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Abstract 

There is sFll a gap in understanding phonons scaVering by geometrical defects at the 

nanoscale, and it remains a significant challenge for heat transfer management in nanoscale 

devices and systems. In this study, we aim to explore the characterisFcs of phonon scaVering by 

a single pore to gain insights into thermal transport in nanostructures. The paper outlines a 

methodology for assessing the spaFal distribuFon of the magnitude of the radial, azimuthal, and 

polar components of the velocity of scaVered phonons by a spherical pore. We demonstrated that 

the size parameter, commonly employed in electromagneFc wave scaVering theory, is vital in 

determining the scaVering regime. Specifically, we show that calculated scaVering efficiency has 

the same paVern as one commonly obtained in classical wave scaVering theory. However, we 

found that crystallographic direcFons are pivotal in shaping the scaVering paVerns, especially in 

the regions where scaVering paVerns are defined by the Mie resonances. This observaFon holds 

significance in understanding the influence of phonon coherence on thermal transport in 

nanostructured materials. 

 

A comprehensive understanding of phonon dynamics at the nanoscale is essenFal for 

opFmizing the performance, reliability, and efficiency of nanoscale devices and materials across a 

wide range of applicaFons in nanoscience and nanotechnology. Recent micro- and nano-

engineering progress allows us to manipulate materials at scales up to a few nanometers [1], 

where the surface-to-volume raFo defines the properFes of the media. In such a way, the phonon 

scaVering at the interface between different regions significantly reduces thermal transport 

properFes and causes hot spots [2]. Introducing a high-density interfacial area challenges us to 

find more sophisFcated approaches for cooling applicaFons [3], [4]. AddiFonally, it should be 

noted that the interface is the source of the stresses arising in materials; such stress also 

significantly impacts the thermal transport properFes of the media [5], [6], [7], [8]. 

A clear view of phonon dynamics is sFll a limiFng boVleneck to establishing new pathways 

for the thermal engineering of various nanoscale devices and systems. Furthermore, 
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understanding phonon scaVering is crucial for developing new types of quantum computers based 

on phonon splifng [9].  

Previously, the significant role of the phonons' wave properFes on thermal transport at 

the nanoscale has already been stated. Indeed, such an effect became necessary when the size of 

the scaVering object is less than the phonon wavelength [10], [11]. In this case, the explanaFon 

of the observed data requires the applicaFon of the approaches based on the Rayleigh and Mie 

scaVering regimes [12], [13], [14], which are specific to the wave nature of the phonons. For 

instance, Rayleigh-based Ziman’s scaVering model [15] has proven to be sufficient for describing 

the experimental data [16] and correlate well with other simulaFons [17], [18] when the defect 

size is much less than the phonons' wavelength. 

On the other hand, when the phonons’ wavelength is much smaller than the characterisFc 

defect size, the model based on geometric scaVering can be applied [19]. This allows the 

development of a representaFon of the phonon mean free path for different inclusions in 

geometries and configuraFons [20], [21], [22].  Furthermore, phonons' behavior can be 

considered parFcle-like, and methods based on their dynamics, such as the Monte Carlo method 

for Boltzmann transport equaFon resoluFon, can be applied [23], [24], [25].  

Several models were proposed to describe the cross-over from Rayleigh to geometric 

scaVering [22], [23], [24]. However, some quesFons should sFll be addressed, specifically 

concerning the applicaFon of such approximaFons to crystalline anisotropic media and the 

possible impact of Mie resonance on the scaVering cross-secFon. 

Current progress in simulaFons allows us to look deeper inside the phonon’s dynamics at 

the nanoscale. It is crucial to menFon that mulFscale simulaFons can decompose the impact of 

different aspects on integral thermal transport. Specifically, in this paper, we invesFgate phonon 

scaVering by a pore to understand features of thermal transport in the media with nanoscale 

objects. For our simulaFons, as a modeled system, we consider phonon scaVering in a system with 

a pore with different pore radii and wavelengths of phonons. InformaFon regarding phonon 

scaVering is essenFal for predicFng thermal conducFvity in highly porous media [7], [22], [26]. 
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For such invesFgaFons, we implemented an approach based on wave-packet formalism 

combined with molecular dynamics [27]. This formalism recommended itself as a valuable tool 

for invesFgaFng phonon propagaFon in nanostructured materials [28], [29]. This approach was 

successfully applied to invesFgate the phonon scaVering at the planar surfaces with different 

structuraFon [30], [31], [32]. These invesFgaFons are crucial for the revision of Ziman’ model for 

the reflecFon behavior at random rough surfaces, which is crucial for the descripFon of the 

phonon scaVering at the planar interfaces. 

 
Fig. 1. Geometry of the reference system, which was created as monocrystalline diamond-like 
silicon with a lafce parameter equal to a = 5.43 Å; the simulaFon domain for the reference 

system consists of 122×120×120 repeFFons of the unit cell in x, y, and z direcFons, respecFvely. 
The coordinate system was chosen so that -62a < x < 60a was centered to zero in the y and z 

direcFons. 
 

For the simulaFons, we considered monocrystalline diamond-like silicon with a lafce 

parameter equal to a = 5.43 Å; the simulaFon domain for the reference system consists of 

122×120×120 repeFFons of the unit cell in x, y, and z direcFons, respecFvely. The coordinate 

system was chosen so that -62a < x < 60a, and it was centered to zero in the y and z direcFons. A 

pore was created by cufng the atom inside a sphere with the radius R = 1a, 2a, 5a, and 10a 

centered in the point (0, 0, 0). The interacFons between silicon atoms were calculated using 

Tersoff potenFal [33]. This potenFal is chosen to represent the anharmonic interacFons between 

silicon atoms. Another potenFal, based on recently developed machine learning approach, can be 

also used [34]. The energy minimizaFon procedure relies on the conjugate gradient algorithm to 

relax the system. The iniFal temperature of the system was set to 0 K to decompose the impact 

of phonon-phonon scaVering and the scaVering at the pore’s edge. 
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For the creaFon of the phonon wave-packet (see Fig.1 for the geometry of the iniFal 

system), the first layer of the unit cell in x direcFon (-62a < x < -61a), and for the second layer (-

61a < x < -60a), the periodic force in x direcFon was applied: 

𝐹 = 𝐹! exp(2π𝑖ν𝑡) , (1) 

where 𝐹! is the force magnitude, and 𝜈 is the frequency of modulaFon. Our invesFgaFon 

considered the following frequencies: 0.5, 1, 2, 2.5, 4, 5, and 10 THz. Such frequencies were 

chosen to match the proporFonality between the quarter of the oscillaFon period and the 

Fmestep (0.5 fs). Such simulaFons were carried out for the reference system and all systems with 

an increased pore radius R. It should be noted that the anharmonic interacFon is presented 

through the interacFonal potenFal despite the excitaFon force being chosen harmonic-like. 

Such periodic force created a wave of elasFc displacement and velociFes with the 

wavelength λ(ν). The spaFal distribuFon of the velocity field inside the reference system and the 

dependence of the wavelength on the frequency are presented in SM2. For analysis, we use the 

size parameter defined as follows: 

χ =
2π𝑅
λ . (2) 

For the calculaFon of the velocity component in a wave scaVered at the pore, we 

decompose the velocity field in the systems with the pore as follows: 

𝑉5⃗"#$% = 𝑉5⃗ &'(&)%'* + 𝑉5⃗ +(,**%$%) , (3) 

where 𝑉5⃗"#$% is the total velocity field in the system with a pore, 𝑉5⃗ &'(&)%'* is the velocity field of the 

incident wave, and 𝑉5⃗ +(,**%$%)  is the velocity field of a scaVered wave. 

We assumed that the velocity field in the reference system (𝑉5⃗ $%-%$%'(%) for corresponding 

frequency is equal to the velocity field in the incident wave due to the absence of scaVering 

objects. It allows us to recalculate the scaVering as follows: 

𝑉5⃗ +(,**%$%) = 𝑉5⃗"#$% − 𝑉5⃗ $%-%$%'(% . (4) 
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For our analysis in this leVer, we decided to consider velociFes in the radial, azimuthal and 

polar direcFons to the pore surface, which were recalculated as follows: 

𝑉5⃗ +(,**%$%) = 𝑉5⃗$𝑒$ + 𝑉5⃗.𝑒. + 𝑉5⃗/𝑒/ , (5) 

where  𝑉5⃗ & = =𝑉5⃗ +(,**%$%) , 𝑒&>, 𝑖 = 𝑟, 𝜙, 𝜃, and 𝑒$, 𝑒., and 𝑒/ are the unit vectors in radial, polar, and 

azimuthal direcFons. 

Finally, the amplitude of the radial component of the velocity field in scaVered waves was 

analyzed. To simplify further consideraFon, we normalized the obtained amplitude by the 

magnitude of the incident wave: 

𝑣& =
C𝑉&𝑉&∗

𝐴 , (6) 

where 𝐴 is the magnitude of the excitaFon filed for the respecFve frequency. 

 
Fig. 2. The (x, y) and (y, z) slices of the spaFal distribuFon of the radial component of the 
normalized velocity scaVered at a pore with radius equal to 1a for different modulaFon 

frequencies of the force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 5 THz; d) ν = 10 THz. k-vector of the 
incident wave is direct along the x-axis 

 

It should be noted that a similar procedure was also performed for the displacement. 

However, due to the specificity of the oscillaFon excitaFon, the spaFal distribuFon of 

displacement fluctuates over some constant not equal to zero (see SM1), which complicates the 
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harmonic analysis. Since both momentum and displacement may be considered equivalent to 

describing phonon properFes, we further decided to consider only velociFes. Nevertheless, the 

paVern for displacement and velociFes are almost equivalent (see SM2). 

Fig. 2 and 3 present the (y, z) and (x, y) slices of the selected molecular dynamic snapshots 

depicFng atoms' posiFons for pore radii of 1a and 2a, respecFvely. The slices (y, z) have 

dimensions of 54a in y and z direcFon (-27a < y, z < 27a), and a thickness is 2a (-a < x < a). The 

slices (x, y) have dimensions of 54a in x and y direcFons (-27a < x, y < 27a), and a thickness is 2a 

(-a < z < a). Each atom is color-coded based on the calculated velocity magnitude 𝑣$.  

SM2 presents the figures corresponding to other pore radii and the velociFes component. 

AddiFonally, SM2 presents the corresponding snapshots for the displacement for the pore radius 

equal to 1a. The figures include informaFon about the size parameter	 χ of all cases, which, 

according to conFnuous field theory, is vital in predicFng the scaVering regime [35]. 

 
Fig. 3. The (x, y) and (y, z) slices of the spaFal distribuFon of the radial component of the 
normalized velocity scaVered at a pore with radius equal to 1a for different modulaFon 

frequencies of the force: a) ν = 0.5 THz; b) ν = 1 THz; c) ν = 2.5 THz; d) ν = 10 THz. k-vector of the 
incident wave is direct along the x-axis 

 
 

We observed an increased decay in the scaVering field as the χ parameter decreases, 

aligning well with previously reported findings [7]. In the laVer study, the authors emphasized the 
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significance of necks between scaVering features in describing the thermal transport properFes 

of nanostructured media. 

As the Fig.2-3 show, we observe different scaVering regimes, starFng from Rayleigh (for 

small values 𝜒 < 1), Mie-like, and finally, geometric scaVering (for larger values of 𝜒). The 

scaVering diagrams calculated in the frame of Mie approximaFon for isotropic media are also 

presented in SM3. It is clear that the transiFon between different scaVering regimes is smooth, 

and all respecFve regions will be discussed below in detail. It should be noted that there is a 

correlaFon between the results of Mie modeling and the results of MD simulaFons. Nevertheless, 

a substanFal difference is observed due to the anisotropic media and near-field MD observaFon. 

Figures 2-3 elucidate how the scaVering diagram undergoes further modificaFons, 

influenced by phonon lifeFmes in various direcFons. Notably, along direcFons (1, 0, 0) (parallel to 

the x, y, and z axes) and (1, 1, 0) (parallel to diagonals), the velocity field experiences less 

pronounced decay with distance from the pore compared to other direcFons due to the much 

higher lifeFme of phonons propagaFng in these direcFons.  

As one can see, for the small values of the size parameter, when the scaVering is defined 

by Rayleigh and Mie regimes with wide angular dependence of the scaVering field, the direcFon 

(1, 1, 0) is more pronounced. Furthermore, the wave behavior of the scaVering fields is intriguing. 

A beam of the scaVered field tends to expand following the Huygens–Fresnel principle, the 

resulFng front is non-spherical due to the media's anisotropy. This phenomenon becomes 

apparent when the beam is narrow; as seen in Fig. 2c, disFncFve fishbone-like paVerns emerge. 

It should be note that with increasing of 𝜒 we observe the transiFon from the Mie to the 

geometric scaVering regime, and the respecFve paVerns of the scaVering field define by the 

reflecFon and shadowing of the scaVering field. This leads to vanishing of the scaVering in (1, 1, 

0) direcFon. 

It is crucial to acknowledge the occurrence of both the 𝑣. and 𝑣/ components, which 

propagate radially, indicaFng a conversion from a purely longitudinal excitaFon field to a 

combinaFon of longitudinal and transverse scaVered fields. Our simulaFons revealed 
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approximately equal energy distribuFon among these three components. Nonetheless, this is just 

a rough esFmaFon, and further invesFgaFon is needed to examine this observaFon precisely. 

[36]  
Fig. 4. Phase funcFon (𝑓(𝜃)) calculated of the field scaVered from the pore’s edge with a radius 

equals to 1𝑎  
 

The insights gained from the spaFal distribuFon of the scaVered field, as depicted in 

Figures 2-3 and SM2, can be readily extrapolated to other materials using the approach outlined 

in the paper. This paves the way for developing efficient systems to manage phonon transport. 

These systems could include technologies for scaVering phonons with specific wavelengths, 

phonon membranes, and other innovaFve soluFons geared towards precisely controlling and 

manipulaFng phonon scaVering behavior. 

For further analysis, we calculated, similar to classical scaVering theory, the scaVering 

diagrams with phase funcFon averaged over the polar angle with the following equaFon: 

𝑓(𝜃) =
1
22𝜋

〈=𝑣$1 + 𝑣.1 + 𝑣/1>𝑟1〉.,$345,..15, , (7) 

where 〈… 〉.,$345,..15, is the average over 𝜙 in frames from 0 to 2𝜋 and 𝑟 from 15𝑎 to 25𝑎. The 

factor 1/2 arises from the fact that in Eq. (6), the amplitude of the excited field is used instead of 

the value averaged over a period. In SM2, the scaVering diagram for the specified case is 
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calculated using this approach, and Mie theory is presented for comparison. Mie diagrams were 

calculated using the “miepython” package [36]. 

Observing the figure reveals a disFncFve paVern: for low values of χ, the scaVering field 

adopts a Rayleigh-like shape, featuring comparable back and forward scaVering components. As 

𝜒 increases, the leaf structures mimic Mie scaVering, influenced by crystallographic orientaFons, 

which reduces the proporFon of backward scaVering. UlFmately, a predominant forward 

scaVering emerges, characterisFc of the geometric scaVering regime. 

For the generalizaFon of the data computed for all frequencies and pores’ radii, the 

scaVering efficiency [37] funcFon was calculated as follows: 

𝑄+(, =
1
𝜋𝑅1R𝑓(𝜃) sin(𝜃)𝑑𝜃

7

!

. (7) 

 AddiFonally, forward scaVering efficiency was calculated as follows: 

𝑄-#$8,$) =
1
𝜋𝑅1R𝑓(𝜃) sin(𝜃)𝑑𝜃

7
1

!

. (8) 

 The resulFng dependence of the total scaVering efficiency and forward scaVering 

efficiency are presented in Fig. 5 with respect to the size parameter. This dependencies exhibit a 

familiar paVern akin to those typically encountered within the framework of the Mie approach 

[37]. As one can see from the Fig.5, we can decompose three scaVering regimes. For the values 

of the 𝜒 < 1, we observe that the scaVering field increase following ~𝑘9 trend predicted by the 

Ziman scaVering theory. Conversely, for χ > 10, the scaVering efficiency tends towards a constant 

value close to 2, as predicted by classical wave scaVering theory [37], corresponding to geometric 

scaVering regime. In the transiFonal phase between Rayleigh and geometric scaVering, 

fluctuaFons manifest due to the interplay between Mie resonances and the discrete direcFon of 

phonon propagaFon. AddiFonally, the comparison between total and forward scaVering 

efficiency validates our observaFon regarding the increase in the proporFon of forward scaVering 

with the size parameter. 
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Fig. 5. Dependence of the total scaVering efficiency and forward scaVering efficiency with the 

size parameter 
 

The results presented in this paper outline a method for evaluaFng the spaFal distribuFon 

of the magnitude of the radial, azimuthal and polar components of the velocity for scaVered 

phonons at the edge of a spherical pore. Based on the calculaFons of the spaFal distribuFon of 

velocity field, we calculated scaVering efficiency as a funcFon of the size parameter (χ = 2π𝑅 λ⁄ ), 

commonly used in scaVering theory. We demonstrate, that the size parameter plays a determining 

role in defining the scaVering regime. However, crystallographic direcFons are equally essenFal in 

shaping the scaVering diagrams. This observaFon holds significance for understanding the impact 

of phonon coherence on thermal transport in nanostructured materials. 

The methodology outlined for calculaFng scaVering characterisFcs holds the promise of 

predicFng material structures, such as pore/inclusion morphology, for managing phonon 

transport, including guiding or scaVering phonons with specific wavelengths. Consequently, this 

study lays the groundwork for potenFal advancements in the thermal engineering of 

nanostructured materials. Such insights could prove instrumental in developing strategies for 

designing nanoscale devices with enhanced efficiency. 
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Supplementary materials 

S1 shows the molecular dynamics snapshots of the posiFons of the parFcles, which are colored 

for the x-component of per-atom velociFes. An average velocity profile of the x-component of 

velocity and its fifng by the sinus exists. Also, it proposes the example of the x-component of the 

displacement spaFal distribuFon. The table in the S1 shows the obtained phonons’ wavelength 

and size parameter for each frequency and pore size. S2 presents the (y, z) and (x, y) slices of the 

spaFal distribuFon of the radial component of the normalized velocity scaVered at a pore with 

radii equal to 1a, 2a, 5a, and 10a and for different modulaFon frequencies of the force (1 THz, 2 

THz, 2.5 THz, 4 THz, 5 THz and 10 THz). Also, the scaVering diagram calculated with Eq. (7) and 

“miepython” [36] for different values of size parameter χ are included.  
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Fig. S1.1. The molecular dynamics snapshots showing the distribuFon of vx in the system at the 

end of the simulaFons for the modulaFon frequency equal to 1 THz 
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Fig. S1.2. Velocity distribuFon for different modulaFon frequencies of the force: a) ν = 1 THz; b) ν 

= 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz; d) R = 10a. Black line molecular 
dynamics data, red line – sinus fifng 

 
 

Fig. S1.3. Displicament distribuFon for different modulaFon frequencies of the force: a) ν = 1 
THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz; d) R = 10a. Black line 

molecular dynamics data, red line – sinus fifng 
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Table S1.1. Wavelegths of the excited waves under considered freaquancies and the size 
parameter (𝜒 = 17:

;
) for different pore radii 

 

ν (THz) λ (Å) 
χ  

R = 1a R = 2a R = 5a R = 10a 
0.5 156.615 0.22 0.44 1.09 2.18 
1 78.26 0.44 0.87 2.18 4.36 
2 39.03 0.87 1.75 4.37 8.74 

2.5 31.17 1.09 2.19 5.47 10.95 
4 19.31 1.77 3.53 8.83 17.66 
5 15.33 2.23 4.45 11.13 22.26 

10 7.09 4.81 9.62 24.06 48.12 
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Supplementary materials 2 

 

 
Fig. S2.1. The (x, y) slice of the spaFal distribuFon of the radial component of the displacement 

scaVered at a pore with a radius equal to 1a for different modulaFon frequencies of the force: a) 
ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. k-vector of the 

incident wave is direct along the x-axis 
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Fig. S2.2. The (y, z) slice of the spaFal distribuFon of the radial component of the normalized 

velocity scaVered at a pore with radius equal to 1a for different modulaFon frequencies of the 
force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. 

k-vector of the incident wave is direct along the x-axis 
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Fig. S2.3. The (x, y) slice of the spaFal distribuFon of the radial component of the normalized 

velocity scaVered at a pore with radius equal to 1a for different modulaFon frequencies of the 
force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. k-vector of 

the incident wave is direct along the x-axis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 
 

 
Fig. S2.4. The (x, y) slice of the spaFal distribuFon of the polar component of the normalized 

velocity scaVered at a pore with radius equal to 1a for different modulaFon frequencies of the 
force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. k-vector of 

the incident wave is direct along the x-axis 
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Fig. S2.5. The (x, y) slice of the spaFal distribuFon of the azimuthal angle component of the 

normalized velocity scaVered at a pore with radius equal to 1a for different modulaFon 
frequencies of the force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 

10 THz. k-vector of the incident wave is direct along the x-axis 
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Fig. S2.6. The scaVering diagram calculated with phase funcFon (R = 1a) for the respecFve 

values of size parameter χ: a) χ = 0.44; b) χ = 0.87; c) χ = 1.09; d) χ = 1.77; e) χ = 2.23; f) χ = 4.81. 
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Fig. S2.7. The scaVering diagram calculated with miepython for the respecFve values of size 

parameter χ: a) χ = 0.44; b) χ = 0.87; c) χ = 1.09; d) χ = 1.77; e) χ = 2.23; f) χ = 4.81. 
For definitenes we took complex index of refracFon equal to m = 10 in the Mie model 
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Fig. S2.8. The (x, y) slice of the spaFal distribuFon of the radial component of the normalized 

velocity scaVered at a pore with radius equal to 2a for different modulaFon frequencies of the 
force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. k-vector of 

the incident wave is direct along the x-axis 
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Fig. S2.9. The (x, y) slice of the spaFal distribuFon of the polar component of the normalized 

velocity scaVered at a pore with radius equal to 2a for different modulaFon frequencies of the 
force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. k-vector of 

the incident wave is direct along the x-axis 
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Fig. S2.10. The (x, y) slice of the spaFal distribuFon of the azimuthal component of the 
normalized velocity scaVered at a pore with radius equal to 2a for different modulaFon 

frequencies of the force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 
10 THz. k-vector of the incident wave is direct along the x-axis 
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Fig. S2.11. The scaVering diagram calculated with phase funcFon (R = 2a) for the respecFve 

values of size parameter χ: a) χ = 0.87; b) χ = 1.75; c) χ = 2.19; d) χ = 3.53; e) χ = 4.45; f) χ = 9.62. 
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Fig. S2.12. The scaVering diagram calculated with miepython for the respecFve values of size 

parameter χ: a) χ = 0.87; b) χ = 1.75; c) χ = 2.19; d) χ = 3.53; e) χ = 4.45; f) χ = 9.62. 
For definitenes we took complex index of refracFon equal to m = 10 in the Mie model 
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Fig. S2.13. The (x, y) slice of the spaFal distribuFon of the radial component of the normalized 
velocity scaVered at a pore with radius equal to 5a for different modulaFon frequencies of the 

force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. 
k-vector of the incident wave is direct along the x-axis 
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Fig. S2.14. The (x, y) slice of the spaFal distribuFon of the polar component of the normalized 
velocity scaVered at a pore with radius equal to 5a for different modulaFon frequencies of the 

force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. k-vector of 
the incident wave is direct along the x-axis 

 
 



35 
 

 
Fig. S2.15. The (x, y) slice of the spaFal distribuFon of the azimuthal component of the 
normalized velocity scaVered at a pore with radius equal to 5a for different modulaFon 

frequencies of the force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 
10 THz. k-vector of the incident wave is direct along the x-axis 
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Fig. S2.16. The scaVering diagram calculated with phase funcFon (R = 5a) for the respecFve 
values of size parameter χ: a) χ = 2.18; b) χ = 4.37; c) χ = 5.47; d) χ = 8.83; e) χ = 11.13; f) χ = 

24.06. 
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Fig. S2.17. The scaVering diagram calculated with miepython for the respecFve values of size 

parameter χ: a) χ = 2.18; b) χ = 4.37; c) χ = 5.47; d) χ = 8.83; e) χ = 11.13; f) χ = 24.06. 
For definitenes we took complex index of refracFon equal to m = 10 in the Mie model 
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Fig. S2.18. The (x, y) slice of the spaFal distribuFon of the radial component of the normalized 

velocity scaVered at a pore with radius equal to 10a for different modulaFon frequencies of the 
force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. 

k-vector of the incident wave is direct along the x-axis 
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Fig. S2.19. The (x, y) slice of the spaFal distribuFon of the polar component of the normalized 

velocity scaVered at a pore with radius equal to 10a for different modulaFon frequencies of the 
force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 10 THz. k-vector of 

the incident wave is direct along the x-axis 
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Fig. S2.20. The (x, y) slice of the spaFal distribuFon of the azimuthal component of the 

normalized velocity scaVered at a pore with radius equal to 10a for different modulaFon 
frequencies of the force: a) ν = 1 THz; b) ν = 2 THz; c) ν = 2.5 THz; d) ν = 4 THz; e) ν = 5 THz f) ν = 

10 THz. k-vector of the incident wave is direct along the x-axis 
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Fig. S2.16. The scaVering diagram calculated with phase funcFon (R = 10a) for the respecFve 
values of size parameter χ: a) χ = 4.36; b) χ = 8.74; c) χ = 10.95; d) χ = 17.66; e) χ = 22.26; f) χ = 

48.11. For f) case we observed the wide angular forward scaVered galo, which arises due to the 
finit radius of data avareging (in Mie theory it should be much bigger than the pore radius). 

Since the calulaFon difficalFes we could not calculate ath higher distance, but we observed the 
clear trend of its narrowing with distance  
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Fig. S2.17. The scaVering diagram calculated with miepython for the respecFve values of size 

parameter χ: a) χ = 4.36; b) χ = 8.74; c) χ = 10.95; d) χ = 17.66; e) χ = 22.26; f) χ = 48.11. 
For definitenes we took complex index of refracFon equal to m = 10 in the Mie model 

 
 
 
 
 
 
 
 
 
 

 


