
HAL Id: hal-04791252
https://hal.science/hal-04791252v1

Submitted on 19 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FoRLess: A Deep Reinforcement Learning-based
approach for FaaS Placement in Fog

Cherif Latreche, Nikos Parlavantzas, Hector A Duran-Limon

To cite this version:
Cherif Latreche, Nikos Parlavantzas, Hector A Duran-Limon. FoRLess: A Deep Reinforcement
Learning-based approach for FaaS Placement in Fog. UCC 2024 - 17th IEEE/ACM International
Conference on Utility and Cloud Computing, Dec 2024, Sharjah, United Arab Emirates. pp.1-9.
�hal-04791252�

https://hal.science/hal-04791252v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

FoRLess: A Deep Reinforcement Learning-based
approach for FaaS Placement in Fog

Cherif Latreche
Univ Rennes, INSA Rennes

Inria, CNRS, IRISA
Rennes, France

mohamed-cherif-zouaoui.latreche@inria.fr

Nikos Parlavantzas
Univ Rennes, INSA Rennes

Inria, CNRS, IRISA
Rennes, France

nikos.parlavantzas@irisa.fr

Hector A. Duran-Limon
University of Guadalajara

Department of Information Systems, CUCEA
Guadalajara, Mexico

hduran@cucea.udg.mx

Abstract—Function-as-a-Service (FaaS) is a programming
model in which developers write event-triggered functions and
the FaaS platform automatically manages resource allocation
and function execution. FaaS is well-suited for building fog
applications deployed at any location on the cloud-edge contin-
uum, delivering both flexibility and resource efficiency. A major
limitation of current FaaS platforms is their lack of support
for meeting latency and energy consumption requirements. This
paper addresses this limitation by exploring the use of Deep
Reinforcement Learning, specifically Deep Q-Networks (DQN),
to optimize the placement of FaaS functions. The paper proposes
FoRLess, a DQN-based scheduler designed to learn the optimal
function placement, improving the platform’s ability to satisfy
latency and energy consumption requirements. This scheduler
is integrated into an open-source FaaS platform. The paper
describes an experimental evaluation in the Grid’5000 testbed
that demonstrates that our approach achieves reductions in
latency and energy consumption of up to 7.15% and 12%
respectively, compared to the baseline scheduler.

Index Terms—Function as a Service, Scheduling, Deep Rein-
forcement Learning, Resource management

I. INTRODUCTION

Cloud computing has fundamentally changed how comput-
ing resources are accessed and utilized [1] [2], enabling users
to rent processing, storage, and communication resources from
a centralized location over the Internet. Cloud computing has
recently evolved into the fog computing model that delivers
resources closer to users along a cloud-edge continuum [3] [4].
Fog computing supports reduced latency, reduced bandwidth
usage, lower costs, and improved privacy, opening up a wide
range of new applications, including smart cities, and virtual
reality [5].

A promising model for developing fog applications is
serverless computing, and in particular the Function-as-a-
Service (FaaS) model [6] [7]. In the FaaS model, developers
write event-triggered functions and the platform automatically
takes care of resource allocation and function execution.
Beyond simplifying development, FaaS is well-suited for fog
deployments because functions can be flexibly deployed at
any location on the cloud-edge continuum, can be rapidly
triggered, and consume resources only when needed [8].

Nevertheless, supporting fog applications places stringent
requirements on FaaS platforms. First, the platforms should
meet latency objectives for functions, particularly important

for latency-sensitive fog applications. Second, the platforms
should reduce the energy consumption of the underlying
infrastructure, addressing the growing concerns over sustain-
ability. Meeting these requirements is challenging owing to
the dynamic nature of FaaS workloads and the difficulty
in predicting how resource allocation decisions will impact
latency and energy consumption.

Current FaaS platforms fail to effectively meet the latency
and energy reduction requirements. Many open-source FaaS
platforms are available and can be deployed on diverse phys-
ical infrastructures, from cloud data centers to edge devices.
Most of these platforms [9] are built on top of the Kubernetes
container orchestrator, which offers a standardized method for
managing containerized workloads, facilitating portability, and
supporting integration with various tools. However, no open-
source platform addresses the latency and energy concerns.

A growing number of research solutions seek to optimize
FaaS scheduling using diverse decision-making techniques,
including heuristics and machine learning [10] [11] [12] [13]
[14]. However, most of these solutions focus on optimizing
performance and resource efficiency, leaving the energy con-
cern largely unaddressed.

This paper introduces an approach for FaaS scheduling
that seeks to jointly satisfy latency and energy reduction
requirements. The main novelty of the approach is that it
applies Deep Reinforcement Learning (DRL) to automatically
adjust resource allocation decisions, improving the platform’s
ability to satisfy these requirements and to respond to changing
workloads. The approach is implemented by extending Fission,
a popular Kubernetes-based open-source FaaS platform, to
integrate a custom scheduler, replacing the default Kubernetes
scheduler.

Specifically, the paper makes three main contributions:
• an approach for FaaS scheduling that uses DRL, enhanc-

ing the platform’s ability to meet latency and energy
reduction requirements;

• an implementation of the approach in the Fission open-
source FaaS platform;

• an experimental evaluation in the Grid’5000 testbed that
clearly demonstrates the benefits of the approach.

The rest of the paper is structured as follows: Sections II
and III discuss the background and related work. Section IV

formalizes the problem addressed by our approach. Section V
presents the approach of optimizing FaaS function scheduling
using DRL. Section VI describes how the approach is imple-
mented in Fission. The experimental evaluation is reported in
section VII, followed by an analysis of the system’s limitations
in section VIII. Finally, section IX concludes the paper.

II. BACKGROUND

The following section examines the foundational technolo-
gies pertinent to our study. Specifically, it covers Kubernetes,
serverless platforms, and reinforcement learning.

A. Kubernetes

Kubernetes, a popular container orchestration platform [15],
has gained traction for edge computing deployments. Ku-
bernetes distributions tailored for edge environments provide
the necessary infrastructure for deploying and managing con-
tainerized workloads, including FaaS functions [16]. One such
distribution is K3s [17], a lightweight version of Kubernetes
designed for resource-constrained environments. K3s simpli-
fies the deployment and management of Kubernetes clusters
on edge devices, making it an attractive option for edge
computing scenarios.

B. Serverless Platforms

Various tools have been developed to integrate FaaS into
fog computing environments, each offering features suited to
specific scenarios. Commercial platforms like AWS Lambda
[18], Microsoft Azure Functions [19], and Google Cloud Func-
tions [20] provide robust solutions for deploying serverless
functions. Backed by major companies, these platforms are
known for their scalability and reliability, but they are limited
by vendor lock-in, which ties users to specific providers [21].

In contrast, open-source frameworks such as Apache Open-
Whisk and Fission provide community-driven alternatives for
deploying FaaS in any type of fog environment [22] [23].
Fission, a serverless framework built specifically for Kuber-
netes [24], is well-suited for organizations already utilizing
the container orchestration tool [25]. Fission relies on the Ku-
bernetes’ native scheduler to determine where functions should
be deployed across the cluster. It also supports multiple pro-
gramming languages through customizable environments and
facilitates managing serverless functions, handling dynamic
workloads, and automating scaling processes [26]. We selected
Fission for our work as a representative of Kubernetes-based
FaaS platforms.

C. Deep Reinforcement Learning

Reinforcement Learning (RL) is a subset of machine learn-
ing where agents learn how to make decisions by interacting
with their environment [27] [28]. These interactions take place
within a framework called a Markov Decision Process (MDP),
which models the decision-making process over time by
defining states, actions, probabilities, and rewards [29]. Within
this framework, agents develop a policy—a strategy that maps
states to actions—aiming to maximize cumulative rewards

over time. The decision-making process involves exploring the
environment, observing the outcomes of actions, and adjusting
the policy based on the received feedback.

By working within the MDP framework, RL agents can
handle complex tasks, like optimizing resource usage by mon-
itoring the system’s status and making decisions that reduce
costs.

Recent advancements in RL have been driven by combining
RL with deep neural networks, leading to what is known as
Deep Reinforcement Learning [30]. A seminal DRL algorithm
we use in our work is the Deep Q-Network (DQN), developed
by Mnih et al. [31]. DQN helps agents determine the best
actions by estimating the value of different options, even in
complicated scenarios [32].

III. RELATED WORK

Recent research, particularly in fog and cloud computing,
has increasingly focused on FaaS scheduling, exploring tech-
niques ranging from heuristic algorithms to reinforcement
learning. This section reviews the existing literature on func-
tion scheduling within serverless environments.

Zhang et al. [10] address resource allocation challenges
through Maxwell, an approach inspired by Maxwell’s demon
in thermodynamics. Maxwell optimizes resource allocation at
the per-request level, balancing efficiency and tail latency. By
integrating a reinforcement learning predictor and a pipeline
mechanism, the authors report a reduction in CPU resource
usage as well as in the standard deviation of latency.

Mahmoudi et al. [11] introduce an algorithm for function
placement that uses statistical machine learning to enhance
both performance and cost-efficiency. This approach, termed
’smart spread’, strategically selects virtual machines to main-
tain optimal service quality, thereby reducing the need for pre-
mature resource scaling, and outperforming existing methods.

Yu et al. [12] introduce FaaSRank, a function scheduler
implemented in Apache OpenWhisk that relies on deep rein-
forcement learning. FaaSRank reduces the number of inflight
function invocations and the average function completion time
when compared to baseline schedulers.

Suresh et al. [13] propose ENSURE, a specialized function-
level scheduler and resource manager tailored for serverless
environments. ENSURE employs heuristic-based approaches
to balance operational costs with performance metrics. Imple-
mented within the Apache OpenWhisk framework, ENSURE
achieves increased resource efficiency while ensuring that
latency remains within acceptable limits.

Mampage et al. [14] propose a heuristic for optimizing
function placement and dynamically adjusting resources in
serverless environments. Their method focuses on minimizing
resource contention and ensuring that user-defined deadlines
are met. The method yields substantial gains in terms of
resource consumption and meeting function deadlines.

Unlike our work, none of the previous systems addresses the
objective of minimizing energy consumption. In the following,
we focus solely on solutions that explicitly aim to meet this
objective.

Rastegar et al. [33] propose EneX, an energy-aware exe-
cution scheduler designed for serverless environments. Their
work focuses on optimizing energy consumption while en-
suring timely function execution with predefined deadlines.
By formulating a linear programming problem and propos-
ing an online scheduler, the authors demonstrate significant
improvements in energy efficiency, which could be valuable
for serverless service providers. Unlike our work, the EneX
scheduler can control the processing frequencies of nodes and
can schedule function executions over time in a fine-grained
manner. Our scheduler depends on Kubernetes and can only
control function placement.

Chiorescu et al. [34] propose a framework for integrating a
machine learning model into the Kubernetes scheduler and
evaluate the framework in OpenFaaS. Experimental results
show a reduction in power consumption with minimal per-
formance loss. The framework relies on a Random Forest
classifier, a supervised learning method, which uses static
labeled training data and cannot improve scheduling decisions
beyond what the data reflects.

Vahabi et al. [35] propose a method for scheduling functions
on edge nodes and powering down inactive nodes, with the aim
of minimizing overall energy consumption while maintaining
the required QoS. The method relies on solving a linear
programming model, which is computationally expensive.
Moreover, the method is evaluated only through simulation,
without implementation in a real FaaS environment.

Similarly, Righetti et al. [36] propose a function scheduling
method with the goal of reducing energy consumption. The
method is implemented in OpenWhisk and relies on heuristics
for consolidating the function load in the smallest number
of nodes, allowing the deactivation of inactive nodes. Ex-
periments show that the method reduces energy consumption
with respect to the default OpenWhisk scheduler. However,
the experiments use estimates of the energy consumption
based solely on CPU usage, without considering actual energy
measurements.

In summary, while existing research has explored various
methods for optimizing performance and resource efficiency in
FaaS scheduling, the problem of reducing energy consumption
remains largely unaddressed. While some efforts have begun
to address this problem [33]–[36], our work is unique in
applying a Deep Reinforcement Learning approach. Specif-
ically, FoRLess integrates the dual objective of minimizing
energy consumption and latency within a single, cohesive,
DRL-based framework, enabling intelligent and responsive
scheduling decisions.

IV. PROBLEM FORMULATION

As discussed, placing FaaS functions across multiple nodes
to optimize both energy consumption and latency presents a
significant challenge. Our goal is to develop a dual-objective
scheduling strategy that effectively balances these performance
metrics. In this section, we formalize the problem and clearly
define these objectives.

We consider a system with a set of functions F placed on a
set of nodes N for a period of time T . Each function i can be
assigned to any node j. Upon scheduling a function, the energy
consumption of the nodes and the latency of executing the
function are measured. We introduce the following constraints:

1) A decision variable xij , which must be binary, indicates
whether a function is assigned to a specific node:

xij ∈ {0, 1} ∀i ∈ F,∀j ∈ N (1)

2) A function must be scheduled on one node, ensuring that
no function is left unassigned or assigned to multiple
nodes: ∑

j∈N

xij = 1 ∀i ∈ F (2)

A. Energy Model

Let Eij be the energy consumed by function i when placed
on node j for the given duration T and let Ej be total energy
consumption of node j such that:

Ej =
∑
i∈F

Eij · xij ∀j ∈ N (3)

The first objective is to minimize the overall energy con-
sumption of nodes. This is expressed as minimizing the
average energy consumption over all nodes:

Minimize
1

|N |
∑
j∈N

∑
i∈F

Eij · xij (4)

B. Latency Model

We assume that lij is the latency for executing function i
when placed on node j and SLOi (Service Level Objective)
is the maximum allowable latency for the function.

The second objective is to minimize the average ratio of
latency to SLO across all functions, which can be expressed
as :

Minimize
1

|F |
∑
i∈F

∑
j∈N

lij · xij

SLOi
(5)

To consider both energy and latency objectives simultane-
ously, we use a weighted sum approach such that the overall
objective becomes:

Minimize α · 1

|N |
∑
j∈N

∑
i∈F

Eij · xij + β · 1

|F |
∑
i∈F

∑
j∈N

lij · xij

SLOi

(6)
subject to:

xij ∈ {0, 1} ∀i ∈ F,∀j ∈ N (1)∑
j∈N

xij = 1 ∀i ∈ F (2)

This optimization problem, as currently formulated, cannot
be solved directly because it requires predicting the energy
consumption and latency impact of each possible function
placement. The complexity and dynamic nature of these
variables make this infeasible. To address this challenge,
we propose using Deep Reinforcement Learning. DRL can

learn optimal placement strategies through interaction with the
environment, allowing the system to effectively balance energy
efficiency and performance.

V. MODEL DESIGN

In this section, we outline our approach to optimizing FaaS
function scheduling using DRL. We represent the scheduling
process as a Markov Decision Process and define the com-
ponents of the DRL model—state, action, and reward—as
follows:

A. States

In our approach, the state vector reflects the current use of
resources in the cluster, which influences decision-making. To
this end, we describe our state vector st at time t as follows:

st = [Nt,Ft, τt] (7)

where:
• Nt ∈ Rm×4 is the node information matrix with m nodes

and 4 features per node (CPU and memory usage, power
consumption and the total number of functions currently
executing on the node).

• Ft ∈ Rp×3 is the function descriptor matrix, where each
of the p functions is represented by 3 features: CPU and
memory requirements, and SLO.

• τt ∈ R is a scalar representing the latency of the most
recent function scheduled on a node.

B. Action

In our scheduling process, the action at at time t involves
selecting a node from a set of available nodes to which a func-
tion will be placed. This decision-making task is performed
based on the system’s current state, st.

The policy function π(st) maps the state to an action, which
in this context is the selection of a specific node. Formally,
this relationship is expressed as:

at = π(st) (8)

where at represents the chosen node and each action at
corresponds to a selection from the set of N total available
nodes in the system:

at ∈ {1, 2, . . . , |N |}

The policy function is designed to select the node that
optimizes the overall system performance by considering the
factors described in st. Following node selection, the scheduler
will bind the function to the chosen node.

C. Reward

We design the reward function to optimize both energy
consumption and latency, aligned with (6). Table I provides
information about the components of the reward function,
which is defined as:

rt = − (α ·RP + β ·RL) (9)

such that:

RP =

∑N
i=1 Pi

N · Cmax
(10)

RL =

Latency

SLO
if Latency < SLO

1 otherwise
(11)

TABLE I
TERMS AND DESCRIPTIONS OF THE REWARD FUNCTION

Term Description
rt Reward function
α Weight factor that balances the influence of power

consumption on the reward function
Pi Power consumption of node i
N Number of nodes

Cmax Maximum power consumption among all nodes
β Weight factor that balance the influence of response

time on the reward function
Latency Time required for a function to complete its execu-

tion
SLO Maximum acceptable latency for a function

The latency of the scheduled function is stored as τt+1 in
st+1, providing the agent with the most recent system state
for the next decision.

The reward function uses a negative sum to penalize higher
power consumption and longer response times, incentivizing
the agent to minimize these metrics for higher rewards.

We extend the reward function to account for two key
constraints in our implementation. First, exceeding the rec-
ommended number of concurrently executing workloads on a
single node incurs a penalty of -1, as per Kubernetes guidelines
[37]. Similarly, if a node lacks sufficient CPU or memory
resources to execute a function, the same penalty of -1 is
applied. Thus, the final reward function would be defined as
follows:

Reward =

{
rt if constraints are satisfied
−1 otherwise

(12)

VI. ARCHITECTURE DESIGN

The system architecture, as illustrated in Fig. 1, comprises
Fission deployed on a K3s cluster, where one node functions
as the control plane and the other nodes serve as worker nodes.

When a client request arrives, it is first processed by
the Fission Router, exposed via a Kubernetes Service. The
Router directs the request to the appropriate function, which is
defined using a Custom Resource Definition (CRD), specifying
function attributes such as CPU and memory requirements.
If the function is not already running, the Router triggers
the creation of a Kubernetes Deployment through Fission’s
newdeploy executor.

The function instances are placed across the worker nodes
by a DQN agent, operating on the control plane node and
replacing the default Kubernetes scheduler. This DQN agent
makes intelligent placement decisions based on real-time met-
rics collected from Prometheus [38], which monitors the CPU

Fig. 1. System Architecture

and memory usage of nodes. The nodes in our testbed are
also equipped with high-frequency wattmeters [39], allowing
the DQN-based scheduler to use precise power consumption
data.

The DRL model that we use has been implemented using
a combination of tools. Gymnasium [40] was used to create
and simulate the environment in which the agent interacts
and learns. Stable Baselines3 [41] was used for leveraging
the DQN algorithm. Finally, the Kubernetes Python client
[42] enabled management and interaction with the Kubernetes
cluster.

VII. PERFORMANCE EVALUATION

This section evaluates the effectiveness of FoRLess in
reducing energy consumption and latency and analyzes the
overhead introduced by FoRLess. We start by describing
the experimental environment, we discuss the results of the
training process, and then we compare FoRLess with other
scheduling solutions in terms of energy consumption, latency,
and incurred overhead.

A. Experimental setup

We use Grid’5000 [43], a large-scale, highly configurable
testbed, to emulate a fog computing environment. Specifically,
we use five heterogeneous machines configured as a Kuber-
netes cluster using K3s. One machine acts as the control plane,

while the remaining four machines act as worker nodes. The
CPU and memory resources of the nodes are detailed in Table
II. Furthermore, we use Apache Benchmark [44] to generate
client requests and evaluate how the system handles different
load conditions.

B. Training Process

During training, the agent learns to schedule FaaS functions
across nodes. The training workload was selected to help
the agent generalize its scheduling decisions. The workload
is primarily composed of web-serving functions, supporting
static and dynamic content delivery, handled by NGINX-based
containers [45] with randomized resource demands. To further
diversify the workload, additional functions were extracted
from the examples available in the Fission GitHub repository
[46], providing a wide range of functions tailored for serverless
environments.

The training process spans 1,400 episodes. At the beginning
of each episode, a new batch of functions is introduced for
scheduling. The agent schedules each function iteratively,
making decisions based on the current resource usage of the
nodes and function requirements. The agent receives feedback
in the form of rewards. Progress is monitored by tracking
cumulative rewards over the episodes, with the expectation
that the agent’s policy will improve over time, resulting in
higher rewards as training advances.

Fig. 2 illustrates the progression of the average reward over
training steps, indicating the agent’s learning process.

0 200 400 600 800 1000 1200 1400
Episodes

−0.37

−0.36

−0.35

−0.34

−0.33

−0.32

−0.31

−0.30

−0.29

Re
wa

rd

Fig. 2. Average Reward Values during Training

The training starts with the agent performing poorly, with
an average reward near -0.36, marked by large fluctuations due
to heavy exploration, where the agent tries various strategies.
Around episode 250, the reward improves, balancing explo-
ration with exploitation, where the agent uses the strategies
it has already learned. By episode 1000, the reward rises to
-0.32, with fewer fluctuations as the agent focuses more on
applying successful actions. After this point, the improvement
continues, albeit at a slower rate. By the end, the reward

TABLE II
COMPUTATIONAL RESOURCES FOR EXPERIMENTS

Node name CPU Cores Memory
Taurus-6 (Control plane) 2 CPUs Intel Xeon E5-2630 6 32GB

Taurus-9 (Worker1) 2 CPUs Intel Xeon E5-2630 6 32GB
Sagittaire-2 (Worker2) 2 CPUs AMD Opteron 250 1 2GB

Nova-1 (Worker3) 2 CPUs Intel Xeon E5-2620 v4 8 64GB
Orion-4 (Worker4) 2 CPUs Intel Xeon E5-2630 6 32GB

stabilizes around -0.29, showing that the agent has refined its
policy and consistently applies learned strategies.

The training process for the model is extensive, taking
approximately 15 hours to complete. During this period, the
control plane node consumes 1.49 kilowatt-hours of energy.
When combined with the consumption from the rest of the
cluster, the total energy used during training amounts to 6.53
kilowatt-hours.

Fig. 3 specifically illustrates the control plane node’s power
consumption during training.

0 10 20 30 40 50
Time (103 seconds)

90

100

110

120

Po
we

r (
W

at
ts

)

Fig. 3. Power Consumption of Control Plane Node during Training

The graph in Fig. 3 indicates that the power gradually in-
creases throughout the training period, reflecting the resource-
intensive nature of managing the training, where the model
continuously optimizes itself. As training progresses, the
model becomes more efficient in its decision-making, leading
to a temporary decrease in power as it converges towards an
optimal policy.

Although the training process has an energy cost, it is impor-
tant to note that training is performed only once. Throughout
this phase, we observed that the model converges, reaching
stable performance by the end of the process. In the next
section, we will focus on the evaluation phase, where the
energy efficiency and the performance of the trained model
are examined.

C. Performance Comparison
This section compares FoRLess to baseline scheduling algo-

rithms in terms of energy consumption, latency, and overhead
during the evaluation phase.

The evaluation workload is based on the Polybench bench-
mark suite [47], which includes a diverse set of computational
functions such as linear algebra routines, and data mining
kernels. These functions execute within a brief time frame,
typically ranging from a few milliseconds to a few seconds,
making them ideal for testing scheduling strategies in a
serverless architecture.

All 30 functions from the Polybench suite are used to
evaluate the schedulers, providing a wide range of compu-
tational tasks. Different input sizes were applied to introduce
varying levels of complexity, allowing us to test the schedulers
under different conditions. Importantly, these functions differ
from those used during the training phase, helping to assess
FoRLess’s ability to generalize across workloads.

Deployed on Fission as serverless functions, the minimum
latency for each function is measured when executed on its
own. A 20% margin is then added to the observed minimum
latency to accommodate for variability, forming the basis for
the SLOs.

The baseline algorithms against which we test FoRLess are
described next:

1) Kubernetes Default Scheduler (KDS): Assigns functions
to nodes based on resource requirements, affinity, and
anti-affinity rules, data locality, inter-pod dependencies,
and the current load on the nodes.

2) Round Robin (RR): Distributes functions across nodes
in a fixed, repeating sequence without considering the
node state or capacity.

3) Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS): Ranks nodes by comparing their
CPU and memory utilization, power consumption, and
the number of active functions. Each node’s performance
is evaluated based on its distance from an ideal state,
which represents the best possible values for all metrics.
Functions are then assigned to the nodes closest to
this ideal. This approach follows the state-of-the-art
scheduling strategy described in [48].

For the evaluation, we incrementally increase the number of
deployed functions and observe how each scheduler manages
resource allocation.

1) Energy Consumption: This subsection analyzes the im-
pact of the solutions on energy consumption. Fig. 4 illustrates
the average energy consumption across the worker nodes of
the four solutions.

As shown, our DRL-based solution consistently exhibits the
lowest energy consumption regardless of how many functions

0 100 200 300 400
Number of Functions

0.6

0.7

0.8

0.9

Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n

(k
W

h
10

−3
)

TOPSIS
RR
KDS
FoRLess

Fig. 4. Average Energy Consumption of Worker Nodes by Scheduler

are deployed in the system, reducing the consumption by 12%
compared to KDS. TOPSIS also shows improvements, with a
5.66% reduction making it the next most efficient solution,
while Round Robin underperforms, consuming 5.35% more
energy than KDS.

2) Latency: This subsection analyzes the impact of the
solutions on latency. Fig. 5 illustrates the average normalized
latency (i.e., the ratio of latency to SLO) for comparison.

0 100 200 300 400
Number of Functions

0.75

0.80

0.85

0.90

0.95

Av
er

ag
e

No
rm

al
ize

d
La

te
nc

y

TOPSIS
RR
KDS
FoRLess

Fig. 5. Average Normalized Latency by Scheduler

Examining the data presented in Fig. 5, we note that FoR-
Less continues to lead, offering a 7.15% reduction in latency
compared to KDS. TOPSIS comes close to our proposed
method in terms of performance and follows it with a 3.37%
reduction, while Round Robin falls further behind, showing
5.71% higher latency than KDS.

3) Overhead: This subsection analyzes the overhead intro-
duced by the solutions. Specifically, it focuses on the power
consumption of the control plane node, where scheduling
decisions are made, though it does not execute any functions.
This power consumption is shown in Fig. 6.

0 2 4 6 8 10 12
Time (103 seconds)

84

86

88

90

92

94

96

98

Po
we

r (
W

at
ts

)

TOPSIS
RR
KDS
FoRLess

Fig. 6. Control Plane Node Power Consumption by Scheduler

We can observe from Fig. 6 that, at the start, there is an
increase in power consumption for all algorithms, indicating
an increase in load and activity on the control plane node.
Among them, FoRLess stands out with 1.88% higher power
consumption than KDS, a result of the computational demands
of reinforcement learning, which involves frequent data col-
lection from Prometheus. TOPSIS also shows an increase in
power, consuming 1.24% more than KDS. While it relies
on additional data retrieval, it remains less power-hungry
than FoRLess. On the other hand, Round Robin exhibits a
0.81% increase in power consumption compared to KDS. Its
simplicity translates into lower power consumption, although
it still incurs more overhead than KDS, which is optimized for
Kubernetes and relies on pre-established rules for scheduling,
thus avoiding complex calculations.

To provide a view of how each solution impacts the system-
wide energy efficiency, we combine next the energy usage of
both the control plane and worker nodes. The total energy
consumption during the evaluation phase is shown in Fig. 7.

KDS RR
TOPSIS

FoRLess
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

To
ta

l E
ne

rg
y

Co
ns

um
ed

 (k
W

h)

Baseline
+4.75%

-4.63%
-9.95%

Master
Worker 1
Worker 2

Worker 3
Worker 4

Fig. 7. Total Energy Consumption per Scheduler

In reviewing the results presented in Fig. 7, we observe
that the RR solution increases total energy consumption by
4.75% compared to the baseline KDS. In contrast, the TOPSIS
solution achieves a moderate reduction of 4.63%. Our FoRLess
solution, on the other hand, results in the most significant
reduction, decreasing overall energy consumption by 9.95%
compared to KDS.

This demonstrates that the energy saved on the worker nodes
offsets the additional overhead from the control plane, improv-
ing overall energy efficiency. In other words, the increased
energy the control plane uses to run the FoRLess agent is a
worthwhile trade-off for this experiment, leading to greater
energy savings compared to the other scheduling techniques.

VIII. LIMITATIONS AND CHALLENGES

While our proposed solution has shown promising results,
certain limitations should be acknowledged, each of which
offers opportunities for future improvements.

An important area for improvement relates to the depen-
dence on specific fog environments. Indeed, our current solu-
tion relies on a fixed number and type of nodes in the cluster,
and any change in that configuration requires retraining the
model. To overcome this limitation, we can explore adaptive
retraining mechanisms or transfer learning techniques [49]
[50], which would allow adjusting to new configurations
without complete retraining.

Additionally, as mentioned in section VII-B, our solution
incurs significant energy consumption for the control plane
node during the training process. While training is only per-
formed once, optimizing training time and resource utilization
remains critical for practical deployment. Techniques such as
distributed training, or model pruning [51] could be considered
to make the training process more efficient.

Finally, while our system performs well for the selected
evaluation workload, different from the training workload, its
performance with other types of workloads—such as complex
function compositions—has not yet been explored. Further
investigation is thus needed to ensure the model generalizes
well to a broader range of function types.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we introduced FoRLess, a Deep Reinforcement
Learning approach using DQN to optimize the placement of
FaaS functions across fog nodes. Our method aims to reduce
both the energy consumption of nodes and the latency of
function execution. We validated the effectiveness of FoRLess
through experiments on the Grid’5000 testbed, where it was
compared against three alternative scheduling techniques: the
Default Kubernetes Scheduler, Round Robin, and a state-of-
the-art TOPSIS-based solution.

The experimental results demonstrate that FoRLess sig-
nificantly outperforms these methods, achieving notable im-
provements in both energy efficiency and latency reduction.
Although the solution has some limitations, our work presents
an innovative application of DRL to FaaS scheduling under

energy and performance concerns, validated in the context of
a practical implementation.

Looking forward, we plan to evaluate our solution on a
larger scale with more nodes and to investigate the generaliz-
ability of our approach to different types of workloads. Addi-
tionally, we plan to explore the impact of interference among
FaaS functions, aiming to further enhance the performance and
efficiency of our scheduling approach.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] N. Venkateswaran, K. Vidhya, M. Ayyannan, S. M. Chavan, K. Sekar,
and S. Boopathi, “A study on smart energy management framework
using cloud computing,” in 5G, Artificial Intelligence, and Next Gener-
ation Internet of Things: Digital Innovation for Green and Sustainable
Economies, pp. 189–212, IGI Global, 2023.

[2] M. Yenugula, S. Sahoo, and S. Goswami, “Cloud computing for sustain-
able development: An analysis of environmental, economic and social
benefits,” Journal of future sustainability, vol. 4, no. 1, pp. 59–66, 2024.

[3] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxon-
omy, survey and future directions,” Internet of everything: algorithms,
methodologies, technologies and perspectives, pp. 103–130, 2018.

[4] S. H. and N. V., “A review on fog computing: Architecture, fog with
iot, algorithms and research challenges,” ICT Express, vol. 7, no. 2,
pp. 162–176, 2021.

[5] J. C. Guevara, R. da S. Torres, and N. L. da Fonseca, “On the classifi-
cation of fog computing applications: A machine learning perspective,”
Journal of Network and Computer Applications, vol. 159, p. 102596,
2020.

[6] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on serverless
computing,” Journal of Cloud Computing, vol. 10, pp. 1–29, 2021.

[7] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A
survey of opportunities,” Challenges and Applications, vol. 10, 2019.

[8] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: Vision and challenges,” in Proceedings of the 2021
Australasian Computer Science Week Multiconference, ACSW ’21, (New
York, NY, USA), Association for Computing Machinery, 2021.

[9] V. Yussupov, J. Soldani, U. Breitenbücher, A. Brogi, and F. Leymann,
“Faasten your decisions: A classification framework and technology
review of function-as-a-service platforms,” Journal of Systems and
Software, vol. 175, p. 110906, 2021.

[10] H. Zhang, W. Huang, L. Zhao, and K. Li, “Maxwell’s demon in tail-
tolerant, resource-efficient serverless computing,” in 2022 IEEE 28th
International Conference on Parallel and Distributed Systems (ICPADS),
pp. 762–769, IEEE, 2023.

[11] N. Mahmoudi, C. Lin, H. Khazaei, and M. Litoiu, “Optimizing serverless
computing: Introducing an adaptive function placement algorithm,” in
Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, pp. 203–213, 2019.

[12] H. Yu, A. A. Irissappane, H. Wang, and W. J. Lloyd, “Faasrank:
Learning to schedule functions in serverless platforms,” in 2021 IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS), pp. 31–40, IEEE, 2021.

[13] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,
and A. Gandhi, “Ensure: Efficient scheduling and autonomous resource
management in serverless environments,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS), pp. 1–10, IEEE, 2020.

[14] A. Mampage, S. Karunasekera, and R. Buyya, “Deadline-aware dynamic
resource management in serverless computing environments,” in 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pp. 483–492, IEEE, 2021.

[15] “Kubernetes.” https://kubernetes.io/. Accessed: August 2024.
[16] V. Kjorveziroski and S. Filiposka, “Kubernetes distributions for the edge:

serverless performance evaluation,” The Journal of Supercomputing,
vol. 78, no. 11, pp. 13728–13755, 2022.

[17] “K3s.” https://k3s.io/. Accessed: August 2024.
[18] “Aws lambda.” https://aws.amazon.com/fr/pm/lambda/. Accessed: Au-

gust 2024.
[19] “Azure functions.” https://azure.microsoft.com/fr-fr/products/functions.

Accessed: August 2024.
[20] “Cloud functions.” https://cloud.google.com/functions. Accessed: Au-

gust 2024.
[21] A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on

resource management in serverless computing environments: Taxonomy
and future directions,” ACM Computing Surveys (CSUR), vol. 54,
no. 11s, pp. 1–36, 2022.

[22] “Apache openwhisk.” https://openwhisk.apache.org/. Accessed: August
2024.

[23] “Fission.” https://fission.io/. Accessed: August 2024.
[24] K. Govindarajan and A. De Tienne, “Resource management in serverless

computing-review, research challenges, and prospects,” in 2023 12th
International Conference on Advanced Computing (ICoAC), pp. 1–5,
IEEE, 2023.

[25] M. Tari, M. Ghobaei-Arani, J. Pouramini, and M. Ghorbian, “Auto-
scaling mechanisms in serverless computing: A comprehensive review,”
Computer Science Review, vol. 53, p. 100650, 2024.

[26] B. Fonyódi, N. Pataki, and Á. Révész, “Evaluation of scalability in the
fission serverless framework,” in Annales Mathematicae et Informaticae,
vol. 58, pp. 20–29, 2023.

[27] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[28] A. G. Barto, “Reinforcement learning: An introduction by richards’
sutton,” SIAM Rev, vol. 6, no. 2, p. 423, 2021.

[29] M. L. Puterman, “Markov decision processes,” Handbooks in operations
research and management science, vol. 2, pp. 331–434, 1990.

[30] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[32] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of deep
q-learning,” in Learning for dynamics and control, pp. 486–489, PMLR,
2020.

[33] S. H. Rastegar, H. Shafiei, and A. Khonsari, “Enex: An energy-aware
execution scheduler for serverless computing,” IEEE Transactions on
Industrial Informatics, 2023.

[34] R. Chiorescu and K. Djemame, “Scheduling energy-aware multi-
function serverlessworkloads in openfaas,” in Proceedings of the Inter-
national Workshop on Quality of Service-Aware Serverless Computing
(QServ ’23), held at the 16th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2023), ACM, 2023.

[35] S. Vahabi, F. Righetti, C. Vallati, and N. Tonellotto, “Energy-efficient
resource management for real-time applications in faas edge computing
platforms,” in Proceedings of the IEEE/ACM 16th International Confer-
ence on Utility and Cloud Computing, pp. 1–6, 2023.

[36] F. Righetti, N. Tonellotto, N. Barsanti, and C. Vallati, “Energy-efficient
orchestration strategies for function-as-a-service platforms,” in 2024
IEEE International Conference on Pervasive Computing and Commu-
nications Workshops and other Affiliated Events (PerCom Workshops),
pp. 290–295, IEEE, 2024.

[37] “Kubernetes best practices.” https://kubernetes.io/docs/setup/
best-practices/cluster-large/. Accessed: August 2024.

[38] “Prometheus.” https://prometheus.io/. Accessed: August 2024.
[39] “Energy consumption monitoring tutorial.” https://www.grid5000.fr/w/

Energy_consumption_monitoring_tutorial. Accessed: August 2024.
[40] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu,

M. Goulão, A. Kallinteris, M. Krimmel, A. KG, et al., “Gymnasium:
A standard interface for reinforcement learning environments,” arXiv
preprint arXiv:2407.17032, 2024.

[41] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines.” https://github.com/
hill-a/stable-baselines, 2018.

[42] “Kubernetes python client.” https://github.com/kubernetes-client/python.
Accessed: August 2024.

[43] “Grid5000.” https://www.grid5000.fr/. Accessed: August 2024.
[44] “Apache benchmark.” https://httpd.apache.org/docs/2.4/programs/ab.

html. Accessed: August 2024.
[45] “Nginx image.” https://hub.docker.com/_/nginx. Accessed: August 2024.
[46] “Fission examples.” https://github.com/fission/examples. Accessed: July

2024.
[47] M. Á. Abella-González, P. Carollo-Fernández, L.-N. Pouchet,

F. Rastello, and G. Rodríguez, “Polybench/python: benchmarking python
environments with polyhedral optimizations,” in Proceedings of the 30th
ACM SIGPLAN International Conference on Compiler Construction,
pp. 59–70, 2021.

[48] T. Menouer, “Kcss: Kubernetes container scheduling strategy,” The
Journal of Supercomputing, vol. 77, no. 5, pp. 4267–4293, 2021.

[49] B. Huang, F. Feng, C. Lu, S. Magliacane, and K. Zhang, “Adarl: What,
where, and how to adapt in transfer reinforcement learning,” arXiv
preprint arXiv:2107.02729, 2021.

[50] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey.,” Journal of Machine Learning Research, vol. 10,
no. 7, 2009.

[51] W. Su, Z. Li, M. Xu, J. Kang, D. Niyato, and S. Xie, “Compressing
deep reinforcement learning networks with a dynamic structured prun-
ing method for autonomous driving,” IEEE Transactions on Vehicular
Technology, 2024.

