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Robust Deep Reinforcement Learning Control for a Launcher
Upper Stage Module with Stability Certificate

Périclès Cocaul1, Sylvain Bertrand1, Hélène Piet-Lahanier1, Martine Ganet2,3 and Lori Lemazurier2

Abstract— This paper considers the design of an attitude
controller of a launcher upper stage module during its exo-
atmospheric phase, where short boosts are performed to adapt
the flight path. Those maneuvers can increase propellants’ mo-
tion in the tanks, leading to the so-called sloshing phenomenon
that may affect the stability of the vehicle.

A Deep Reinforcement Learning (DRL) algorithm is pro-
posed to design the controller accounting for non linearities
of the launcher and sloshing dynamics as well as presence of
time-delay, bias and saturations on the actuation system. Based
on Proximal Policy Optimization (PPO) and Almost Lyapunov
functions in an actor-critic scheme, it allows to robustly learn a
controller along with stability certificates, in presence of model
uncertainties. Simulation results are proposed to illustrate the
approach.

I. Introduction

Control design using Machine Learning (ML) is a soaring
domain for the automatic community and especially for
complex systems with partially unknown dynamics. Some
practical implementations emerged such as motion planning
with unknown dynamics [1] or the transient control of liquid
rocket engines [2]. Systems with strenuous representation of
the dynamics and subject to disturbing phenomena, such as
launchers, are particularly concerned by these new possibili-
ties which could drastically enlarge the performance domain.
One of the main phenomenon to take into account for space
vehicles is the motion of propellant within tanks, called
sloshing. Its impact has been extensively studied [3], [4].
However, efficient methods for rejection of this perturbation
such as structured H∞ synthesis [5] still require good knowl-
edge of the dynamics which is seldom available. In addition,
complexity of the involved dynamics make the synthesis
of an analytical control law a difficult task. Nevertheless,
if available, the complex dynamic model can be used in
simulation to generate numerical data that can be used by
model-free approaches such as Model-Free Control [6] and
Reinforcement Learning (RL) approaches [7].

RL led to groundbreaking advances in various domains
of applications during the past decade, e.g. [8], [9]. How-
ever, the lack of formal stability guarantees for RL-based
controllers [2] hinders their application on industrial safety-
critical systems. Coupling advances in Machine Learning
(ML) with long-established theories from the control com-
munity such as Lyapunov stability [10] could lead to a

1Université Paris-Saclay, ONERA, Traitement de l’Information et
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profitable trade-off. A terminology bridging the gap between
control and RL communities is given in [11]. Recent studies
led to promising perspectives, taking into account Lyapunov
conditions directly in the learning process. A specific neural
network approximating a Lyapunov function can be learned
alongside an optimized control law [12], [13]. Unlike these
closely related works, this study accounts for model un-
certainties for each trajectory sample used in the learning
process, updating the Lyapunov neural network within the
optimization loop. Robustness can then be ensured as a
stability certificate is obtained for the learned controller in
presence of model uncertainties. Almost Lyapunov functions
[14] are of particular interest in the context of numerical
algorithms such as RL, as they rely on relaxed conditions
compared to classical Lyapunov functions which are easier
to verify numerically. Leveraging its ease of implementation
and performance, Proximal Policy Optimization (PPO) [15]
is considered for updating and optimizing the parameters of
the neural networks. This method samples data by interacting
with an unknown environment and using a gradient-based
optimization of a surrogate objective function on small
batches.

In this paper, a controller for attitude stabilization of a
launcher upper stage module subject to sloshing is designed.
The RL algorithm considered, based on PPO, automatically
learns the control law with a trial and error process, adding
Lyapunov stability conditions to ensure stability. The main
contributions of this paper can be summarized as:

• Proposing a control design based on Deep Reinforce-
ment Learning (DRL) to address the attitude control
problem of a launcher upper stage module, in presence
of uncertain nonlinear dynamics due to sloshing effect,
saturation, time delay and bias in the actuation system.
To the authors knowledge, no similar control solution
with a stability certificate for an industrial space appli-
cation has been developed.

• Proposing an extension of the PPO algorithm allowing
to get a robust stability certificate, in presence of uncer-
tainties.

The present work deals with a study case defined by
the space industry. Hence, numerical values are subject to
industrial confidentiality and can not be given in this paper
regarding the parameters of the model and the simulations
results (values on graphs).

The paper is organized as follows. Section 2 introduces
the case of application, and launcher upper stage module’s
dynamics. Section 3 is devoted to the description of the



control algorithm based on elements from Lyapunov theory
and Reinforcement Learning. Section 4 provides simulation
results to illustrate the effectiveness of the proposed approach
in terms of closed loop stability and in terms of robustness
with respect to uncertainties.

II. Launcher Upper Stage Dynamics

During the exo-atmospheric phase of a launcher upper
stage, short re-boosts can be performed with a re-ignitable
main engine. Those will aim to correct the trajectory by
reaching the desired equilibrium state, close-to-zero attitude
angles and transverse acceleration while ensuring stabil-
ity and mitigating perturbations such as the sloshing phe-
nomenon which can appear in the tanks. The control input
is the deflection angle β between the nozzle and the main
axis of the launcher, which orientates the thrust. The thrust
magnitude P is assumed constant. The control objective
is to stabilize the attitude angle θ and the attitude rate θ̇
to zero. Figure 1 illustrates the parameters adopted in the
planar representation of the problem. Let G be the center
of mass (CoM) of the launcher, at a distance Lt from the
thrust application point T . The CoM position is assumed
constant during a re-boost. However, uncertainties considered
in Lt can account for slight position changes. The transverse
velocity of the launcher along the zE axis of the body
frame (G; xE , zE) attached to the launcher is denoted ż. Two
sloshing modes are considered to tackle potential interactions
between modes, as in [6]. The equivalent mechanical model
used for each mode is a pendulum [16], [17]. In Figure 1, Ai

is the point of attachment of the pendulum i (i = 1, 2), Bi is
the position of its corresponding mass mi, lp,i the length, αi

the angle between xE and pendulum i, and Li the distance
between Ai and G.

The natural damping factor of the sloshing mode i is
defined by ξi = ξ

1g
i

√
g
γ
, where g is the gravity constant,

ξ
1g
i is the damping of the pendulum i under a 1 g gravity

and γ = P
M+m1+m2

is the launcher’s acceleration. Notation M
refers to the mass of the launcher and I to its transverse
inertia, excluding sloshing masses.

The dynamical model can be derived from classical laws
of physics applied on the system presented in Figure 1.
Linearized equations with a single pendulum can be found
in [16] and [18]. We chose to derive here the full nonlinear
equations without approximations. These equations are the
following:

lp1 α̈1 + γ sinα1 + z̈ cosα1 + θ̈
(
lp1 − L1 cosα1

)
− θ̇2L1 sinα1 + 2ξ1

√
γlp1 α̇1 = 0

(1)

lp2 α̈2 + γ sinα2 + z̈ cosα2 + θ̈
(
lp2 − L2 cosα2

)
− θ̇2L2 sinα2 + 2ξ2

√
γlp2 α̇2 = 0

(2)
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Fig. 1: Sloshing model with oscillating masses

(M + m1 + m2) z̈ + m1lp1 α̈1 cosα1 + m2lp2 α̈2 cosα2

+ θ̈
(
m1(lp1 cosα1 − L1) + m2(lp2 cosα2 − L2)

)
− θ̇2
(
m1lp1 sinα1 + m2lp2 sinα2

)
+ P sin β = 0

(3)

(
I + m1L1(L1 − lp1 cosα1) + m2L2(L2 − lp2 cosα2)

)
θ̈ =

m1L1lp1 cosα1α̈1 + m2L2lp2 cosα2α̈2 + (m1L1 + m2L2)z̈

− θ̇2
(
m1L1lp1 sinα1 + m2L2lp2 sinα2

)
+ 2m1ξ1lp1

√
γlp1 α̇1

+ 2m2ξ2lp2

√
γlp2 α̇2 − PLt sin β

(4)

The control and actuation system used in the upper stage
module considered in this study case from industry induces
some saturation, bias and time delay in the realization of the
deflection angle β. By denoting βc the commanded deflection
angle, the following relation will be considered to model the
effects of the control and actuation system:

β = sat (βc(t − τ)) + bβ (5)

where sat(.) is the saturation function, τ the time delay and
bβ the bias.

From equations (1)-(5), the system dynamics can be ex-
pressed as:

ẋ(t) = f (x(t), u(t), p) (6)

With the state vector:

x =
(
θ θ̇ α1 α̇1 α2 α̇2 ż

)T
(7)



and the control input u = βc. The sloshing angles and rates
are considered accessible. Although this is not trivial in
practice, an observer can be designed as developed in [19],
[20] with a Kalman Filter or a Sliding Mode Observer. The
reconstruction of the states is not in the scope of this study.

The vector p gathers all the parameters used in the model
that may suffer from uncertainty. It is defined as:

p =
(
m1 m2 M I lp,1 lp,2 L1 L2 Lt P

)T
(8)

The objective can now be stated as designing a control law
mitigating sloshing while stabilizing the states to a desired
value (set to zero here), in presence of uncertainties on the
model parameters p.

The next section introduces some elements of control
theory that will be used in the proposed RL algorithm to
design a control law with stability certificate, in presence of
uncertainties.

III. Lyapunov Control Theory and RL Algorithm

A Reinforcement Learning scheme will allow to learn an
adapted controller for the problem. By following a policy
π : X → U, control actions will be taken according
to the current state value. The objective of the policy is
to minimize the cumulative discounted rewards for every
state. Additionally, self-learned Lyapunov functions will be
determined, along with the control policy, in order to obtain
stability certificates. After a quick reminder on Lyapunov
theory and a formulation of the conditions ensuring stability,
the core of the Reinforcement Learning algorithm will be
presented.

A. Control Theory preliminaries

Lyapunov theory is used here to verify stability [21]. We
remind here the definition and properties of a stable system.
Definition 1: The origin is an equilibrium point stable for
the system (6) if:

∀ε ∈ R+,∃ δ ∈ R+s.t. ||x(0)|| ≤ δ =⇒ ∀t ≥ 0, ||x(t)|| ≤ ε

The system is asymptotically stable at the origin if it is stable
at the origin and if ∃δ ∈ R+ s.t. ||x(0)|| ≤ δ =⇒ lim

t→∞
x(t) = 0.

The functions considered are assumed to be Lipschitz
continuous which helps training robust neural networks [22],
i.e. networks giving same predictions if the input is perturbed
imperceptibly.

Lie derivatives are introduced to determine the rate of the
Lyapunov function along the given dynamics. For continuous
time systems, they are defined as follows:
Definition 2: Consider the dynamical system (6) and a
continuously differentiable function v : D → R, with D ⊆
Rn. The Lie derivative of v over f is defined as:

L f v(x) =
n∑

i=1

∂v
∂xi

dxi

dt
(9)

Given these definitions, stability conditions derived from
Lyapunov theory can be written. Computed for a fixed policy,

Control Lyapunov functions (CLF) V : X → R+, with X ⊆
Rn are continuously differentiable and should verify:

V(0) = 0 (10)
∀x ∈ X\{0},V(x) > 0 (11)
∀x ∈ X\{0}, L f V(x) < 0 (12)

In the RL algorithm used in this paper, a neural network
representing a Lyapunov function will be learned and act as a
critic in an actor-critic framework. Due to the Reinforcement
Learning scheme and the numerical aspect of the solution
developed, Lyapunov conditions can only be evaluated at
sampled states. Therefore, relaxed Lyapunov criteria are
considered, as proposed with Almost Lyapunov functions
introduced by [14].

Those can guarantee convergence even if the Lyapunov
function may be not decreasing over some restricted subsets
of the state space. Compared to classical Lyapunov theory,
conditions (10)-(11) are kept unchanged but condition (12)
is replaced by:

∀x ∈ X\Ω, L f V(x) < 0 (13)

with Ω = {x ∈ X|V̇(x) ≥ 0} a subset of X ”small enough”,
see [14].

In the RL framework considered here, the Lie derivative
L f V will be approximated from the available sample values.
Note that the RL algorithm does not require explicit knowl-
edge of the system dynamics (model-free approach), but only
numerical evaluation of a reward, and next observed state,
corresponding to a given action (control input). Nevertheless,
the system dynamics are used here to produce data for
the reward evaluation (which corresponds to a simulated
“environment”, as named in RL algorithms). Given two
consecutive states x(t) and x(t + ∆t) separated by ∆t, the
numerical approximation of the Lie derivative is defined as:

L f ,∆tV(x) =
1
∆t

(V (x(t + ∆t)) − V (x(t))) (14)

such that L f ,∆t
∆t→0

V(x) = L f V(x).

Closed loop stability of the system can hence be estab-
lished under a given control policy if an Almost Lyapunov
function can be found that satisfies the following decrease
condition, numerically evaluated along the trajectories of the
closed loop system. Hence, the condition (13) is replaced by:

∀x ∈ X\Ω, L f ,∆tV(x) < 0 (15)

In the next section, the Deep Reinforcement Learning
algorithm making use of these Lyapunov conditions to get
stability certificates is presented.

B. Robust Deep Reinforcement Learning with Almost Lya-
punov Functions

From here, in order to match algorithms from the litera-
ture, notations classically used in the Reinforcement Learn-
ing community will be used instead of the ones from control
theory: the state xt will be denoted by st and the control
input ut by the action at.



Based on the Proximal Policy Optimization algorithm [15]
and works on safe deep learning from [12] [23] [24], the
proposed algorithm makes use of Lyapunov stability condi-
tions in the learning process. In this article, robustness with
respect to uncertainties is furthermore requested. Lyapunov
conditions are introduced as a Lyapunov risk in the loss
function and the decrease condition is also taken into ac-
count for the advantage estimate computation. Compared to
existing work of [12], the Lyapunov risk is evaluated at each
optimization step, where parameters of the neural networks
representing the policy, Lyapunov and value functions are
updated. This difference with respect to [12] is introduced to
handle uncertainties. Indeed, for this optimization, batches of
trajectories obtained with different values of the parameter
vector p are considered. Those are randomly generated in
a set P corresponding to the convex hull of possible model
parameters within the given ranges of uncertainties.

The main steps of the proposed approach are described in
Algorithm 1. They are detailed below.

The policy πµ, the value function Vr
µ and the Lyapunov

function Vµ are represented by neural networks considering
the update parameter µ. These networks are randomly initial-
ized in the first step of the algorithm (line 1). Then, for each
epoch, model parameters p are randomly chosen in P and
used to generate system trajectories (of different dynamics,
since using different model parameters, and under the current
policy πµ). A buffer B is then filled with those trajectories
consisting in values of current state, action, reward and next
state on a given temporal horizon (lines 2-3). The reward
function rt represents the improvement made when taking
action at when the system is in state st and evolving to state
st+1. It is defined here as:

rt = 0.7 ∗ (θ2 + θ̇2) + 1.5 ∗ (α2
1 + α

2
2) + 0.2 ∗ ż2 (16)

Then, optimization steps are performed to update the three
neural networks by minimizing a loss function J with back-
propagation (lines 4-11) over sample batches of size N taken
from B (line 5). The different terms involved in the loss
function are evaluated at each optimization step.

Based on the reward rt, the advantage estimates Â rep-
resent the estimate of the difference between the quality of
a state-action combination (known as the Q-function) and
the expected value in a given state (line 6). With a discount
factor 0 < γ < 1, advantage estimates are computed as:

Â (st, at) = δt + γδt+1 + . . . + γ
N−t+1δN−1 (17)

with:
δt = rt + γVr

µ (st+1) − Vr
µ (st) (18)

To foster the validation of the Lyapunov decrease condi-
tion, the advantage estimates are modified, as proposed in
[12], and are then denoted ÂL

d with d (0< d <1) a fixed
constant (line 7):

ÂL
d (st, at) = (1 − d)Â(st, at) + d min

(
0,−L fπµ ,∆tVµ(st)

)
(19)

where L fπµ ,∆t denotes the Lie derivative evaluated as in
(14) along the closed loop trajectories obtained under the
policy πµ.

Algorithm 1 Robust Lyapunov Certified PPO (RLC-PPO)

1: Initialize policy network πµ, the value function network
Vr
µ, the Lyapunov function network Vµ and the buffer B

(empty set)
2: for epochs k = 0, 1,. . . ,K do
3: Add collected set of trajectories in B by running policy

πµ in the environment with random model parameters
chosen in P

4: for each optimization step do
5: Sample batches of size N from B
6: Compute advantage estimates Â:

δt ← rt + γVr
µ (st+1) − Vr

µ (st)
Â (st, at)← δt + γδt+1 + . . . + γ

N−t+1δN−1
7: ÂL

d ← (1 − d)Â (st, at) + d min
(
0,−L fπµ ,∆tVµ (st)

)
8: J(µ, d)← Ê

[
JCLIP(µ, d) − c1JVF(µ) + c2S πµ (st)

−criskR f ,N,∆t(µ)
]

9: Update the networks via AdamW: maximization of
the loss with backpropagation on J

10: end for
11: end for

The general learning goal is defined as the loss function J.
This objective function is expressed as (line 8):

J(µ, d) = Ê
[
JCLIP(µ, d) − c1JVF(µ) + c2S πµ (st)

−criskR f ,N,∆t(µ)
]

(20)

Notation Ê corresponds to the empirical average over the
batches of samples. The constants c1, c2 and crisk are positive
coefficients chosen by the user that can be used to normalize
the terms between them. Each term of equation (20) will be
detailed further.

The next and final step of the algorithm (line 9) is the
update of the neural networks with the stochastic gradient
descent method AdamW and a backpropagation on the objec-
tive J. As noticed in [25], AdamW yields good performances
with respect to the training loss and a better generalization
than models trained with Adam. To take the robustness with
respect to model parameters into account, the developed
algorithm updates the policy, the value function and the
Lyapunov function at the same time in the optimization
loop. This leads to a more robust learning since Lyapunov
functions need to change depending on the dynamics. As pre-
viously mentioned, accounting for robustness in the learning
process of the control policy and the stability certificate is a
contribution of this paper, compared to algorithms existing
work such as [12] [13].

As proposed in [15], the objective function J considered
in (20) takes into account the policy surrogate JCLIP and a
value function error term JVF . The first term accounts for the
policy surrogate, with a clipped objective function to avoid
the new policy to be too different from the previous one.
This can improve the possible sample efficiency issue due
to the on-policy aspect, i.e. exploring by sampling actions
according to the newest version of the policy, of the PPO



method. JCLIP is defined as:

JCLIP(µ, d) = Êt

[
min
(
cr(µ)ÂL

d ,

clip(cr(µ), 1 − ε, 1 + ε)ÂL
d

)]
(21)

with Êt the empirical average over one batch of samples, ε
(0< ε <1) a hyperparameter [15] and the clipping ratio cr(µ)
avoiding to overshoot at each policy step defined by:

cr(µ) =
πµ(at |st)
πµold (at |st)

The second term JVF in (20) represents a mean-squared
error on the value function (Vr

µ(st) − V target
t )2 with V target

t =
∞∑

k=0
γkrt+k the expected value obtained when evaluating the

policy.
An entropy term S πµ to ensure sufficient exploration is also

considered in the loss J as suggested in [26] [27].
A specific neural network determines the Lyapunov func-

tions by guaranteeing the satisfaction of Lyapunov con-
ditions. To do so, the learning steps aim to minimize a
Lyapunov loss function defined as the Lyapunov risk [28]
which will be the last term taken into account in the objective
function J (line 8). Denoted R f ,N,∆t(µ), it can be expressed
as:

R f ,N,∆t(µ) =
1
N

N∑
i=1

(
max(0,−Vµ(si))

+max(0, L f ,∆tVµ(si))
)
+ V2

µ (0) (22)

This risk is positive and represents the satisfaction of Lya-
punov conditions. When a Lyapunov function is found, the
risk reaches its global minimum of zero. Its value is added in
the loss function computation with a multiplicative positive
constant crisk.

IV. Simulation results

Simulation results are presented in this section to illustrate
the stability property of the learned controller, in a robust
way with respect to uncertainties regarding the model param-
eters. As stated in the introduction of the paper, numerical
values used are subject to industrial confidentiality and thus
cannot be given in this paper. The range of values used
for initial conditions and uncertainties during the learning
process and for the simulations will be given.

In the learning process, the simulated environment used
to evaluate the reward and the next state makes use of the
nonlinear dynamics (6) accounting for sloshing phenomenon
and related parameter uncertainties, randomly chosen in P,
as well as time delay and bias on the realization of the
commanded deflection angle β. A saturation is applied on
the control.

Tests led us to choose neural networks with 2 hidden layers
of 4 neurons each, keeping their size relatively small. The
actor, critic and Lyapunov networks use tanh as activation
function on their hidden layers. A square activation function
is used for the output layer of the Lyapunov network.

The Lyapunov risk, as evaluated during learning, is shown
in Figure 2 in function of the number of steps. The value of
0.2 around which the risk converges is mainly due to the
term related to the Lyapunov decreasing condition which is
not verified on small subsets, as can also be noticed on Figure
4. Nevertheless, this risk convergence towards an almost
zero value confirms that Lyapunov criteria are numerically
verified (in the sense of almost Lyapunov functions) and thus
that a stability guarantee is obtained.

The evolution of the loss function is also plotted in
Figure 2 and converges towards a minimum close to zero
confirming the algorithm found an optimal solution.

(a) Lyapunov risk

(b) Loss function

Fig. 2: Evolution of Lyapunov risk and loss function with
respect to learning steps

A. Closed loop stability
To illustrate the stabilizing property of the learned con-

troller, closed loop trajectories are simulated, for a fixed
given set of model parameter values, and from randomly
generated initial conditions in θ, θ̇, α1 and α2. The order
of magnitude of the range of initial conditions chosen for
attitude and attitude rate are respectively ±15◦ and ±15◦/s.

Sloshing initial angles have lower values, in a range of
about ±5◦. The re-boosts being considered after the long
duration main boost, sloshing can be considered mitigated,
justifying this small order of magnitude for the initial slosh-
ing angles.

The results shown in Figure 3 demonstrate the stabilization
of the system state from twenty different initial conditions.
The primary goal of achieving near-zero sloshing angles
is achieved, with both attitude and attitude rate converging
to near-zero values. The commanded deflection angle con-
verges to a value that compensates for the bias. Sloshing
modes are mitigated, and the states stabilize to equilibrium
in approximately 5 s, which meets industrial requirements
for response time. The deflection angle remains within the
requested range, avoiding saturation. Initial high-frequency
variations of β are acceptable for this preliminary study.

Regarding stability certificate, the Lyapunov function
learned by the algorithm in terms of a neural network can
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Fig. 3: Closed loop trajectories obtained with the learned
controller

be evaluated and represented in the (θ, θ̇) subspace of the
state. The same closed loop trajectories as in Figure 3 are
also represented in this phase portrait for the attitude. These
two representations are proposed in Figure 4.

The color bar on the right part of the figure represents the
values of the Lyapunov function. As can be seen, closed
loop trajectories converge towards a neighborhood of the
origin. A small attitude static error is observed due to the
use of robust learning (i.e. learning over different possible
parameters values in P to cope with model uncertainties)
which leads the algorithm to converge towards an almost
zero cost.

Attitude rate θ̇ (◦/s)

A
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Fig. 4: Closed loop trajectories in attitude phase portrait
and values of the learned Lyapunov function (color bar)

As can also be noticed, there exist some finite subsets
inside which the value of the Lyapunov function is non-

decreasing along the closed loop trajectories of the sys-
tem. Nevertheless, by exploiting the framework of Almost
Lyapunov functions developed in [14], stability guarantees
can be possibly obtained from a theoretical point of view.
To do so, subsets Ω used in relaxed condition (13), where
the Lyapunov function is non-decreasing, should be properly
characterized. This point is beyond the scope of this paper
and will be addressed in future work.

B. Robustness with respect to parameters uncertainties

To illustrate the robustness of the learned controller against
model uncertainties, 200 closed-loop trajectories were simu-
lated, each with different randomly generated dynamic model
parameters within P. Due to industrial confidentiality, only
orders of magnitude are provided. The range of uncertainties
is set to 10 % of the nominal value for the model parameters
except for the pendulum characteristics which consider a
20 % uncertainty range. The same initial conditions are
considered for these trajectories, to solely illustrate here
robustness with respect to parameters uncertainties.

Figure 5 presents the mean (solid dark blue curve) and the
standard deviation around the mean (light blue shaded enve-
lope) over these 200 trajectories. The attitude phase portrait
in Figure 6 shows the 200 simulated closed-loop trajectories.
A single set of initial conditions is used for clarity, but similar
plots can be provided for the range of initial conditions used
during the learning process. As observed in these figures,
the learned controller guarantees stability despite variations
in the model parameters, illustrating the robustness of the
proposed approach with respect to uncertainties.
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Fig. 5: Mean and standard deviation over 200 closed loop
trajectories with different model parameters values

V. Conclusion

In this paper, a Deep Reinforcement Learning algorithm
has been proposed to design a control law for a launcher



Attitude rate θ̇ (◦/s)

A
tti

tu
de
θ

(◦
)

Fig. 6: Attitude phase portrait representation of 200 closed
loop trajectories with different model parameter values, and

values of the learned Lyapunov function (color bar)

upper stage module subject to the sloshing effect. Nonlin-
ear dynamics of the system are accounted for as well as
saturation, bias and time delay on the control input. Using
conditions derived from Lyapunov theory, the actor-critic
PPO algorithm has been modified in order to learn a robust
controller, in presence of model uncertainties, along with a
stability certificate. Simulation results have been provided to
illustrate the good performance of the learned controller, in
terms of time of response, stability and robustness.
However preliminary, these first results are hence encour-
aging to consider possible future applications, since this
robustness of stability condition is of paramount importance
to guarantee a safe evolution of a launcher upper stage
module, in presence of real-world perturbations such as the
ones due to the sloshing phenomenon.

Further studies will include constraint handling and com-
parison of the proposed approach with other nonlinear robust
controllers from the control theory literature.
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