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1. Introduction
Turbulence is ubiquitous in space plasmas such as the solar wind, planetary plasma environments and the inter-
stellar medium (e.g., Bruno & Carbone, 2013; Tu & Marsch, 1995). Due to the high-quality data provided by 
many recent spacecraft missions, plasma turbulence has been studied in the solar wind (e.g., Horbury et al., 2008; 
Huang et al., 2021; Huang & Sahraoui, 2019; Matthaeus & Goldstein, 1982a; Sahraoui et al., 2009, 2010, 2013; 
Wu et al., 2019, 2020, 2021; Zhang et al., 2022), the magnetosheath and the magnetospheres of solid planets 
(e.g., Andrés et al., 2020; He et al., 2011; Huang, Zhang et al., 2020; Huang et al., 2012, 2014, 2017; Sahraoui 
et al., 2003, 2006; Vörös et al., 2004, 2006, 2008; Zhang et al., 2023) and giant planets (e.g., Hadid et al., 2015; 
Saur, 2021; Tao et al., 2015; von Papen and Saur, 2016; von Papen et al., 2014). Similarities and differences 
in the turbulence properties in some of those media have been discussed in Sahraoui et  al.  (2020) and S. Y. 
Huang (2022).

Kolmogorov theory predicts that the power spectral density of the fluctuations obeys a k −5/3 power-law in the 
inertial range (Kolmogorov, 1941). This theory was later extended to magnetohydrodynamic (MHD) turbulence 
leading to similar prediction on the scaling law, which spectrum has been routinely observed in the solar wind 
in the frequency range [10 −4, 10 −1] Hz (Bale et al., 2005; Bandyopadhyay, Chasapis, Chhiber, Parashar, Maruca, 
et  al.,  2018; Bandyopadhyay, Chasapis, Chhiber, Parashar, Matthaeus, et  al.,  2018; Bruno & Carbone, 2013; 
Coleman, 1968; Goldstein et al., 1994; Matthaeus & Goldstein, 1982a; Sahraoui et al., 2009, 2013). At lower 
frequencies (<10 −4  Hz), the spectra generally flatten to ∼f  −1; the corresponding range is referred to as the 
energy-containing scales (Bavassano et  al.,  1982). Different theoretical interpretations were given to explain 
the 1/f spectrum (Chandran, 2018; Matteini et al., 2019; Matthaeus & Goldstein, 1986). At higher (>10 −1 Hz), 
the  turbulence spectra were found to steepen significantly because of the joint action of dispersive and dissipa tion 

Abstract The Kolmogorov scaling in the inertial range of scales is a distinct characteristic of fully 
developed turbulence, and studying it offers valuable insights into the evolution of turbulence. In this work, we 
perform a statistical survey of the power spectra with the Kolmogorov scaling in Saturn's magnetosphere using 
Cassini measurements. Two cases study show that both magnetic-field and electron density spectra exhibit 
f  −5/3 at the MHD scales. The statistical analysis reveals a wide-ranging and abundant presence of Kolmogorov 
spectra throughout magnetosphere, observed across all local times. Interestingly, the occurrence rate of these 
Kolmogorov-like events within Saturn's magnetosphere surpasses that observed in the planetary magnetosheath. 
The measurements of magnetic compressibility for the Kolmogorov-like events show the dominance of 
incompressible Alfvénic turbulence (44.64%) with respect to magnetosonic-like one (6.94%). In addition, the 
source and evolution of the turbulent fluctuations are further discussed.

Plain Language Summary Turbulence is ubiquitous in space and astrophysical plasmas, such as the 
solar wind, planetary magnetospheres, and the interstellar medium. Plasma turbulence has been widely studied 
in the solar wind and planetary magnetosheaths, but much less in the planetary magnetospheres. In the solar 
wind, power spectral density of the magnetic field fluctuations generally follows the so-called Kolmogorov 
spectrum f  −5/3 at the magnetohydrodynamic (MHD) scales, which suggests a fully developed turbulent state. In 
this study, we have discovered the widespread presence of Kolmogorov spectra in the Saturn's magnetosphere. 
The spatial distribution and nature of turbulent fluctuation for the Kolmogorov-like events are also investigated 
in detail.
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effects (Goldstein et  al.,  1995; Howes et  al.,  2011; Huang et  al.,  2022; Huang & Sahraoui,  2019; Leamon 
et al., 1998; Sahraoui et al., 2009, 2010, 2013, 2013; Schekochihin et al., 2009; Wu et al., 2022). Such dissipation 
is thought to result into particle heating and acceleration in the solar wind.

Planetary magnetosheaths, where the solar wind slows down and heats up, control a significant part of the magne-
tosphere's dynamics (Formisano et al., 1973; S. Y. Huang, 2022; Huang, Wang, et al., 2020; Huang et al., 2014; 
Sahraoui et al., 2006), reason for which turbulence (and other processes) have been studied in those environments. 
In the case of the Earth's magnetosheath, previous studies showed that the spectra with the Kolmogorov scaling 
account only for a small fraction (∼17%) of the total analyzed spectra (Huang et al., 2017). This proportion is 
15% in Mercury's magnetosheath (Huang, Wang, et al., 2020), while Hadid et al. (2015) found no evidence of the 
Kolmogorov inertial range within the data sets they analyzed although steeper spectra than f  −1 and intermittent 
(multi-fractal) fluctuations were evidenced downstream of the quasi-parallel shock. In Jupiter's magnetosheath, 
Bandyopadhyay et al. (2021) have presented a case study where ion density and velocity spectra exhibit nearly a 
Kolmogorov scaling. Those results indicate the importance of the shock geometry in controlling the nature of the 
plasma turbulence. This role can be manifested either by “resetting” some properties of the turbulence preexisting 
in the solar wind or by controlling the strength of the nonlinear effects thus leading to the reformation of fully 
developed turbulent state far away from the shock (Bandyopadhyay et al., 2021; Hadid et al., 2015; Huang, Wang, 
et al., 2020; Huang et al., 2017).

Kolmogorov turbulence is seldom investigated within planetary magnetospheres. A possible reason is the 
complexity of the magnetospheric physics due to, for example, the presence of large-scale boundaries and sharp 
gradients, the permanent interaction with the solar wind, and the response of the magnetotail to substorms. 
These physical conditions make the magnetospheric plasmas unstable on various time scales that can be compa-
rable with those of the turbulence. This can reduce the available range of scales for the turbulence to develop 
with respect, for instance, to the solar wind as reported in the Earth's magnetosphere (Zimbardo et al., 2010). 
Practically, obtaining statistical observational results (e.g., power spectra, dissipation rates) that can be reliably 
compared to theoretical predictions based on stationary and homogenous theories (Andrés et al., 2018; Ferrand 
et al., 2019; Galtier, 2008; Simon & Sahraoui, 2022) requires having long time series without the crossings of 
boundary. Despite these difficulties, deep physical insight was obtained from previous observational studies in 
the terrestrial magnetosphere (Vörös et al., 2004, 2007; Zimbardo et al., 2010). Here, we extend those efforts to 
the Saturn's magnetosphere using the measurements from the Cassini spacecraft.

2. Data and Results
We used the 6 years of data from 2004 to 2009 when Cassini traveled in the Saturn's magnetosphere. The magnetic 
field data were provided by the MAG instrument of the Cassini spacecraft (Dougherty et al., 2004). The sampling 
frequency of MAG ranges from 4 to 32 Hz. The magnetic field data is down-sampled to 2 Hz to get the spectra 
in the frequency range [10 −4, 1] Hz. The electron measurements are supplied by the Cassini Plasma Spectrometer 
(CAPS) (Young et al., 2004).

We calculated PSDs of the magnetic field and electron density using the Morlet wavelet transform. To convert the 
frequencies measured onboard the spacecraft into wavenumbers the Taylor's frozen-in approximation is applied, 
that is, w = k.Vflow. In Saturn's magnetosphere, the Alfvén velocities VA is of the same order than Vflow (Thomsen 
et al., 2010), implying that Taylor's hypothesis may not be applicable in all circumstances. Under some assump-
tions it still can hold, such as in the highly oblique Kinetic Alfvén Waves (KAWs) (Howes et al., 2014; Huang & 
Sahraoui, 2019; Klein et al., 2014; Sahraoui et al., 2006, 2009; von Papen et al., 2014).

In solar wind, the spectral breaks separating the MHD scales and kinetic scales may correspond to three ion 
characteristic scales, namely the ion Larmor radius ρi = Vth⟂/Ωi, the ion initial length di = VA/Ωi, and the ion 
cyclotron frequency fci = Ωi/2π (Kiyani et al., 2015). Here, Ωi = eB0/mi, Vth⟂ = (2kBTi⟂/mi) 1/2 is the perpendic-
ular thermal speed, VA = B0/(μ0nimi) 1/2. The two first scales correspond when Taylor-shifted to the frequencies 
f𝜌i = Vflow/2π𝜌i and fdi = Vflow/2πdi, respectively. Two ion species (H +, water group ions W +) are reported in the 
Saturn's magnetosphere (von Papen et al., 2014), which we consider in this study. We further assume a mean ion 
mass of m = 18 amu (H2O +) for W + and note f𝜌,w, fd,w and fc,w their characteristic scales as defined above.

Figure 1 displays two examples of Kolmogorov turbulence events in Saturn's magnetosphere. The blue curve in 
Figure 1a is the Cassini trajectory during the dayside event observed between 03:00 and 09:00 UT on 11 October 
2005 at Saturn local time of [10.3, 10.9], and the orange curve is the trajectory during the nightside event observed 
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between 03:00 and 09:00 on 24 May 2006 at Saturn local time of [21.2, 21.5]. The position of the magnetopause is 
calculated under 0.005 nPa of the solar wind pressure based on the model of Kanani et al. (2010). The background 
plasma parameters are given as di ∼ 233 km, 𝜌i ∼ 143 km, dw ∼ 775 km, 𝜌w ∼ 907 km for the dayside event, and 
given as di ∼ 715 km, 𝜌i ∼ 747 km, dw ∼ 1924 km, 𝜌w ∼ 3156 km for the nightside event. The magnetic-field 
fluctuation level given by δB/<B> is found to be 0.054 and 0.123 in the two events, indicating a weak amplitude 
fluctuation with respect to the background field. Here, δB is the root mean square of (B(t)–<B>), where <B> is 
a moving average of B(t) and the smoothing time is set as 2 hr Figures 1b and 1c show the magnetic field spectra 
of both events. Both spectra display nearly power-law behavior in two frequency bands separated by a break. A 
linear fitting in logarithmic scale of these two ranges reveals spectral slopes close to −5/3 at low frequencies 
and to −7/3 at the higher ones. This observation agrees with theoretical prediction of the k −5/3 power law in the 
inertial range of scales, which is routinely observed in solar wind turbulence (e.g., Goldstein et al., 1995; Leamon 
et al., 1998; Sahraoui et al., 2010, 2013).

While spectral breaks in solar wind turbulence are frequently compared to proton characteristic scales (consid-
ering the small fraction of the heavier ions that constitute the plasma, Chen et  al., 2014), here they occur at 
scales ranging between fc,w and fc,H. This may be explained to the large proportion of water-group ions in Saturn's 
magnetosphere (von Papen et al., 2014). Their large scales (compared with the proton ones) yield a spectral break 
at lower frequencies, which renders this multi-species (heavy ion, proton and electron) plasma turbulence more 
complex than the classical two fluid (proton and electron) one.

The auto-correlation function of magnetic fluctuations can be seen as a measure of the “memory” that a signal 
has of itself. Matthaeus and Goldstein (1982b) suggested that the correlation function can be fitted in exponential 

Figure 1. Two examples of Kolmogorov turbulence observed in Saturn's magnetosphere. (a) Cassini's trajectories of 
dayside event and nightside event; (b, c) The power spectral densities of the magnetic field measured in the dayside 
magnetosphere and the magnetotail, respectively. The dashed curves in (b, c) are magnetic field spectra measured in the solar 
wind, considered here to represent the upper bound of the sensitivity floor of MAG. The solid vertical lines represent the 
characteristic scales of ion and the dotted vertical lines represent the characteristic scales of water group ion.
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form when the data satisfy stationarity and ergodicity. Here, we calculated the correlation functions (shown in 
Figure 2) for the dayside and nightside events. The correlation is defined as R(l) = <δB(x). δB(x + l)>, where 
l is a spatial lag that be related to the time lag τ by l = τ Vflow assuming the Taylor hypothesis. The correlation 
length (Lc) is estimated as the scale where the correlation function R(l) reaches the value of R(0)/e. Here, the 
correlation length is estimated to 1.2 Rs (Rs ∼ 60,268 km, radius of Saturn) and 2.0 Rs for the dayside and 
nightside events respectively; the blue curves in Figure 2 indicate the exponential fits e -l/Lc. The correlation length 
can be compared with the ion characteristic scale to estimate the effective Reynolds number Re (Bandyopadhyay, 
Matthaeus, Chasapis, et al., 2020; Bandyopadhyay, Matthaeus, Parashar, Chhiber, et al., 2020; Bandyopadhyay, 
Matthaeus, Parashar, Yang et al., 2020; Matthaeus et al., 2005). We found, Lc/𝜌i ∼ 504, Lc/𝜌w ∼ 80, Re ∼ (Lc/
𝜌i) 4/3 ∼ 4011 for the dayside event and Lc/𝜌i ∼ 161, Lc/𝜌w ∼ 38, Re ∼ 878 for the nightside event. The broad sepa-
ration of scales (2–3 decades) allows the turbulence cascade to proceed from the scales ∼Lc to scales ∼𝜌i, where 
kinetic effects become important.

We calculated the electron density spectra (shown in Figure  3) based on a 24-hr interval from 12:00 on 10 
October 2005 to 12:00 on 11 October 2005. The electron spectrum shows a nearly power-law behavior in the 

frequency space between 5 × 10 −5 and 10 −3 Hz. Using a least-square straight-
line fitting in log-log space for this range, the spectral index for the density 
spectrum is −1.76, which is close to Kolmogorov scaling of ∼f  −5/3. The −5/3 
inertial-range spectrum of number density fluctuation suggests nearly incom-
pressible magnetohydrodynamics turbulence (Bandyopadhyay et al., 2021). 
The two peaks observed within the band [10 −3, 10 −2] Hz of the electron 
density spectrum, which are also measured in the solar wind spectra (the 
dashed curves in Figure  3a), are not real fluctuation. This may be due to 
the periodic change of the field of view orientation of the CAPS instrument 
(Young et al., 2004).

To obtain a global picture as to how turbulence properties behave in the 
Saturn's magnetosphere, we carried out a statistical study of the magnetic 
power spectra calculated every 6 hr. The Kolmogorov scaling −5/3 (∼−1.66) 
in the inertial range is the characteristic of Kolmogorov event. Considering a 
10% of confidence interval, the magnetic field spectra with spectral  indexes 
in [−1.66  −  0.16, −1.66  +  0.16]  =  [−1.82, −1.5] will be classified as 
Kolmogorov-like events. Based on 6 years of Cassini data, 1687 Kolmogorov 
events have been successfully selected. The locations of all Kolmogorov 
events are projected onto the Kronocentric Solar Magnetospheric (KSM) 
coordinates in Figure 4. Figures 4a and 4b show the number of the events in 

Figure 2. Magnetic field correlation functions as a function of spatial scale in units of Saturn's radii (Rs) for the dayside 
event and the nightside event. The exponential fit yields the correlation length of Lc ≈ 1.2 Rs for the dayside event and 
Lc ≈ 2.0 Rs for the nightside event. The horizontal dashed lines mark “0” for the correlation functions.

Figure 3. Power spectral densities of electron density measured in Saturn's 
magnetosphere from 12:00 on 10 October 2005 to 12:00 on 11 October 
2005. The dashed curve is electron density spectrum measured in the solar 
wind, considered here to represent the upper bound of the sensitivity floor of 
electron measurements.
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the X-Y plane and X-Z plane of the KSM coordinates. In the X-Y plane, one can see that turbulence is seemingly 
fully developed within the whole magnetosphere, not only on the tail-side but also on the dayside, dawn-side and 
dusk-side. Compared with other bins, the region of X ∼ [15, 18] Rs, Y ∼ [−8, −4] Rs has the largest number of 
the Kolmogorov events (see below about the possible bias due to Cassini orbit sampling). In the X-Z plane, most 
Kolmogorov spectra are concentrated in Z ∼ [−10, 10] Rs, which is the region of Saturn's magnetodisc current 
sheet (e.g., Arridge et  al.,  2008). On the dayside magnetosphere, a considerable number of the Kolmogorov 
events is measured close to the magnetopause, and the location of these events extends even to Z = ±20 Rs. Both 
observations suggest the potential role played by the large scale magnetosheric currents (the magnetodisc and the 
magnetopause) in the generation and evolution of the magnetospheric turbulence.

Considering the orbit bias of Cassini, the occurrence rate of Kolmogorov turbulence is presented in Figures 4c 
and 4d. The occurrence rate is defined by the ratio between the number of Kolmogorov turbulence events and 
the whole number of 6-hr intervals in each bin. The occurrence rate of the Kolmogorov events is 26.11% for the 
whole magnetosphere. This value is even higher (up to 30.37%) for the outer magnetosphere (Rxy > 10 Rs) and 
up to 35.61% for the current sheet region (Z ∼ [−10, 10] Rs). These values in Saturn's magnetosphere are much 
larger than the occurrence rate found in the Earth's magnetosheath (17%, Huang et  al.,  2017) and Mercury's 
magnetosheath (15%, Huang, Wang, et al., 2020). Comparing the Reynolds number in Saturn's magnetosphere 
to that in Earth's magnetosheath may provide some explanations for this result. Through fitting the correlation 
function, the correlation length (Lc) is estimated as the scale where the correlation function R(l) reaches the value 
of R(0)/e. Then the Reynolds number Re is calculated by (Lc/𝜌i) 4/3. According to the results presented by Huang 
et al. (2017), the Reynolds number for most events in Earth's magnetosheath ranges from 12 to 251. The Reynolds 

Figure 4. The spatial distribution of Kolmogorov turbulence in Saturn's magnetosphere. (a, b) The number of Kolmogorov turbulence events in the X-Y plane (a) and 
X-Z plane (b) of Kronocentric Solar Magnetospheric (KSM) coordinates. (c, d) The occurrence rate in the X-Y plane (c) and X-Z plane (d) of KSM coordinates. The 
black curves represent the magnetopause under the solar wind pressure of 0.005 nPa.
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numbers calculated for the Kolmogorov-like event in the Saturn's magnetosphere range from around 1,000 to 
4,000, which is much larger than that in the Earth's magnetosheath. Moreover, the occurrence rate gets close to 
0 when the distance from the Saturn is less than 10 Rs in the X-Y plane, indicating that Kolmogorov turbulence 
does not develop in the inner magnetosphere. The occurrence rate of Kolmogorov turbulence in the dawn-side 
is higher than in the dusk-side. This dawn-dusk asymmetry provides some lead about the origin of Kolmogorov 
turbulence, as discussed below.

Solar wind turbulence at MHD scales is thought be dominated by incompressible Alfvénic fluctuations characterized 
by δB⊥ >> δB|| (e.g., Goldstein et al., 1995; Sahraoui et al., 2010) while the compressible component (δB|| > δB⊥)has 
a weaker contribution (Howes et al., 2014; Klein et al., 2014). Here, to identify the nature of turbulent fluctuations 
in the Kolmogorov-like events, we use the magnetic compressibility C|| given by the ratio between the PSDs of the 
parallel magnetic field component and the magnetic field magnitude, C|| (f) = |δB|| (f)| 2/(|δB|| (f)| 2+|δB⊥(f)| 2). Refer-
ring to the theoretical magnetic compressibility calculated from the linear solutions of the Vlasov–Maxwell using 
the WHAMP code (Ronnmark, 1982), different plasma modes have different C|| (Hadid et al., 2015; Huang, Wang, 
et al., 2020; Huang et al., 2017). For turbulence dominated by incompressible Alfvénic fluctuations C|| is low (∼0) at 
MHD scales but increases to nearly 1/3 at kinetic scales (power isotropization, Kiyani et al., 2015). For compressible 
turbulence (fast or slow magnetosonic-like modes) C||, although is β—dependent, is generally larger than 1/3. To 
suppress the varying background field in the magnetosphere, the parallel component of fluctuations is calculated by 
δB|| 2 = δ|B| 2 (e.g., Chen et al., 2012), while the perpendicular one is obtained from δB⊥ 2 = δBr 2 + δBθ 2 + δBφ 2–δB|| 2. 
Here, δ|B| is the symbol in the frequency domain, which is obtained by the wavelet transform of |B|. Our statistical 
results show that 1147 Kolmogorov-like events have magnetic compressibility smaller than 1/3 at MHD scales 
accounting for 67.99% of the total. This result agrees with the assumption promoted by von Papen et al. (2014) that 
most fluctuations have δB⊥ 2 > δB|| 2 in the Saturn's magnetosphere. Among them, 753 events have rising profiles 
that are characteristic of Alfvénic turbulence, accounting for 44.64% of the total events. Only 117 events (6.94% 
of the total) are found to have a high magnetic compressibility (C|| > 1/3) from 10 −3 Hz–0.5 Hz, and identified 
as magnetosonic-like turbulence. Figures 5a and 5d show the profiles of the magnetic compressibility as func-
tion of the frequency for the Kolmogorov events, which reflect the magnetosonic (Figure 5a) versus the Alfvénic 
(Figure 5b) nature of the fluctuations. Their respective spatial distributions in the Saturn's magnetosphere are also 
shown (Figures 5b and 5c and Figures 5e and 5f). Alfvénic turbulence is seldom observable within 10 Rs of X-Y 
plane. In contrast, compressible (magnetosonic-like) turbulence tends to be distributed closer to Saturn in X-Y plane 
and seem to be localized at Z ∼ [−5, 5] Rs (although the occurrence rate may partly balance this claim), which is 
the region of the Saturn's magnetodisc current sheet. Malara et al. (1996) suggested that the interaction between 
Alfvénic fluctuations and the current sheet can generate the compressive fluctuations. Moreover, there are 423 
events whose spectra show δB⊥ > δB|| at some frequencies and δB|| > δB⊥ at other frequencies.

We also analyzed the dependence of the number of Kolmogorov events on the varied confidence interval. Based 
on a 15% confidence interval (spectral index ∼[−1.90, −1.42]), the number of Kolmogorov events is 2404. For 
confidence intervals of 10% ([−1.82, −1.50]), 7% ([−1.78, −1.54]), 5% ([−1.75, −1.57]), the corresponding 
numbers of Kolmogorov events are 1687, 1277, and 959, respectively. However, the selection of the confidence 
interval does not affect the conclusions drawn in present study.

3. Discussions and Conclusions
Saturn is a giant gas planet with a relatively large magnetosphere. The magnetosphere can extend up to 20 Rs (depend-
ing on solar wind pressure) in the subsolar direction and up to 60 Rs at the tail-side (Arridge et al., 2008). The vast 
size of the magnetosphere allows Cassini to collect more long-time data without boundary crossing. This is reflected 
in Figure 1 where the observed spectra range from quite a low frequency edge of 10 −4 Hz–∼1 Hz. In present study, we 
analyze the occurrence and distribution of the magnetic field spectra with Kolmogorov scaling in the inertial range 
based on the large statistical samples. Our result shows the extensive and numerous distributions of Kolmogorov-like 
events observed at all local times of Saturn's magnetosphere, including the noon-side, dusk-side, dawn-side, and 
night-side. The occurrence rate of the Kolmogorov events in Saturn's magnetosphere is even much larger than the 
occurrence rate found in the planetary magnetosheath which are known for their strong turbulent environment.

The Kolmogorov scaling in the inertial range of scales is characteristic of fully developed turbulence 
(Kolmogorov, 1941) and indicates the presence of a scale-invariant energy cascade through the inertial range of 
scales (Verma et al., 1995). Our statistical result reveals a high occurrence rate of Kolmogorov-like turbulence in 
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Saturn's magnetosphere, which indicates that the plasma environment of Saturn's magnetosphere may be condu-
cive to reaching a fully developed turbulence state. In this work, we calculated the correlation length and the 
Reynolds number for the Kolmogorov-like event. The Reynolds numbers calculated in the Saturn's magnetosphere 
range from around 1,000 to 4000, which are generally larger than that calculated in Earth's magnetosheath. Large 
Reynolds number broadens the available scales of the observed spectra, allowing a broad scale separation favora-
ble to fully developing turbulence.

Based on Cassini observations on Saturn (Hadid et al., 2015), Cluster observations on Earth (Huang et al., 2017) 
and Messenger observations on Mercury (Huang, Wang, et al., 2020), a common phenomenon is that the magnetic 

Figure 5. Profile of the of magnetic compressibility and the spatial distribution for magnetosonic-like mode (117 events) Kolmogorov turbulence events (a–c), and 
Alfvénic mode (753 events) Kolmogorov turbulence events (d–f). In panel (a and d), the colors represent the number of events in each bin and the white curves are 
median values.
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spectra measured near the bow shock show a direct transition from the energy containing scales characterized by 
the 1/f spectrum to the ion kinetic scales ∼f  −2.8 without forming the Kolmogorov inertial range ∼f  −5/3; however, 
in the flanks region located far away from the bow shock, the spectra steepen from −1 to −5/3 at MHD scales. 
A possible explanation is that the interaction with the bow shock “destroys” pre-existing correlations in the solar 
wind leading to random-like (uncorrelated) fluctuations (Huang et al., 2017). Downstream in the magnetosheath, 
correlations between the fluctuations reappear due to nonlinear effects, after a period of time that can be estimated 
as Tc ∼ Lc/Vflow, also called “eddy turn-over time.” For the dayside and the nightside events (shown in Figure 1) 
in Saturn's magnetosphere, the correlation time Tc is estimated to 0.61 and 0.52 hr, respectively. Considering the 
plasma environment of Saturn's magnetosphere, the plasma is generally found to be sub-corotating and has a 
rotation period of ∼10 hr due to the rapid rotation of Saturn. Assuming that the magnetospheric plasma survives 
for the time comparable to the rotation period, the turbulence plasmas have time to develop for several correla-
tion times, which supports the existence of an extended inertial range. Moreover, the global plasma rotation also 
contributes to the azimuthal diffusion of turbulence. This diffusion process in azimuthal direction provides a 
possible explanation for our statistical result that the Kolmogorov turbulence can be observed at every local time.

Kelvin-Helmholtz instability is a large-scale velocity shear-driven instability that has been frequently reported 
to occur on the flanks of planetary magnetopauses (e.g., Delamere et al., 2013; Hasegawa et al., 2004). Both 
simulations and observations have shown that Kelvin-Helmholtz instability can generate MHD turbulence with 
Kolmogorov scaling (Hwang et al., 2011; Matsumoto & Hoshino, 2004; Stawarz et al., 2016). At Saturn's magne-
topause, Voyager 1 first observed the Kelvin-Helmholtz instability (Lepping et al., 1981). Galopeau et al. (1995) 
showed the importance of the local time effect on the Kelvin-Helmholtz instability at Saturn's magnetopause and 
reported that the different flow shear conditions excite the Kelvin-Helmholtz instability more in the dawn-side 
than in the dusk-side. Our statistical results revealed a similar asymmetry in the dayside Kolmogorov turbulence 
events near the magnetopause. The occurrence rate of the Kolmogorov spectra in the dawn-side is higher than that 
in the dusk-side. This result points toward the role of the Kelvin-Helmholtz instability in generating Kolmogorov 
turbulence in Saturn's magnetosphere.

Data Availability Statement
We thank the entire Cassini team and instrument leads for data access and support. Cassini data is publicly 
available from The Planetary Plasma Interactions (PPI) Node of the Planetary Data System (PDS) at https://
pds-ppi.igpp.ucla.edu/search/?t=Saturn&sc=Cassini&facet=SPACECRAFT_NAME&depth=1. The magnetic 
field data were provided by the MAG instrument of the Cassini spacecraft, and the DOI for MAG is https://
doi.org/10.17189/1521151. The magnetic field data used in this paper were downloaded at https://pds-ppi.igpp.
ucla.edu/search/view/?f=yes&id=pds://PPI/CO-E_SW_J_S-MAG-3-RDR-FULL-RES-V2.0, titled as CASSINI 
MAGNETOMETER CALIBRATED FULL RES ARCHIVE. The magnetic field data from 2001-01-01 to 
2017-09-15 was available. The plasma measurements were supplied by the Cassini Plasma Spectrometer (CAPS), 
and the DOI for CAPS is https://doi.org/10.17189/1519593. The electron moments data which include electron 
density and temperature data were downloaded at https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id=pds://
PPI/cassini-caps-derived/data-ele-mom, titled as Cassini-Huygens Plasma Spectrometer (CAPS) Derived Elec-
tron Moments Data Collection. The ion moments data which include ion density, velocity, and temperature 
data were downloaded at https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id=pds://PPI/cassini-caps-derived/
data-ion-moments, titled as Cassini-Huygens Cassini Plasma Spectrometer (CAPS) Derived Ion Moments Data 
Collection. The plasma measurements from 1999-01-04 to 2012-06-02 are available.
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