Zandawala 
et al., 2017). Sequences retrieved using both methods and comprising fewer than 600 amino acids 
were further validated. First, by blast analysis: sequences with E-value ratio ‘best blast hit versus ncbi 
nr database/best blast hit versus curated neuropeptide dataset’ <1e-40 were discarded. Second by 
reciprocal best blast hit clustering using Clans (Frickey and Lupas, 2004) (https://www.bio.mpg.de/​
67908/clans) with a set of curated neuropeptide sequences (Jékely, 2013). SignalP-5.0 (Almagro 
Armenteros et  al., 2019) (https://services.healthtech.dtu.dk/services/SignalP-5.0/) was used to 
detect the presence of a signal peptide in the curated list of predicted neuropeptide sequences while 
Neuropred (Southey et al., 2006) (http://stagbeetle.animal.uiuc.edu/cgi-bin/neuropred.py) was used 
to detect cleavage sites and post-translational modifications. Sequence homology of the predicted 
sequence with known groups was analyzed using a combination of (i) blast sequence similarity with 
known bilaterian neuropeptide sequences, (ii) reciprocal best blast hit clustering using Clans and 
sets of curated neuropeptide sequences, and (iii) phylogeny using MAFFT (https://mafft.cbrc.jp/align-
ment/server/), TrimAl (Capella-Gutiérrez et al., 2009) (https://trimal.cgenomics.org/), and IQ-TREE 
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(Nguyen et  al., 2015) webserver for alignment, trimming, and phylogeny inference, respectively. 
Bilaterian Prokineticin-like sequences were searched in NCBI nucleotide, EST, and SRA databases 
as well as in the Saccoglossus kowalevskii genome assembly (Nguyen et al., 2015; Simakov et al., 
2015) (https://groups.oist.jp/molgenu) using various bilaterian Prokineticin-related protein sequences 
as query. The sequences used for alignments shown in the figures were collected from the NCBI nucle-
otide and protein databases as well as from the following publications: 7B2 (Jékely, 2013); NucB2 
(Zandawala et al., 2017); insulin (Cherif-Feildel et al., 2019); and Prokineticin (Negri and Ferrara, 
2018; Ericsson and Söderhäll, 2018; Thiel et al., 2018b). Alignments for figures were created with 
Jalview (https://www.jalview.org/).

Neuropeptide receptor search
Neuropeptide receptor sequences for rhodopsin-type GPCR, secretin-type GPCR, and tyrosine and 
serine/threonine kinase receptors were searched by running HMMER3.1 on the full set of X. bocki 
predicted proteins using the 7tm_1 (PF00001), 7tm_2 (PF00002), and PK_Tyr_Ser-Thr (PF07714) 
HMM models, respectively, which were obtained from the PFAM database (http://pfam.xfam.org/). 
Sequences above the significance threshold were then aligned with sequences from the curated 
dataset, trimmed, and phylogeny inference was conducted using same method as for the neuropep-
tide. A second alignment and phylogeny inference was conducted after the removal of all X. bocki 
sequences having no statistical support for grouping with any of the known neuropeptide receptors 
from the curated dataset. Curated datasets were collected from the following publications: rhodopsin-
type GPCR beta and gamma and secretin-type GPCR (Thiel et al., 2018b); rhodopsin-type GPCR 
delta (leucine-rich repeat-containing G-protein-coupled receptors) (Roch and Sherwood, 2014); tyro-
sine kinase receptors (de Oliveira et al., 2019; Smýkal et al., 2020); and were complemented with 
sequences from the NCBI protein database.

Synteny
Ancestral linkage analyses rely on mutual-best-hits computed using Mmseqs2 (Steinegger and 
Söding, 2017) between pairs of species in which chromosomal assignments to ALGs were previ-
ously performed, such as Branchiostoma floridae or Pecten maximus (Simakov et al., 2020). Oxford 
dotplots were computed by plotting reciprocal positions of indexed pairwise orthologs between two 
species as performed previously (Simakov et al., 2020; Simakov et al., 2022). The significance of 
ortholog enrichment in pairs of chromosomes was assessed using a Fisher test.

We also used a Python implementation of MCscanX (Wang et al., 2012; Tang, 2010) available on 
https://github.com/tanghaibao/jcvi/wiki/MCscan-(Python-version) to compare X. bocki to E. muelleri, 
Trichoplax adhearens, B. floridae, S. kowalevskii, Ciona intestinalis, Nematostella vectensis, Asteria 
rubens, P. maximus, Nemopilema nomurai, and Carcinoscorpius rotundicauda. Briefly, the pipeline 
uses high-quality genomes and their annotations to infer syntenic blocks based on proximity. For this, 
an all vs. all blastp is performed and synteny extended from the anchors identified in this way. Corre-
sponding heatmaps were plotted with Python in a Jupyter notebooks instance.

Chlamydia assembly, annotation and phylogenetics
We identified a highly contiguous Chlamydia genome in the X. bocki genome assembly using blast. 
We then used our Oxford Nanopore-derived long reads to scaffold the Chlamydia genome with LINKS 
(Warren et al., 2015) and annotated it with the automated PROKKA pipeline. To place the genome 
on the Chlamydia tree, we extracted the 16S ribosomal RNA gene sequence, aligned it with set of 
Chlamydia 16S rRNA sequences from Dharamshi et al., 2020 using MAFFT, and reconstructed the 
phylogeny using IQ-TREE 2 (Minh et al., 2020) We visualized the resulting tree with Figtree (http://​
tree.bio.ed.ac.uk/).
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•  Supplementary file 1. Excel table with data sources for OrthoFinder analysis. 

•  Supplementary file 2. Full tree representation of the sequence similarities analysis of bilaterian 
insulin-related peptides. Tree is calculated from concatenated alignment of A and B chains. Numbers 
represent support for nodes calculated using 1000 ultrafast bootstrap replications and 1000 SH-
aLRT replicates, respectively. Scale bar unit for branch length is the number of substitutions per 
site. Branches are colored according to the phylogenetic position of the organism from which the 
sequence originates: red, Xenoturbella; pink, Ambulacraria; blue, Chordata; orange, Ecdysozoa; 
green, Ecdysozoa; gray, Cnidaria. dILP, Drosophila insulin-like peptide; GSS, gonad-stimulating 
substance; ILP, insulin-like peptide; IGF, insulin-like growth factor. Radial version of this tree is 
presented in Figure 8—figure supplement 2. Sequences are available as Figure 8—source data 1; 
alignment and IQTREE tree files are available at https://doi.org/10.5281/zenodo.6962271.

•  Supplementary file 3. Full tree representation of the phylogenetic analysis of bilaterian Leucine-
rich repeat-containing G-protein coupled Receptors (Rhodopsin type G-protein coupled Receptors 
delta). Numbers represent support for nodes calculated using 1000 Ultrafast bootstrap replications 
and 1000 SH-aLRT replicates respectively. Scale bar unit for branch length is the number of 
substitutions per site. Branches are colored according to the phylogenetic position of the organism 
from which the sequence originates: red, Xenoturbella; pink, Ambulacraria; blue, Chordata; orange, 
Ecdysozoa; green, Ecdysozoa; gray, Cnidaria. Collapsed group colored in red indicate that they 
contain at least one X. bocki sequence. GPA2, Glycoprotein Hormone alpha5; GPB5, Glycoprotein 
Hormone beta2; GPCR, G Protein-Coupled Receptor; GRL-101, G-protein coupled receptor 
GRL101. Circular version of this tree is presented in Figure 8—figure supplement 3. Sequences are 
available as Figure 8—source data 2; alignment and IQTREE tree files are available at https://doi.​
org/10.5281/zenodo.6962271.

•  Supplementary file 4. Full tree representation of the phylogenetic analysis of bilaterian Rhodopsin 
type G-protein coupled Receptors beta and gamma. Numbers represent support for nodes 
calculated using 1000 ultrafast bootstrap replications and 1000 SH-aLRT replicates respectively. 
Scale bar unit for branch length is the number of substitutions per site. Branches are colored 
according to the phylogenetic position of the organism from which the sequence originates: red, 
Xenoturbella; pink, Ambulacraria; blue, Chordata; orange, Ecdysozoa; green, Ecdysozoa; gray, 
Cnidaria. White boxes with associated name highlight groups of annotated sequences. AKH, 
adipokinetic hormone; Asta-A, Allatostatin-A; Asta-C, Allatostatin-C; CAPA, Cardio acceleratory 
peptide; CCAP, crustacean cardioactive peptide; CCHa, CCHamide peptide; CCK, cholecystokinin; 
CRZ, Corazonin; eFMRF, ecdysozoan-FMRFamide peptide; GGN-EP, GGN excitatory peptide; ETH, 
ecdysis triggering hormone; GnRH, Gonadotropin Releasing Hormone; GPR150, G Protein-Coupled 
Receptor 150; GPR54, G Protein-Coupled Receptor 54; GPR83, G Protein-Coupled Receptor 83; 
MCH, melanin concentrating hormone; NK-2, Neurokinin 2; Np-B/W, Neuropeptide B/W; Np-FF, 
Neuropeptide FF; Np-F, Neuropeptide F; Np-S, Neuropeptide S; Np-Y, Neuropeptide Y; PBAN, 
pheromone biosynthesis activation neuropeptide; PEN, neuroendocrine peptide PEN; PRP, Prolactin 
releasing peptide; QRFP, Neuropeptide QRFP; RYa, RYamide peptide; SIFa, SIFamide peptide; 
SPR, Sex peptide receptor; tFMRFa, trochozoan-FMRFamide peptide; TRH, thyrotrophin-releasing 
hormone. Circular version of this tree is presented in Figure 8—figure supplement 4. Sequences 
are available as Figure 8—source data 2; alignment and IQTREE tree files are available at https://​
doi.org/10.5281/zenodo.6962271.

•  Supplementary file 5. Full tree representation of the phylogenetic analysis of bilaterian Tyrosine 
kinase Receptors. Numbers represent support for nodes calculated using 1000 ultrafast bootstrap 
replications and 1000 SH-aLRT replicates respectively. Scale bar unit for branch length is the 
number of substitutions per site. Branches are colored according to the phylogenetic position of 
the organism from which the sequence originates: red, Xenoturbella; pink, Ambulacraria; blue, 
Chordata; orange, Ecdysozoa; green, Ecdysozoa; gray, Cnidaria. Collapsed group colored in red 
indicate that they contain at least one X. bocki sequence. EGF, Epidermal Growth Factor;Discoidin 
cont. R, discoidin domain-containing receptor; Orphan Tyr. Kinase Ror2, receptor tyrosine kinase-
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like orphan receptor 2; VKR, Venus kinase Receptor; ILP, Insulin-like peptide; PDGF, Platelet-
derived growth factor; VEGF, Vascular endothelial growth factor; GDNF, Glial cell line-derived 
neurotrophic factor; FGF, fibroblast growth factor; PTTH, Prothoracicotropic hormone. Circular 
version of this tree is presented in Figure 8—figure supplement 5. Sequences are available as 
Figure 8—source data 2; alignment and IQTREE tree files are available at https://doi.org/10.​
5281/zenodo.6962271.

•  Supplementary file 6. Full tree representation of the phylogenetic analysis of bilaterian Secretin 
type G-protein coupled Receptors. Numbers represent support for nodes calculated using 
1000 ultrafast bootstrap replications and 1000 SH-aLRT replicates respectively. Scale bar unit 
for branch length is the number of substitutions per site. Branches are colored according to the 
phylogenetic position of the organism from which the sequence originates: red, Xenoturbella; 
pink, Ambulacraria; blue, Chordata; orange, Ecdysozoa; green, Ecdysozoa; gray, Cnidaria. White 
boxes with associated name highlight groups of annotated sequences. DH31,diuretic hormone 31; 
Np-RB1, Neuropeptide receptor B3; Np-RB4, Neuropeptide receptor B1; PDF, Pigment-dispersing 
factor; CRF, Corticotropin-releasingfactor; DH-44,diuretic hormone 44; PTH2/3-R,Parathyroid 
hormonereceptor2/3; GIP, Gastric inhibitory polypeptide; PACAP, Pituitary adenylate cyclase-
activating polypeptide;VIP-R,Vasoactive intestinal polypeptide receptor; GHRH, Growth hormone-
releasing hormone; PTH, Parathyroid hormone receptor; SCTR, Secretin Receptor. Circular version 
of this tree is presented in Figure 8—figure supplement 6. Sequences are available as Figure 
8—source data 2; alignment and IQTREE tree files are available at https://doi.org/10.5281/zenodo.​
6962271.

•  Supplementary file 7. Sequence alignment of bilaterian 7B2 neuropeptides. The alignment 
highlights the presence in all sequence of aconserved ‘PPNPCP’ motif. X. bocki sequence is 
highlighted by a red dashed line. Sequences are available as Figure 8—source data 1; alignment is 
available at https://doi.org/10.5281/zenodo.6962271.

•  Supplementary file 8. Sequence alignment of Xenacoelomorpha LRIGamide neuropeptides. X. 
bocki sequence is highlighted by a reddashed line. Sequences are available as Figure 8—source 
data 1; alignment is available at https://doi.org/10.5281/zenodo.6962271.

•  Supplementary file 9. Sequence alignment of bilaterian Nucleobindin2/Nesfatin neuropeptides. 
X. bocki sequence is highlighted by a reddashed line. Sequences are available as Figure 8—source 
data 1; alignment is available at https://doi.org/10.5281/zenodo.6962271.

•  Supplementary file 10. Sequence alignment of Ambulacrarian octinsulin with a potential X. bocki 
homolog sequence. Red trianglehighlights the conserved cysteine positions. X. bocki sequence is 
highlighted by a red dashed line. Sequences are available as Figure 8—source data 1; alignment is 
available at https://doi.org/10.5281/zenodo.6962271.

•  MDAR checklist 
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All read sets (RNA and DNA derived) used in this study will be made available with the publication of 
this manuscript on the SRA database under the BioProject ID PRJNA864813. Hi-C reads are depos-
ited under SAMN30224387, RNA-Seq under SAMN35083895. The genome assemblies of X. bocki 
(ERS12565994, ERA16814408) and the Chlamydia sp. (ERS12566084, ERA16814775) are deposited 
under PRJEB55230 at ENA. Supplementary online material (described in the manuscript) has been 
made available on Zenodo.
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Xenoturbella bocki

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/?​
term=​PRJNA864813

NCBI BioProject, 
PRJNA864813

Schiffer P, Lapraz F 2022 The slow evolving genome 
of the xenacoelomorph 
worm Xenoturbella bocki

https://www.​ebi.​ac.​
uk/​ena/​browser/​view/​
PRJEB55230

EBI European Nucleotide 
Archive, PRJEB55230

https://doi.org/10.7554/eLife.94948
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://doi.org/10.5281/zenodo.6962271
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA864813
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA864813
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA864813
https://www.ebi.ac.uk/ena/browser/view/PRJEB55230
https://www.ebi.ac.uk/ena/browser/view/PRJEB55230
https://www.ebi.ac.uk/ena/browser/view/PRJEB55230
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