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Abstract: 33 

As summer sea ice around Antarctica reaches historical lows, quantifying the demographic 34 

response of polar species to such environmental changes becomes critical. To achieve this, 35 

synthesizing results from across species’ ranges and elucidating the environmental factors 36 

driving population dynamics are key. Adélie penguins are considered reliable indicators of 37 

changes in Antarctica but the pathways through which sea ice and other environmental factors 38 

shape their population dynamics are still unclear, especially for the juvenile stage. Using a 17-39 

year dataset of electronically tagged Adélie penguins from Adélie Land (Antarctica), we found 40 

that juvenile survival probability was most impacted by sea ice concentration near their natal 41 

colony right after fledging, with lower ice concentrations detrimental to survival. Importantly, 42 

we found that juvenile survival declined by 32% from 2007 to 2020, mirroring trends at other 43 

distant colonies. The emergence of similar patterns at opposite ends of the continent may be an 44 

early signal for shifts in population trends expected from climate change. 45 

 46 

Teaser: 47 

Similar declines in the survival of juvenile Adélie penguins have emerged at distant locations 48 

around Antarctica and receding sea ice could be at play. 49 

MAIN TEXT 50 

 51 

Introduction: 52 

Antarctica is at the center of large and rapid environmental shifts, with both accelerating 53 

climate changes (1, 2) and increasing exploitation pressure by fisheries (3). Quantifying the 54 

response of animal populations to such environmental forcing is essential to determine their 55 

potential dynamics and persistence (4, 5). Yet, our understanding of how Antarctic species 56 

respond to such changes is still fragmented. Typically, the heterogeneous dynamics of climate 57 

(6) and environmental parameters such as sea ice (7) makes identifying drivers of any 58 

demographic rate challenging (8–10). This hampers our ability to project species response to 59 

environmental changes, especially over scales relevant to ecosystem management (11, 12). 60 

 61 

The Adélie penguin (Pygoscelis adeliae), an iconic Antarctic species, exemplifies this 62 

challenge particularly well. Early observations of contrasting population trends between the 63 

Ross Sea and the Antarctic Peninsula in response to sea ice declines have fostered a population 64 

dynamics’ model, where abundance is maximal at intermediate sea ice concentrations (13, 14). 65 
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This model has been instrumental in projecting the response of Adélie penguins to climate 66 

variability across large spatial and temporal scales (15–17). However, more localized and 67 

shorter-term predictions are still hindered by the inherent variability and noise in abundance 68 

time series which most studies are constrained to rely on (17–19). Since abundance results from 69 

the complex interplay of several demographic rates, each influenced by specific environmental 70 

drivers, and some of which are poorly understood (20), focusing on single vital rates could 71 

enhance the accuracy of projecting species responses to environmental change (21). The need 72 

for such an approach is twofold; it can provide short-term feedback for ecological management 73 

at the local scale and be integrated at larger spatial scales as more studies become available 74 

across the species range (22–25). 75 

 76 

In long-lived species such as the Adélie penguin, adult survival typically holds the greatest 77 

potential to influence population dynamics (26). Yet, juvenile survival appears to play a 78 

disproportionate role in driving Adélie penguin population fluctuations. For example, Adélie 79 

penguin’s abundance (as measured by the number of breeding pairs) correlates with sea ice 80 

conditions with a 5-years lag (27); which is consistent with effects of sea ice on juvenile 81 

survival during their first months at sea (28). In the Antarctic Peninsula (29, 30) and East 82 

Antarctica (31), population size decreased when juvenile survival also did, further emphasizing 83 

its central role in shaping overall population trends. Despite such findings, we still lack clear 84 

evidence for a relationship between juvenile survival and environmental parameters known to 85 

affect population dynamics, such as sea ice concentration (11). Although adult survival has 86 

been convincingly linked to environmental variables (e.g., Southern Oscillation Index, winter 87 

sea ice concentration) in several populations around Antarctica (29, 32–35), the drivers of 88 

juvenile survival remain unclear (29, 31, 34). Given the importance of this demographic 89 

parameter, evaluating its trends across the species’ range and elucidating its environmental 90 

drivers are required to adequately predict the species’ response to future environmental changes 91 

facing Antarctica (36). 92 

 93 

Here, we quantify juvenile survival probabilities for the first time in the Western Pacific Ocean 94 

sector (90°E to 160°E, Fig. S1) using a 17-year-long dataset of known-age, electronically 95 

tagged Adélie penguins from Pointe Géologie archipelago, Adélie Land. By investigating 96 

trends in survival for this population located thousands of kilometers away from other studied 97 

colonies and synthesizing previously published studies on this vital rate, we provide a 98 

comprehensive picture of trends in Adélie penguin juvenile survival across Antarctica. To 99 
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uncover the mechanisms behind variations in juvenile survival, we also investigate the drivers 100 

of juvenile survival at Pointe Géologie by linking survival probabilities to intrinsic and 101 

environmental parameters such as body mass at fledging and sea ice concentrations. 102 

 103 

Results: 104 

We used a multi-state capture-recapture framework accounting for short-range dispersion 105 

within a 10-km radius to model the survival probability of juvenile Adélie penguins (0-2 years 106 

old). This model (see methods) enabled us to quantify juvenile survival probabilities between 107 

2007 and 2020. Over this period, juvenile survival estimates averaged 0.42 ± 0.18 and showed 108 

high inter-annual variability (CV = 44%, Fig. 2A). Notably, juvenile survival probabilities 109 

exhibited a negative trend (Fig. 2A ; Table 1, model 30, analysis of deviance: p-ANODEV = 110 

0.016). The annual rate of change was of -2.5% (± 95%CI: -3.2, -1.9), translating into a 32% 111 

loss between 2007 and 2020. An exhaustive literature search showed that juvenile survival had 112 

previously been quantified at 5 other locations around Antarctica ((29, 31, 33, 37, 38), 113 

summarized in Fig. 2). Temporal variation was investigated at only two of them, and juvenile 114 

survival probabilities were found to decline at both sites (Admiralty Bay, King George Island, 115 

Western Antarctic Peninsula, -1.3% per year for 1982-2000 (29) ; Béchervaise Island, Mac. 116 

Robertson Land, East Antarctica, -1.8% per year for 1992-2015 (31) ; Fig. 2). 117 

 118 

To understand the drivers behind the decline observed at our study site, we used our previously 119 

developed model to test the effect of various intrinsic (mass at fledging, cohort size) and 120 

environmental covariates such as sea ice concentrations (SIC), large-scale climatic indices, and 121 

windchill temperatures on juvenile survival probabilities. Among the original set of covariates, 122 

we considered (Table S2), only autumn sea ice concentrations near the natal colony 123 

(SIC.autumn) accounted for more than 20% of the temporal variance (DEV) in juvenile 124 

survival rates (Table 1, model 22, %DEV = 28.2). After decomposing this variable into 125 

monthly data (SIC.march and SIC.april), only SIC.april reached the 20% DEV threshold (Table 126 

1, model 26, %DEV = 39.4). By decomposing SIC.april into the fraction of total ice area (15-127 

100% SIC) covered by the marginal ice zone (15-80% SIC, MIZFRAC.april) and the fraction 128 

of total ice area covered by dense sea ice (80-100% SIC, DENSEFRAC.april), we then revealed 129 

that the amount of loose sea ice in the vicinity of the colony (MIZFRAC.april) was negatively 130 

related to juvenile survival rates (slope ± 95%CI = - 0.97 (- 0.99, - 0.94), Fig. 3B) and accounted 131 

for 78.8% of the temporal variation (Table 1, model 27). Conversely, the amount of dense sea 132 
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ice (DENSEFRAC.april) was positively related to juvenile survival rates (slope ± 95%CI = 133 

0.85 (0.83 , 0.87), Fig. 3C) and accounted for 39.7% of the temporal variation (Table 1, model 134 

28). This amount of April dense sea ice near the colony declined by 13% during the time of 135 

our study (linear model: F = 7.65, p = 0.016, R² = 0.37, Fig. 3D). 136 

 137 

Linear models showed that chick body mass at tagging, an important driver of post-fledging 138 

survival in birds, decreased slightly over the study period (F = 57.87, p < 0.001, R² = 0.02, 139 

2007-2022 average = 3.60 ± 0.61 kg), and varied more within (average of annual mass SD = 140 

0.54 kg) than across cohorts (SD of annual average mass = 0.33 kg, Fig. S8). Multi-state 141 

capture-recapture modeling showed that chick body mass was positively related to juvenile 142 

survival probability, both across cohorts (mean annual fledging mass, MFM, Table 1, model 143 

29, %DEV = 22.0, slope ± 95%CI = 0.04 (0.04, 0.04)), and also at the individual level, with a 144 

model-predicted 5.4 % increase in survival probability for every 500 grams of chick body mass 145 

(i.e. within cohorts, Fig. 4, LRT, χ²1 = 48.014, p < 0.001). The slope of this relationship did not 146 

differ among years, as indicated by the additive model having a lower AIC than the interactive 147 

model (Table 1, models 33 and 34, respectively). 148 

 149 

To ensure that our study colony was representative of the larger Pointe Géologie archipelago 150 

population (see methods), we compared the breeding productivity of the study colony to that 151 

of the entire population. Over the 2011-2024 period, breeding productivity for our study colony 152 

averaged 0.63 ± 0.44 chicks per breeding pair (Fig. S5) and was highly correlated to that of the 153 

entire Pointe Géologie archipelago (2011-2017, Pearson correlation: r = 0.99, p < 0.001, Fig. 154 

S6). The number of breeding pairs in the study colony averaged 273 ± 62 between 2011 and 155 

2024 and remained comparable with two undisturbed control colonies located on the same 156 

island (Spearman rank correlations, both p < 0.022, Fig. S7). 157 

 158 

Discussion: 159 

Using 17 years of individual electronic monitoring, we observed a loss of 2.5% per year in 160 

Adélie penguin juvenile survival over 14 years (2007-2020) in an Adélie Land population, a 161 

rate likely stronger than the declines already observed in the only two other populations for 162 

which juvenile survival time series are available (in Mac. Robertson Land, East Antarctica, -163 

1.8% per year (31), and in the Western Antarctic Peninsula, -1.3% per year (29)). By 164 

quantifying the survival of juvenile Adélie penguins for the first time in a region located 165 
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thousands of kilometers (3400 km and 6300 km, respectively) away from other monitored 166 

colonies, our results point to emerging negative trends across the continent. We also highlight  167 

potential mechanisms at play, since the decline in juvenile survival probability recorded in 168 

Adélie Land was associated with decreasing amounts of landfast (dense) sea ice in the vicinity 169 

of the natal colony within two months after fledging. As sea ice declines are predicted to shrink 170 

Adélie penguin populations in the latter part of the century (15, 16), steady declines in juvenile 171 

survival may already foreshadow such shifts.  172 

 173 

● Range-wide declines in juvenile survival 174 

 175 

Permanent dispersion of marked individuals away from study sites can bias the results of 176 

capture-recapture studies when incorrectly accounted for (39). Here, our deployment of a 177 

mobile RFID antenna network, radiating 10 kilometers around the main study colony (Fig. 1), 178 

has unveiled compelling evidence of high local philopatry, allowing a robust estimation of 179 

survival probability in spite of local dispersion. Long-distance permanent dispersion of 180 

juveniles, which could bias our survival estimates low, remains nonetheless largely unknown 181 

and should be addressed in the future. 182 

 183 

Because of these difficulties and exceptional logistic constraints, temporal variations in the 184 

survival of juvenile Adélie penguins had only been investigated at two other locations in 185 

Antarctica before this study, and only at a single one (Béchervaise Island) without the negative 186 

impact of flipper bands on penguin vital rates (40, 41). Hinke et al. (29) were the first to report 187 

an annual decline in juvenile survival probability, with a decline of -1.3% per year (1982-2000) 188 

for Admiralty Bay (King George Island, Western Antarctic Peninsula). Survival probability at 189 

this site then seemed to stabilize up to 2011, although a change in marking methodology (from 190 

aluminum to stainless steel flipper bands) and high inter-annual variability in survival 191 

probabilities made it difficult to compare the two periods (29, 30). More recently, Emmerson 192 

and Southwell (31) extended the analysis of the capture-recapture dataset from Béchervaise 193 

Island (Mac. Robertson Land, East Antarctica) to reveal that juvenile survival had also declined 194 

(-1.8% per year, 1992-2015) in this population located halfway between the Antarctic 195 

Peninsula and Adélie Land (Fig. 2). 196 

 197 

With an annual decrease of -2.5% between 2007 and 2020 in Adélie Land, our study adds to 198 

the picture of declining juvenile survival across the species range (Fig. 2). Juvenile survival 199 
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has now declined at all three locations where time trends have been investigated (Fig 2). The 200 

time series used here (14 years) is shorter than those for Admiralty Bay (18 years) and 201 

Béchervaise Island (24 years), but it is worth noting that the -2.5% annual decline at Pointe 202 

Géologie exceeds that of these two other colonies. In addition, such an annual decline in Pointe 203 

Géologie exceeds the average inter-annual variability in survival probabilities (2.50% vs. 204 

1.79%) as in Béchervaise Island (1.80% vs. 1.57%) but unlike Admiralty Bay (1.30% vs. 205 

2.90%). 206 

 207 

● Drivers of juvenile survival  208 

 209 

The existence of a relationship between Adélie penguin population dynamics and sea ice is 210 

well established (11, 16, 38, 42). However, in spite of the importance of juvenile survival in 211 

driving population trends (31, 43, 44), previous studies have found relatively limited evidence 212 

for a relationship between SIC and juvenile survival (29, 31, 34). Here, unlike for the two 213 

populations previously studied (29, 31), we found that local sea ice concentration within 200 214 

km of the natal colony in the timeframe of one to two months after fledging (April) accounted 215 

for up to 40% of the temporal variation in survival probability (Fig. 3). Specifically, higher SIC 216 

in April had a positive effect on juvenile survival. The timing of this relationship, together with 217 

the fact that we did not detect effects of environmental variables later in the year, is highly 218 

consistent with a survival bottleneck occurring in the weeks following fledging, as identified 219 

for Pygoscelis penguins in the Antarctic Peninsula (45). A mortality peak immediately 220 

following fledging is also consistent with previous studies in mammals (46, 47) and birds (48, 221 

49). 222 

 223 

Our finding that SIC in April, but not in March, was correlated to juvenile survival may be 224 

particularly informative on the mechanisms linking sea ice to the survival of young Adélie 225 

penguins. Although the winter freeze-up of the Antarctic Ocean begins in March, sea ice 226 

usually consolidates markedly and expands equatorward in April (Fig. S10, (50, 51)). Newly 227 

fledged Adélie penguins therefore appear to be reliant on the rapid formation of sea ice at the 228 

onset of winter, and especially dense landfast ice (Fig. 3, Fig. S11). By decomposing April SIC 229 

into its loose (the marginal ice zone, between 15 and 80% SIC) and dense (80-100%) fractions, 230 

we were able to show that juveniles survived better in years when sea ice was made of large, 231 

fully frozen areas, rather than patchy ice (Fig. 3, Fig. S11). 232 

 233 
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To explain this relationship, we suggest that dense sea ice could provide more suitable resting 234 

grounds for fledglings, in a context where they are at high risk of energy reserves depletion 235 

(45). Furthermore, the formation of large areas of solid ice allows the emergence of polynyas 236 

and flaw leads (52), where prey may be more abundant (53) and/or more localized and thus 237 

easier to detect and capture, especially for inexperienced individuals likely to display lower 238 

foraging abilities compared to adults as shown in king penguins (Aptenodytes patagonicus) 239 

(54). Finally, patchier sea ice may favor predation, especially by leopard seals (Hydrurga 240 

leptonyx) (55), although predation pressure during fall and winter has never been investigated. 241 

Biologging studies have shown that during the winter, adult Adélie penguins tend to be 242 

associated with dense sea ice areas (56), with higher SIC promoting higher survival to the next 243 

breeding season (35). For juveniles, however, knowledge of post-fledging behavior is 244 

extremely limited. Only two studies so far have investigated their post-fledging movements 245 

(45, 57), while their diving behavior and association with specific sea ice types remain 246 

completely unexplored. 247 

 248 

While SIC measured right after fledging accounted for most of the inter-annual variation in 249 

juvenile survival, conditions during the breeding season may also play a significant role, as 250 

juvenile survival was positively related to chick mass prior to fledgling (Fig. 4). The decline in 251 

juvenile survival we observed over the study period may therefore be partly accounted for by 252 

a concurrent but slight decrease in fledging mass (Fig. S8). Both the diet (58, 59) and the 253 

foraging efficiency of breeders (60, 61) have indeed been linked to sea ice conditions during 254 

chick rearing, and these parameters may directly affect chick fledging mass (62, 63). Land-255 

based, food-independent, factors may also act, with higher precipitation and stronger winds 256 

late in the breeding season negatively affecting chick fledging mass (64), likely because of 257 

higher thermoregulatory costs for the chicks (63). Interestingly, the individual-level and 258 

positive effect of juvenile body mass at fledging on survival probabilities was similar across 259 

years, corroborating results from a previous study in the Ross Sea (62). These findings suggest 260 

that heavier chicks may maintain their survival advantage over lighter ones across a range of 261 

environmental conditions. 262 

 263 

● Demographic consequences and perspectives 264 

  265 

In long-lived species, the survival of young age classes can have major impacts on population 266 

dynamics (65). For Adélie penguins, this is exemplified by declines in abundance of breeders 267 
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that followed declines in juvenile survival probabilities in two distinct populations from the 268 

Western Antarctic Peninsula (29, 30) and East Antarctica (31). As in the present study, it was 269 

not possible to identify the onset of the decline in juvenile survival in these two populations, 270 

since trends were observable right from the beginning of the monitoring (Fig. 2). Nonetheless, 271 

evidence from East Antarctica suggests that declining juvenile survival may not cascade into 272 

an abundance decline immediately, with a ~10 years lag between the onset of decline in 273 

juvenile survival and the breakup in the abundance time series ((31), Fig. 2). Furthermore, 274 

events of low adult survival and repeatedly low breeding productivity may have acted in 275 

conjunction to generate the decline in abundance at Admiralty Bay (30) and Béchervaise Island 276 

(31), respectively. This may help explain why abundance at Pointe Géologie has not yet shown 277 

signs of decline ((66), Fig. 2). However, given the occurrence of two near-total breeding 278 

failures in the past decade alone (67) and the stronger rate of decline in juvenile survival 279 

observed at Pointe Géologie compared to other studies and to local inter-annual variability in 280 

this vital rate, it is possible that the Pointe Géologie population will also decline in the coming 281 

years. 282 

 283 

While Adélie penguin population declines for the Western Antarctic Peninsula are well 284 

documented (68–71) and consistent with the stronger rate of warming in the region (72), 285 

declines in other regions and notably in East Antarctica were not expected before the later part 286 

of the 21st century (16), with the Ross sea likely being the main refugia for the species (15). 287 

However, our findings in the Western Pacific Ocean sector of Antarctica, combined with recent 288 

evidence that an entire metapopulation elsewhere in East Antarctica has already declined by 289 

almost half in the past decade alone (31) suggest that changes could happen earlier than 290 

expected. 291 

 292 

Such rapid changes are likely to challenge the adaptive abilities of the Adélie penguin. One of 293 

the main mechanisms through which Adélie penguins may respond to these changes is dispersal 294 

towards areas where environmental conditions remain or become favorable as ice melts (16, 295 

73). Although mid-range (< 120 km) dispersion is possible in adult Adélie penguins (74), we 296 

still lack estimations of long-distance dispersion over time scales relevant with the current rate 297 

of environmental change. Similarly, we have highlighted that no clear universal environmental 298 

drivers of juvenile survival stand out, although similar temporal trends have emerged across 299 

the species range. 300 

 301 
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In this context, the next steps would first be to harmonize demographic databases across study 302 

sites and analyze them collectively. Specifically, quantifying the temporal variation in juvenile 303 

survival for the two Ross sea populations (33, 74, 75) is key. Completing the transition from 304 

flipper bands to RFID-tags (40) could also facilitate comparisons of demographic rates among 305 

populations. Second, conducting biologging studies of juvenile movement and diving behavior, 306 

in conjunction with sea ice analyses (akin to (35)), would help identify range-wide 307 

environmental drivers of survival. Third, rigorous efforts should be made to assess the dispersal 308 

capabilities of juvenile Adélie penguins under climate change, such as deploying autonomous 309 

RFID-tag detection systems (Fig. S2) in populations adjacent to the main colonies where this 310 

method is used. With the forthcoming fifth International Polar Year (2032-2033) and the likely 311 

large-scale decline in the survival of juvenile Adélie penguins, a significant window of 312 

opportunity emerges for closely monitoring the demographic trends of vulnerable species and 313 

unraveling the underlying factors driving these trends. 314 

 315 

 Methods: 316 

 317 

● Study area and design 318 

 319 

Fieldwork was carried out at Pointe Géologie archipelago (Adélie Land, Antarctica; Fig. 1), 320 

close to the Dumont d'Urville research station (66°40′S, 140°01′E). This archipelago has hosted 321 

30,000-50,000 breeding pairs of Adélie penguins annually for the last two decades (66).  322 

 323 

From the 2006-2007 breeding season onwards (breeding season will be referred to by the 324 

fledging year, e.g., 2007 in this case), Radio Frequency IDentification tags (RFID-tags) were 325 

implanted in chicks from a colony of about 270 breeding pairs located in a natural canyon 326 

(hereafter study colony). Unlike flipper bands (40, 41, 76), RFID-tags are not known to 327 

negatively affect penguin vital rates. All chicks still alive right before fledging were tagged (n 328 

= 3,138). A few RFID-tagged chicks (n = 76) were found dead within the colony prior to 329 

fledging and were consequently excluded from subsequent analyses, bringing the final dataset 330 

to 3,062 individuals (range = 0-350/year, annual average = 192 from 2007 to 2022). 331 

 332 

The study colony was fenced off in 2009 and instrumented with RFID gateways similar to 333 

those used in other penguin populations (Adélie penguins: (77–79); King penguins: (80, 81); 334 
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Southern rockhopper penguins: (82); Macaroni penguins: (83); Little penguins: (84)). This 335 

setting made it impossible to miss tagged individuals visiting the colony. To account for 336 

dispersal from the study colony to neighboring colonies within a 10-km radius (Fig. 1), a grid 337 

of mobile RFID detection units (2-8 units, Fig. S2) was deployed every year from November 338 

to March, starting in 2013. Mobile RFID units were positioned at natural bottlenecks frequently 339 

used by penguins traveling between colonies and the sea. Units were moved every one to two 340 

weeks to maximize the number of detections. Among the 1061 individuals reobserved at least 341 

once after their tagging year, only 19 (1.8%) were detected exclusively by mobile RFID 342 

antennas, i.e. away from their natal colony. The mobile RFID-units resighting effort was more 343 

intensive closer to the study colony (< 200 m) but was performed up to 10 km from it (Fig. 1). 344 

 345 

● Colony and individual-scale parameters  346 

 347 

Colony-scale breeding productivity was defined as the number of fledglings, divided by the 348 

annual maximum number of adults inside the colony divided by two (a proxy for the number 349 

of breeding pairs). Individuals present in the colony were photo-counted weekly during the 350 

whole breeding season, starting in 2011. Cohort size was taken as the total number of RFID-351 

tagged chicks that fledged. We ensured that observations from the study colony were 352 

representative of the larger-scale Pointe Géologie archipelago by comparing our local estimate 353 

of breeding productivity with data available from the literature for Pointe Géologie (2011-2017, 354 

(85)). Similarly, to ensure that our monitoring setup did not impact breeding abundance at the 355 

colony, we compared the trend in number of breeding pairs in the study colony with that of two 356 

other undisturbed colonies located on the same island for the 2011-2024 period (Fig. S7).  357 

 358 

All RFID-tagged chicks were weighed during tagging to the nearest 0.05 kg. The timing of 359 

tagging was adjusted to annual chick departure phenology (i.e. starting when the first molting 360 

chick was observed in the colony), ensuring mass was comparable across years. Each year, 361 

tagging occurred 10-15 days prior to fledging, making chick mass at tagging a reliable and 362 

consistent proxy for fledging mass (62). In Pointe Géologie archipelago, fledging occurs from 363 

late February to early March. 364 

 365 

● Capture Mark Recapture (CMR) modeling and statistical analyses 366 

 367 
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To model apparent survival and recapture probabilities of juvenile Adélie penguins, we 368 

constructed capture histories for all individuals (n = 3,062) fledged between 2007 and 2022, 369 

and subsequently observed between the 2009 and 2023 breeding seasons. Out of these 3,062 370 

fledglings, 1,061 were observed again in subsequent years. 371 

 372 

Given the dispersal of some birds from the study colony to neighboring colonies, and the higher 373 

resighting effort on and near the study colony, we adopted a multi-state framework to model 374 

survival, recapture, and transition probabilities (86). We implemented this framework in the 375 

program MARK v.9.0 (87). Different resighting probabilities among colonies were accounted 376 

for using a two-state classification: a local state (1) for the study colony and adjacent colonies 377 

within 200 meters, and a distant state (2) for all colonies located more than 200 meters from 378 

the study colony. This allowed closing the system and enhancing the robustness of survival 379 

estimates despite short-range dispersal dynamics. As the detection probability of 1-year-old 380 

individuals was near 0 (only a single bird was detected at age 1, Fig. S3), it was not possible to 381 

compute survival probability between ages 0 and 1. The first recapture occasion following 382 

tagging was thus deleted for all individuals (supplementary text). Consequently, juvenile 383 

survival was estimated between 0 and 2 years old. 384 

 385 

We used U-CARE software (88) to evaluate the goodness of fit (GOF) of the two-states time-386 

dependent (JollyMoVe, JMV) model to our dataset (89). The JMV model did not fit the original 387 

dataset because of transients (i.e. individuals never reencountered after tagging, Table S1a). 388 

We thus tested the GOF of the JMV model to a dataset where the first capture was set to 0 for 389 

each individual (i.e. effectively making capture history of each individual start at first 390 

reencounter following tagging, see supplementary text), thereby allowing to test the fit of a 391 

model with extended age-dependence on survival and recapture probabilities.The fit of the 392 

JMV model to this dataset was satisfactory (Table S1), albeit with indications of further age 393 

structure (i.e. > two age classes) in survival probabilities (significant test 3G.SM, Table S1b) 394 

and capture probabilities (almost significant Test M.ITEC, Table S1b). This validated the use 395 

of an initial umbrella model incorporating ≥ two age classes on recapture, survival, and 396 

transition probabilities (model 1, Table S3). 397 

 398 

In Adélie penguins, presence at the breeding colony (and thus availability for detection) is 399 

conditional on age, with reproductively mature individuals more likely to visit colonies than 400 

pre-breeders. Survival is also age-dependent, with lower survival probability in juveniles 401 
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compared to adults (33). Earlier studies of known-age Adélie penguins have therefore 402 

accounted for age-structured recapture and survival probabilities, with either two (29), three 403 

(34), or five age classes (33). Here, we started from a model with five age classes on survival, 404 

recapture, and transition probabilities, and explored all the possibilities in each submodel down 405 

to only two age classes. Finally, our starting (umbrella) model was adjusted to account for the 406 

low number of individuals detected in distant colonies. This model was framed with age 407 

variation only (no time effects) for all transition probabilities, and recapture probabilities in the 408 

distant colonies (state 2). The survival probabilities in both states (i.e. local and distant) were 409 

also set to be equal in that model, which appears as a reasonable assumption considering that 410 

all colonies belong to the same population of Pointe Géologie archipelago (Fig. 1). We 411 

successively looked for the most appropriate age and time structure for recapture, transition, 412 

and survival probabilities, using the previously retained best structure for each submodel. The 413 

most parsimonious model was retained when two models were within two AIC points of each 414 

other. This selection process yielded an optimal model (model 13, Table S3) including two age 415 

classes (0-2 and 3+) and time effects within each age class for survival probabilities. Recapture 416 

probabilities were best modeled using three age classes in both states. The best structure 417 

included additional time effects in each of these three age classes for the local state only (Table 418 

S3). Transition probabilities were best modeled with state and age effects (five age classes in 419 

each state, Table S3). Because survival and recapture probabilities are not separable for the last 420 

year (2021) in time-dependent CMR models, this model allowed to estimate juvenile (0-2) 421 

survival from 2007 to 2020 only. Estimates of recapture probability in the local state were low 422 

and displayed high inter-annual variability for the first age class (mean ± SD: 0.33 ± 0.24, Fig. 423 

S9), but were high and stable in the last age class (mean ± SD: 0.96 ± 0.05, Fig. S9). Recapture 424 

probabilities in the distant state were estimated for the last age class only and were particularly 425 

low (0.02, SE = 0.009, Fig. S9). This model was then used as a basis for testing the effect of 426 

selected covariates on juvenile survival (see below). 427 

 428 

● Covariate selection and definition 429 

 430 

Candidate environmental variables were considered based on relevance to the Adélie penguin’s 431 

ecology and previous studies of Antarctic seabirds (Table S2). We first considered two large-432 

scale indices, indicators of broad climatic variations in Antarctica and the surrounding Southern 433 

Ocean: the Southern Oscillation Index (SOI) and the Southern Annular Mode (SAM). 434 

Together, they affect wind patterns, temperatures, and sea ice dynamics, with complex 435 
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regional-specific variability (6, 90). Such variability has been linked to opposite responses both 436 

among and within species. For instance, positive SOI values were previously linked to lower 437 

survival in adult Adélie penguins in Adélie Land (32) but no support for such an effect was 438 

found in Mac. Robertson Land (34), the Western Ross Sea (33), or the Antarctic Peninsula 439 

(29). High SAM values were also found to affect the survival of other Antarctic seabirds, either 440 

positively (adult Cape petrel, Daption capense, (91); juvenile Emperor penguins, Aptenodytes 441 

forsteri, (92) or negatively (juvenile Snow petrels, Pagodroma nivea, (93)). Monthly SOI data 442 

were downloaded from the NOAA National Centers for Environmental Information 443 

(https://www.cpc.ncep.noaa.gov/data/indices/soi) and daily SAM data from the NOAA 444 

Climate Prediction Center 445 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtml). 446 

 447 

Regional sea ice extent anomalies (SIEA) were also considered because of the quadratic 448 

relationship previously observed between SIEA and the survival of adult Adélie penguins in 449 

the Western Ross Sea (33). Monthly data for the Western Pacific sector (90°E to 150°E), which 450 

encompasses our study site, were downloaded from the National Snow and Ice Data Center 451 

(NSDIC, https://nsidc.org/data/g02135/versions/3). To capture the conditions experienced by 452 

juveniles after fledging and during their first winter at sea, each index (SOI, SAM, SIEA) was 453 

averaged from March to September (34), resulting in one value per year per index. 454 

 455 

At the local scale, we considered both linear and quadratic effects of the average windchill 456 

temperatures (WCT) between April and September, based on the quadratic relationship 457 

previously observed between WCT and the survival of juvenile Adélie penguins (31). Ten-day 458 

average data of minimum temperature and average relative humidity from the Dumont 459 

D’Urville weather station were downloaded from Meteo France (https://meteo.data.gouv.fr/) 460 

and used to calculate WCT following the Australian Bureau of Meteorology calculation (as in 461 

(31)). 462 

 463 

Finally, we considered sea ice concentrations (SIC, average sea ice concentration in a specific 464 

area) at three different spatio-temporal scales (Fig. S4). As tracking data for juveniles is 465 

currently not available in our focal region, we considered broadly similar migration routes as 466 

those of adults previously studied at Pointe Géologie and found to gradually move westward 467 

after reproduction following the Antarctic coastal current (94). This pattern is corroborated by 468 

the tracking of both juveniles and adults in another east Antarctica population (34, 57) and 469 
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therefore likely in our study area. To reflect post-fledging (autumn) conditions experienced by 470 

birds near their natal colony, we considered March-April SIC between 135°E and 145°E 471 

(SIC.autumn). We also considered winter (May-July, SIC.winter) and late winter (August-472 

September, SIC.latewinter) conditions, both between 110°E and 135°E. Sea ice concentrations 473 

were computed by averaging daily concentration values from 25×25 km grids downloaded 474 

from the NSDIC ((95), https://nsidc.org/data/g02202/versions/4) over the spatio-temporal 475 

windows defined above. Following initial analyses, we further adjusted our sea ice metrics by 476 

first decomposing SIC.autumn into March and April SIC  (SIC.march, SIC.april). Because 477 

different types of ice may affect seabirds differently (96), we then calculated the April fraction 478 

of the total ice area (15-100% SIC) covered by the marginal ice zone (loose sea ice between 479 

15-80% SIC, MIZFRAC.april) and the April fraction of the total ice area covered by dense 480 

pack ice (80-100% SIC, DENSEFRAC.april). 481 

 482 

We also considered cohort size and average mass at tagging (as a proxy for fledging mass, (62)) 483 

as likely intrinsic drivers of juvenile survival in Adélie penguins. Cohort size was shown to 484 

correlate positively with fledgling survival in a previous study (31), while fledging mass is a 485 

common predictor for juvenile survival in birds (e.g., (97)), including penguins (62, 98). The 486 

effect of fledging mass on inter-annual differences in survival probabilities was investigated 487 

by using mean fledging mass (MFM) for each cohort. Inter-individual, within-season effects 488 

of fledging mass were also investigated, using chick mass as an individual covariate. 489 

 490 

To avoid including covariates that are correlated with each other (multicollinearity, see (23)), 491 

we checked for pair-wise correlations among our initial set of covariates (SOI, SAM, SIEA, 492 

SIC.autumn, SIC.winter, SIC.latewinter, WCT, MFM, cohort size). Only SIC.winter was 493 

correlated strongly enough (r > 0.7, (99)) with two other closely related sea ice metrics (SIEA 494 

and SIC.latewinter) so that we decided to drop this covariate from analyses. Remaining 495 

covariates were scaled to improve model convergence and facilitate parameters comparisons. 496 

Covariates were tested in isolation and considered influential when the 95% confidence interval 497 

(CI) of the effect size did not overlap 0 and when accounting for ≥ 20% of the temporal 498 

variation in survival rates (23). The support for a linear trend in juvenile survival was assessed 499 

using ANODEV (23). The effect of individual mass on survival was investigated using 500 

Likelihood Ratio Tests (LRT). 501 

 502 
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Homoscedasticity and normality assumptions were assessed where appropriate. Values are 503 

reported as means ± SD unless mentioned otherwise. Statistical analyses other than the CMR 504 

modeling were conducted in R version 4.3.2 (100). 505 

 506 
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Fig. 1. Overview of the Adélie penguin individual monitoring system operating in Pointe Géologie archipelago (Adélie Land) 

and location of similar monitoring sites across Antarctica still active as of 2024. (A) Main panel: Satellite imagery of Pointe Géologie 

archipelago (Pléiades Neo, Airbus DS 2021, 12/10/2021) with locations of the mobile RFID-antennas deployment sites (red), 

undisturbed control colonies (blue) and the main study colony (yellow). Top-left inset: location of study sites across Antarctica where 

longitudinal monitoring of marked Adélie penguins is still carried out (ADMI: Admiralty Bay, BECH: Béchervaise Island, EDMO: 

Edmonson Point, PGEO: Pointe Géologie, ROSS: Ross Island (4 monitored colonies including one on neighboring Beaufort Island)). 

B) Study colony in Pointe Géologie where all fledged chicks have been implanted with RFID-tags since 2007. (C) Penguins can only 

access or exit through two RFID-equipped passageways (only one shown here
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Fig. 2. Summary of the six locations around Antarctica where Adélie penguin juvenile survival (ɸ, 0-2 years old) has been 

quantified. Among them, only three have investigated temporal variations. A) Survival of juvenile Adélie penguins from Pointe 

Géologie archipelago, Adélie Land (PGEO, electronic tagging, 2007-2020). The dots and intervals represent annual survival 

probabilities ± SE. The regression line and associated SE are from a linear regression (p = 0.036, R² = 0.37); B) Adélie penguin 

abundance (number of breeding pairs) at Pointe Géologie Archipelago (2007-2019, data reproduced from (66)); C-D) Juvenile survival 

(1982-2000 aluminum bands, 1998-2011 stainless steel bands) and abundance (1982-2011) at Admiralty Bay, King George Island, 

Western Antarctic Peninsula (ADMI, data reproduced from (29, 30)); E-F) Juvenile survival (electronic tagging, 1992-2015) and 

abundance (1992-2020) at Béchervaise Island, Mac. Robertson Land (BECH, data reproduced from (31)); G) Only mean estimates were 

available for three populations in the Ross Sea: Cape Hallett, Victoria Land (HALL, metal bands, 1959-1962, data extracted from (37)), 

Cape Crozier, Ross Island (CROZ, aluminum bands, 1961-1976, data extracted from (38)), Edmondson Point, Victoria Land (EDMO, 

electronic tagging, 1994-2002, data extracted from (33)). Survival estimates from HALL and to a lesser extent CROZ should be 

compared to other estimates with caution because they were not computed using modern capture-recapture techniques accounting for 

imperfect detection as in the other studies. Juvenile survival time series were fitted with linear regressions when authors reported a linear 

trend (A,C,E). Abundance time series were fitted with Generalized Additive Models (GAM)
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Fig. 3. Relationships between the survival (ɸ) of juvenile Adélie penguins from Pointe Géologie archipelago (Adélie Land, East 

Antarctica) and several sea ice metrics within 200 kilometers of the natal colony for the month of April. A) Average sea ice 

concentration (SIC), B) Fraction of the total ice area (15-100% SIC) covered by the marginal ice zone (15-80% SIC), C) Fraction of 

total ice area (15-100% SIC) covered by dense ice (80-100% SIC). D) Time series (2007-2021) of the fraction of total ice area (15-

100% SIC) covered by dense ice (80-100% SIC). Black thick lines and associated SE (gray shadow) on each panel are from linear 

regressions (respectively: p = 0.009, R² = 0.51 ; p < 0.001, R² = 0.79 ; p = 0.049, R² = 0.33 ; p = 0.016, R² = 0.37).
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Fig. 4. Model-predicted relationship between Adélie penguin juvenile survival (ɸ) and body mass at tagging.  Modeling was 

carried out using the program MARK (87). The predicted relationship is drawn from model 34 (Table 1). Green and violet dots represent  

individuals, and shaded areas represent probability density for each fate.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.23.609289doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?6IiMAe
https://www.zotero.org/google-docs/?6IiMAe
https://www.zotero.org/google-docs/?6IiMAe
https://doi.org/10.1101/2024.08.23.609289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

1 
 

 

Table 1. Comparison of the effect of covariates on Adélie penguin juvenile survival probability. Abbreviations: AICc, Akaike 

Information Criterion corrected for small sample sizes ; ΔAICc, AICc difference between current model and time-dependant model ; 

K, number of parameters ; Dev, Model deviance ; p ANODEV, p-value of the analysis of deviance ; %DEV, percentage of the time-

dependent model’s deviance explained by the inclusion of covariate (23) ; LRT, Likelihood Ratio Test. Covariates abbreviations: see 

footnote and Table S2. 

 

Footnote Table 1: MIZFRAC.april (April fraction of total ice area between 135°E-145°E covered by the marginal ice zone (15-80% 

SIC)) ; DENSEFRAC.april (April fraction of total ice area between 135°E-145°E covered by dense ice (80-100% SIC)) ; SIC.april 

(April average SIC in area between 135°E-145°E) ; SIC.autumn (Mar-Apr average SIC in area between 135°E-145°E) ; WCT (Windchill 

temperatures for Dumont D’Urville in Apr-Sept) ; SAM (Southern Annular Mode, Mar-Sept) ; SIC.march (March average SIC in area 

between 135°E-145°E) ; SIC.latewinter (Aug-Sept average SIC in area between 110°E-135°E) ; SOI (Southern Oscillation Index, Mar-

Sept) ; SIEA (Sea Ice Extent Anomalies, Mar-Sept), SIC.winter (May-Jul average SIC in area between 110°E-135°E). 
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              Annual cov. models 
Individual cov. 

models 

Index 
Candidate 

model (Φ 0-2) 
AICc ΔAICc 

AICc 
Weights 

K Dev 
p 

ANODEV 
Slope [95%CI] %DEV χ2 LRT p LRT 

Annual covariate models 
13 time 12044.7 0 1 75 2303.7 - - - - - 
27 MIZFRAC.april 12068.2 23.4 0 62 2353.7 <0.001 -0.97 [-0.99 , -0.94] 78.8 - - 
28 DENSEFRAC.april 12160.1 115.3 0 62 2445.6 0.005 0.84 [0.82 , 0.86] 39.7 - - 
26 SIC.april 12160.8 116.1 0 62 2446.3 0.005 0.96 [0.93 , 0.99] 39.4 - - 
30 linear 12180.5 135.7 0 62 2466.0 0.016 -0.02 [-0.03 , -0.02] 31.1 - - 
22 SIC.autumn 12187.1 142.4 0 62 2472.6 0.023 0.92 [0.89 , 0.95] 28.2 - - 
29 MFM 12201.8 157.1 0 62 2487.3 0.050 0.03 [0.03 , 0.03] 22.0 - - 
20 WCT 12215.8 171.0 0 62 2501.3 0.099 0 [-0.03 , 0.03] 16.1 - - 
21 WCT² 12217.0 172.2 0 63 2500.4 0.095 - 16.4 - - 
25 SIC.march 12220.3 175.5 0 62 2505.8 0.124 0.75 [0.74 , 0.76] 14.2 - - 
17 SOI 12232.0 187.3 0 62 2525.7 0.340 0.03 [0 , 0.07] 5.7 - - 
19 SIEA 12241.5 196.8 0 62 2527.0 0.365 0.02 [0.02 , 0.03] 5.1 - - 
31 cohort size 12243.2 198.4 0 62 2528.6 0.400 0 [-0.01 , 0.01] 4.4 - - 
23 SIC.winter 12244.6 199.9 0 62 2530.1 0.437 0.32 [0.31 , 0.33] 3.8 - - 
18 SAM 12245.2 200.5 0 62 2530.7 0.453 -0.02 [-0.07 , 0.04] 3.6 - - 
24 SIC.latewinter 12245.7 201.0 0 62 2531.2 0.467 -0.04 [-0.05 , -0.02] 3.4 - - 
15 constant 12265.8 221.1 0 68 2539.1 - - 0.0 - - 

Individual covariate models 
35 mass + time 12031.6 0.0 0.998 76 11878.0 - - - 15.227 <0.001 
32 time 12044.7 13.2 0.001 75 11893.2 - - - - - 
35 mass x time 12048.4 16.9 0.000 89 11868.3 - - - 24.935 0.0352 
34 mass 12219.8 188.3 0.000 69 12080.6 - - - 48.014 <0.001 
33 constant 12265.8 234.3 0.000 68 12128.6 - - - - - 
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SUPPLEMENTARY MATERIAL: 

Supplementary Text 

 

Manipulating capture histories to account for near-zero recapture probability at age 1 

and for Goodness-Of-Fit (GOF) testing. 

 
1. Accounting for near-zero recapture probability at age 1 

 
In capture-recapture modeling, the capture history (CH) of an individual is coded as a suite 

of numbers for each capture occasion. For example, if 0 = not seen ; 1 = seen in state 1 ; and 2 = 
seen in state 2, the individual A presented in the table below was tagged in state 1 in year 2, not 
seen in year 3, seen in state 1 in year 4 and seen in state 2 in year 5.  

 

Year/Capture occasion 1 2 3 4 5 

Capture history of individual A 0 1 0 1 2 

 

The CH of individual A can be written as: “01012”. Because recapture probabilities in the 
year following tagging (year 3 in the case of individual A) were near 0 in our study (only one 

individual was detected at one year old over our entire study period, Fig. S3), we rewrote CH of 
all individuals by removing the year after tagging. For example, the CH of individual A was 
transformed from “01012” into “0112”. 

 
This allows accounting for the fact that with so few individuals seen again one year after 

fledging, it is not possible to estimate survival probability (ɸ) from age 0 to age 1 (ɸ 0→1). 

Instead, we estimated survival from age 0 to age 2 (ɸ 0→2). This is the typical “juvenile 
survival” in capture-recapture studies where individuals are not available for detection before 

two years after fledging. Under the specific (but untestable in this case) hypothesis that ɸ 0→1 = 
ɸ 1→2, survival from age 0 to age 1 (ɸ 0→1) can nonetheless be estimated as sqrt(ɸ 0→2). 

 

2. GOF testing 
 

There is no direct GOF test for age-dependent, multistate capture-recapture models (88). 
However, the presence of transients (individuals never seen again after tagging) is a common 
source of age-dependence in recapture probabilities. To quantify how much of the lack of fit of a 

time-dependent (JollyMoVe, JMV) model can be attributed to transients, a common strategy is to 
test the GOF of the JMV model to a dataset where transients are removed by replacing the first 

capture of each individual by 0 in their capture histories. For example, in the dataset where 
transients are removed, the CH of individual A would be “00012”. 

 

When the GOF of the dataset without transients is satisfactory, the original dataset (i.e. 
including transients) can be used but recapture probabilities must be specified as age-dependent 

in the starting model, therefore accounting for transience.
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Fig. S1. 

Sectors of Antarctica used for large-scale sea ice analyses. Figure extracted from (7).
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Fig. S2. 
A mobile RFID detection unit being deployed on an Adélie penguin (Pygoscelis adeliae) passageway near a breeding colony in 

Adélie Land. This system allows the passive detection of RFID-tagged individuals away from the main study site where tagging is 
conducted. Detection data and batteries are stored in the acquisition box (1), to which an antenna is affixed and buried in the snow on 

penguin passageways (2, burying in process in this picture). To increase running time up to several weeks during the summer season, 

the system can be fitted with solar panels (3). ⓒ Gregory Tran (main panel), Téo Barracho (inset), Institut Polaire Français - French 

Polar Institute. Image rights: the person depicted in the picture is the first author.
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Fig. S3. 
Age of first return at the colony after fledging for RFID-tagged Adélie penguins in Pointe 

Géologie archipelago, Adélie land, Antarctica (2007-2020)
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Fig. S4. 

Spatial windows considered for estimating the sea ice concentrations covariates for autumn (orange), and winter/late winter 

(green). The yellow line depicts the average April sea ice extent and the blue line the average maximal sea ice extent (both over the 
1981-2010 period). Map produced using Quantarctica (https://www.npolar.no/quantarctica/ ; (101))
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Fig. S5. 

Time series of breeding productivity for the study colony (2011-2024). Breeding productivity 
was calculated as the number of chicks fledged divided by the annual maximum number of 
adults inside the colony divided by two). This proxy for breeding productivity is a slight 

overestimation of the actual breeding productivity, since all individuals present at the colony 
may not be breeders. However, it still reflects population-scale breeding productivity accurately 

(Fig. S5). Breeding productivity may be superior to 1 in some years because Adélie penguins can 
raise two chicks (38)
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Fig. S6.  

The annual breeding productivity (chicks per pair) of the study colony correlates with that 

of the whole population of Pointe Géologie archipelago, Adélie Land, Antarctica (2011-

2017, r = 0.99). Data for Pointe Géologie was extracted from (85). Breeding productivity may be 
superior to 1 in some years because Adélie penguins can raise two chicks (38).
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Fig. S7.  
Annual maximal number of adults (a proxy for the number of breeding pairs, weekly 

surveys) in three neighboring Adélie penguin colonies in Pointe Géologie archipelago, 

Adélie Land, Antarctica. These three colonies include the study colony (Antavia) and two 
control colonies (Hall Fusée and Isabelle) where no monitoring activities are conducted except 

for weekly photo counts.
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Fig. S8.  
Chick body mass at the time of RFID-tagging across cohorts (2007-2021) for Adélie 

penguins born in the study colony (Pointe Géologie archipelago, Adélie Land). Red dots 
represent annual means. Tagging consistently occurred 10-15 days prior to fledging, thus making 
mass at tagging a reliable proxy for fledging mass (62).
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Fig. S9.  

Estimated recapture probabilities of known-age RFID-tagged Adélie penguins in the local 

(A) and distant (B) states. States refer to spatial locations of colonies where individuals are 
detected. The local state includes the study colony and adjacent colonies (< 200 m), while the 

distant state includes colonies elsewhere in Pointe Géologie archipelago (see Fig. 1 in the main 
text). Error bars indicate ± SE.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.23.609289doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

1 
 

 
 

 
 

 

Fig. S10.  

Annual increase in the proportion of dense sea ice (80-100% sea ice concentration) in the 

vicinity of Pointe Géologie archipelago (~200 km) between March and May of each year 

(2007-2021). The gray shaded area represents the month of April, where the increase in dense ice 
fraction is strongest. Daily sea ice concentration data over 25×25 km grids was downloaded from 

the NSDIC ((95), https://nsidc.org/data/g02202/versions/4).
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Fig. S11.  

Sea ice-scape at the end of April near Pointe Géologie archipelago in two years of 

contrasting survival probabilities for juvenile Adélie penguins (2008, high survival 

probability; 2018, low survival probability. MODIS satellite images were downloaded from 

the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of the NASA 
Earth Observing System Data and Information System (EOSDIS).
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Table S1:  

Results of Goodness-of-fit tests for the multistate capture-recapture dataset used to 

estimate Adélie penguin juvenile survival probability at Pointe-Géologie archipelago, 

Adélie Land, Antarctica). df, Degrees of freedom; ĉ, Deviance inflation factor. 
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Table S2. 

Annual covariates considered in the present study for explaining temporal variation in Adélie penguin juvenile survival. 

 

Variable type Variable 
 

Spatial scale 

 

Temporal scale 

Hypothesized 

mechanisms and 

previous results 

Expected 

effects on 

Adélie 

penguin 

juvenile 

survival 

 

Global climatic 

index 

Southern 

Oscillation Index 

(SOI) 

global 
March-

September 

Low SOI values linked 

to higher winter 

temperatures were 

negatively related to 

adult survival in Adélie 

penguins in Adélie Land 

(32) 

Negative 

Southern Annular 

Mode (SAM) 
global 

March-

September 

Positive SAM values 

were related to higher 

juvenile survival in 

Emperor penguins in 

Adélie Land, possibly 

through increased food 

availability (92). Also in 

Adélie Land, this 

relationship was 

negative for snow 

petrels, possibly 

because positive SAM 

Positive 
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increases fast ice extent 

and reduces food 

availability for this 

surface-feeding species 

(93). 

Sea ice metrics 

Sea ice extent 

anomalies (SIEA) 

regional 

(90°E - 150°E) 

March-

September 

SIEA were quadratically 

related to Adélie 

penguin adult survival in 

the Ross sea (33) and 

positively related to 

juvenile survival in the 

WAP, possibly because 

increased ice extent 

provides more resting 

habitat (29). 

Positive 

SIC.autumn 

(average SIC in 

area) 

local  

(135°E - 

145°E) 

March-April 

Increased 

autumn/winter sea ice 

concentrations were 

positively related to 

population growth rate 

across Antarctica, 

consistent with effects 

on juvenile survival 

(11). Furthermore, 

tracking data from the 

Western Antarctic 

Peninsula (WAP) 

suggest a survival 

bottleneck occurs right 

Positive 
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after fledging (45). 

SIC.march 

(average SIC in 

area) 

local  

(135°E - 

145°E) 

March 

Increased 

autumn/winter sea ice 

concentrations were 

positively related to 

population growth rate 

across Antarctica, 

consistent with effects 

on juvenile survival 

(11). Furthermore, 

tracking data from the 

Western Antarctic 

Peninsula (WAP) 

suggest a survival 

bottleneck occurs right 

after fledging (45). 

Positive 

SIC.april 

(average SIC in 

area) 

local  

(135°E - 

145°E) 

April 

Increased 

autumn/winter sea ice 

concentrations were 

positively related to 

population growth rate 

across Antarctica, 

consistent with effects 

on juvenile survival 

(11). Furthermore, 

tracking data from the 

Western Antarctic 

Peninsula (WAP) 

suggest a survival 

Positive 
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bottleneck occurs right 

after fledging (45). 

SIC.winter 

(average SIC in 

area) 

local/regional  

(110°E - 

135°E) 

May-July  

Increased 

autumn/winter sea ice 

concentrations were 

positively related to 

population growth rate 

across Antarctica, 

consistent with effects 

on juvenile survival 

(11). Higher winter sea 

ice concentrations in 

the Weddell sea were 

positively related to 

juvenile survival in the 

WAP (29). 

Positive 

SIC.latewinter 

(average SIC in 

area) 

local/regional  

(110°E - 

135°E) 

August-

September 

Sea ice concentrations 

in Aug-Sept were 

weakly but negatively 

related to Adélie 

penguin juvenile 

survival in another east 

Antarctica population, 

possibly because too 

much ice pushes 

individuals away from 

foraging areas and/or 

affects predation 

pressure (34). 

Negative 
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MIZFRAC.april 

(% of ice area (15-

100% SIC) 

covered by the 

marginal ice zone 

(15-80% SIC)) 

local  

(135°E - 

145°E) 

April 

As different types of sea 

ice may affect seabird 

vital rates differently 

(96), we decomposed 

the April sea ice 

concentration into its 

loose fraction 

(MIZFRAC.april) and its 

solid fraction 

(DENSEFRAC.april). 

Unknown 

 

DENSEFRAC.april 

(% of ice area (15-

100% SIC) 

covered by dense 

ice (80-100% SIC)) 

local  

(135°E - 

145°E) 

April 

As different types of sea 

ice may affect seabird 

vital rates differently 

(96), we decomposed 

the April sea ice 

concentration into its 

loose fraction 

(MIZFRAC.april) and its 

solid fraction 

(DENSEFRAC.april).- 

Unknown 

Local climatic and 

intrinsic variables 

Windchill 

temperature 

(WCT) 

local/regional April-September 

WCT were quadratically 

or positively related to 

Adélie penguin juvenile 

survival in another east 

Antarctica population 

possibly because higher 

temperatures 

decreased 

thermoregulatory costs 

Positive 
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(31). 

Cohort size local Annual 

Density-dependent 

effects (positive 

relationship between 

cohort size and juvenile 

survival) were reported 

in another east 

Antarctica Adélie 

penguin population 

(31), possibly acting 

through diluted 

predation (55) pressure 

or increased social 

foraging. 

Positive 

Average chick 

mass at tagging 
local Annual 

Higher mass at fledging 

buffers inexperienced 

fledglings against 

depletion of energy 

reserve and is a general 

predictor of juvenile 

survival in birds (97). 

Positive 
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Table S3:  
Model selection for recapture, transition, and survival probabilities. Abbreviations: AICc, Akaike Information Criterion corrected for small 

sample sizes ; ΔAICc, AICc difference between current model and time-dependent model ; K, number of parameters ; Dev, Model deviance. 
 

Submodel set 
Inde

x 
Model AICc 

ΔAICc 

(for each 

submode

l set) 

AICc 

Weight

s 

K Dev 

Recapture (p)               

  3 Φ (5 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12076.

5 0.0 0.902 

10

4 

2276.

1 

  2 Φ (5 age classes × time) p(state1: 4 age classes × time;  state2: 4 age classes) Ψ(5 age classes × state) 

12081.

8 5.3 0.063 

11

4 

2260.

8 

  1 Φ (5 age classes × time) p(state1: 5 age classes × time;  state2: 5 age classes) Ψ(5 age classes × state) 

12083.

0 6.5 0.035 

12

3 

2243.

4 

  5 Φ (5 age classes × time) p(state1: 5 age classes + time;  state2: 5 age classes) Ψ(5 age classes × state) 

12095.

7 19.2 0.000 74 

2356.

7 

  6 Φ (5 age classes × time) p(state1: 4 age classes + time;  state2: 4 age classes) Ψ(5 age classes × state) 

12098.

2 21.7 0.000 73 

2361.

3 

  4 Φ (5 age classes × time) p(state1: 2 age classes + time;  state2: 2 age classes) Ψ(5 age classes × state) 

12135.

6 59.1 0.000 93 

2357.

8 

State transition 

(Ψ)               

  3 Φ (5 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12076.

5 0.0 0.991 

10

4 

2276.

1 

  8 Φ (5 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(3 age classes × state) 

12086.

9 10.3 0.006 

10

0 

2294.

7 

  7 Φ (5 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(4 age classes × state) 

12087.

7 11.2 0.004 

10

2 

2291.

4 

  9 Φ (5 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(2 age classes × state) 

12096.

4 19.9 0.000 98 

2308.

3 

  10 Φ (5 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(state) 

12098.

0 21.4 0.000 97 

2311.

9 

Survival (Φ)               
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  13 Φ (2 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12044.

7 0.0 0.997 75 

2303.

7 

  12 Φ (3 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12056.

1 11.4 0.003 85 

2294.

7 

  11 Φ (4 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12064.

6 19.9 0.000 95 

2282.

7 

  3 Φ (5 age classes × time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12076.

5 31.8 0.000 

10

4 

2276.

1 

  16 Φ (2 age classes + time) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12127.

1 82.3 0.000 65 

2406.

4 

  15 

Φ (2 age classes: cst/time)  p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × 

state) 

12264.

6 219.8 0.000 68 

2537.

9 

  14 Φ (5 age classes) p(state1: 3 age classes × time;  state2: 3 age classes) Ψ(5 age classes × state) 

12280.

2 235.5 0.000 55 

2580.

0 
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