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Cell Deconvolution

Cellular heterogeneity in a bulk:

→ refers to the variety of cell types within the bulk,

→ reflects progression of disease state,

→ is a complex mixture signal,

→ is difficult to assess from bulk molecular profiles.

⇒ Cell deconvolution infers relative abundance of cell
types using one or more -omic data [1].
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Dependance with high dimensionnality

For now, we want control on 4 hypotheses of our deconvolution model
based on Ordinary Least Squares optimisation:{
∀𝑖 ∈ ⟦1; 𝑁⟧ 𝑌𝑖 = 𝑋𝛽𝑖 + 𝜀𝑖,
L(𝜀𝑖) = N

(
0, 𝜎2𝐼𝑀

)
.

u.c. for each 𝛽𝑖

{∑𝐾
𝑘=1 𝛽𝑖𝑘 = 1,

0 ≤ 𝛽𝑖𝑘 ≤ 1.
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Leads to a variety of

algorithmic solutions.

Natural way to deal with dependant data is by using a multivariate
normal law. However, inferring a conditional correlation matrix with
∼ 20000 or ∼ 800000 features (gene/probe) is time consuming and quite
inoperable for simulation with this approach.

Benchmark dataset

A benchmark dataset generated in vitro is ac-
cessible (from COMETH project [2]) with:

� 21104 gene expressions,

�∼ 800000 CpG probes methylation,

� 𝑁 = 30 independent bulk,

�𝐾 = 9 cell types commonly found in
PDAC.

The true proportions of each cell type in each bulk are controlled and therefore
can be assumed to be known.

Moreover, both omics have significative conditional two by two correlations between features:

We propose two different simulation methodologies for dependent data following specific marginals distribution functions:

Copulas

Thanks to Sklar theorem [3], Copulas:

� defines how the joint behavior of multiple ran-
dom variables is structured, regardless of their
individual distributions,

� allow us to characterise various complex
forms of dependence, such as non-linear or tail
dependence between multiple variables.

Marginal

Joint distribution

Generation procedure

→Copulas generate dependant uniform random vectors (𝑈1, . . . ,𝑈𝑀)
This allows us to see those uniform values as quantile. Then we only have to define or
infer the marginal law of each feature to simulate any data types, thanks to the
inversion of the Cumulative Distribution Function:(

𝑋1, . . . , 𝑋𝑀
)
=
(
𝐹−11 (𝑈1), . . . , 𝐹−1𝑀 (𝑈𝑀)

)
,

where here 𝑋 𝑗 represents values for the specific feature 𝑗 (gene/probe) and 𝐹𝑗 is the
marginal distribution function defined or inferred for the specific feature 𝑗 (gene/probe)
with its specific parameter which can change for each feature.

Bivariate sample from a

independant copula Clayton copula

Add for both example same specific marginals

independant copula Clayton copula

Factor model

Based on a low-rank factor approximation [4] of 𝑅 the square conditional correlation
matrix between features:

𝑅 = Ψ + 𝐵𝐵′︸︷︷︸ ,
Specific variance

Shared variance

�Ψ ∈M𝑀,𝑀 (R) diagonal,
� 𝐵 ∈M𝑀,𝑞(R),

where 1 ⩽ 𝑞 < 𝑁 is the number of factors chosen. Matrix 𝐵 can be seen as a matrix of
loadings for each feature on each factor.

Generation procedure

𝜀𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = N (0,Ψ) + 𝐵 ×N
(
0, 𝐼𝑞

)
, 𝜀𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 ∈M𝑀,𝑁 (R).

Since Ψ and 𝐵 result from a decomposition of a correlation matrix, each line of 𝜀𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
is centered and scaled residuals.

𝜀𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 ←
(
𝜀𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 × 𝜎̂ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

)
+ 𝜇 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

The procedure mimics the behaviour of the data provided.

Results

Distributions of simulated conditionnal
correlations by copula:

Distributions of simulated conditionnal
correlations by factor model:

Score of NNLS, a basic deconvolution al-
gorithm with late omics integration, on:
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Perspectives

Both methodologies:

→ are computationally fast,

→ reproduce and make explicit hypothesis on
different levels of complexity (dependen-
cies, intrinsic nature of data, . . . ),

→ need at least one in vivo or in vitro dataset
with known and controlled ground
truth, however more datasets are needed to
avoid overfitted simulation procedure.

Ongoing works:

Here, Copulas and factor model methodology capture dependance structure empirically. We
focus now on defining controlled parameters for each approach to simulate different scenarios.
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