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Abstract
Motivation: Simulating multiple sequence alignments (MSAs) using probabilistic models of sequence evolution plays an 
important role in the evaluation of phylogenetic inference tools and is crucial to the development of novel learning-based 
approaches for phylogenetic reconstruction, for instance, neural networks. These models and the resulting simulated data 
need to be as realistic as possible to be indicative of the performance of the developed tools on empirical data and to ensure 
that neural networks trained on simulations perform well on empirical data. Over the years, numerous models of evolution 
have been published with the goal to represent as faithfully as possible the sequence evolution process and thus simulate 
empirical-like data. In this study, we simulated DNA and protein MSAs under increasingly complex models of evolution with 
and without insertion/deletion (indel) events using a state-of-the-art sequence simulator. We assessed their realism by 
quantifying how accurately supervised learning methods are able to predict whether a given MSA is simulated or empirical.
Results: Our results show that we can distinguish between empirical and simulated MSAs with high accuracy using two 
distinct and independently developed classification approaches across all tested models of sequence evolution. Our findings 
suggest that the current state-of-the-art models fail to accurately replicate several aspects of empirical MSAs, including site- 
wise rates as well as amino acid and nucleotide composition.
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Introduction
Reconstructing the evolutionary history of species or genes 
by inferring phylogenetic trees is a ubiquitous task in com
parative genomics. Typically, phylogenetic inference is 
based on an MSA that contains aligned sequences of the 
species under study. A plethora of inference algorithms, 
tools, and models have been developed to infer phylogen
etic trees based on the MSA, for example RAxML-NG 
(Kozlov et al. 2019), IQ-Tree (Minh et al. 2020), BEAST 
(Bouckaert et al. 2019), or RevBayes (Höhna et al. 2016). 
When developing novel methods and validating their per
formance, comparing them to existing state-of-the-art 
methods on both, empirical, and simulated data is manda
tory. Simulated data are particularly useful for conducting 
inference accuracy and implementation verification assess
ments, when a known, ground truth phylogeny is needed. 
Both simulation tools (Cartwright 2005; Fletcher and Yang 

2009; Ly-Trong et al. 2022) and state-of-the-art inference 
methods are based on probabilistic models of sequence 
evolution. Most of the latter exploit models through like
lihood functions, by searching for trees that maximize this 
likelihood (Kozlov et al. 2019; Minh et al. 2020) or by sam
pling from posterior distributions via Metropolis-Coupled 
Markov Chains (MCMC), which also require likelihood 
computations (Höhna et al. 2016; Bouckaert et al. 2019). 
Alternatively, researchers have started to explore 
likelihood-free approaches (for examples outside our field, 
see Lueckmann et al. 2021). These approaches sample the 
posterior density instead of evaluating it, and thereby 
avoid computing the likelihood. The resulting simulated 
samples are used to build an estimate of the posterior dis
tribution. This so-called simulation-based inference para
digm was pioneered in population genetics under the 
Approximate Bayesian Inference (ABC) framework 
(Csilléry et al. 2010), and extended over the past decade 
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to neural density estimation techniques (Papamakarios 
and Murray 2016), where a neural network is trained to 
output the correct distribution of parameters for a given 
input observation. In the context of phylogenetic infer
ence, neural density estimation has been restricted to 
the reconstruction of a single tree as opposed to a full dis
tribution. For example, Suvorov et al. (2019) use convolu
tional neural networks (CNNs) to reconstruct phylogenies 
from alignments with four sequences, and Nesterenko 
et al. (2022) use a transformer-based network architecture 
to predict evolutionary distances between all pairs of se
quences in an alignment.

In all these contexts—evaluation, likelihood-based, or 
-free inference—it is essential that the probabilistic model 
of sequence evolution is consistent with empirical data. 
For evaluation, performance on simulated data is indica
tive of performance on empirical data, only if the two 
are sufficiently similar. For inference, a misspecified model 
can lead to inaccurate and misleading results. For training 
learning-based methods, it is important that the training 
data and empirical data are sufficiently similar to circum
vent “out-of-distribution” problems (Clemmensen and 
Kjærsgaard 2022). Such problems occur when the training 
data do not accurately represent the empirical data or 
when it misses subgroups of the empirical data: the trained 
method has never “seen” data similar to the empirical data 
and can thus behave poorly.

Authors using simulated data in their publications typ
ically set simulation parameters according to attributes 
(e.g. MSA lengths or proportions of gaps) of empirical ref
erence MSAs (see e.g. Price et al. 2009). Some also attempt 
to extract or sample simulation parameters from max
imum likelihood (ML) estimates in large scale empirical da
tabases, such as TreeBASE (Piel et al. 2009). The intention is 
that thereby, simulated data will more closely resemble 
empirical data (Abadi et al. 2020; Hoehler et al. 2022). 
Despite this effort, there still exist performance and/or 
program behavior differences on simulated versus empiric
al data. For example, Guindon et al. (2010) conclude that 
comparing methods using simulated data is not sufficient, 
as “the likelihood landscape tends to be smoother than 
with real data”, and Hoehler et al. (2022) noticed differ
ences between empirical and simulated data when com
paring ML phylogenetic inference methods. They 
conclude that there exist not yet understood differences 
between simulated and empirical data.

Here, we introduce a metric to quantify how realistic a 
substitution model is, by simulating data using the respect
ive model and training a classifier to discriminate between 
simulated and empirical data. We expect realistic models 
to produce data that are hard to discriminate and induce 
low classifier accuracy. We leverage recent data simulation 
tools (Cartwright 2005; Fletcher and Yang 2009; Ly-Trong 
et al. 2022) that are feature-rich and support a wide range 
of evolutionary models and simulation parameters. We 
show that we can distinguish simulated from empirical 
data with up to 99% classification accuracy, depending 
on the used simulation model. We present two different 

and independently developed machine learning ap
proaches exploiting distinct MSA characteristics for this 
classification task: One, using bradient boosted trees 
(GBT), and another approach based on a CNN. We show 
that prediction accuracy decreases, the more complex 
the model of evolution used in simulations becomes. 
Yet, we also observe exceptions to this general trend. For 
the most complex models in our experimental setup, the 
prediction accuracy is still very high, with the CNN-based 
classifier achieving prediction accuracies ≥ 0.93 on all 
tested models. This indicates that simulated alignments 
are easy to distinguish from empirical alignments, as they 
do not appear to reproduce some characteristic features 
of empirical MSAs. We further show that simulating indels 
remains a challenging task, as including indels results in 
higher classification accuracies with the CNN classifiers 
compared to simulations without indels. Further, based 
on the feature importances of the GBT classifiers, we 
show that simulated data have more evenly distributed 
site substitution patterns than empirical data.

Methods
The goal of our study was to be able to distinguish be
tween empirical and simulated DNA and protein data 
with high accuracy under increasingly complex models 
of sequence evolution. Figure 1 depicts our experimental 
setup for one exemplary set of empirical MSAs (empirical 
data collection) and one exemplary model of evolution. 
Using the empirical data collection and the given model 
of evolution, we simulated a new set of MSAs (simulated 
data collection) using the AliSim sequence simulator 
(Ly-Trong et al. 2022). Based on the empirical and simu
lated data collections, we completely independently 
trained two distinct classifiers for each simulated data col
lection: a GBT and a CNN.

In the following sections, we describe our experimental 
setup, the sequence simulation process, and both classifi
cation methods in more detail.

Alignment Simulations
For our study, we separately considered DNA and protein 
data. We simulated 15 MSA sets, seven sets containing 
DNA MSAs and eight containing protein MSAs, respective
ly. In the following, we refer to an MSA set as a data collec
tion. To simulate the MSAs for each data collection, as well 
as for data discrimination, we used two empirical data col
lections as reference, one per data type. The empirical 
DNA data collection contains MSAs obtained from 
TreeBASE (Piel et al. 2009). The empirical protein data col
lection consists of MSAs obtained from the HOGENOM 
database (Penel et al. 2009). We removed outliers based 
on MSA length (i.e. number of sites), number of sequences, 
as well as MSAs with less than four sequences to ensure a 
reliable and efficient analysis. Very long sequences would 
inflate the memory footprint of the CNN, while very short 
MSAs are uncommon and are more difficult to accurately 
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classify as empirical or simulated. Removing outliers al
lowed us to deploy a balanced and representative data col
lection that facilitates robust and unbiased predictions.

Moreover, empirical MSAs may contain sites with am
biguous or exceptional amino acid (AA)/DNA codes, 
that are “B,” “Z,” “J,” “U,” “O”, and “X” for protein MSAs, 
and “N,” “D,” “H,” “V,” “B,” “R,” “Y,” “K,” “M,” “S,” “W”, 

and “X” for DNA MSAs. As a further preprocessing step, 
yet exclusively for the CNN classifier, we removed all 
MSA sites containing at least one ambiguous letter, as 
they would bias the prediction. For protein data this con
cerned 912 out of 6,969 MSAs, and we removed 1.34% of 
all sites within these MSAs. Furthermore, 13.24% of sites 
in 6,117 MSAs with DNA sequences were removed.

Fig. 1. Schematic overview of our experimental setup. Based on a set of empirical MSAs (empirical data collection), we determined parameters 
for sequence simulation and simulated new MSAs (simulated data collection) under a specific model of evolution using AliSim. Using the em
pirical and simulated data collections, we trained two distinct classifiers: a GBT and a CNN. The goal of both classifiers is to distinguish empirical 
from simulated MSAs. For training and evaluating our classifiers, we used a 10-fold cross-validation procedure (not depicted for simplicity). In 
each fold, 90% of the data were used for training and 10% were used for performance evaluation. We evaluated the overall performance of the 
classifiers via BACC.

Simulations of Sequence Evolution · https://doi.org/10.1093/molbev/msad277 MBE

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/1/m
sad277/7485625 by N

SS user on 21 M
ay 2024



For each data type, we generated simulated data collec
tions based on the corresponding empirical data collec
tion, resulting in identical numbers of simulated and 
empirical alignments. We simulated data using the 
AliSim sequence simulator (Ly-Trong et al. 2022) under 
several evolutionary models ranging from easy to complex, 
in terms of number of free parameters and computational 
methods used to derive respective AA substitution mod
els. The goal of this setup was to progressively increase 
simulation realism. First, we simulated five DNA and seven 
protein data collections without gaps, which allowed us to 
characterize the realism of substitution models per se. To 
this end, we removed all sites containing gaps (“-”) from all 
empirical MSAs. The resulting empirical data collections 
contain 7,637 DNA MSAs and 6,971 protein MSAs, re
spectively. We henceforth refer to these data collections 
as gapless data collections. Second, we simulated two 
DNA and one protein data collection with indel events, 
based on the empirical MSAs containing gaps (9,460 
DNA MSAs and 6,971 protein MSAs).

Note that we chose TreeBASE as the source for empir
ical DNA alignments, as it is a database of published align
ments and thus best represents data that are analyzed in 
real-world applications of phylogenetics. TreeBASE con
tains heterogeneous data without a specific focus on the 
type of underlying genes. See supplementary Section 6, 
Supplementary Material online for further information 
on the TreeBASE data.

In the following, we describe the simulation procedures 
for both data types, as well as our approach to simulate in
del events, in more detail. Supplementary Figures S1 and 
S2, Supplementary Material online provide a detailed sche
matic overview of all simulation procedures.

DNA Simulation
We simulated seven DNA data collections in total (five 
gapless and two with simulated indel events), with each 
data collection simulated separately under a different evo
lutionary model with increasing model complexity. We 
used the following models of evolution. As the simplest 
model, we used the Jukes–Cantor (JC) model (equal substi
tution rates and equal base frequencies) (Jukes and Cantor 
1969). We also used the HKY model (four degrees of free
dom) (Hasegawa et al. 1985), and the General Time 
Reversible (GTR) model (eight degrees of freedom) 
(Tavaré 1986). To account for among-site rate heterogen
eity, we additionally simulated under GTR in conjunction 
with the Γ model (Yang 1994) using four discrete rates 
(GTR+G). The most complex model of evolution we 
used for simulation was the GTR+G model, with an add
itional free parameter to accommodate the proportion 
of invariant sites (GTR+G+I) (Shoemaker and Fitch 1989).

We selected 9,460 empirical MSAs (Set1) from 
TreeBASE (Piel et al. 2009; Vos et al. 2012) as basis for 
our simulations. We removed all sites containing gaps 
(“-”) or fully undetermined characters (“N”) from the 
MSAs of Set1. Thereby, we obtained 7,637 non-empty 
MSAs (i.e. MSAs that still contained at least one site), 

which we defined as Set2. This lead to an MSA length re
duction of around 55% compared to Set1. We based our 
five simulated DNA data collections without indel events 
on Set2, and the two data collections with indels on Set1.

AliSim simulates sequences along a given phylogenetic 
tree. We avoided the problem of simulating realistic phylo
genetic trees for this purpose by initially estimating a 
best-known ML tree using RAxML-NG (Kozlov et al. 2019) 
(default parameters), for every MSA of Set2 under each of 
the five evolutionary models (JC, HKY, GTR, GTR+G, 
GTR+G+I). We then used the inferred phylogeny and re
spective estimated model parameters to simulate MSAs 
using AliSim (Ly-Trong et al. 2022) based on every MSA of 
Set2, without specifying an indel model. In the following 
analyses, we refer to the resulting five gapless data collec
tions as JC, HKY, GTR, GTR+G, and GTR+G+I according 
to the model of evolution used. In Simulating Indels section 
below, we describe the simulation of the two additional 
DNA data collections with indel events.

Protein Simulation
We simulated seven protein data collections limited to 
substitution events only, and one additional data collec
tion with indels. The most rudimentary evolutionary 
model we used is the Poisson model, with equal exchange
abilities and equal stationary frequencies. We further used 
two empirical substitution models: the WAG (Whelan and 
Goldman 2001) and the LG (Le and Gascuel 2008) model. 
The LG model is expected to produce more realistic simu
lations than the WAG model as the former was derived 
from a larger and more diverse data collection, using 
more refined inference techniques than the latter. These 
substitution models use a single set of stationary frequen
cies (i.e. one AA profile) to simulate all sites in an MSA. We 
also used mixture models that incorporate heterogeneity 
among sites by employing multiple profiles. In such mod
els, a profile is drawn from a set of profiles to simulate a 
single site.

We used the following two mixture models: the C60 
model with 60 profiles (LG+C60) (Si Quang et al. 2008) 
and the more recent UDM model with 256 profiles (LG 
+S256) (Schrempf et al. 2020). The advantage of the latter 
model is that each profile is assigned a probability (i.e. 
weight) of generating a site, while under the C60 model 
profiles are drawn with equal probabilities. In addition, 
the UDM model is based on a subset of MSAs from the 
HOGENOM database, and should therefore generate 
alignments that are similar to empirical HOGENOM 
MSAs. To increase model complexity, we performed fur
ther simulations accounting for among site heterogeneity 
using the Γ model (Yang 1994), as for DNA simulations. 
We simulated two data collections, one using four discrete 
Γ rate categories (LG+S256+G4) and the second applying a 
continuous Γ distribution (LG+S256+GC).

We set the α shape parameters of the Γ distributions 
based on the values inferred during tree reconstruc
tion when building the HOGENOM database (see 
supplementary Section 2.1.1, Supplementary Material
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online). In the following, we will refer to these parameters 
as empirical α parameters. For the simulations, we drew α 
parameters from the probability density function (PDF) es
timate of the empirical α parameters (see supplementary 
Section 2.1.2, Supplementary Material online). We com
pared the empirical cumulative distribution function 
(ECDF) of the empirical α parameters with the ECDF of 
7,000 samples from the PDF estimation to confirm that 
our distribution of simulated α parameters matches the 
empirical distribution well (see supplementary Fig. S3, 
Supplementary Material online). We sampled the MSA 
lengths we used for MSA simulations from the approxi
mated empirical distribution of HOGENOM MSA lengths, 
using the same approach as for the α parameters outlined 
above. Respective PDF and ECDF functions can also be 
found in the supplementary Fig. S3, Supplementary 
Material online. In addition, we compared the AA diversity 
of empirical protein data and simulations under the LG 
and LG+S256 models (see supplementary Fig. S6, 
Supplementary Material online). We simulated all seven 
data collections along phylogenetic trees that were recon
structed from empirical HOGENOM MSAs where sites 
containing indels were removed. We performed the infer
ences using RAxML-NG (see DNA Simulation section).

In analogy to the simulated DNA data collections, we re
fer to the simulated protein data collections according to 
the model of evolution used. The gapless protein data col
lections are Poisson, WAG, LG, LG+C60, LG+S256, LG 
+S256+G4, and LG+S256+GC. In the following section, 
we describe the simulation procedure for the data collec
tion with indels.

Simulating Indels
In addition to the gapless data collections, we simulated 
two DNA, and one protein data collections with indels. 
For both data types, we used the most complex models 
of evolution as a basis (GTR+G+I for DNA, LG+S256+GC 
for protein).

To generate the first DNA data collection with indels, 
we ran tree searches using RAxML-NG under the GTR+G 
+I model for each MSA of DNA Set1. We then simulated 
MSAs with indels using two distinct procedures to gener
ate two distinct data collections. For the first data collec
tion, we simulated the MSAs in the same way as for the 
gapless collections. Then, we superimposed the gap pat
tern of the MSAs used as the basis of the simulation 
onto the simulated MSAs. We refer to this procedure as 
the mimick procedure and denote the resulting data col
lection as GTR+G+I+mimick.

For the second data collection, as well as the protein 
data collection with indels, we simulated the MSAs using 
not only the inferred trees and estimated evolutionary 
model parameters, but also specifying indel parameters. 
In the following, we describe the procedure to infer and 
validate these parameters. We performed this procedure 
for both DNA and protein data collections separately. 
We refer to this procedure as the sparta procedure. We 
first used the SpartaABC tool (Loewenthal et al. 2021) to 

obtain indel-specific parameters from a subset of empirical 
MSAs. Here, we employed the rich indel model (RIM), 
which differentiates between insertion and deletion events 
using five free parameters. The inferred parameters are: 
Insertion and deletion rate (I_R, D_R), root length (RL), 
and the parameter a that controls the Zipfian distribution 
of insertion and deletion lengths (A_I, A_D). We will 
henceforth refer to this set of parameters as empirical indel 
parameters.

To simulate MSAs, we drew indel parameters from the 
joint parameter distribution of empirical indel parameters. 
To approximate the PDF, we applied Gaussian kernels to 
the five principal components of the indel parameters. 
This choice was based on our observation that a more ac
curate match is achieved between the empirical para
meters’ ECDF and the resulting parameters’ ECDF when 
using the principal components. For the Gaussian kernels, 
we determined the bandwidth using Scott’s rule of thumb 
(Scott 2015). Moreover, we employed the kernel-density 
estimation implementation by Virtanen et al. (2020), al
though it tends to overestimate the distribution’s actual 
edges. To mitigate this issue, we resampled values if they 
fell outside the bounds of the parameter prior bounds cho
sen by Loewenthal et al. (2021). To validate our approach, 
we compared the ECDF of the empirical parameter values 
with the ECDF of parameters sampled from the empirical 
PDF for each indel parameter type. Plots of the ECDFs and 
density functions are provided in the supplementary Figs. 
S4 and S7, Supplementary Material online. Moreover, we 
compared the density functions of empirical and simu
lated MSA lengths as a sanity check (see supplementary 
Figs. S5 and S8, Supplementary Material online). We de
note the resulting DNA data collection as GTR+G+I+spar
ta, and the resulting protein data collection as LG+S256 
+GC+sparta.

Classification Methods
To distinguish simulated and empirical MSAs, we devel
oped two distinct approaches. One approach is a standard 
machine learning algorithm based on handcrafted features 
and GBT. Using GBTs allows us to attain insights on feature 
importance, explain the classification results, and deter
mine short-comings of MSA simulations. Our second ap
proach uses CNN. In contrast to GBT, CNNs only require 
minimal data processing as they are able to automatically 
learn relevant features through training. However, to inter
pret these features, additional analysis is necessary. In the 
following, we introduce both machine learning approaches 
to classification, and describe our training setups.

Training Classifiers
In this section, we briefly describe how we trained our clas
sifiers and introduce useful terms for readers that are un
familiar with machine learning. Classifiers are functions 
that, in our case, take as input a MSA or MSA features 
and output the label “simulated” or “empirical”. These 
functions depend on numerous parameters, whose values 
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must be set during a so-called learning phase. This learning 
phase uses MSAs annotated with their ground truth labels. 
The function is applied to each alignment, and its pre
dicted label is compared to the true label, thanks to a 
cost function that is also often called loss function. 
Parameter values are then refined based on the computed 
cost. By iteratively going through each alignment, the par
ameter values are tuned, and the accuracy of the classifier 
typically improves. When all the training alignments have 
been examined by the function once, we say that an epoch 
has passed. The training is stopped after a number of 
epochs, typically because the number of iterations has 
been limited a priori (e.g. for the GBT classifier), or because 
classifier accuracy does not improve further (e.g. for the 
CNN classifier). To assess the performance of a classifier 
after the training, it is important to use data that has 
not been part of the training data set. For this reason, 
we split our alignment collection into two categories: 
most of the alignments were used for training (training 
data, 90% of all MSAs), and a subset was used for evaluat
ing the performance of the classifier (test data, 10% of all 
MSAs). We repeated the training and evaluation 10 times, 
on different random splits of the data (i.e. 10-fold cross- 
validation), and averaged over the respective 10 perform
ance/accuracy metrics. We used the balanced accuracy 
metric (BACC) (Brodersen et al. 2010) to assess perform
ance, as this metric allows for varying proportions of simu
lated/empirical MSAs in the data collection and better 
reflects classification accuracy for imbalanced datasets. 
The balanced accuracy is the average of the sensitivity 
(here, number of alignments labeled empirical

total number of empirical alignments ) and specificity 

(here, number of alignments labeled simulated
total number of simulated alignments ). The best BACC value 

is 1, and the worst value is 0.

Gradient Boosted Trees
GBT is an ensemble machine learning technique that com
bines multiple decision trees to obtain an accurate predic
tion model (Friedman 2001). Training a GBT classifier 
consists of M sequential stages, with each stage contribut
ing an additional decision tree that improves the estimator 
of the previous stage. For our experiments, we used the 
GBT classifier as implemented in the LightGBM framework 
(Ke et al. 2017).

Prediction Features. To classify MSAs into simulated or 
empirical ones, we computed 23 features for each MSA. 
Four of these features are attributes of the MSA: the 
sites-over-taxa ratio, the patterns-over-taxa ratio, the 
patterns-over-sites ratio, and the proportion of invariant 
sites (% invariant). For data collections simulating indel 
events, we also used the proportion of gaps as feature 
(% gaps). Further, we quantified the signal in the MSA 
using the difficulty of the respective phylogenetic analysis 
as predicted by Haag et al. (2022) (difficulty), as well as the 
Shannon entropy (Shannon 1948) of the MSA (Entropy), a 
multinomial test statistic of the MSA (Bollback multinomial; 
Bollback 2002), and an entropy-like metric based on the 

number and frequency of patterns in the MSA (Pattern 
entropy). For further details on the computation of these 
metrics, we refer the interested reader to supplementary 
Section 4.1, Supplementary Material online. In order to 
assess downstream effects on tree inferences using 
simulated and empirical data, we inferred 100 trees based 
on the fast-to-compute maximum parsimony criterion 
(Farris 1970; Fitch 1971) and a single ML tree using 
RAxML-NG (Kozlov et al. 2019). We added two features 
based on the inferred 100 maximum parsimony trees: the 
average pairwise topological distance using the Robinson– 
Foulds distance metric (parsimony RF-Distance) (Robinson 
and Foulds 1981), as well as the proportion of unique 
topologies (% parsimony unique). We further refer to 
these features as difficulty features. Based on the ML 
tree inferred by RAxML-NG, we computed a set of 
branch length features, namely the minimum, maximum, 
average, standard deviation, median, and sum of all branch 
lengths in the ML tree (brlenmin, brlenmax, brlenavg, brlenstd, 
brlenmed, brlensum).
We used the next six features to highlight one of the recur
rent problems of simulated sequence generators: a com
mon simplification used in generators is the assumption 
that substitutions occur at uniformly distributed random 
locations in the sequence, which appears to not be the 
case in real-world genetic data (Bricout et al. 2022). 
Thus, we expected empirical MSAs to be less uniform 
than simulated MSAs, and we henceforth attempted to 
confirm this hypothesis.

To quantify substitution frequency distributions along an 
MSA, we first inferred a parsimony tree using RAxML-NG. 
Then, based on the parsimony criterion, we calculated the 
number of substitutions for every site, resulting in a vector 
m. Given the vectors m for empirical and simulated MSAs, 
we can anecdotally observe that the locations of substitu
tion occurrences appear to be less uniformly distributed 
in empirical than in simulated MSAs (see Fig. 2, more exam
ples available in supplementary Section 4.3, Supplementary 
Material online). To the best of our knowledge, there is no 
panacea in quantifying the absence of structure in data, and 
it is part of ongoing research in the field of cryptography. 
We resorted to the Fourmilab Random Sequence Tester 
(FRST) (https://www.fourmilab.ch/random/), that is used 
to evaluate pseudo-random number generators, to quantify 
randomness in m. FRST computes six measures of random
ness: Entropy (Entropyrand), maximum compression size 
reduction in percent (comp), Chi-Square test (Chi2), arith
metic mean (meanrand), Monte Carlo Value for Pi (mcpi) 
(see supplementary Section 4.2, Supplementary Material
online), and Serial Correlation Coefficient (SCC) (Knuth 
1997). We executed FRST with a binary representation of 
m on all data collections, then we normalized the computed 
measures of randomness, and used these values in our pre
dictions. We henceforth refer to this set of six features as 
randomness features.

Training and Optimization. For each of the simulated data 
collections presented above, we trained a distinct binary 
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GBT classifier. We trained each GBT classifier using a strati
fied 10-fold cross-validation procedure. Here, stratified 
means that the proportion of empirical and simulated 
MSAs in both training and test subsets was the same. 
The training data consisted of one simulated data collec
tion and the empirical data collection for the respective 
data type. We used the hyperparameter optimization 
framework Optuna (Akiba et al. 2019) to determine the 
optimal set of hyperparameters for each classifier. For 
each GBT classifier, we performed 100 Optuna iterations 
using a Tree-structured Parzen Estimator algorithm 
(Bergstra et al. 2011) to sample the hyperparameter space. 
To prevent the classifiers from overfitting the data, based 
on preliminary experiments, we limited the depth of the 
individual decision trees to a maximum of 10, the max
imum number of leaves to 20, and the minimal number 
of samples per leaf to 30. Additionally, we applied L1 
and L2 regularization to prevent overfitting and better 
generalize to unseen data (Goodfellow et al. 2016). We de
termined the optimal weights of L1 and L2 regularization 
independently using Optuna. L1 regularization sums over 
all absolute weights in the decision tree and thus penalizes 
trees with a high number of branching events. As a result, 
L1 regularization sets the least important feature weights 
to 0 and thus selects the most important features for clas
sification, leading to shallower trees. In contrast, L2 pena
lizes large weights by summing over the square of all 
weights, thereby leading to close to zero weights and 
thus preventing the classifier to heavily rely on but a few 
features. A more detailed description of the feature gener
ation, and training process, the hyperparameter optimiza
tion, as well as the hardware setup are available in the 
supplementary Section 4.1, Supplementary Material
online.

Convolutional Neural Networks
CNNs are a popular prediction method originally devel
oped for computer vision and image processing. 
Recently, they have been applied to predict properties of 
biological sequences (Alipanahi et al. 2015; Zhou and 
Troyanskaya 2015; Angermueller et al. 2016). A CNN joint
ly learns a representation of the data (through convolution 
layer(s)) and the classification of the data based on these 
representations (in our case using a fully connected layer). 
More precisely, a convolution layer slides short probabilis
tic sequence motifs along the sequence, and outputs an ac
tivation profile (i.e. feature map) for each of these motifs. A 
motif is called kernel and the length of the motif, kernel 

size. Here, we used a CNN to classify empirical and simu
lated MSAs. In the following we will detail the input to 
the network, its architecture, training and optimization, 
and the evaluation of its performance.

MSA Representation. In order to obtain a numeric re
presentation of an MSA, where the network is invariant 
to the order of sequences, we used a two-step approach. 
First, we decided to represent the MSA using its site-wise 
AA or nucleotide composition, i.e. the AA or nucleotide 
proportions per site, which sum to one. Second, each 
AA/nucleotide, as well as gaps are passed to the convolu
tion network as input features (i.e. channels), resulting in 5 
(4 DNA sites + gap) or 21 (20 AAs + gap) channels. This 
is analogous to using color channels in an image. It main
tains the identity of a nucleotide/AA and is common 
practice when applying CNNs to biological sequences 
(Angermueller et al. 2016). The input size was the max
imum MSA length in the simulated and empirical data col
lection. All MSAs with fewer sites were zero-padded at 
their edges in order to match the fixed input size.
Empirical protein sequences typically start with 
Methionine (M), which simulations do not account for. 
We removed the first and second sites from the empirical 
protein data to avoid biasing the prediction. To evaluate 
the impact of removing the second site, we tested the 
trained network on empirical validation data, including 
the second site. The absolute accuracy difference between 
data with and without the second site was below 0.0005 
(see supplementary Table S2, Supplementary Material
online).

CNN Architecture. We developed two architectures, one 
for each data type (DNA and protein). We explored alter
native architectures and chose the architecture with 
the best balance between complexity and performance. 
For protein MSAs, we used a single one-dimensional 
convolution layer with 210 filters of size 1 × 21 (i.e. 
kernel size × input channels). Of note, these filters do 
not take into account the phylogenetic structure of the 
data, and simply capture AA profiles at single sites, as op
posed to larger motifs spanning several contiguous sites 
typically used in CNNs. For DNA sequences, we used a two- 
layer CNN, whose first layer has 100 filters of size 3 × 5 and 
is meant to capture codon structure. The second layer has 
210 filters of size 1 × 100. A standard Rectified Linear Unit 
(ReLU) activation function is employed in both architec
tures (Agarap 2018). An activation function is a nonlinear 

Fig. 2. Visualized substitution rates for an anecdotal (specifically selected to highlight the issue) gapless empirical DNA MSA (left), and gapless 
simulated MSA (right) generated based on the inferred tree and estimated evolutionary model parameters of the left MSA under the GTR mod
el. The x-axis denotes the alignment site index. A brighter color denotes a higher number of substitutions.
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transformation of a node’s output. It is applied before pas
sing the output to the next layer. The ReLU outputs its in
put if it is positive, and zero, otherwise. For both DNA and 
protein architectures, the layers following convolution 
comprise a dropout layer, which deactivates a node with 
a certain probability (here we chose 0.2) to avoid overfit
ting and global average pooling along the sequences. A fi
nal fully connected layer combines all features (i.e. 
channels) for the binary prediction. For this, we used a 
Sigmoid activation function. In total, the protein network 
counts 4,831 learnable parameters, while the DNA net
work has 23,021 due to the additional convolution layer.

Training and Optimization. To update the network 
weights, we employed the Adam optimizer (Kingma and 
Ba 2015) along with a binary cross-entropy loss function. 
The optimized parameters include the learning rate and 
the number of filters. For the former, we chose the learning 
rate range independently for each data collection and fold 
using the learning rate range test (LRRT) (Smith 2017). The 
LRRT involves gradually increasing the learning rate during 
a few training epochs, monitoring the change of the loss, 
and plotting the results. It helps to select a learning rate 
where the model effectively learns and quickly converges 
without extensive manual tuning. Given the LRRT results, 
we then evaluated different learning rates by means of the 
validation loss after 100 epochs and considered the learn
ing curve, that is, the validation and training loss over 
epochs. Furthermore, we varied the number of filters 
and chose the number that yielded the maximal validation 
BACC. For more details on the optimized parameters and 
hardware used for training, see supplementary Section 3, 
Supplementary Material online. In addition to the valid
ation BACC, we considered the Class Mean Absolute 
Error (MAE), which is the mean absolute difference be
tween the accuracy on simulated and empirical data col
lections across folds, as well as the standard error (SE), 
which denotes the standard error of the obtained valid
ation BACC across folds. If these measures were strikingly 
large, we interpreted this as an indicator that the network 
needs to be improved to generalize better. As with the 
other classifier, we used 10-fold cross-validation. We ap
plied an early stopping rule (Prechelt 2012) to automatic
ally terminate the training of every fold individually. 
However, for certain data collections, we observed that 
the chosen stopping rule seemed overly strict. The visua
lized learning curves indicated that the network had con
verged, even though the stopping criterion was not met. 
Consequently, we decided to manually terminate the 
training in these cases. Learning curves, Class MAE, and 
the SE can be found in the Supplementary Material 
(supplementary Table S1, Fig. S9 and S10, Supplementary 
Material online).
To compare the performance of CNNs trained on various 
simulated data collections, we determined the maximum 
validation BACC over training epochs for each CNN and 
for each fold. What is referred to as BACC is the average 
BACC across folds at the selected epochs. Because we 

are using the same validation data to choose the stopping 
epoch and assess the resulting accuracy, there is a risk that 
this accuracy is overoptimistic. To quantify this risk, 
we computed summary statistics of BACCs of epochs 
surrounding the selected epoch (see supplementary 
Table S1, Supplementary Material online).

Performance Evaluation
Using the BACC metric per data collection, we compared 
the performance of pairs of classifiers of simulated data 
collections. In order to evaluate whether the difference 
of the BACCs of two data collections and therefore two 
different evolutionary models is significant, we conducted 
multiple unpaired two-samples t-tests, where one sample 
consists of the validation BACC for each fold. This allowed 
us to compare models in their ability to produce simula
tions that are more or less or equally realistic. For protein 
data, we compared the BACCs of the following groups: 
Poisson vs. WAG, WAG vs. LG, LG vs. LG+C60, and all pair- 
wise combinations of site heterogeneous models. The null 
hypothesis is that these models yield equal average BACCs 
across folds. We rejected the null hypothesis if the result
ing P-value was below the significance level of 0.05. For 
DNA data, we compared the BACCs of JC vs. HKY, HKY 
vs. GTR, GTR vs. GTR+G, and GTR+G vs. GTR+G+I. To ac
count for multiple testing, we applied Bonferroni correc
tion, i.e. we multiplied each P-value by the number of 
tests for each data type separately (Abdi 2007). An over
view of all tests is provided in the Supplementary 
Material (supplementary Tables S7 to S9, Supplementary 
Material online).

Results
Classification Accuracy
Table 1 shows the BACC for our GBT and CNN classifiers 
across all data collections. Both classifiers were able to ac
curately distinguish simulated from empirical data. The 
GBT classifiers achieved high BACCs for all simulated pro
tein data collections (≥ 0.98), as well as for all gapless 
DNA data collections (≥ 0.89). We observed the worst 
BACC of 0.77 for the DNA data collection simulated under 
GTR+G+I with gaps simulated according to the mimick 
procedure. The CNN classifiers achieved BACCs ranging 
from 0.93 to 0.9996. Interestingly, the GBT classifiers 
showed similar BACCs or even outperformed the CNN 
on the protein data collections but achieved lower 
BACCs on DNA collections.

On DNA data collections, substitution models with few
er degrees of freedom than the GTR model, namely JC and 
HKY, were classified more accurately (BACC = 0.99 for 
CNN and BACC = 0.96 for GBT). However, increases in 
model complexity did not always translate into improve
ments in the realism of the data. For instance, the perform
ance of the CNN was marginally better on simulations 
under the HKY model than on simulations under the sim
pler JC model (P = 0.03, see supplementary Table S1, 
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Supplementary Material online). The GBT predictions, 
which were equally accurate for JC and HKY simulations 
(BACC = 0.96), did not reflect any improvement in the si
mulations due to more degrees of freedom in the HKY 
model either. Moreover, the CNN yielded the lowest 
BACC (0.93) on simulations conducted under the GTR mod
el. In contrast, simulations that included rate heterogeneity 
(GTR+G) were slightly easier to classify (BACC = 0.94, 
P = 0.04). Contrary to our expectations, including a propor
tion of invariant sites (GTR+G+I) did not result in a lower 
BACC compared to GTR+G simulations (BACC = 0.94, 
P = 1.0 for CNN, BACC = 0.89, P = 1.0 for GBT).

We did not observe the expected trend of an increased 
realism with an increase in model complexity for the pro
tein data collections. For instance, the CNN had the lowest 
BACC on simulations under the LG substitution model 
(BACC = 0.95) and not on the more complex mixture 
models. For the GBT, distinguishing the LG+S256+G4 
data collection appeared to be easier than the data collec
tion based on the simpler LG+C60 model ( P = 0.77). 
Unexpectedly, all simulations using a mixture of stationary 
frequency profiles (i.e. LG+C60, LG+S256, LG+S256+G4, 
and LG+S256+GC) were nearly perfectly discriminated 
from the empirical data collection with both GBT and 
CNN (BACC ≥ 0.98). With the CNN, we did not find a sig
nificant performance difference between these evolution
ary models (P ≥ 0.38, see supplementary Table S9, 
Supplementary Material online).

To rule out the possibility that these rather unexpected 
findings are a consequence of specific behaviors inherent 
to the AliSim simulator, we conducted an experiment to 
evaluate the performance of the CNN classifier pretrained 
with LG+S256 simulations on data generated using a 

simulator developed in house that employs the same mod
el. Our results showed that the CNN classifier performed 
comparably well on the alternative simulations (BACC = 
0.99). In addition, we tested the same CNN on simulations 
using 4,096 profiles. These simulations were only slightly 
harder to classify (BACC = 0.98) than the ones based on 
only 256 profiles (BACC = 0.995).

The CNN trained on empirical data collections with in
dels and simulations under the most complex evolution 
model with indels (i.e. LG+S256+GC+sparta, GTR+G+I 
+mimick, GTR+G+I+sparta) also yielded highly accurate 
predictions (BACC = 0.996 for protein and BACC > 0.97 
for DNA data). The results were similar to or better than 
the results obtained without indels. There was no signifi
cant difference between CNN performance on the two 
DNA indel models employed (P = 1.0). Simulating indels 
increased the GBT classification accuracy for protein 
data (BACC = 0.99) and the sparta based DNA data collec
tion (GTR+G+I+sparta; BACC = 0.94) compared to the 
same model of evolution without indel simulations 
(LG+S256+GC BACC = 0.98; GTR+G+I BACC = 0.89). 
We did, however, observe a significant decrease in accur
acy comparing the two DNA indel models (P = 0.0). 
GBT classified the GTR+G+I+sparta data collection with 
high accuracy (BACC = 0.94), but showed an unexpectedly 
low BACC of 0.77 for GTR+G+I+mimick.

Feature Importance
GBT
In order to gain insights into why the general classification 
task achieved high prediction accuracy and appears to be 
rather easy in general, we assessed the influence of the de
scribed features on the prediction of the GBT classifiers. To 
this end, we computed the gain-based feature importance. 
The gain-based feature importance directly measures the 
contribution of a feature to the reduction of the loss func
tion. Supplementary Table S4, Supplementary Material on
line shows the three most important features for all 
classifiers.

We observed that, except for one data collection, the 
SCC randomness metric was the most important feature. 
For classifying the LG+S256+GC+sparta data collection, 
it was the second most important feature. Figure 3 shows 
the distribution of SCC values for one example DNA data 
collection (GTR+G+I), as well as for one example protein 
data collection (LG+S256+GC) compared to the distribu
tion for the respective empirical data collection. The lower 
the SCC value, the more random is the distribution of rates 
of evolution across sites in the MSA. The SCC values for si
mulated MSAs are substantially lower than for empirical 
MSAs. This shows that the rates of evolution across sites 
are more uniformly distributed in simulated MSAs com
pared to empirical MSAs, simulated data are thus more 
“random” than empirical data. We observed similar pat
terns for all other data collections as well.

We also frequently observed the Entropy, the Pattern 
entropy, as well as the Bollback multinomial metrics being 

Table 1 Average of the BACC on empirical and simulated data 
collections across 10 folds for the GBT and CNN classifiers. Parameter 
configurations of simulations listed in the first column are sorted with 
increasing complexity from top to bottom for both DNA and protein 
data. For both, the last row(s) shows results on data collections with 
indels.

Data collection BACC

GBT CNN

DNA data collections
JC 0.96 0.99
HKY 0.96 0.99
GTR 0.94 0.93
GTR+G 0.89 0.94
GTR+G+I 0.89 0.94
GTR+G+I+mimick 0.77 0.97
GTR+G+I+sparta 0.94 0.97
Protein data collections
Poisson 0.99 0.9996
WAG 0.99 0.97
LG 0.99 0.95
LG+C60 0.98 0.99
LG+S256 0.99 0.995
LG+S256+G4 0.99 0.99
LG+S256+GC 0.98 0.99
LG+S256+GC+sparta 0.99 0.996
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among the three most important features. While the ran
domness features measure the randomness across sites of 
the MSA, these three features quantify the randomness 
across taxa per site, indicating that simulated data is not 
only more “random” across sites but also within sites.

To gain further insights into the importance of the ran
domness features for classification, we additionally re
trained all GBT classifiers without this set of randomness 
features. Supplementary Table S6, Supplementary 
Material online shows the resulting BACCs alongside the 
three most important features. As expected, the BACCs 
decrease for all data collections. Interestingly, the BACCs 
for the GTR+G and GTR+G+I DNA data collections de
creased substantially from 0.89 to 0.65 and 0.61, respective
ly, yielding a prediction only marginally better than 
random guessing. Using this reduced set of features for 

the prediction, we observed interesting differences in fea
ture distributions. We observed that, compared to simu
lated data, empirical data tends to have a higher 
proportion of invariant sites (Fig. 4(a)). The branch lengths 
in trees inferred for simulated MSAs tend to be shorter 
(Fig. 4(b); for better visualization, we only show data be
tween the 10% and 90% percentile), and the parsimony 
RF-Distance tends to be higher for empirical data 
(Fig. 4(c)). While Fig. 4 depicts the distribution of feature 
values for one exemplary data collection (JC) only, these 
observations hold true for all simulated data collections. 
The more complex the model of evolution, the less 
pronounced these differences are, especially for the 
simulated DNA data under GTR+G and GTR+G+I (see 
supplementary Fig. S15 and S16, Supplementary Material
online). It is noteworthy however that even GTR+G+I, 
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Fig. 3. Feature distribution of SCC feature values for one exemplary DNA and protein data collection. The dark (blue) bars represent the re
spective empirical data collection and the light (pink) bars represent the respective simulated data collection. a) Distribution of SCC values for 
the GTR+G+I and empirical DNA data collections and b) Distribution of SCC feature values for the LG+S256+GC and protein empirical data 
collections.
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Fig. 4. Feature distribution for important features for classifying the JC data collection. The dark blue bars represent the empirical data collection 
and the light pink bars represent the simulated JC data collection. a) Distribution of proportion of invariant feature values for the JC and em
pirical data collections. b) Distribution of brlenmax feature values for the JC and empirical data collections and c) distribution of parsimony 
RF-Distance feature values for the JC and empirical data collections.
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which contains a parameter dedicated to modeling the 
proportion of invariable sites, produces alignments with 
fewer invariant sites than in empirical data.

We further explored the substantial decrease in accur
acy for the GTR+G+I+mimick data with a BACC of 0.77. 
To this end, we split MSAs site-wise into 100 parts (buck
ets), averaged the number of substitutions per bucket 
(normalized by the maximum number of substitutions 
per MSA), and averaged the buckets over every MSA 
(see supplementary Figs. S12 to S14, Supplementary 
Material online). Interestingly, we could observe that the 
substitutions for empirical and the GTR+G+I+mimick 
data collections are concentrated at the beginning and 
the end of the MSAs, while the number of substitutions 
in GTR+G+I+sparta seem to be uniformly distributed. 
This also seemed to be the case for other substitution 
models (results not shown). This result is in agreement 
with Bricout et al. (2022) who also found this pattern in 
a large scale analysis of empirical alignments.

As described above, we simulated the DNA data collec
tions and the protein data collections without indels based 
on trees inferred using RAxML-NG. Trees for protein data 
with indels used for our indel simulations were inferred 
using IQ-Tree. For 10 out of 15 data collections, one of 
the branch length features was among the three most im
portant features. To ensure that we did not leverage a 
tool-induced bias for our prediction, we retrained all clas
sifiers using only the MSA-based features by discarding all 
branch length features. We observed no substantial impact 
on the overall prediction accuracies. With GTR+G+I+mi
mick, we observed the highest BACC difference. Using all 
features, the GBT achieved a prediction accuracy of 0.77. 
Discarding the branch length features resulted in a 
BACC of 0.74. Supplementary Table S5, Supplementary 
Material online shows the resulting BACCs for all classi
fiers, alongside the three most important prediction fea
tures when only using MSA-based features.

CNN
In addition to the feature analysis of the GBTs, we further 
investigated the remarkably accurate performance of the 
CNN on simulations using mixtures of stationary fre
quency profiles (i.e. the S256 or C60 model). Given that 
we could achieve better performance when using average 
global pooling, that is, averaging across the sequence, in
stead of maximum local pooling following the convolution 
layer (see paragraph CNN architecture) we hypothesized 
that there must be predictive global features that aid in 
distinguishing simulated from empirical MSAs. In particu
lar, we hypothesized that alignment-wise frequencies of 
AAs or nucleotides may differ between simulated and em
pirical data. To test this hypothesis, we trained logistic re
gression models to undertake the same classification task, 
but using site compositions averaged along the alignment, 
i.e. MSA compositions. Figure 5 shows that the logistic re
gression model indeed performed well, particularly for 
simulated data under mixture models (BACC > 0.94). 
Moreover, across collections, there is a strong correlation 

between BACCs of the CNNs and the logistic regression 
models (r2 = 0.85). We also attempted to train the logistic 
regression model on DNA data simulated under the 
GTR+G+I model, but found that there was no significant 
improvement during the first 100 epochs ( BACC = 0.51). 
Therefore, the MSA composition is not informative for 
the classification of DNA data, but highly informative for 
protein data.

Classification Accuracy and Pythia Difficulty
For both GBT and CNN classifiers, we observed a general 
trend for lower classification accuracy on more difficult 
MSAs according to the Pythia difficulty score. The higher 
the Pythia difficulty for an MSA, the lower the signal in 
the data and the more difficult it is to obtain a well- 
supported phylogeny as the likelihood surface exhibits 
multiple likelihood peaks that are indistinguishable by 
means of standard phylogenetic significance tests (Haag 
et al. 2022). In addition to assessing the BACC as a function 
of the difficulty of simulated MSAs, we also assessed the 
BACC as a function of the difficulty of the underlying em
pirical MSAs. For MSAs with a higher Pythia difficulty, it 
should be more difficult to find the true phylogeny, as 
the likelihood surface exhibits multiple peaks. However, 
simulating an MSA requires a reference phylogeny and 
relying on a “bad” tree might have a negative impact on 
the realism of the simulated data. If this holds true, the 
classification of simulated MSAs based on easy empirical 
MSAs (i.e. simulations based on “good” trees) could be 
more difficult, leading to a lower BACC than the classifica
tion of simulated MSAs based on difficult empirical MSAs. 
Interestingly, we observed the opposite effect: the more 
difficult the underlying empirical MSAs, the lower the 
BACC. Figure 6 depicts this observation for the simulated 
data collections with the lowest BACC for GBT (GTR+G+I 
+mimick) and CNN (LG) respectively. Both Figures show 

Fig. 5. Performance of logistic regression on MSA compositions and 
CNN on site-wise compositions. For each evolutionary model, the 
BACC of each fold is represented as well as the mean and standard 
error.
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the BACC as a function of the Pythia difficulty over the 
simulated MSAs (left subfigures), as well as the BACC as 
a function of the Pythia difficulty over the underlying 
empirical MSAs (right subfigures). The colors indicate 
the number of MSAs per difficult range on a log-scale. 
All four examples demonstrate a substantial decrease in 
BACC with increasing difficulty. Note that the LG data 
collection contains only 9 simulated MSAs with a Pythia 
difficulty ≥ 0.6. The CNN misclassifies 5 of these MSAs 
as empirical, resulting in the drop in BACC in the right 
tail of the left subplot of Fig. 6(b). A similar effect 
causes the drop in the BACC in the right tail of the 
right subplot of Fig. 6(b): only 12 empirical MSAs 
have a Pythia difficulty ≥ 0.7, out of which the CNN 
misclassifies 6 MSAs. Taking this into account, the de
crease of BACC with increasing difficulty is overall 

more pronounced for the GBT on the DNA data 
collection.

Discussion and Conclusion
In this study, we assessed the realism of sequence 
evolution models by attempting to discriminate between 
simulated MSAs and empirical MSAs using two distinct 
and independently developed classification methods. 
Specifically, we evaluated and interpreted the predictive 
accuracy of these approaches as a measure of realism. By 
addressing this question, we aimed to gain insights into 
the ability of current evolutionary models to accurately 
simulate evolutionary processes using continuous time 
Markov chains (CTMC). The ability to accurately model se
quence evolution and thus simulate realistic MSAs is 
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Fig. 6. Accuracy of the GBT and CNN classifiers depending on the Pythia difficulty of the underlying alignments. The number of MSAs per dif
ficulty range is indicated by colors (log-scale), as well as text annotations. a) BACC of the GBT classifier on the GTR+G+I+mimick data collection 
as a function of the Pythia difficulty of the simulated MSAs (left subfigure) and the underlying empirical MSAs (right subfigure) and b) BACC of 
the CNN classifier on the LG data collection as a function of the Pythia difficulty of the simulated MSAs (left subfigure) and the underlying 
empirical MSAs (right subfigure).
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crucial both for the evaluation of inference tools and the 
development of neural density estimation techniques for 
inference.

Note that producing MSAs that are indistinguishable 
from empirical ones is a necessary but not sufficient con
dition for the degree of realism of the underlying model. 
First, poor classification performance can occur because 
the classifier does simply not deploy appropriate functions 
or data representations. Hence, one cannot guarantee that 
the simulated MSAs are realistic under all possible criteria. 
Second, poor performance can also be induced by opti
mization issues, especially when using deep learning meth
ods. During our experiments, we observed low accuracies 
for CNNs several times. We managed to alleviate them 
by adapting the learning rate, the number of filters, or 
the pooling method, for instance. We thus advise research
ers interested in classification performance as a realism 
metric to closely monitor indicators of poor optimization, 
in particular, learning curves and gradient norms—in our 
case, poor optimization also led to a larger variance across 
folds and discrepancies in accuracy for the two classes. 
Because we found that all simulated MSAs were easy to 
discriminate from empirical MSAs, and because our results 
are consistent across two technically substantially distinct 
and independent classification methods, we conclude with 
confidence that the simulated MSAs generated in our 
study are not realistic.

It is worth noting here that we originally chose to de
velop a CNN for the classification task, as it is able to cap
ture local dependencies among sites. With a kernel size 
greater than one, the network could potentially benefit 
from these dependencies for classification, as they are pre
sent in empirical MSAs yet cannot be replicated with 
standard site-independent models of sequence evolution. 
However, we discovered that for protein data, the CNN 
yields accurate performance, even with a kernel size of 
one in combination with global average pooling (as an al
ternative to the commonly used local maximum pooling). 
This type of network primarily focuses on capturing global 
features while overlooking local among-site dependencies. 
Consequently, these choices enabled us to thoroughly ex
plore the limitations of current sequence evolution simu
lation approaches and different evolutionary models 
beyond their unrealistic assumption of independently 
evolving sites. However, in the future, a CNN architecture 
could be deployed to assess the importance of local site 
dependencies not accounted for in current state-of- 
the-art simulators.

Our study uses two fundamentally different classifiers, 
which allows for a broader assessment of possible weak
nesses of current sequence evolution simulations: GBTs 
rely upon diverse, yet well-defined MSA properties, such 
as branch lengths or the randomness features that take 
into account the assumption of homogeneity along 
MSAs in standard simulations. Given the high feature im
portance of the evolutionary rates (SCC) in the MSA, our 
GBTs exploit a lack of structure along simulated MSAs. The 
CNN only considers site-wise composition vectors, and 

thus exploits a signal that is not directly exploited by the 
GBTs. Furthermore, for the classification we used diverse 
and representative empirical protein and DNA databases: 
TreeBASE comprises representative data sets that are com
monly analyzed in the field because it only contains MSAs 
of published studies, whereas HOGENOM offers a diverse 
sample of existing data, drawing from 499 nuclear Bacterial 
genomes, 46 from Archaea, and 121 from Eukaryotes.

The structure detected by our GBTs in empirical nu
cleotide alignments from TreeBASE is not due to the 
type of genetic code present. We computed the number 
of stop codons in all genes in the database and at all three 
phases, and did not observe an excess of alignments with 0 
or 1 stop codons per sequence (supplementary Fig. S17, 
Supplementary Material online). Instead, it seems to cor
respond to the pattern found by Bricout et al. (2022). 
However, in the future it will be interesting to investigate 
the realism of existing codon models, on a data set of cod
ing DNA sequences.

We used phylogenetic trees reconstructed from these 
empirical data collections to simulate data as realistically 
as possible. Thereby, we circumvented having to simulate 
realistic trees and can invoke simulations that are as similar 
as possible to the empirical MSAs. However, it is important 
to note that the realism of the simulations depends on the 
quality of the inferred phylogenetic trees when deploying 
this procedure. Since we do not know the true trees of the 
empirical MSAs, we must acknowledge that there is some 
uncertainty or error in the inferred trees that the simula
tions inherit. Hence, at least part of the classifier accuracy, 
that is, part of the difference between the simulations and 
the empirical MSAs, could be attributed to the difference 
between the inferred trees and the true unknown trees. 
However, our choice to use Maximum Likelihood trees in
ferred under the same models used for the subsequent 
simulation (except for the protein data, see below) may 
constitute the most realistic approach toward generating 
alignments that resemble empirical MSAs. Indeed, the 
best-known ML tree T̂ under model M for an alignment 
A is the best tree we can find that maximizes the probabil
ity of observing A. Any other tree is less likely to have gen
erated A under model M (assuming optimization did find 
the ML tree). Therefore, by simulating with model M along 
tree T̂, we maximize the probability (or get close to maxi
mizing it) of generating alignment A. We expect that 
thereby, we also obtain a high probability of generating 
alignments that resemble A, that is, MSAs that “look” 
empirical.

However, for protein data, the inference of trees from 
protein MSAs without indels was performed under the 
LG substitution model. The resulting trees may be differ
ent from the ML tree obtained under the WAG model 
or under mixture models. In particular, trees inferred un
der the LG model may have branches that are too short 
to be used for simulating MSAs with site-heterogeneous 
mixture models, because inference with mixture models 
typically yields longer branches than inference under the 
LG model. However, looking at amino acid diversity per 
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site (supplementary Fig. S6, Supplementary Material on
line) reveals that sites simulated using mixture models 
look more like empirical sites than sites simulated with 
LG. Therefore, it remains unclear why mixture models 
failed to improve alignment realism according to our clas
sifiers. Overall, for some of our experiments on protein 
data, the mismatch between substitution models used to 
infer the trees and those employed to simulate the 
MSAs may be consequential and warrants further 
investigation.

The classification task was not difficult, neither for DNA 
nor for protein data. Our CNN achieved an average BACC 
of 0.98 across all evolutionary models. This shows that ex
isting models of sequence evolution fail to capture import
ant characteristics of empirical site-wise compositions. In 
turn, this questions to which extent previous results ob
tained on simulated data apply to empirical data.

We originally hypothesized that with increasing evolu
tionary model complexity, classification performance 
would decrease. However, our results do not fully confirm 
this initial hypothesis. On the contrary, both classifiers re
mained highly accurate on the most complex evolutionary 
models for protein simulations with heterogeneous sta
tionary distributions across sites. On DNA simulations, 
the inclusion of rate heterogeneity and a proportion of in
variant sites did not lead to a substantial decrease in CNN 
classification accuracy, either. Using the HKY substitution 
model instead of the JC model did also not result in more 
realistic simulations as a function of observed classification 
performance. Finally, the most simple models, JC and 
Poisson, were classified with ease.

The BACC for both GBT and CNN classifiers decreases 
with increasing Pythia difficulty of the simulated MSA. 
The same holds true when comparing the BACC to the 
Pythia difficulty of the underlying empirical alignment. 
Accounting for the lack of difficult MSAs (difficulty 
≥ 0.7) in the protein data collection, the effect is more 
pronounced for the GBT classifier on the DNA data collec
tion. We suspect that the decrease in BACC with increas
ing difficulty is related to the amount of information in the 
data: MSAs with low information not only lead to incon
clusive phylogenetic analyses (as indicated by the high 
Pythia difficulty), but also lack a strong signal that indi
cates their realism. For instance, an alignment for a highly 
conserved gene basically only contains the information of 
a single sequence, because all the sequences are nearly 
identical, which makes phylogenetic reconstruction and 
classification difficult. An alignment for a less conserved 
gene has more information, which can be leveraged both 
for phylogenetic reconstruction and for classification. In 
the extreme case, an alignment where all sites are constant 
would obviously be difficult to use for both tasks. In sup
port of our hypothesis, we observe a significant correlation 
between sequence similarity in the alignment and Pythia 
difficulty or BACC score for GTR+G+I+mimick DNA data 
collection (see supplementary Section 7, Supplementary 
Material online). We observe no significant correlation for 
the protein LG data collection. However, as stated above, 

the LG data collection, as well as all remaining simulated 
gapless protein data collections, comprise only few difficult 
MSAs (Pythia difficulty ≥ 0.7), leaving little opportunity to 
find a significant correlation.

Future studies may help characterize the influence of 
the trees used for simulating alignments on their realism. 
For instance, experiments where we simulate data using 
complex models of sequence evolution, and using simpler 
models on the same trees, may help us characterize the 
ability of our classifiers to distinguish between different 
models, when the phylogeny is not a confounding factor.

We used a state-of-the-art indel model with individual 
parameters for insertions and deletions and sampled indel 
parameters from approximated joint distributions. 
Nevertheless, both classifiers could again easily distinguish si
mulated from empirical MSAs. In fact, classification accuracy 
substantially increased on DNA data with indels compared to 
data without indels (GTR+G+I). In contrast, using the mimick 
procedure to superimpose gaps onto simulated data ap
peared to result in more realistic MSAs. Yet, these MSAs 
could still be easily identified as simulated ones based on their 
site-wise compositions, as shown by the CNN results.

Furthermore, the prediction accuracy for protein data 
tended to be higher than the prediction accuracy for 
DNA data. We suspect that this is due to the higher num
ber of states in the protein alphabet and therefore the in
creased number of possible patterns in a protein MSA, 
which makes it harder to simulate realistic data.

Our findings suggest that existing evolutionary models 
might not be able to generate data collections that appro
priately resemble global low level site composition features 
of empirical DNA or protein data collections using standard 
site- and position-independent Continuous Time Markov 
Chains. Considering the high importance of randomness 
related features for the GBT classifiers, and the respective 
feature value distributions, we conclude that the rate of 
evolution across sites of simulated MSAs are generated 
more uniformly along the MSA compared to empirical 
MSAs. For instance, we found that current models cannot 
reproduce the serial correlation of evolutionary rates that 
is present in empirical MSAs. We further observe that the 
proportion of invariant sites in standard simulations re
duces their realism as measured by GBT. In addition, the 
CNN results reveal that simulated alignments have unrealis
tic properties in terms of site-wise compositions that are 
independent of correlations among neighboring sites.

The unexpectedly high accuracy of the logistic regres
sion model on simulations under mixture models that pro
duce heterogeneous stationary distributions across sites 
indicates that these models simulate alignments with an 
average MSA composition which is distinct from that of 
empirical data. This is particularly surprising for the 
LG+S256 models, which had been trained on 
HOGENOM data (Schrempf et al. 2020). This discrepancy 
is unlikely to arise from simulating on trees inferred under 
the LG model rather than mixture models. Indeed shorter 
branches in the LG trees should result in lower AA diversity 
per site. However, we did not observe this in our data 
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collections, as sites in simulations under the LG model 
have slightly higher AA diversity than those in empirical 
data (supplementary Fig. S6, Supplementary Material on
line). Moreover, the site-wise AA diversity appeared similar 
between simulations under LG+S256 and empirical data. 
The causes of the discrepancy in average MSA composi
tions needs to be further investigated.

We believe that in the years to come, learning-based, 
likelihood-free approaches are likely to be more widely 
used in our field. Especially, if their performance (both in 
terms of phylogenetic reconstruction accuracy and runtime) 
is superior. However, we further believe that likelihood- 
based inference will continue to play an important role in 
the area of computational phylogenetics, as the statistical 
properties of ML and MCMC methods for posterior estima
tion still benefit from a better empirical knowledge.

Looking forward, this work paves the way for ap
proaches to simulate more realistic alignments by develop
ing more realistic models of sequence evolution. We 
conclude that a substantial amount of research remains 
to be conducted for improving substitution as well as indel 
evolution models, for both protein and DNA data.

Supplementary Material
supplementary material is available at Molecular Biology 
and Evolution online.

Acknowledgements
We thank Philippe Veber, research engineer at the 
Laboratoire de Biométrie et Biologie Évolutive, for providing 
us with the source code of his simulator. We gratefully ac
knowledge support from the CNRS/IN2P3 Computing 
Center (Lyon - France) for providing computing and data- 
processing resources needed for this work. This work was 
granted access to the HPC resources of IDRIS under the allo
cation 2022-AD011011137R2 made by GENCI. This work was 
financially supported by the Klaus Tschira Foundation, the 
ANR grants EVOLUTHON ANR-19-CE45-0010 and PIECES 
ANR-20-CE45-0017, and by the European Union (EU) under 
Grant Agreement No 101087081 (Comp-Biodiv-GR).

Data and Code Availability
All simulated and empirical MSAs, as well as all analysis 
results, are available at https://cme.h-its.org/exelixis/ 
material/simulation_study.tar.gz. All scripts required to 
reproduce our results are available at https://github. 
com/tschuelia/SimulationStudy and https://github.com/ 
JohannaTrost/seqsharp.

Conflict of interest statement. None declared.

References
Abadi S, Avram O, Rosset S, Pupko T, Mayrose I. ModelTeller: model 

selection for optimal phylogenetic reconstruction using machine 

learning. Mol Biol Evol. 2020:37(11):3338–3352. https://doi.org// 
10.1093/molbev/msaa154.

Abdi H. Bonferroni and šidák corrections for multiple comparisons. 
Encycl Meas Stat. 2007:3(01):2007.

Agarap AF. Deep learning using rectified linear units (ReLU), arXiv, 
arXiv:1803.08375, preprint: not peer reviewed. 2018.

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next- 
generation hyperparameter optimization framework. In: 
Proceedings of the 25th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, KDD 
’19; New York (NY): Association for Computing Machinery; 
2019. p. 2623–2631.

Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the se
quence specificities of DNA- and RNA-binding proteins by 
deep learning. Nat Biotechnol. 2015:33(8):831–838. https://doi. 
org//10.1038/nbt.3300.

Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for 
computational biology. Mol Syst Biol. 2016:12(7):878. https:// 
doi.org//10.15252/msb.20156651.

Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter 
optimization. In: Proceedings of the 24th International Conference 
on Neural Information Processing Systems, NIPS’11; Red Hook (NY): 
Curran Associates Inc; 2011. p. 2546–2554.

Bollback JP. Bayesian model adequacy and choice in phylogenetics. 
Mol Biol Evol. 2002:19(7):1171–1180. https://doi.org//10.1093/ 
oxfordjournals.molbev.a004175.

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, 
Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, et al. 
BEAST 2.5: an advanced software platform for Bayesian evolu
tionary analysis. PLoS Comput Biol. 2019:15(4):e1006650. 
https://doi.org//10.1371/journal.pcbi.1006650.

Bricout R, Weil D, Stroebel D, Genovesio A, Crollius HR. Evolution is 
not uniform along protein sequences. 2022. bioRxiv, p. 2022–04.

Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced ac
curacy and its posterior distribution. In: 2010 20th international 
conference on pattern recognition. Istanbul (Turkey); 2010. 
p. 3121–3124.

Cartwright RA. DNA assembly with gaps (Dawg): simulating se
quence evolution. Bioinformatics. 2005:21(Suppl 3):iii31–iii38. 
https://doi.org//10.1093/bioinformatics/bti1200.

Clemmensen LH, Kjærsgaard RD. Data representativity for machine 
learning and ai systems. arXiv, arXiv:2203.04706, preprint: not 
peer reviewed. 2022.

Csilléry K, Blum MG, Gaggiotti OE, François O. Approximate 
Bayesian computation (ABC) in practice. Trends Ecol Evol. 
2010:25(7):410–418. https://doi.org//10.1016/j.tree.2010.04.001.

Farris JS. Methods for computing wagner trees. Syst Biol. 1970:19(1): 
83–92. https://doi.org//10.1093/sysbio/19.1.83.

Fitch WM. Toward defining the course of evolution: minimum 
change for a specific tree topology. Syst Zool. 1971:20(4): 
406–416. https://doi.org//10.2307/2412116.

Fletcher W, Yang Z. INDELible: a flexible simulator of biological se
quence evolution. Mol Biol Evol. 2009:26(8):1879–1888. https:// 
doi.org//10.1093/molbev/msp098.

Friedman JH. Greedy function approximation: a gradient boosting 
machine. Ann Stat. 2001:29(5):1189–1232. https://doi.org//10. 
1214/aos/1013203451.

Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): 
MIT Press; 2016. http://www.deeplearningbook.org.

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 
New algorithms and methods to estimate maximum-likelihood 
phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 
2010:59(3):307–321. https://doi.org//10.1093/sysbio/syq010.

Haag J, Höhler D, Bettisworth B, Stamatakis A. From easy to hopeless– 
predicting the difficulty of phylogenetic analyses. Mol Biol Evol. 
2022:39(12):msac254. https://doi.org//10.1093/molbev/msac254.

Hasegawa M, Kishino H, Yano T-a.. Dating of the human-ape split
ting by a molecular clock of mitochondrial DNA. J Mol Evol. 
1985:22(2):160–174. https://doi.org//10.1007/BF02101694.

Trost et al. · https://doi.org/10.1093/molbev/msad277 MBE

16

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/1/m
sad277/7485625 by N

SS user on 21 M
ay 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad277#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad277#supplementary-data
https://cme.h-its.org/exelixis/material/simulation_study.tar.gz
https://cme.h-its.org/exelixis/material/simulation_study.tar.gz
https://github.com/tschuelia/SimulationStudy
https://github.com/tschuelia/SimulationStudy
https://github.com/JohannaTrost/seqsharp
https://github.com/JohannaTrost/seqsharp
https://doi.org//10.1093/molbev/msaa154
https://doi.org//10.1093/molbev/msaa154
https://doi.org//10.1038/nbt.3300
https://doi.org//10.1038/nbt.3300
https://doi.org//10.15252/msb.20156651
https://doi.org//10.15252/msb.20156651
https://doi.org//10.1093/oxfordjournals.molbev.a004175
https://doi.org//10.1093/oxfordjournals.molbev.a004175
https://doi.org//10.1371/journal.pcbi.1006650
https://doi.org//10.1093/bioinformatics/bti1200
https://doi.org//10.1016/j.tree.2010.04.001
https://doi.org//10.1093/sysbio/19.1.83
https://doi.org//10.2307/2412116
https://doi.org//10.1093/molbev/msp098
https://doi.org//10.1093/molbev/msp098
https://doi.org//10.1214/aos/1013203451
https://doi.org//10.1214/aos/1013203451
http://www.deeplearningbook.org
https://doi.org//10.1093/sysbio/syq010
https://doi.org//10.1093/molbev/msac254
https://doi.org//10.1007/BF02101694


Hoehler D, Haag J, Kozlov AM, Stamatakis A. A representative per
formance assessment of maximum likelihood based phylogenet
ic inference tools. bioRxiv, 2022. https://doi.org//10.1101/2022.10. 
31.514545.

Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, 
Huelsenbeck JP, Ronquist F. RevBayes: Bayesian phylogenetic in
ference using graphical models and an interactive model- 
specification language. Syst Biol. 2016:65(4):726–736. https:// 
doi.org//10.1093/sysbio/syw021.

Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, 
editor. Mammalian protein metabolism. New York: Academic 
Press; 1969. p. 21–132. http://dx.doi.org/10.1016/B978-1-4832- 
3211-9.50009-7.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. 
LightGBM: a highly efficient gradient boosting decision tree. In: 
Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, 
Vishwanathan S, Garnett R, editors, Advances in neural informa
tion processing systems, Vol. 30. Curran Associates, Inc.; 2017 
https://papers.nips.cc/paper_files/paper/2017.

Kingma DP, Ba J. Adam: a method for stochastic optimization. San 
Diego: ICLR (Poster); 2015.

Knuth D. Art of computer programming, the: seminumerical algo
rithms. Hardcover ed., Vol. 2. Reading (MA): Addison-Wesley 
Professional; 1997.

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a 
fast, scalable and user-friendly tool for maximum likelihood 
phylogenetic inference. Bioinformatics. 2019:35(21):4453–4455. 
https://doi.org//10.1093/bioinformatics/btz305.

Le SQ, Gascuel O. An improved general amino acid replacement ma
trix. Mol Biol Evol. 2008:25(7):1307–1320. https://doi.org/10. 
1093/molbev/msn067.

Loewenthal G, Rapoport D, Avram O, Moshe A, Wygoda E, Itzkovitch 
A, Israeli O, Azouri D, Cartwright RA, Mayrose I, et al. A probabil
istic model for indel evolution: differentiating insertions from de
letions. Mol Biol Evol. 2021:38(12):5769–5781. https://doi.org//10. 
1093/molbev/msab266.

Lueckmann J-M, Boelts J, Greenberg D, Goncalves P, Macke J. 
Benchmarking simulation-based inference. In: Banerjee A, Fukumizu 
K, editors, Proceedings of The 24th International Conference on 
Artificial Intelligence and Statistics, Vol. 130 of Proceedings of 
Machine Learning Research; PMLR; 2021. p. 343–351.

Ly-Trong N, Naser-Khdour S, Lanfear R, Minh BQ. Alisim: a fast and 
versatile phylogenetic sequence simulator for the genomic era. 
Mol Biol Evol. 2022:39(5):msac092. https://doi.org/10.1093/ 
molbev/msac092.

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von 
Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods 
for phylogenetic inference in the genomic era. Mol Biol Evol. 
2020:37(5):1530–1534. https://doi.org//10.1093/molbev/msaa015.

Nesterenko L, Boussau B, Jacob L. Phyloformer: towards fast and ac
curate phylogeny estimation with self-attention networks. 
bioRxiv, 2022.

Papamakarios G, Murray I. Fast ϵ-free inference of simulation models 
with Bayesian conditional density estimation. In: Proceedings of 
the 30th international conference on neural information pro
cessing systems, NIPS’16. Barcelona (Spain): Curran Associates 
Inc.; 2016. p. 1036–1044.

Penel S, Arigon A-M, Dufayard J-F, Sertier A-S, Daubin V, Duret L, 
Gouy M, Perrière G. Databases of homologous gene families 

for comparative genomics. BMC Bioinformatics. 2009:10(6): 
1–13. BioMed Central. https://doi.org/10.1186/1471-2105-10-1.

Piel WH, Chan L, Dominus MJ, Ruan J, Vos RA, Tannen V. TreeBASE 
v.2: a database of phylogenetic knowledge. e-BioSphere 2009. 
2009.

Prechelt L. Early stopping–but when? In: Neural networks: tricks of 
the trade. 2nd ed. Berlin, Heidelberg: Springer; 2012. p. 53–67.

Price MN, Dehal PS, Arkin AP. Fasttree: computing large minimum 
evolution trees with profiles instead of a distance matrix. Mol 
Biol Evol. 2009:26(7):1641–1650. https://doi.org//10.1093/molbev/ 
msp077.

Robinson D, Foulds L. Comparison of phylogenetic trees. Math Biosci. 
1981:53(1–2):131–147. https://doi.org//10.1016/0025-5564(81) 
90043-2.
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