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ABSTRACT 

Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and 

transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell 

functions. There is however no description of the contribution of epigenetic regulations to the adaptation 

of plant cells to limited carbon availability. We investigated this question using non-photosynthetic 

grapevine cells (Vitis vinifera, cv Cabernet Sauvignon) cultured in vitro with contrasted glucose 

concentrations. Sugar depletion in the culture medium led to a rapid cell growth arrest and a major 

metabolic shift that include the depletion in soluble sugar and total amino acids and modulation of the 

cell redox status. Consistently, flux modeling showed a dramatic slowdown of many pathways required 

for biomass accumulation such as cell wall and protein synthesis. Sugar depletion also resulted in a 

major transcriptional reprogramming, characterized by the induction of genes involved in 

photosynthesis, and the repression of those related to sucrose mobilization or cell cycle control. 

Similarly, the epigenetic landscape was deeply modified. Glucose-depleted cells showed a higher global 

DNA methylation level than those grown with glucose. Changes in DNA methylation mainly occurred 

at transposable elements, and at genes including some of those differentially expressed, consistent with 

an important role for methylation to the adaptation of cells to limited sugar availability. In addition, 
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genes encoding histone modifiers were differentially expressed suggesting that additional epigenetic 

mechanisms may be at work in plant cells under carbon shortage.  

 

INTRODUCTION 

Epigenetics is defined as the study of heritable and/or stable changes in gene expression that occur 

without modifications of the DNA sequence (Eichten, Schmitz, and Springer 2014). Epigenetic 

regulations involve different mechanisms such as post-translational modification of histones, small RNA 

production and DNA methylation, and play important roles in plant development and adaptation to the 

environment (He, Elling and Deng, 2011; Chang et al., 2020) In plants, methylation of the 5th carbon of 

cytosine, can occur in the symmetrical CG and CHG, and non-symmetrical CHH (H = A, C or T) 

sequence contexts. Establishment of DNA methylation in all sequence contexts is performed by the 

RNA directed DNA methylation (RdDM) pathway that requires the Domain Rearranged 

Methyltransferases 1, 2 (DRM1/2), DRD1 and 24nt-long small RNAs, and by the chromomethylase 2 

(CMT2) associated with Decrease in DNA Methylation (DDM1) for CHH methylation in constitutive 

heterochromatic regions. Methylation at hemi methylated CG sites, generated during DNA replication, 

relies on the activity of Methyltransferase 1 (MET1) together with Variant In Methylation (VIM) 1, 2 

and 3, and at CHG sites on CMT3. Methylation of the newly synthesized DNA strands at non-methylated 

CHH sites is mediated by both the RdDM pathway and CMT2 (Zhang, Lang, and Zhu, 2018). DNA 

methylation can be passively lost during cell divisions, or actively removed by DNA-demethylases in a 

base-excision repair process (Liu and Lang, 2020). 

Links between epigenetic regulations and metabolism were recently evidenced in animal systems (Lu 

and Thompson, 2012). Epigenetic modifications, both DNA methylation and histone post-translational 

modifications (HPTMs) are mediated by enzymes, that require metabolic precursors including acetyl-

coenzyme A (Acetyl-CoA) or S-adenosyl-methionine (SAM), and cofactors (nicotinamide adenine 

dinucleotide; NAD+, acetyl-CoA). Epigenetic processes are therefore, intimately connected to cell 

metabolism (Leung and Gaudin, 2020). This is further indicated by evidence of an interplay between 

sugar availability and epigenetic regulations in eukaryotes (Donohoe and Bultman, 2012; Chen, Zhang 

and Li, 2022). Recent works in yeast and yellowfin seabream have shown that starving is associated 

with metabolic imbalance and transcriptomic reprogramming. Main effects include the reduced 

expression of genes involved in cell growth while promoting those involved in carbon remobilization 

(fatty acid oxidation, gluconeogenesis) (Hsieh et al., 2022; Lin et al., 2022). In addition, while in yeast 

there is growing evidence of an interplay between the genome wide distribution of histone acetylation 

and transcriptomic changes following sugar starvation (Hsieh et al., 2022), in yellowfin seabream 

modification of the global DNA methylation level and distribution is considered as an important 

consequence of starvation (Lin et al., 2022). In plants, carbon depletion is also associated with several 
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cellular responses. On the one hand, starvation promotes protein, amino acids and lipid degradation, cell 

wall, starch and sucrose degradation, autophagy, photosynthesis, gluconeogenesis, transporters, and 

trehalose metabolism. On the other hand, carbon deprivation inhibits amino acids and protein synthesis, 

cell wall biogenesis, nucleotide metabolism, TCA cycle and glycolysis. The change of the cell energy 

status requires two antagonistically acting metabolic sensors - Sucrose-non-fermenting Related Kinase 

1 (SnRK1) and Target Of Rapamycin (TOR) kinase, which orchestrate the cell energy homeostasis, 

growth and survival throughout transcriptional and epigenetic regulations. Carbon starvation triggers 

the formation of SnRK1-C/S1-bZIP to enhance histone acetylation, or the direct interaction of SnRK1 

with JMJ705 to decrease H3K27me3 levels, thus activating the expression of starvation-responsive 

genes to maintain intracellular energy homeostasis (Pedrotti et al., 2018; Wang et al., 2021). In addition, 

recent work in Arabidopsis has shown that rapamicyn, an inhibitor of the TOR kinase, affects DNA 

methylation at genes involved in carbon and amino acid metabolism, suggesting that the glucose-TOR 

effect is mediated in part by DNA methylation (Zhu et al., 2020). Furthermore, mutation or 

pharmacological approaches impairing the synthesis of metabolic precursors necessary for epigenetic 

regulations, such as acetyl-CoA (Wang et al., 2019) or SAM, have important impacts on epigenomes, 

gene expression and plant phenotypes (Zhang et al., 2012; Wang et al., 2017). 

In the present work, we used carbon depleted heterotrophic grapevine cells as a way to investigate 

possible links between cell metabolism and DNA methylation control.  

The consequences of carbon depletion on cell growth, metabolic profiles and metabolic fluxes were 

described. We also analyzed the molecular response of cells by determining changes in gene expression 

profiles and DNA methylation landscapes. Correlative analyses of these multi-omics data sets allowed 

demonstrating tight interactions between cell primary metabolism, and gene expression and DNA-

methylation reprogramming, thus emphasizing the central role of epigenetic regulations in the response 

of cells to sugar starvation.  

  

 

RESULTS 

Sugar depletion causes a rapid cell growth arrest and metabolic shift  

After a latent phase of 3 days, Cabernet Sauvignon cells (CS) grown in standard conditions (SD, see 

methods) showed a rapid growth phase from day 3 (D3) to D8 followed by a growth arrest (Figure S1A). 

To evaluate the impact of glucose depletion, CS cells were transferred at D4 to either a glucose-rich 

(G+, 110 mM) or a glucose-poor (G-, 11 mM) medium (Figure 1A). The G+ cells fresh weight (FW) 

increased ~3,5-fold from D4 to D10 to reach 530.2 (±18.7) g FW/mL at D10 (Figure 1A). In contrast, 

G- cell FW showed a 1.2-fold increase, from 160 (±8.93) g FW/mL at D4 to 197.6 (± 9.61) g FW/mL 

UNCORRECTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/advance-article/doi/10.1093/hr/uhae277/7786778 by C

N
R

S U
M

R
 5546 user on 19 N

ovem
ber 2024



 
 

at D5, with no further significant changes. At D6, G- cells growth was significantly reduced as compared 

to G+ cells (Figure 1A), which was associated with a severe reduction of sugar availability in the 

growing medium (Figure S2).  

The consequences of carbon depletion on grapevine cell metabolism, was investigated using untargeted 

metabolomics analyses (see methods) each day from D0 to D4, and, after subculturing, from D4 to D10 

in G+ and G- conditions (n ≥ 4). After filtering of the metabolic signatures obtained from all samples 

analyzed, 1,719 variables were selected as the most reliable (see methods). The PCA of these signatures 

indicate that samples are grouped at D4 and diverge along the PC1 axis (representing 32.6% of the total 

variance) at D5 (Figure 1B). Maximum multivariate separation between samples is evident at D6 and 

D7, whilst G+ cells converge toward G- cells after D8 and this trend consistent with a restriction in 

glucose availability under G+ conditions at that time point. The G+ cells separate along the PC2 axis 

(15.5% of the total variance) as a function of time. Pearson’s correlation clustering (Figure S3) further 

confirmed the divergence between samples as dependent to both incubation time and medium 

composition. 

 

 

Figure 1. Sugar depletion triggers rapid growth arrest and metabolic drift in grapevine cells 

(A) Cabernet Sauvignon cell growth expressed in gram fresh weight (gFW/L) in SD (from day 0 to 4, 

grey line) and in glucose rich (G+ blue line) or glucose poor (G-, orange line) subculture from D4 to 

D10 (n=4). Vertical bars are Confidence Interval (n ≥ 4). (B) Principal Component Analysis (PCA) 

score plots (n=4) of 1719 LCMS-based metabolic signatures under SD, G+ or G- conditions. Maximal 

variance explained by each PC is indicated in brackets. Arrows represent the direction of metabolomic 

evolution in the PCA. SD (D0-D4): grey shades; G+ (D4-D10): blue shades; G- (D4-D10): orange 

shades. Vertical bars represent CI (n=8). Stars indicate the level of significance of G+ and G- sample 

comparison (*p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001). 
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Table 1. Carbon depletion triggers a metabolic shift in grapevine cells after 48h of subculture. 

Pairwise statistical analysis of the metabolomic features differing between glucose rich (G+) and glucose 

poor (G-) conditions estimated from D4 to D10. 

 

 

 

 

 

Pairwise comparisons of the metabolic profiles showed that the number of metabolites (P<0.01) 

differentially accumulated between G+ and G- conditions increased from 1 to 56 at D4 and D5, 

respectively, then to 285 from D5 to D6, with no further increase at D7 (Table 1). At D8, metabolic 

differences heightened transiently between conditions as G+ cells began to suffer from carbon depletion 

as well (Figure S2), before decreasing again from D8 to D10. 

Metabolomics profiles of G+ and G- cells at D4, D5, D6 and D7 were further used to extract the most 

significant 596 signals, in terms of differential accumulation in all samples (P<0.01) over a total of 1,703 

detected from D4 to D7 (Figure S4). Utilizing Pearson's correlation clustering on the 596 signals resulted 

in samples classification into four distinct groups that present distinct metabolite accumulation profiles 

from D5 to D7, demonstrating a progressive separation of G+ and G- samples from D4 to D7 (Figure 

S4). 

Overall, metabolome analyses reveal that changes in glucose availability generate major metabolic 

adjustment in heterotrophic cells as early as 24h after subculture. 

 

Sugar limitation has a profound impact on the cell primary metabolism and redox state   

Quantitative 

metabolic profiling 

of soluble sugars, 

organic acids, 

proteins, and total amino acids was performed from D0 to D10 in all growing conditions. As observed 

with untargeted metabolic analysis, most of metabolites measured were differentially accumulated 

between G+ and G- conditions from D6 (Figure S5 and S6). Main effects of G- condition were a 

reduction of soluble sugars accumulation in cells, but also changes in the abundance of free amino acids, 

organic acids, or total proteins. The NADH/NAD balance was also severely reduced in sugar-depleted 

cells (Figure S5). These data are consistent with a strong impact of carbon depletion on grapevine cell 

central metabolism and redox state.  

To further determine the consequences of sugar depletion on cell metabolism, experimental data of 

targeted metabolite analyses and cell components were integrated to constrain a flux model analysis and 

T-test 

p = 0.01 

D4 

G+ vs G- 

D5 

 

D6 

 

D7 

 

D8 

 

D9 

 

D10 

 

Metabolic 

features 

1 56 285 264 433 213 132 
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evaluate the impact of carbon depletion on the cell metabolic fluxes. To perform the flux analysis (Table 

S1-S4), the metabolic model was constrained to calculate fluxes as a snapshot each day in all conditions 

(i.e. in SD, G+ and G- conditions; Figure S7). Most of the internal fluxes calculated in G- were lower 

than the ones calculated in G+ at D6 (Figure S7) including those of glycolysis, oxidative phosphate 

pathway, and cell wall biosynthesis, and to a lower extend those of respiration, nitrate assimilation, and 

of the TCA cycle. Interestingly, some fluxes were increased under carbon limitation. 

 

Figure 2. Carbon depletion impacts 1C metabolic fluxes in grapevine cells. 

Calculated fluxes through metabolites involved in the TetraHydroFolate (THF) and S-Adenosyl-

Methionine (SAM) cycle. The x-axis represents time (days of culture), and the y-axis flux values 

calculated in mmol.gDW-1.Day-1. From D1 to D4, cells in standard conditions (SD, grey); from D4 to 

D8, cells in glucose-rich culture (G+, blue) and glucose-poor-culture (G-, orange): SD; blue and orange 

lines.  

 

They include fluxes involved in the mobilization of stored compounds, such as cell wall polymers, total 

protein, as well as the accumulation of lipids and some amino acids (Figure S7, Table S5). 
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We focused on the folate and methionine cycles (the 1C metabolism), as they link primary metabolism 

to methylation by controlling SAM availability to cells (Lindermayr et al., 2020). For the THF and SAM 

cycles, the calculated fluxes were used to estimate the flux activity for an intermediate metabolite as the 

sum of fluxes producing (or consuming) this metabolite (Figure 2, Table S6). Most of the fluxes rapidly 

dropped down to zero between D4 and D6 under G-, except fluxes through dihydrofolate (DHF), 

tetrahydrofolate (THF) and 10-formyltetrahydrofolate (fTHF) (Figure 2, Table S6). By contrast, the 

SAM fluxes estimated at 0.075 mmol/g DW/day in G+ condition at D6 were reduced to 0.012 10-3 

mmol/g DW/day in G- condition (Figure 2, Table S6). This suggests that folate synthesis is not 

completely inhibited under carbon depletion, and that parts of this cycle are prioritized as compared to 

others. According to the model prediction, folate is a priori mainly needed for other DHF-dependent 

pathways such as nucleotides synthesis (Table S2), rather than for DNA methylation, because SAM-

cycle fluxes are decreased under carbon depletion. Overall, these results show that sugar depletion 

impacts 1C metabolic pathways, including those implicated in the synthesis of SAM.  

 

 

Figure 3. Carbon depletion strongly affects the expression of genes related to cell cycle and 

metabolic pathways dedicated to carbon mobilization.  

Mapman visualization of DEGs in grapevine cells in culture in G+ versus G- conditions at D6. (A) Cell 

cycle-related genes. Each square represents a gene. In red: genes more expressed in G- cells; in blue: 

genes more expressed in G+ condition. (B) Mapman representation of metabolic pathways representing 

DEGs and metabolites in G- versus G+ cells at D6. Each square represents a gene and each circle a 
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metabolite. In red: genes/metabolites more expressed/abundant in G- cells; in blue: genes/ metabolites 

more expressed/abundant in G+ condition.   

 

Genes of several metabolic pathways display differential expression under sugar depletion 

RNAseq analyses were performed at D6 in both G+ and G- conditions. After trimming, quality 

assessment and removal of low-quality reads (see Methods), total cleaned reads, approximately ~24 

million reads for each sample, were mapped to the grapevine reference genome (12X.V2; (Canaguier et 

al., 2017), of which on average 90% were uniquely mapped (Table S7). Between 69.7% and 71% of 

aligned reads overlap known genes. PCA performed using all expressed genes reveals both strong 

differential behavior between G+ and G- conditions, and low variability between biological replicates 

(Figure S8). This observation is also supported by the analysis of the 200 genes showing the highest 

variation in expression levels between conditions (Figure S9). Replicates for each condition cluster 

together in correlative analysis, but are clearly separated between G+ and G- conditions. 

A total of 5,607 genes were considered differentially expressed (Log2FoldChange >1.0; padj 0.05), 

among which 2,802 were upregulated and 2,805 downregulated in G- versus G+ conditions. Gene 

ontology (GO) overrepresentation analysis showed that upregulated genes are enriched in genes 

involved in photosynthesis (PS) processes including light harvesting, chlorophyll biosynthesis and 

electron transport in photosystems, in stress responses (hormones, redox process, defense response), and 

in metabolite biosynthesis and transport (trehalose, malate, oligopeptide; Figure S10). By contrast, 

downregulated genes were enriched in genes involved in translation (ribosome biogenesis, translational 

elongation), cell division (DNA replication, microtubule-based movements, chromosome segregation), 

amino acids biosynthesis (serine, threonine, glycine, tyrosine, phenylalanine), and processes related to 

carbon metabolism (gluconeogenesis, glycolysis, sugars, fatty acids; Figure S10).  

Using a MapMan representation with both targeted metabolites and RNAseq data (Figure 3A and B), 

89 and 947 out of 5,607 DEGs were successfully assigned to cell cycle and various metabolic pathways 

respectively. Most of DEGs related to cell cycle (82/89) were downregulated at D6 (Figure 3A), 

suggesting that the cell growth arrest observed in G- conditions correlates with a stop in cell divisions. 

When considering DEGs involved in metabolism (Figure 3B), those associated with cell wall biogenesis 

(pectin esterases, expansins and xyloglucane endotransglycosylases (XETs)), amino acid and nucleotide 

synthesis, glycolysis, TCA cycle, energy metabolism (Mitochondrial Electron Transport), sucrose and 

starch synthesis, glycolysis and other downstream reactions were downregulated in G- conditions 

(Figure 3B, Figure S11). Inversely, DEGs associated with processes induced by carbon depletion 

including the mobilization of carbon resources, amino acids, lipids and sucrose, the breakdown of starch 

and protein together with the glyoxylate cycle, and with the ATG-mediated autophagy pathway (Feng 

et al., 2024; Magen et al., 2022; Shangguan et al., 2018) were up-regulated in G- cells (Figure 3B, 

Figure S11, Table S8).  
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Genes involved in 1C metabolism were downregulated at D6 (Figure 3B), including those related to the 

synthesis of 5,10-methylenetetrahydrofolate (methylene-THF), a precursor of the tetrahydrofolate cycle 

(THF cycle) (Figure S12). Overall, results show that sugar deprivation strongly impacts the expression 

of genes of the metabolic pathways dedicated to carbon mobilization, nutrient mobilization, and 

heterotrophic carbon formation and are consistent with previous data obtained on Arabidopsis cells 

under sugar starvation (Contento, Kim and Bassham, 2004).  

Genes involved in epigenetic processes are differentially regulated under carbon limitation  

As a first step to investigate possible effects of sugar depletion on epigenetic regulations, our work 

focused on the expression of genes involved in epigenetic processes (Table 2). Four DNA-

methyltransferases (DNMTs), VvCMT1, VvCMT3, VvCMT4, were down-regulated with a 

Log2FoldChange (L2FC) ranging between -1.06 and -1.45 (padj<0.01). Similarly, genes encoding the 

demethylase (DEMETER Like; DML) VvDML3 and chromatin remodeler (DECREASE IN DNA 

METHYLATION 1; DDM1) VvDDM1 were also down-regulated with a L2FC of -2.60 and -1.1 

(padj<0.01) respectively. Four ARGONAUTE (VvAGO10a, VvAGO11, VvAGO5, VvAGO2a), one 

RNA-Dependent-RNA polymerase (VvRDR1b) and one DICER-like (VvDCL2) genes were also 

differentially expressed under G- condition. The VvAGO10a and VvAGO11 genes were both down-

regulated showing L2FC values of -1.8 and -1.2 respectively (padj<0.05), while the four other genes 

were up-regulated with a L2FC of 1.3 for VvAGO5 and 1.5 for VvAGO2a (padj<0.05) and a L2FC of 

2.3 for both VvRDR1b and VvDCL2 (padj<0.05; Table 2). We also investigated genes encoding histone 

modifiers (Wang et al., 2020) (Table 2), and putative POLYCOMB REPRESSING COMPLEX2 

(PRC2; Table 2, Figure S13, Figure S14). Two histone demethylases genes (HDMs, Vitvi08g00216, 

Vitvi10g01394), were downregulated, while three others (Vitvi10g00053, Vitvi15g00950, 

Vitvi16g01410) were upregulated. All DEGs encoding histone lysine methyltransferases (HKMTs, 

VvCLF/Vitvi07g01721, Vitvi16g00290, Vitvi08g01786, Vitvi10g00002, Vitvi16g02079) were 

downregulated in G- conditions with L2FC ranging between -1.08 and -3.54 (padj <0.05; Table 2). One 

histone acetyltransferase gene (HAT, Vitvi11g00219), was downregulated in G- condition with a L2FC 

of -1.31 (padj<0.05). Genes encoding putative POLYCOMB REPRESSING COMPLEX1 (PRC1) 

(VvDRIP1 Vitvi07g00031 and VvDRIP3 Vitvi05g00634) and PRC2 components, (VvMSI2 

Vitvi03g00147 and VvMSI5 Vitvi11g00185) were also differentially expressed under carbon limitation 

with contrasted behaviors (Table 2).  

 

Table 2. Epigenetic modifiers are differentially expressed in grapevine cells under carbon 

depletion. Grapevine epigenetic modifiers differential expression in G- cells. DDM1: DECREASED 

DNA METHYLATION 1; CMT: CHROMOMETHYLASE; DML: DEMETER-LIKE; AGO: 

ARGONAUTE; RDR : RNA-DEPENDENT RNA POLYMERASE; DCL: DICER-LIKE; HDM: 
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Histone Demethylase; HKMT: Histone-Lysine-Methyl-Transferase; HAT: Histone Acetyl-Transferase; 

PRC: Polycomb Repressive Complex. Padj: transformed p-value after accounting for multiple testing 

using Benhamin and Hochberg method by DESeq2. 

Name/Function Gene ID Diff.Expa padj 

VvDDM1 Vitvi04g01275 -1.1 7.22E-22 

VvCMT1 Vitvi08g01767 -1.1 3.35E-07 

VvCMT3 Vitvi06g00102 -1.3 4.58E-11 

VvCMT4 Vitvi16g00174 -1.5 5.62E-38 

VvDML3 Vitvi06g01402 -2.6 3.35E-27 

VvAGO10a Vitvi05g00574 -1.8 0.04 

VvAGO11 Vitvi12g00448 -1.2 3.23E-09 

VvAGO5 Vitvi06g01378 1.3 9.15E-53 

VvAGO2a Vitvi10g01346 1.5 3.78E-08 

VvRDR1b Vitvi01g00503 2.3 1.13E-59 

VvDCL2 Vitvi04g01202 2.3 6.60E-118 

    

VvHDM 

Vitvi10g00053 1.5 4.68E-16 

Vitvi08g00216 -1.1 1.50E-10 

Vitvi10g01394 -1.7 1.72E-18 

Vitvi15g00950 1.2 1.68E-12 

Vitvi16g01410 1.5 3.40E-19 

    

VvHKMT 

Vitvi07g01721 -1.1 7.41E-11 

Vitvi16g00290 -1.7 2.85E-05 

Vitvi08g01786 -1.3 0.003 

Vitvi10g00002 -3.3 3.64E-25 

Vitvi16g02079 -3.5 2.75E-25 

    

VvHAT Vitvi11g00219 -1.3 8.05E-29 

    

VvPRC1 

Vitvi07g00031 1.3 3.46E-35 

Vitvi05g00634 -2.2 1.01E-20 
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VvPRC2 

Vitvi07g01721 -1.1 7.41E-11 

Vitvi03g00147 -1.6 3.19E-26 

Vitvi11g00185 -1.1 2.45E-08 

aLog2FoldChange 
   

DNA-methylation landscape changes under carbon limitation  

To characterize the effects of sugar depletion on DNA-methylation, WGBS was performed on the 

genomic DNA of G+ and G- cells at D6. A minimum of ~93 million reads were generated for each 

replicate resulting in a sequencing depth ranging from ~25X to ~74X depending on samples (Table 3). 

Hierarchical clustering shows that replicates of the same growing conditions cluster together (Figure 

S15). The G- cells showed methylation levels of ~50.0%, ~34.6% and ~4.0% in the CG, CHG and 

CHH sequence contexts respectively, which are higher than those of G+ cells, respectively ~47.6%, 

~31.7% and ~3.2% (Figure 4A, Table 4, Table 5).  

 

Table 3. Whole Genome Bisulfite Sequencing mapping results and average depth coverage. G+ : 

CS cells cultivated in glucose rich medium; G- : CS cells cultivated in glucose poor medium, 

biological replicates are numbered from 1 to 3. 

Sample Sequence pairs 

analyzed 

Nbr. Of paired-end 

alignments with a 

unique best hit 

Mapping efficiency 

(%) 

Non-uniquely 

mapped 

sequences 

Average depth 

coverage 

G+_1 130,472,479 82,944,788 63.6 13,213,594 33.97668 

G+_2 282,099,730 181,683,529 64.4 29,427,292 74.39895 

G+_3 139,655,324 91,667,849 65.6 14,282,757 37.54222 

G-_1 96,857,550 59,516,335 61.4 9,877,183 24.38944 

G-_2 93,098,553 61,901,086 66.5 10,136,166 25.35674 

G-_3 99,426,877 61,857,519 62.2 10,945,369 25.33656 

 

Table 4. Bisulfite sequencing data report. G+: CS cells cultivated in glucose rich medium; G- : CS 

cells cultivated in glucose poor medium, biological replicates are numbered from 1 to 3. 

Sample Total of C’s 

analyzed 

% of 

methylated C 

% of 

conversion 

 
Methylated cytosines in 

 
% Methylated 

cytosines in 

 

D6 
    

CpG CHG CHH Unknown 
 

CpG CHG CHH 
 

G+_1 259,133,083 0.567123265 99.43287674 
 

284,782 263,603 920,187 1,032 
 

47.6 32.0 3.3 
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G+_2 546,752,409 0.564586081 99.43541392 
 

608,384 558,261 1,918,117 2,126 
 

48.3 32.0 3.2 
 

G+_3 314,771,657 0.601212008 99.39878799 
 

355,313 325,031 1,210,998 1,103 
 

47.1 31.4 3.1 
 

G-_1 159,367,452 0.626294759 99.37370524 
 

199,134 180,869 617,520 587 
 

51.2 35.2 4.0 
 

G-_2 168,998,804 0.497389911 99.50261009 
 

179,576 159,608 500,726 673 
 

49.5 34.1 3.9 
 

G-_3 162,348,402 0.614100901 99.38589910 
 

208,515 190,078 597,758 632 
 

49.8 34.8 4.1 
 

 

Table 5. Global DNA-methylation is increased in cells under carbon depletion. Methylation average 

calculated in the symmetrical (CG, CHG) and asymmetrical (CHH) sequence contexts (%), in CS cells 

cultivated in G+ and G- medium at D6. Error values correspond to CI (n=3). 

% Methylation CG CHG CHH 

D6_G+ 47.6 ± 0.8 31.7 ± 0.5 3.2 ± 0.1 

D6_G- 50.0 ± 1.1 34.6 ± 0.6 4.0 ± 0.1 

 

Analysis of DNA methylation profiles along transcriptional units (ORF +/-2 kb) and Transposable 

Elements (TE) showed that there is no difference between G- and G+ cells in CG methylation. 

Methylation is however higher up/downstream and within genes, and at TE in G- than in G+ cells, in 

both the CHH and CHG contexts, at a lower level in the later context though (Figure 4B and C).  

A total of 12,524 differentially methylated cytosine (DMCs) were identified between G- and G+ 

conditions with 4,102, 4,307 and 4,115 DMCs in CG, CHG and CHH contexts respectively (Figure 4D). 

The hypo- and hyper-CG-DMCs were similarly abundant, while hyper-DMCs were more abundant than 

hypo-DMCs in CHG (62%) and represent over 94% in the CHH context (Figure 4D). 

A total of 848 differentially methylated regions (DMRs) were identified between G- and G+ cells (Table 

S9), with 294 CG-, 257 CHG- and 297 CHH-DMRs (Figure 4D). Hypo-DMRs are more abundant than 

hyper-DMRs in the CG context (176 hypo- and 118 hyper-DMRs) but the converse is found in the CHH 

context (282 hyper- and 15-hypo-DMRs). A similar number of hypo- and hyper-DMRs is found in the 

CHG context. We analyzed the distribution of DMRs in different genomic features. 

A majority of DMRs (58%, 482 over 848) were localized in TEs, 22% (186 over 848) in promoter 

(promDMRs), 20% (165 over 848) in genes, distributed between exons (7%, 59 over 848) and introns 

(13%, 106 over 848). The majority of DMRs in intron (75 over 106) and promoters (168 over 186) are 

overlapping with TE (Figure 4E, Table S10). The distribution of hyper- and hypo-DMRs in each 

sequence context and genomic features, is clearly different in TE and genes. The PromDMRs and genic-

DMRs occur essentially in the CG and CHG contexts while CHH DMRs are overrepresented in 

extragenic regions and TEs. Genic-DMRs and promDMRs were mostly hypo-methylated in the CG and 

CHG context in G- conditions while the majority of TE-DMRs were hyper-methylated in the CHH 

context. 
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Figure 4. Global DNA-methylation is affected in G- cells. 

Global methylation levels analysis in G- and G+ condition. (A) Bart chart representing the methylation 

level of individual sample (y-axis, 1=100%) in the three-cytosine sequence context (x-axis). (B, C) 

Cytosine methylation profiles within and 2kb up- and downstream of (B) genes coding sequence and 

(C) of TE. (D) Differentially Methylated Cytosines (DMCs) and Differentially Methylated Regions 

(DMRs) and their contexts in G- condition compared to G+. Grey bar chart represents the total number 

of DMC/DMRs identified. Methylation changes are represented in black when methylation increases in 

G- compared to G+ cells (Hyperme) and in light grey when methylation decreases in G- compared to 

G+ cells (Hypome). Number of DMCs and DMRs are indicated on the top/bottom of each barchart. (E) 

Localisation of identified DMRs in specific genomic features. Black and white pie charts represent the 

proportion of hyper-(black) and hypo-(white) methylated of identified DMRs (number underneath) in 

each sequence context. TE: extragenic Transposable Elements; TE-intron: Intronic Transposable 

Elements; TE-promoter; Transposable Element found within promoter sequence.  
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To assess whether genes involved in metabolism were differentially methylated, genes associated with 

genic-DMRs (exonic, intronic, TE-intronic) or promDMRs (promDMRs, TE-promDMRs) were used 

for MapMan analysis. Among the 150 genic-DMRs identified, 48% (72 over 150) were assigned to 17 

MapMan metabolic functional categories (Table S11). When considering promDMRs 55% (95 over 

173) of them were assigned to 21 MapMan metabolic functional categories including the TCA cycle, 

amino acid, lipid, protein, nucleic acid and hormone metabolism, stress responses, but also transcription 

regulation and DNA synthesis/repair (Table S12).  

Some DMRs are associated with differentially expressed genes 

We determined possible association between DNA methylation and gene expression by looking at the 

genomic co-localizations between gene- or promDMRs, and DEGs. In total, 17 gene-DMRs were 

associated with DEGs (DMEGs), and 34 promDMRs were associated with DEGs (promDMEGs; Table 

S13 and S14). However, because there is no clear link between gene methylation and expression 

(Bewick and Schmitz, 2017), we only analyzed the 34 promDMEGs for subsequent analysis (Table 6, 

Table S15).  

The majority of these promDMEGs (28 over 34) were hyper-methylated, of which 22 (out of 28) were 

in the CHH context (Figure 5A, Table 6). The promDMEGs were further classified in four types based 

on the relationship between their methylation state (Me: +/-) and expression level (Exp: +/-; Figure 10). 

Among the 34 PromDMEGs, 17 show a negative correlation between DNA methylation and gene 

expression levels (Figure 5, Table 6). They include Vitvi04g01733 encoding a SAM-dependent 

methyltransferase, Vitvi03g00483 encoding a Carboxylesterase (Figure 5B) and Vitvi17g00607, which 

codes for a L-malate dehydrogenase/oxidoreductase. These genes were hyper-methylated and repressed 

in sugar-depleted cells (Figure 5, Table 6). Other genes with hypo-methylated promDMRs were 

overexpressed. Among them, Vitvi04g00159 encodes an electron-carrier protein, Vitvi18g00430, a 7-

deoxylganetin glucosyltransferase with a potential TF activity, and Vitvi14g00093 a KNOTED1-LIKE 

HOMEOBOX (KNOX) like transcription factor (Figure 5B, Ensemblplants, UNIPROTKB ref: 

AC7Q8). This later gene is orthologous to the KNAT6 gene known for its role in the regulation of 

meristematic activity in Arabidopsis (Belles-Boix et al., 2006). Of note, no DEG involved in the 

mobilization of carbon resources or participating in the ATG-mediated autophagy pathway showed 

changes in DNA methylation level in their promoter region.  

Overall, results suggest that DNA-methylation contribute to the regulation of different genes in response 

to carbon depletion.  
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Figure 5. The differential expression of some genes is associated with changes in DNA-methylation 

at promoters.  

(A) Graphical representation of the relationship between promoter showing differential 

methylation and associated changes in gene expression. Each dot represents a DMR found in a 

DEG promoter region. Position on the graph depends on differential expression value (Log2FC) 

along the x-axis and differential methylation along the y-axis. Dot numbers refer to those 

attributed to promDMEGs listed in Table 6. The type of correlation is represented in each corner 

of the graph. Methylation context is indicated by colors as shown by the legend. (B) Example 

of methylation patterns in promDMEGs n°6 (Vitvi03g00483), n°7 (Vitvi04g01733) and n°24 

(Vitvi14g00093) in G- and G+ cells.  Me+/-: methylation changes hyper-/hypomethylated; Exp 

+/-: gene expression up-/downregulated.. 

 

Table 6. Some DEGs are associated with DMRs localized at promoter. Identified promDMEGs and 

their associated function; Gene ID: identification based on 12xV2 grapevine genome annotation; Chr: 

Chromosome; Diff.Exp: Differential expression (Log2FoldChange); Diff.Meth: Difference of 

methylation between the two conditions. PromDMEGs in bold are non-TE promDMRs. 

N° promDMEG Gene ID Chr Diff. Expa  Diff.meth Context Function 

1 Vitvi02g01812 chr00 1.35 -0.49 CHG Unknown 

2 Vitvi04g01539 chr04 2.75 -0.28 CHG ACT-like protein tyrosine kinase family 

3 Vitvi04g00498 chr04 1.01 -0.27 CG Myosin heavy chain-related protein 

4 Vitvi04g00159 chr04 1.44 -0.25 CHG electron carriere/heme binding/monooxygenase 

5 Vitvi03g00483 chr03 -2.86 0.13 CHH Carboxylesterase 13 

6 Vitvi03g00483 chr03 -2.86 0.13 CHH Carboxylesterase 13 

7 Vitvi04g01733 chr04 -1.39 0.13 CHH S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

8 Vitvi17g00607 chr17 -1.16 0.13 CHH L-malate dehydrogenase/oxidoreductase 

9 Vitvi08g00969 chr08 -2.41 0.14 CHH Not in our list 

10 Vitvi18g00262 chr18 -1.90 0.14 CHH  IAA-amino acid conjugate hydrolase/ metallopeptidase 

11 Vitvi05g02123 chr05 -2.50 0.14 CHH Cyclo-DOPA 5-O-glucosyltransferase 

12 Vitvi02g01690 chr00 -2.96 0.15 CHH Flavin-binding monooxygenase family protein 

13 Vitvi03g00755 chr03 -3.27 0.18 CHH CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 protein) superfamily protein 

14 Vitvi18g00430 chr18 -2.98 0.19 CHH Glucuronosyltransferase/Transcription factor) 

15 Vitvi07g00683 chr07 -1.00 0.23 CHH NTF2 family protein with RNA binding domain 

16 Vitvi17g00926 chr17 -1.86 0.25 CHH Not in our list 

17 Vitvi18g02335 chr18 -1.18 0.28 CG R protein L6 
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DISCUSSION 

The consequences of carbohydrate depletion on heterotrophic plant tissues, was investigated studying 

CS cells that are strictly dependent on external carbon source. The CS cells were grown in the absence 

of light with a 10-fold reduction in glucose concentration (2 g/L) as compared to standard conditions 

(20 g/L). Taking advantage of the efficiency of heterotrophic cell in the control of carbon nutrition 

(Morkunas et al., 2012), this study describes the genome-wide dynamic of DNA-methylation and its 

link with gene expression and metabolic changes in sugar depleted plant cells.  

Previous studies in Arabidopsis and rice have shown that the response of cells to carbon limitation is 

rapid (Gout et al., 2011) and results in the mobilization of cell carbon resources, such as proteins, lipids 

and starch and in the recycling of cellular components by autophagy (Contento, Kim and Bassham, 

2004; Rose et al., 2006; Wang et al., 2007; Morkunas et al., 2012). Cell viability decreases after 48 h, 

and cell death is observed after 72 h (Contento, Kim and Bassham, 2004; Wang et al., 2007). Although 

cell division and death were no evaluated in our study, the CS cell biomass stopped increasing and major 

metabolic changes, similar to those observed in Arabidopsis and rice cells, occurred 24 h to 48 h after 

transfer to sugar depleted medium. Total proteins were reduced after 48 hours and the G- cells were 

depleted in soluble sugar and total amino acid content. Metabolic fluxes required for the resources 

biosynthesis, including glycolysis and TCA cycle, showed a reduced activity in G- versus G+ cell. 

Inversely, those involved in resource mobilization including lipid, cell wall polymers and protein 

breakdown as well as starch mobilization were enhanced (Figure S7, Table S5). Such a behavior was 

previously suggested to be an adaptive process enabling the cells to maintain a continuous energy supply 

under sugar starvation (Morkunas et al., 2012). 

Transcriptomic reprogramming is consistent with a major metabolic stress  

Changes in glucose availability to plant cells impact the expression of a large number of genes related 

to stress response, cell wall biogenesis, cellular metabolism, cell signaling, and transcription factors 

(Price et al., 2004). While end products of PS such as sucrose and glucose repress photosynthetic gene 

18 Vitvi06g00226 chr06 -1.17 -0.41 CG Unknown 

19 Vitvi18g02508 chr18 -3.37 -0.31 CG Not assigned  

20 Vitvi18g00482 chr18 3.12 0.14 CHH  purine transmembrane transporter 

21 Vitvi02g00805 chr02 1.03 0.15 CHH electron carriere/heme binding/monooxygenase 

22 Vitvi16g00350 chr16 2.80 0.16 CHH Integrase-type DNA-binding superfamily protein 

23 Vitvi10g00558 chr10 1.53 0.18 CHH Unknown 

24 Vitvi14g00093 chr14 1.07 0.19 CHH DNA binding/KNOX-like transcription factor 

25 Vitvi03g00601 chr03 2.71 0.20 CHH Binding/catalytic 

26 Vitvi11g01472 chr11 1.05 0.24 CHH Uncharacterized 

27 Vitvi14g00118 chr14 1.43 0.24 CHH Cam-binding protein 60-like G 

28 Vitvi10g00924 chr10 1.41 0.25 CHG No hit  

29 Vitvi02g01406 chr02 1.25 0.26 CHH Thaumatin  

30 Vitvi16g01804 chr16 1.18 0.27 CHG Acyl-CoA oxidases 

31 Vitvi08g00716 chr08 1.12 0.29 CG Receptor like protein 12 

32 Vitvi10g02090 chr00 3.10 0.31 CHH Unknown 

33 Vitvi14g01368 chr14 1.07 0.34 CHG Receptor like protein kinase FERONIA  

34 Vitvi02g01753 chr00 2.37 0.37 CHG Not assigned 
aLog2FC       

Deleted:  

UNCORRECTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/advance-article/doi/10.1093/hr/uhae277/7786778 by C

N
R

S U
M

R
 5546 user on 19 N

ovem
ber 2024



 
 

(Sheen, 1990), carbon depletion results in the induction of genes involved in PS and in nutrient 

mobilization from starch, sucrose and lipids, as alternative carbon source (Contento, Kim and Bassham, 

2004; Wang et al., 2007). Consistently, in our study, CS cells in G- conditions were characterized by a 

very strong upregulation of genes involved in PS, particularly in the light reactions (Figure 3B, Figure 

S10, S12 and S13), associated with the downregulation of those involved in cell cycle, biomass 

production including cell wall synthesis, glycolysis, nucleotides formation and the TCA cycle (Figure 

3A). In contrast, genes contributing to cellular and metabolic processes associated with carbon 

mobilization such as autophagy, glyoxylate cycle, lipid, starch and sucrose breakdown pathways were 

upregulated (Figure 3B, Figure S10, Figure S11, Figure S12, Table S8). 

These results are consistent with those obtained in sucrose-starved non-photosynthetic cells of 

Arabidopsis (Contento, Kim and Bassham, 2004), and demonstrate that CS cells present typical effects 

on their metabolism, gene expression patterns and phenotypes of cells under severe carbon depletion.  

Cells under carbon depletion present changes in DNA-methylation levels and distribution 

One important aspect of our work was to investigate whether carbon depletion could impact on the 

synthesis of SAM, the universal methyl donor, which in turn may affect methylation processes in plant 

cells, including DNA-methylation. Arabidopsis plants mutated in 1C key regulatory genes such as 

METHYLENETETRAHYDROFOLATE-DEHYDROGENASE or  MET-

ADENOSYLTRANSFERASE (respectively mthfd1-1 and mat4) show altered DNA and/or histone 

methylation profiles (Groth et al., 2016; Smith and Butler, 2018). In our study, at D6, both 

transcriptomic results and flux analyses demonstrated, respectively, the downregulation of genes 

involved in the methylene-THF cycle, and a reduction of fluxes through the THF pathway in G- 

condition (Figure 2 and 3, Figure S12, Table S6). However, fluxes toward DHF synthesis were only 

slow down at D6 (Figure 2, Table S6), whereas those necessary for SAM synthesis were totally stopped, 

suggesting that the synthesis of SAM is not prioritized over other metabolites of the 1C metabolism. 

Hence, sugar depletion may result in limited availability of SAM and as a consequence of methylation 

activities.  

Carbon limitation induces global DNA-methylation changes  

Plant cell DNA-methylation landscape is modified in response to environmental changes in plants or 

when plants are facing nutrient starvation as for example phosphate limitation (Yong-Villalobos et al., 

2015; Akhter et al., 2021; Tian et al., 2021). The present work is showing that global cytosine 

methylation is higher in G- than in G+ condition with a 4%, 8% and 20% increase in the CG, CHG and 

CHH context respectively (Figure 4A, Table 3, Table 4). Consistently, the DNA-methylation level 

within genes and in 2 kb regions up/downstream of genes was higher in the CHG and CHH contexts in 

G- as compared to G+ conditions whereas no significant difference was found in the CG context (Figure 

4B). A similar observation is made for TE, as hypo- and hyper-DMCs in the CG context were equally 
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abundant, while CHG hyper-DMCs were more abundant than CHG hypo-DMCs and almost all CHH 

DMCs were hyper- in G- cells (Figure 4 C, D). 

Although unexpected, these results are consistent with recent studies showing that the efficiency and 

timing of DNA-methylation maintenance differs between the C sequence context during cell division 

(Borges et al., 2021). The CG methylation is transiently loss during the S phase, and rapidly 

reestablished at the G2 phase. In contrast, maintenance of CHG methylation is delayed resulting in hemi-

methylated sites that are reestablished when cell division stops, which leads to a transient reduction of 

the CHG DNA-methylation. The strongest effect is observed on CHH methylation, which is depleted in 

actively dividing cells in culture, probably as a result of the loss of small RNA during the cell cycle 

(Borges et al., 2021). In our study, G+ cells were actively growing from D4 to D8 (Figure 1B), when 

G- cells did not, as show by the absence of FW increase (Figure 1A). This is most likely due to an arrest 

of cell division of G- cells, considering the downregulation of cell cycle-related genes (Figure 3A). Thus, 

the CHH and CHG hypo-methylations observed in G+ versus G- cells might in part reflect the difference 

in cell division activity between the two conditions of our study. However, we cannot rule out that the 

dynamic of CHH DNA-methylation is also a direct consequence of the metabolic stress generated by 

carbon depletion. In grapevine, and in other plants, CHH methylation is highly dynamic in plants under 

stresses (Lin et al., 2022; López et al., 2022), an observation associated with the regulation of VvAGO, 

VvDCL and VvRDR gene families under abiotic stresses in grapevine (Zhao et al., 2015). We have 

controlled the expression of DNMT genes and of genes involved in DNA-methylation regulation. The 

VvMET1 gene was similarly expressed in both conditions, while VvDDM1, all VvCMT and VvDML3 

were down regulated in G- cells. Hence there is no clear correlation between DNMT gene expression 

and DNA-methylation changes, an observation already performed in plants (Tian et al., 2021). As small 

RNAs are depleted in dividing cells (Borges et al., 2021) our analyses also focused on genes encoding 

putative ARGONAUTE (AGO), RNA-directed-RNA-Polymerase (RDR) and DICER-LIKE (DCL) 

proteins, which are known to participate in the RdDM pathway by controlling siRNA synthesis 

(Erdmann and Picard, 2020). The VvAGO10a and VvAGO11 were under-expressed in G- versus G+ 

cells, in contrast to VvAGO5, VvAGO2a, VvRDR1b and VvDCL2 which were over-expressed (Table 2). 

This complex expression patterns most likely reflects a dynamic regulation of the RdDM pathway in G- 

cells. Whether this could contribute to the hyper-methylation observed in the CHH and CHG contexts 

in G- cells remains to be demonstrated. 

The majority of DMRs are localized at transposable elements 

Differentially methylated regions are usually considered as functional regions associated with the 

control of gene expression and transposon activity. We have identified 848 DMRs that were equally 

distributed between CG, CHG and CHH sequence contexts (Figure 4D). Consistent with the meta-

analysis of DNA methylation at genes and TEs and with DMCs distribution, hypo- and hyper-DMRs in 
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the CG and CHG context were similarly abundant, unlike CHH-DMRs presented an important bias 

toward hyper-DMRs in G- versus G+ cells (Figure 4D).  

Most DNA-methylation changes irrespective of the C sequence contexts were associated with TEs 

(Figure 4E). The TE associated DMRs also showed an overrepresentation of hyper-DMRs in the CHH 

context, as compared to CG and CHG context which were equally distributed between hyper- and hypo-

DMRs (Figure 4E). In contrast, those located at promoters and gene bodies and not associated with TEs, 

were mainly found in the CG and CHG context and did not show any specific trend toward hyper- or 

hypo-methylation. This suggests that depending on their genomic features, DMRs triggered by 

difference in carbon availability in CS cells are generated by distinct mechanisms. 

Hyper-methylated CHH at TEs have already been reported in various plants subjected to abiotic stresses, 

as for example, in maize (Achour et al., 2019), as well as in tomato plants under phosphate starvation 

(Tian et al., 2021). As TEs are targeted by repressive epigenetic marks as a preservation mechanism for 

genome integrity (Okamoto and Hirochika, 2001), this response has been associated with the activity of 

the RdDM pathway to transposons repression in accessible chromatin environments (Gent et al., 2015). 

In our experiments, although we had not analyzed the small RNAs populations, it is likely that siRNAs 

are depleted in G+ conditions as cells are actively dividing. Therefore, hypo-methylated DMRs at TEs 

in G+ conditions might also be due to a loss of methylation in G+. 

Overall, results showed that sugar limitation results in important changes in DNA methylation patterns 

in all sequence contexts mostly located at TEs. Furthermore, the high number of hyper-CHH argues in 

favor of the involvement of the RdDM pathway in response to sugar availability, either leading to a 

decrease in methylation in actively dividing cells (Borges et al., 2021) or strengthening it in cells that 

present a nutritional stress, or a combination of both. 

Differential methylation may have an impact on gene expression in cells under carbon depletion.  

Among the 848 DMRs identified, 165 (19%) were located in genes and 186 (22%) in their promoter 

region (-2kb upstream the TSS; Figure 4E). Among them, 90 and 18 were not associated with TEs. 

Interestingly, intragenic-DMRs were preferentially CG- (86 over 165) and CHG-DMRs (59 over 165) 

with very few CHH-DMRs (20 over 165). All except one intragenic CHH-DMRs were hyper-methylated 

and associated with TE. The Gene-CG-DMRs were mostly hyper-methylated (53 over 83) in G- cells, 

suggesting that this differential methylation might be directly linked to a response to carbon depletion, 

as was observed for promDMRs not associated with TE. The DMRs located in genes and promoters 

were enriched in genes related to the central and secondary metabolism, along with those involved in 

stress response, photosynthesis, chromatin structure, protein PTMs, and transcription regulation (Table 

6, S10 and S11).  

Among the 5,607 identified DEGs, 34 present DMRs located in their promoter regions, among which 

17 show a negative correlation between methylation and gene expression. These 17 promDMEGs 

include genes coding for putative transcription factors such as a Class 1 KNOX gene, enzymes involved 
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in the central metabolic pathways including a malate dehydrogenase, and an S-adenosyl-methionine-

dependent methyltransferase among others (Figure 5B, Table 6). This observation strongly suggests that 

DNA-methylation is involved in the control of gene expression as an integrated part of the cell metabolic 

and molecular responses to carbon depletion. Similarly, differentially expressed genes related to 

phosphate starvation regulation in tomato plants under low phosphate conditions display DNA-

methylation changes (Tian et al., 2021). Hence, DNA-methylation dynamic likely represents a general 

strategy of plant cells to deal with nutritional stresses, such as carbon depletion. 

However, additional regulatory processes, including other epigenetic mechanisms may also be at work. 

Consistently, many DEGs participating in cellular processes involved in the responses of grapevine cells 

to carbon starvation were not associated with changes in DNA methylation levels in their promoter 

regions, including DEGs involved in autophagy, protein or lipid mobilization. However, as for DNA-

methylation, HPTMs also rely on the availability of metabolic precursors and cofactors. Several DEGs 

encoding HMTs were identified and shown to be downregulated in CS cells under glucose depletion 

(Table 2), consistent with a limitation of most methylation processes associated with epigenetic 

modifications in G- cells. Moreover, inhibition of fluxes involved in the TCA cycle was observed in G- 

cells, that could result in change in histone methylation patterns as observed in mammalians (Xiao et 

al., 2012). 

Overall, results showed that epigenetic changes under carbon shortage are complex and may rely not 

only on DNA-methylation but also involve histone post-translational modifications. The differential 

expression of histone modifiers in G- versus G+ cells suggests that the distribution of histone marks 

may also be affected under sugar depletion. Recent reports have shown that autophagy, a major process 

involved in cell response to carbon starvation is associated with changes in histone mark distribution 

including the acetylation of Lys16 of histone 4 (H4K16ac) and dimethylation of H3K9 (H3K9me2) at 

genes involved in the autophagy pathway in mammals (Füllgrabe, Klionsky and Joseph, 2014; Yu et al., 

2023). Further analysis is now needed to assess the changes in HPTMs distribution induced under carbon 

depletion and their relation with gene expression in plant cells.  

 

In summary, our study provides a comprehensive genome-wide analysis of DNA-methylation changes 

and their relationship with gene expression to orchestrate metabolic adjustment in the response of plant 

cells to sugar depletion. In particular, we have demonstrated an important DNA-methylation remodeling 

under carbon depletion, that can be associated with changes in the expression of genes encoding 

enzymes involved in the cell metabolism, but also transcription factors that in turn may coordinate the 

response of cells to carbon depletion. 
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MATERIALS AND METHODS  

Cell culture 

Grape cell suspensions of CS Berries  (CSB, (Atanassova et al., 2003) initiated from fruit tissues were 

cultured in 50 mL of liquid Murashige and Skoog medium (MS, Sygma M0221) supplemented with 

vitamins (0.025 g/L of myo-inositol, 0.25 mg/L of nicotinic acid, calcium pantothenate, HCL pyridoxine, 

HCL thiamine and 0.0025 mg/L of D(+)-Biotin), 0.6 mg/L of benzylaminopurine (BAP), 2.3 mg/L of 

naphthalene acetic acid (NAA), 0.25g/L of casein enzymatic hydrolysate (Sigma C0626), and 20 g/L of 

glucose in 250 mL Erlenmeyer at 23°C in darkness on an orbital shaker (120 rpm). Cells were sub-

cultured weekly by transferring 10 mL of the cell suspension to 40 mL of fresh medium, in individual 

vials for each time point and condition. Sample collection was performed every day from the day of 

inoculation (D0) to ten days after (D10) at the same hour. Cell growth was estimated by measuring the 

cell fresh weight (FW) in 30ml culture after removal of the culture medium by filtration. Cells and 

culture medium were subsequently frozen in liquid nitrogen, ground to a fine powder in a Retsch Mixer 

Mill MM 400 (Fischer Scientific), and stored at -80°C until processed. 

For sugar depletion experiments, cells cultured during four days in standard condition (SD) were 

transferred to either a glucose rich (G+: 110 mM i.e.20 g/L) or glucose poor (G-: 11 mM i.e. 2 g/L) 

medium (Figure S1B) and grown for 6 additional days. The cell water content was evaluated using ~140 

to 200 mg FW of frozen (maintained at -80°C) grounded cells, by comparing the cell mass before and 

after lyophilization. 

Metabolic analysis 

Glucose and fructose concentrations in culture medium were measured enzymatically with an automated 

absorbance microplate reader (Elx800UV, Biotek Instruments Inc., Winooski, VT, USA) using the 

glucose/fructose kit from BioSenTec (Toulouse, France) according to manufacturer’s instructions. The 

results were presented as ‘extracellular glucose’ concentration. Extractions for both targeted and 

untargeted metabolite analyses were performed in quadruplicate for each sample of frozen cell powder.  

Extraction was performed as described in (Luna et al., 2020) at the Bordeaux Metabolome Facility 

(https://metabolome.u-bordeaux.fr/en/, Villenave d’Ornon, France) with the following modifications: 

(1) 20 mg of fresh frozen-powder (FW) of each replicate sample were used for extraction, (2) ~10 mg 

of polyvinylpolypyrrolidone (PVPP) were added in each tube prior to extraction to precipitate 

polyphenols.  

Analyses of soluble sugars (glucose, fructose, sucrose), starch, malate, citrate, total soluble proteins, 

total amino acids were conducted at Bordeaux Metabolome Facility. Measurements were based on 

coupled enzyme assays as described previously in  (Biais et al., 2014), except for total soluble proteins 

measured by Bradford assay (Bradford, 1976). 

Extraction of NAD+, NADH, NADP+ and NADPH was performed from 20 mg of fresh frozen 

grapevine cell powder (FW) with the addition of ~10 mg of PVPP prior to extraction and quantified as 
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described by (Decros et al., 2019, 2023). Quantification was performed in technical duplicate using four 

independent biological replicates.  

Analysis of 19 amino acids (excluding tryptophane and cysteine) was performed essentially as described 

by (Arrizabalaga-Arriazu et al., 2020). Briefly, extracts were derived with 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate (AccQ-Tag derivatization reagent, Waters, Milford, MA, USA) and 

analysed using an UltiMate 3000 UHPLC with an FLD-3000 Fluorescence Detector (Thermo Electron 

SAS, Waltham, MA, USA). Free amino acids’ separation was achieved with an AccQ-Tag Ultra column, 

2.1 × 100 mm, 1.7 μm (Waters, Milford, MA, USA) at 37 °C with elution at 0.5 mL/min (sodium acetate 

buffer, 140 mM at pH 5.7; acetonitrile; water) and detection was performed at 395 nm with an excitation 

wavelength at 150 nm.  

Analysis of cell wall biomass was performed on pellets resulting from the metabolite extraction 

described above following the Bordeaux Metabolome platform protocol. Briefly, after metabolite 

extraction, pellets were separated from supernatant and resuspended in 250 µL of NaOH 0.5 M at 95°C 

for 20 min. Supernatant was removed after centrifugation, the pellet was washed twice by addition of 

250 µL of water and centrifuged at 2500 rpm for 10 min. After overnight lyophilization, cell wall content 

was estimated by calculating the difference of tube weight before and after discarding the pellet.  

Untargeted metabolic analysis were performed as described in (Dussarrat et al., 2022, 2024), using 4 

independent biological replicates (n=4). The analytical sequence contained 10 Quality Control (QC) 

samples, prepared by mixing 20 µL of each sample, to correct the signal drift during the analytical batch 

and to the calculation of coefficients of variation for each metabolomic feature optimized parameters 

(Supplemental Material 1). Putative annotation of differentially expressed metabolites was performed 

by screening the MSDIAL online library (MSMS-Public-Neg-VS15, 

http://prime.psc.riken.jp/compms/msdial/main.html#MSP; (Tsugawa et al., 2015)) using  the precise 

m/z of the parent ion and MS2 fragmentation spectra.. After data-cleaning (blank check, S/N>10, 

CV(QC)<30%), the dataset was normalized (median normalization, cube-root transformation and Pareto 

scaling) using MetaboAnalyst (v 5.0; (Pang et al., 2021) prior to multivariate statistical analyses.  

Flux-Balance Model  

The flux-balance model of heterotrophic plant central metabolism used here was initially described in 

(Colombié et al., 2015) and improved (details given in (Lacrampe et al., 2024) to better describe all the 

reactions involving energy, metabolic compounds for biomass synthesis (proteins, cell wall, lipids, 

nucleotides, amino acids) and metabolic precursors for secondary metabolism. Details are provided in 

supplementary information.  

Software 
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Stoichiometric model (in sbml format, supplementary material) and mathematical problems were 

implemented using MATLAB (Mathworks R2018, Natick, MA, USA), solver quadprog with interior-

point-convex algorithm for the minimization. 

Molecular characterisation  

Nucleic acid extraction  

Both DNA and RNA were both extracted from the same sample (~200 mg cells of fresh frozen 

powder,FW) of independent biological replicates (n=3) of each conditions (D4, D6 G+, D6 G-) 

according to (Berger et al., 2022).  

Bioinformatic analysis of RNAseq data 

High-throughput sequencing of RNA samples were performed using DNBSEQ Sequencing technology 

(pair-end, 150bp) service provided by BGI-Genomics platform (http://bgi.com). We generated 9 cDNA 

libraries corresponding to three biological replicates for each group (D6 G+ and D6 G-). Raw reads were 

trimmed using Trimmomatic v0.38 in PE mode (Bolger, Lohse and Usadel, 2014). The sequence 

alignment files were generated by STAR (version 2.5.1b,(Dobin et al., 2013). To generate the raw gene 

counts, we used the featureCounts function of the Rsubread package (Liao, Smyth and Shi, 2014) which 

assigns mapped sequencing reads to genomic features based on the grapevine reference genome 

assembly of PN40024 12X.2 (https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-

sequences). We used the DESeq2 package to identify differentially expressed genes (Love, Huber and 

Anders, 2014). After selection of genes presenting a count per million reads (CPM) >10, differentially 

expressed genes (DEGs) were identified using a False Discovery Rate (FDR)-adjusted p-value threshold 

< 0.05. In addition, only DEGs with a log2 fold change > 1.0 were selected. 

Bioinformatic analysis of WGBS data 

Whole Genome Bisulfite Sequencing of DNA samples were performed using DNBSEQ-sequencing 

(pair-end, 100bp) technology provided by BGI-Genomics. Reads obtained from the WGBS approach 

were first trimmed with TrimGalore! (Version v0.4.5). First, we assessed the bisulfite conversion rate 

using the unmethylated grapevine chloroplast genome with Bismark tool (version v0.20.0, (Krueger and 

Andrews, 2011). Cleaned reads were then aligned onto the grapevine reference genome PN40024 

(12Xv2) using Bismark (version v0.20.0) allowing 5 mismatches. Reads with multiple alignment were 

discarded. PCR duplicates were also removed using the deduplicate_bismark tool. The methylation state 

of each cytosine was calculated, for the three contexts CG, CHG and CHH. We then used the DSS R 

package (dispersion shrinkage for sequencing data - version 2.39.0, (Wu et al., 2015) to identify 
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differentially methylated regions (DMRs) based on a Wald test procedure and accounting for both 

biological variations among replicates and sequencing depths. First, differential methylation statistical 

tests were performed at each C locus by calling the DSS DMLtest function with smoothing the 

methylation levels using a simple moving average algorithm. Then, differentially methylated loci were 

retained when the difference in mean methylation levels was >0.1 for CG or CHG contexts and >0.07 

for CHH context with a posterior probability >0.9999. DMRs were then identified using the DSS 

callDMR function with standard parameters. To define hypo- or hyper-DMRs, we applied a cut-off of 

at least a 10%, 25% and 25% change in methylation ratio for CHHs, CHGs, and CGs, respectively. 

MapMan analysis 

All the gene models were automatically categorized according to the MapMan ontology (x3.6) with 

Mercator tool (Lohse et al., 2014) and MapMan standalone software v3.5.1 (Thimm et al., 2004) was 

used to explore the data.  

Statistical analysis 

Untargeted metabolic profiling data were checked for statistical significance by ANOVA for global 

variation. Significant differentially accumulated metabolites among conditions considered (Fisher’s 

P<0.01) were determined and analyzed using MetaboAnalyst 5.0 online software 

(https://www.metaboanalyst.ca/docs/Format.xhtml).  

For all other analyses, mean and confidence interval values (CI) were calculated with R software 

(v4.1.1). Data were checked for normality using Shapiro-Wilk test, and further checked for significance 

by performing parametric (t-test) or non-parametric (Wilcox-Mann-Whitney test) depending on their 

normality status.  
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