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Abstract

Understanding of heat transport in nanodevices is a challenging issue for
several new technologies. It requires specific modelling approaches and ded-
icated simulation tools. Yet the latter are not numerous, and are often
adapted to some “classic” materials or restricted to simple geometries (i.e.
thin films, nanowires). Looking to address this deficiency, the present work
brings Nano-κ, a Python code to simulate the phonon transport in nano
and micro scale devices from ab-initio phonon data. The code has person-
alizing capabilities that allow to simulate several geometries and materials,
offering insights of temperature distribution, heat flux, thermal conductivity,
and mode contribution to energy transport. In the present work, a detailed
description of the physical model implementation is provided and several
simulation test cases are discussed. Nano-κ provides reliable predictions of
the thermal conductivity in different materials, and is able to correctly pre-
dict the relative effect of size, temperature, and surface roughness on thermal
transport properties.

Keywords: Monte Carlo, phonon transport, ab-initio, nanoscale heat
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Programming language: Python
Nature of problem: The estimation of heat conduction at nanoscales depends on the
estimation of phonon transport, since Fourier’s law may not be valid in these situ-
ations. The phonon transport is described by the Boltzmann Transport Equation
(BTE), that needs to be solved for each phonon mode separately, while estimat-
ing temperature distributions that depends on all modes at the same time. The
phonon data can be retrieved from ab-initio simulations. Some BTE calculations
have been already done through the years for simple geometries, but there is no
publicly available code that allows enough flexibility to be used by the scientific
community.
Solution method: Some previous works [1-3] have had success in applying the
Monte Carlo method to solve the BTE for phonon transport. In the more re-
cent works, the ab-initio data is retrieved from density functional theory (DFT)
simulations [4-5]. Nano-κ is a Python code built on the same theoretical basis of
previous developments, but adds more flexibility so that it can be open for public
research use.

References

[1] David Lacroix, Karl Joulain, and Denis Lemonnier. Monte carlo transient
phonon transport in silicon and germanium at nanoscales. Phys. Rev. B,
72:064305, Aug 2005. doi: 10.1103/PhysRevB.72.064305
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1. Introduction

Energy efficiency is an important concern in almost every field involving
energy conversion or energy transport. This is particularly true in nanoscale
applications, especially in a world walking towards general digitalization, au-
tomation and downsizing. To fulfill this challenge, reliable tools are necessary
to simulate and predict the thermal behaviour of nanodevices.

Nanoengineered devices and nanostructured materials have gained space
in several fields, where different applications take advantage of their outstand-
ing properties. Medicine, electronics, solar cells and waste heat management
[5, 29, 19] are only a few examples. Understanding the thermal behaviour
and operational limits of these devices ensures their safety and reliability,
while preserving a compact design. The modelling of this thermal control,
however, cannot be done by the usual macroscale approach, since Fourier’s
law may no longer be valid at scales smaller than a micrometer or for very
low temperatures. In this case, the transport of phonons (quanta of lattice
vibration) needs to be simulated instead of the total energy transport. The
equation to be solved in this case is the Boltzmann transport equation (BTE),
which describes the spatial-temporal distribution of the average number of
phonons for each vibration mode of the crystal.

In order to simulate phonon transport in materials, one needs to know
which frequencies are involved and consequently how much energy they can
carry, as well as other related parameters. There are few methods able to
predict the possible vibrational modes of a given crystalline material, for
example based on the Density Functional Theory (DFT), as described by
Togo et al. [27]. By knowing the atomic structure, the dispersion relations,
phonon relaxation times and propagation velocities can be calculated.

To solve the BTE in nano and microstructures, the Monte Carlo method
was used by Lacroix et al. [17], approximating the acoustic branches of Si and
Ge using isotropic models and using semi-analytic lifetimes according to the
M.G. Holland’s formalism [14]. Then, in a more detailed approach, Chaput
et al. [6] made estimations of thermal conductivity for cubic and hexagonal
Si thin films with different thicknesses, also using the Monte Carlo method,
this time combined with ab-initio data. Extending the latter work, Davier
et al. [10] were able to model phonon transport also for rough nanofilms in
the in-plane direction and across rough nanowires. Other approaches have
also been implemented [26, 24].

The present work aims to further develop the method by using the com-
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bination of Monte Carlo method and ab-initio data from previous research
inside a framework that allows the user to simulate any geometry or semi-
conducting material. This flexibility aims to test new geometries and new
materials to further improve and optimise nanodevices for relevant applica-
tions.

The computer code we describe in the following, Nano-κ, will be able
to solve the Boltzmann equation, and compute heat fluxes, in systems with
geometries ranging from tens of nanometers to microns. Of course, at very
small length scale, the validity of our description, being semi-classical, must
be considered carefully, since quantum effects will inevitably become impor-
tant as the size is reduced. The limit of validity of the Boltzmann equation
may often be found in the nanometer range.

2. Methodology

In this section we will describe the methodology implemented in Nano-κ,
pronounced ”nanokappa”. Nano-κ is a computational code written in Python
that aims to solve the Boltzmann Transport Equation (BTE) for phonons
with the Monte Carlo method. The Nano-κ code is open source and available
in its GitHub repository https://github.com/brunohs1993/Nanokappa. In
the following subsections, the detailed implementation of the code and all
related equations and models used as inputs and for the post-processing are
discussed. The organization, its structure and the general flowchart are also
presented. Additional information and examples can also be found in the
GitHub repository.

2.1. Models and equations

The transport of phonons can be described mathematically by the Boltz-
mann Transport Equation (BTE) (Eq. 1). Each vibrational mode of the
crystal has an associated wavevector k and branch (polarisation) index j. In
this context, the BTE can be expressed for each mode as,

∂nkj

∂t
+∇kωkj · ∇rnkj =

∂nkj

∂t

∣∣∣∣
scat

, (1)

where the occupation number nkj = nkj(r, t) is the average number of
phonons in mode (kj). The number of phonons, at time t, in mode (kj), in
a small volume d3r around point r, with wavevector in the range d3k around
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k is nkjd
3rd3k/(2π)3. ω is the angular frequency, and the sub-index scat

refers to the variation of n due to the scattering of the phonons in mode (kj)
with other phonons (phonon-phonon interactions), or due to other scattering
mechanisms. The symbol ∇k refers to the gradient applied in the reciprocal
space, while ∇r is the gradient in the real space.

The first term in Eq. 1 refers to the local variation of the number of
phonons in time. The gradient of ω in the reciprocal space k is equal to the
group velocity v of that mode,

vkj = ∇kωkj, (2)

which makes the second term the balance of phonon flux due to the phonons
drifting through space. The term on the right hand side of the BTE refers to
the variation due to collisions between phonons. In this work, we only con-
sider phonon-phonon interactions for the scattering, thus transferring energy
between modes due to inherent anharmonicities in the inter-atomic poten-
tials. According to the relaxation time approximation [6], the phonon-phonon
scattering can be modelled as,

∂nkj

∂t

∣∣∣∣
scat

=
n0
kj(T )− nkj

τkj(T )
, (3)

where τ is the relaxation time of the mode and n0 is the number of phonons
of that mode at equilibrium, both of them function of local temperature T .

The number of phonons at equilibrium n0
kj(T ) is given by the Bose-

Einstein distribution,

n0
kj(T ) =

1

exp[~ωkj/kbT ]− 1
, (4)

where ~ is the reduced Planck’s constant and kb is the Boltzmann constant.
The temperature T is defined at equilibrium. However, a local tempera-

ture T (r, t) can be defined assuming a local equilibrium for the occupation
function, and mimicking the equilibrium theory.

At equilibrium, the energy density e is computed summing the contribu-
tions from all phonon modes. If V is the volume of the crystal, N the number
of primitive unit cells of volume V0 in the crystal, containing each Na atoms,
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then

e =
3Na∑
j=1

ˆ
BZ

~ωkj

[
n0
kj(T ) +

1

2

]
d3k

(2π)3
(5a)

=
1

V0N

∑
kj

~ωkj

[
n0
kj(T ) +

1

2

]
(5b)

The BZ subtext indicates an integration performed over the first Brillouin
Zone.

Eq. 5b is a relation of the form e = f(T ). Inverting this relation, T =
f−1(e), the temperature can be obtained for a given energy density. In a
local equilibrium state, this equation can be used locally to compute a local
temperature. Indeed, for a local equilibrium occupation nkj, we compute the
energy density from

e =
3Na∑
j=1

ˆ
BZ

~ωkj

[
nkj +

1

2

]
d3k

(2π)3
, (6)

and obtain the temperature as T = f−1(e), where f−1 is the function ob-
tained for the system in equilibrium.

Practically, during computations, the number of primitive cells in the
crystal, N , which equal the number of wavevectors k within the first Brillouin
zone, cannot be taken to be infinite. Thus, a large finite number is chosen,
and as a consequence the number of wavevectors within the first Brillouin
zone become finite. Those vectors are denoted as

ki, i = 1 · · ·N. (7)

The energy density is then computed as

e =
1

NV0

3Na∑
j=1

N∑
i=1

~ωkij

[
nkij +

1

2

]
. (8)

2.2. Input Ab-initio data

Our calculations use as input data the phonon frequency, group velocities
and lifetimes obtained from ab-initio calculations.
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The phonon frequencies and group velocities, ωkj and vkj, can be com-
puted from lattice dynamics [23], knowing the harmonic part of the inter-
action potential between atoms. The phonon lifetime τkj is calculated with
the many-body perturbation theory [22], knowing the anharmonic part of
the interaction potential. The harmonic and anharmonic part of the interac-
tion potential are represented by harmonic and anharmonic force constants,
which are the second and third derivative of the interaction energy with re-
spect to the atomic displacements. This interaction energy can be computed
quantum mechanically within the framework of Density Functional Theory
(DFT), and the derivatives can be performed numerically from finite dis-
placements, by moving the atoms around their equilibrium positions. This
strategy has recently been implemented within the Phono3py computer code
[27]. For a given bulk material, the results of such calculations are stored in
a HDF5 file, which contains the v, ω and τ(T ) values for each combination
of the band index j, and wavevector k within the irreducible part of the first
Brillouin zone [28]. Those data are used as input for our calculations.

2.3. Geometry setting

The geometry is loaded with the help of the Trimesh Python module
[11]. It can be input as a triangular mesh from an STL file or created with
a keyword accepted by Nano-κ, such as box, cylinder or zigzag, along
with the corresponding parameters (length, radius, etc.). If the user wishes
to generate its own STL file to be loaded, it can be done by using Nano-
κ’s Mesh class capabilities. A Mesh object can be created from a list of
vertices and faces, pre-processed, visualised and exported as an ASCII STL
file. Alternatively, any external software such as FreeCAD [16] or Blender
[8] can be used to generate the desired mesh. Figure 1 shows the different
results for different geometric input parameters.

In Nano-κ, a triangle defined by three vertices is called a “face”, while
a group of adjacent and coplanar triangles is called a “facet”. This nomen-
clature is inherited from Trimesh vernacular, despite Nano-κ using its own
dedicated Mesh class in the calculation. One important difference to notice is
that Trimesh does not consider facets composed of one single triangle, while
Nano-κ Mesh object does.

The main mesh is imported and processed to get all relevant geometric
properties (normals, surface areas, edges, boundaries, etc.). In order to be
consistent with the units from the ab-initio data, all the positions in the mesh
are assumed to be expressed in angstroms [Å], the standard unit of length
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Figure 1: Examples of geometries that can be simulated: box, cylinder (with custom
number of sides), and custom geometries.

of the code. To minimize possible numerical errors, all vertex positions are
rounded to the 10−1 Å. Given that the scale of the simulations go from the
order of the tens of nanometers (10 nm = 102 Å) to tens of micrometers
(10 μm = 105 Å) the effect of this rounding on the results is considered as
insignificant.

After the mesh is processed, the boundary conditions (BC) are assigned.
The BC are imposed to a whole facet of the geometry. The current code
supports three types of boundary conditions:

• T - Temperature: Constant temperature on the facet. This is done
by assuming that the facet is in contact with a thermal reservoir, at
equilibrium, at the prescribed temperature, i.e. a black body. The
phonon population inside the reservoir is therefore distributed accord-
ing to the Bose-Einstein distribution, Eq. 4. These phonons are injected
from the reservoir into the domain throughout the simulation. The rate
of injection is function of their group velocity and direction in relation
to the normal of the facet. Every particle that leaves the domain into
a reservoir is completely absorbed and has no effect on the reservoir’s
temperature. See Section 2.4.2 for a detailed expression of the injection
rate.

• P - Periodic: Periodic boundary condition allows to simulate objects
which have a periodicity. Examples are shown in Fig. 2, where a period
is repeated in 1 or 2 directions (Nano-κ accepts periodicities in all 3
directions). For the BC to be properly set, the equivalent facets of the
period need to have parallel normals pointing in opposite directions.
The phonons that leave the period through one of these facets are then
translated to the respective equivalent one, keeping the same position
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relative to the vertices of the facet. It is important to note that orienta-
tion matters because modes properties can change with the orientation,
therefore the restriction on parallel normals.

• R - Roughness: a roughness can be imposed to the boundaries of
the geometry to model the reflection of phonons back to the domain.
The measure of roughness used in Nano-κ is defined by Ziman [30] by
assuming that the deviation of any point on the surface from its mean
plane obeys a normal distribution. The roughness η can then be taken
as standard deviation of this distribution. Figure 3 exemplifies the
definition. For the Ziman model, the higher the roughness, the more
diffuse are the reflections, as it will be seen in Section 2.4.5.

Figure 2: Examples of periodic geometries along one or two directions. Nano-κ accepts
periodicity in all 3 directions. The red and blue lines represent the imposition of hot
and cold temperatures, respectively. All the remaining non-periodic faces should have an
associated roughness as BC.

Figure 3: Illustration of the definition of roughness η as described by Ziman [30].
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The last part of the geometry processing is to divide the domain into
subvolumes, such that it is possible to estimate the local temperature within
each region in the domain. The code uses a method of “reference points” in
order to define in which subvolume each of the particles are contained. These
“reference points” are points distributed in the bounding box of the geometry
in different ways according to the subvolume type defined by the user (slice,
grid or voronoi), which will be described next. Each reference point rep-
resents a subvolume and is indexed as subvolume 0, 1, 2, etc. A particle in
the domain is classified to a given subvolume based on its proximity to the
reference points. For instance, if in a given moment a particle is closest to
the reference point 2, it will be classified as being contained in subvolume 2,
and its energy will be used to calculate T in that region. Over time, the par-
ticle will drift and approach another reference point, transporting its energy
to other subvolume. To do that efficiently, a nearest-neighbour interpolator
is defined, using the position of the particles as input and returning their
respective subvolume indices.

Three types of subvolume can be set:

• Slice: equidistant slicing of the domain along a given direction (x, y or
z). This is useful to calculate thermal conductivity of simple geometries
according one dimensional settings, such as thin films and nanowires;

• Grid: consecutive slicing in one, two or three directions. Depending of
the geometry, some of the resulting reference points will be located out
of the domain or will be isolated from other reference points. These
are removed automatically. This type of subdivision can be used to
detect wall effects or to properly divide a simple geometry with multi-
directional heat flux, such as a T-shaped or cross-shaped geometry.

• Voronoi: for more complex geometries (with holes, inclusions, sharp
corners), when none of the previous options are suitable, there is a third
option that iteratively creates a Voronoi diagram of the geometry. The
division is done the following way:

1. Uniformly sample the geometry’s volume, with samples positions
rs;

2. Generate random reference points for the subvolumes, with posi-
tions rsv;

3. Classify each rs according to the nearest rsv;
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4. Update each rsv to the mean position of the correspondent rs (in
other words, the current “center of mass” of each subvolume);

5. If there is no change, refine the volume sampling by increasing the
number of samples;

6. When the number of samples is at the maximum allowed value
and there is no change when updating rsv, the subvolumes are
set.

Figure 4 exemplifies in 2D what the algorithm does in three dimensions.

Figure 4: Two-dimensional exemplification of the algorithm to set the Voronöı subvolumes.
The red dots represent the current rsv, which will be updated to the black dots for the
next iteration until there is no more change (on the right).

Once the geometry processing is done, the geometry and the material
data are combined in the Monte Carlo approach.

2.4. Monte Carlo approach

The Monte Carlo simulation calculates the time evolution of particles
through the domain defined by the user. In Nano-κ, each particle represents
a wave-packet associated to a vibrational mode (kj), as described in [6].
Consequently, each particle in the simulation carries information about the
current state of that vibrational mode at the position it finds itself located:
frequency, number of phonons, local temperature, etc.

2.4.1. Initialisation

At the beginning of the simulation, the system is initialised from an initial
temperature profile and the phonon distribution is computed using the Bose-
Einstein distribution (Eq. 4). The assumed temperature profile can be set
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as a step function, an uniform temperature, a linear profile or customised by
the users as they wish.

Once the initialization is done, the phonon distribution evolves in time
according to the Boltzmann equation (Eq. 1). It is however not directly the
dynamics of phonons that we simulate during our calculations but rather the
dynamics of particles. Indeed, to every mode kj, we associate Nps wave-
packets per subvolume, as shown by Chaput et al. [6], and propagate them
along the characteristic lines of the Boltzmann equation. Those wave-packets
contains the phonons. When a single wave-packet is used to represent a
phonon mode kj, considering a volume Vs at the equilibrium temperature T ,
it is shown by Chaput et al. [6] that the number of phonons contained in this
wave-packet is Vs

V0N
n0
kj(T ). Therefore if we use Nps wave-packets to represent

that mode, each wave-packet will contain Vs
V0NNps

n0
kj(T ) phonons. Increasing

Nps allows to reach better statistics, naturally it has a detrimental effect on
simulation time as more particles have to be considered.

2.4.2. Injection of particles

To impose a constant temperature T on a facet, phonons are injected into
the domain from a reservoir at all times. The wall emits and absorbs phonons
as a black body. Any phonon reaching the facet is absorbed, and phonons
are emitted according to the Bose-Einstein distribution. The number of
phonons, per unit volume at a temperature T is 1

V0N

∑
kj n

0
kj(Tf ). Therefore

the number of phonon entering the volume during the time ∆t from a facet
with surface A and unit outwards normal vector n is

N(T ) =
A∆t

V0N

∑
kj

n0
kj(T )|vkj · n|θ(−vkj · n) (9)

where θ is the Heaviside step function. The number of particles of mode kj
to be injected though the surface A during the time ∆t is therefore

Rkj = A∆t
Nps

Vs
|vkj · n|θ(−vkj · n)

= A∆t
ρ

3NaN
|vkj · n|θ(−vkj · n) (10)

where Vs is the volume of the subvolume containing the facet and ρ = 3NaNNps
Vs

the density of particles in that subvolume. We can also compute the density of
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particle from the total number of particles in the system, Np = 3NaN
∑

sNps,

and the total volume, V =
∑

s Vs, ρ = Np
V

.
The quantity Rkj indicates how many particles of mode kj have to be

injected every timestep. For example, if Rkj = 2.5 particles/timestep, it
means that every timestep 2 particles of mode kj are necessarily added to
the domain, and an additional third particle have a 50% chance of being
generated. This is calculated by comparing a random number generated
from a uniform distribution to the non-integer part of Rkj. If it the random
number is smaller, the additional particle is added to the system.

After the entering modes are defined the incoming particles are randomly
generated at the facet of the domain. A random number in the interval [0,
1) defines how much of the timestep the particle has drifted before entering
the geometry. This ensures a truly random distribution by not letting every
new particle start from the same point, hence emulating an external black
body.

2.4.3. Drifting and local temperature

Every particle drifts through the domain with the group velocity of its
corresponding mode. As shown by Chaput et al. [6], along the characteristic
lines of the Boltzmann equation, at each iteration, the position ri of a particle
i is updated according to

rki = rk−1
i + vi∆t, i = 1, . . . , Np, (11)

where rki is the position of particle i at timestep k, and vi is the group
velocity of that particle. After drifting, some particles will have changed of
subvolumes, transferring energy between them. This will cause a variation
on the local energy density, and consequently on the local temperature Ts of
the subvolume s. The local energy density in subvolume s is calculated using
Eq. 5b

es =
1

V0N

∑
kj

~ωkj

[
n0
kj(Tref ) +

1

2

]
+

1

V0N

∑
kj

~ωkjδnkj(Ts)

= eref +
1

Vs

∑
kj

Nps∑
p=1

~ωkj

(
Vs
δnkj(Ts)

V0NNps

)

= eref +
1

Vs

3NaNNps∑
i=1

~ωiNi (12)
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where ~ωi is the energy of the wave-packet i, and Ni the number of phonons
in this wave-packet, above the reference temperature,

Ni = Vs
δnkj(Ts)

V0NNps

. (13)

In this equation, the number of particles per mode, Nps, may or may not
be given directly as input by the user. If it is not given, the total number of
particles in the system is known and Nps is computed as Nps = Np,sv

3NaN
, where

Np,sv is the instantaneous number of particles in the subsystem.
The total energy summation uses a reference temperature Tref , with a

corresponding reference energy density eref . This reference energy density
can be calculated from a fixed T value (e.g. 300 K) or using the local tem-
perature Ts, varying according to the position of the particle. This approach
considers that the local energy variation depends on the deviation of each
mode’s occupation from Tref :

δnkj = nkj − n0
kj(Tref ) (14)

This helps the Monte Carlo calculations to have better statistics due to its
random nature and decreased population. Using the absolute value can cause
a high variation depending on the number of particles, and a very large num-
ber of particles would require an infeasible amount of computational time.
The closer Tref is from the local temperature, smaller is δn and more stable
are the calculations. With the local energy density, the local temperature Ts
can be estimated.

2.4.4. Time convergence of the phonon population

As shown by Chaput et al. [6], along the characteristic lines r(t) = r(t0)+
vkj(t− t0) the Boltzmann equation can be written as

dnkj(t)

dt
+

1

τkj(t)
nkj(t) =

n0
kj(t)

τkj(t)
. (15)

In the above equation the time dependence of each factor has been made
explicit. In the Boltzmann equation, the phonon population is nkj(r, t),
but along the characteristic lines it becomes nkj(r(t), t) ≡ nkj(t). The time
dependence of the Bose-Einstein distribution and lifetime are obtained in-
directly through the temperature, n0

kj(T (r(t))) ≡ n0
kj(t) and τkj(T (r(t))) ≡

τkj(t).
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To solve Eq. 15 numerically, the time derivative is usually approximated
using first order finite differences considering a small time step ∆t after a
current time t0, such as we get

nkj(t0 + ∆t)− nkj(t0)

δt
+

1

τkj(t0)
nkj(t0) =

n0
kj(t0)

τkj(t0)
, (16)

or

nkj(t0 + ∆t) = nkj(t0) +
∆t

τkj(t0)
(n0

kj(t0)− nkj(t0)). (17)

This equation allows to evaluate the phonon population at the next time step.
However it assumes that n0

kj and τkj have little variation in one timestep,
virtually assuming a constant temperature inside this interval. This method
works well if ∆t � τkj, but can lead to instability problems as ∆t −→ 2τkj,
diverging the calculations beyond this limit. It clearly imposes a cap on
the timestep that can be chosen by the user even if they wish to do quick
approximate calculations and are not concerned with high precision.

The change of the phonon population in a time step ∆t can also be
obtained after having integrated the Boltzmann equation. Indeed, Eq. 15
can be solved using the integrating factor

µkj(t) = e
´ t ds

τkj(s) =⇒ dµkj(t)

dt
=
µkj(t)

τkj(t)
. (18)

We obtain

µkj(t)
dnkj(t)

dt
+
µkj(t)

τkj(t)
nkj(t) = µkj(t)

n0
kj(t)

τkj(t)
(19)

or, integrating between t0 and t0 + ∆t,

nkj(t0 + ∆t) =
µkj(t0)

µkj(t0 + ∆t)
nkj(t0) +

ˆ t0+∆t

t0

µkj(t)

µkj(t0 + ∆t)

n0
kj(t)

τkj(t)
. (20)

To obtain Eq. 17, the lifetime and the Bose-Einstein distribution were
assumed to be constant in the interval between t0 and t0 + ∆t. If we use the

same approximation here, then µkj(t) = e
t−t0
τkj(t0) and we obtain

nkj(t0 + ∆t) = nkj(t0)e
− ∆t
τkj(t0) + n0

kj(t0)(1− e−
∆t

τkj(t0) ). (21)
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In the limit of small time step, Eq. 17 is recovered from Eq. 21 at linear
order in ∆t. Eq. 21 is the only discretisation obtained from the integrating
factor method we have tested, but Eq. 20 allows, in principle, to obtain
better ones.

Figure 5 shows the comparison between the schemes given by Eq. 17
and Eq. 21. In order to compare them, an arbitrary linear profile of n0 was
chosen. This profile can approximate, in fairly high temperatures, the n0

profile a particle would encounter in a linearly decaying temperature field.
The relaxation time τ is considered to be constant. The initial occupation
of the particle, n(t = 0), was arbitrarily set to 2, and will approximate n0 in
the long time limit. To calculate this evolution, each plot applies the linear
and the exponential schemes with different values of τ , for a fixed dt = 1. It
is clear that, for small values of dt/τ , both methods are almost equivalent,
becoming equal as dt/τ −→ 0. When dt/τ > 1, instabilities start to arise
with the linear scheme, and from dt/τ ≥ 2, they are unsustainable, leading
to divergence. The exponential scheme, on the contrary, keeps itself stable
despite the increase of dt/τ . It is also important to note that the results
also vary with timestep size for a fixed τ . The smaller is dt, the closer are
both schemes. A smaller timestep also helps to stabilise the calculation,
but increases the time needed. The effects of both schemes on the thermal
conductivity will be discussed in Section 3.1.4.

Figure 5: Comparison of the linear scheme used in previous works with the exponential
scheme used in the present study.
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2.4.5. Boundary scattering

When a phonon is scattered by a surface, it undergoes a transition from
a mode kj to a mode k′j′. Quantum mechanically, the probability of this
transition could be computed using the Fermi golden rule, or from the t-
matrix, the boundary being seen as a perturbation. However, in our ap-
proach, phonons are modelled using wave-packets, and therefore scattering
on surfaces should also be described based on those quantities. A common
approach is to introduce specular scattering. In such process, a particle ap-
proaches the surface in a mode kj, is scattered, and then emerges from the
surface in a mode k′j′ fulfilling the equations

ωk′j′ = ωkj, (22)

vk′j′ = vkj − 2(vkj · n)n, (23)

where n is the outward normal unit vector to the surface. In such process the
energy is conserved, and the velocity vector is reflected. We assume there is
only one such mode k′j′ to fulfil those conditions. A transition which is not
specular is called diffuse.

Based on this definition, we define a scattering model to compute the
probability P (kj → k′j′) for a particle to make a transition from mode kj
to mode k′j′. This particle can reach the mode k′j′ though a specular or a
diffuse transition, therefore

P (kj → k′j′) = P S(kj → k′j′) + PD(kj → k′j′), (24)

where P S(kj → k′j′) is the probability for a particle in mode kj to make a
specular transition to mode k′j′ and PD(kj → k′j′) is the probability for a
particle in mode kj to reach that mode through a diffuse scattering.

If we call N>
kj the number of particles in mode kj which will be scattered

by the surface A during ∆t,

N>
kj = ρmA∆t(vkj · n)θ(vkj · n), (25)

where ρm is the density of particle per mode, assumed to be the same for all
modes, and N>S

kj the fraction of those particles for which the scattering will
be specular, we have

P S(kj → k′j′) =
N>S

kj

N>
kj

≡ pkj. (26)
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Here and in the following we use the superscript > to refer to quantities
computed before the scattering, because in that case the velocity of the
particles fulfill vkj · n > 0. For quantities computed after the scattering on
the surface we use < because then vkj ·n < 0. The above equation defines the
specularity of the initial mode, pkj, which is a parameter of the model. In the
limit of long wavelengths, Ziman [30] has shown that pkj could be expressed
using the standard deviation η of the surface from a reference plane

pkj = exp[−(2‖k‖η cos θkj)
2], (27)

where θkj is the angle of incidence of the particle on the facet,

cos θkj =
vkj · n
‖vkj‖

. (28)

The number of particles in mode kj for which the scattering will be
diffuse is N>D

kj = N>
kj −N>S

kj , and we call N<D
k′j′ the number of particles that

end up in mode k′j′ from a diffuse scattering from any possible incoming
mode. N<D =

∑
k′j′ N

<D
k′j′ is therefore the total number of particles that had

a diffuse scattering. From those definitions we obtain

PD(kj → k′j′) = (1− pkj)
N<D

k′j′

N<D
. (29)

N<D
k′j′ is obtained from the following argument: the number of particles before

and after the collision is the same, N> = N>S +N>D = N< = N<S +N<D.
Moreover, the particle specularly scattered are in one to one correspondence,
through Eqs. 22 and 23, before and after the collision with the surface, there-
fore N>S

kj = N<S
k′j′ and N>S = N<S. This gives N>D = N<D, the number of

particles to have diffused scattering is the same before and after the collision.
N>D is easily computed as

N>D =
∑
kj

N>D
kj =

∑
kj

(1− pkj)N>
kj =

∑
kj

(1− pkj)ρmA∆tvkj · nθ(vkj · n).

(30)

In the above equation each mode kj, fulfilling vkj ·n > 0, is in one to one
correspondence with its specular image denoted k′j′, for which Eq. 23 gives
vk′j′ · n = −vkj · n. Notice that the conservation of the number of scattered
particles, N>S

kj = N<S
k′j′ , impose for Eq. 23 to be written in term of the group

velocity, and not wavevectors, as it is sometimes done.
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We obtain

N>D = −
∑
k′j′

(1− pkj)ρmA∆tvk′j′ · nθ(−vk′j′ · n) (31)

and equating this with N<D =
∑

k′j′ N
<D
k′j′ suggest the identification

N<D
k′j′ = −(1− pkj)ρmA∆tvk′j′ · nθ(−vk′j′ · n). (32)

This equation refer to the state kj through pkj. Therefore even if particles are
diffusely scattered into state k′j′, they are nevertheless seen as the specular
image of particles with an initial mode kj which undergo a diffuse scattering
with probability 1 − pkj. As a consequence N>

kj = N<
k′j′ , the number of

particles in specularly connected modes is conserved. This strategy allows
to completely define the scattering in term of the specularity parameter pkj.
We obtain finally

PD(kj → k′j′) = (1− pkj)
(1− pkj)vk′j′ · nθ(−vk′j′ · n)∑
k′j′(1− pkj)vk′j′ · nθ(−vk′j′ · n)

. (33)

The scattering model given by Eqs. 24, 26 and 29, is easily translated
algorithmically, and implemented in the following way: at first a random
number r is drawn from a uniform distribution in [0, 1[. If r < pkj the
scattering is specular and k′j′ is computed from Eqs. 22 and 23. Otherwise,
the scattering is diffuse and k′j′ is drawn from the probability

P =
(1− pkj)vk′j′ · nθ(−vk′j′ · n)∑
k′j′(1− pkj)vk′j′ · nθ(−vk′j′ · n)

. (34)

The population of this newly determined mode is obtained from the Bose-
Einstein distribution at the local temperature, n0

k′j′(T ).
For a particle at position r, the position of its collision, rc, on a surface is

obtained using that rc − r ∝ v and n · (rc − ro) = 0, where v is the velocity
of the particle and ro is any point of the surface used as its plane origin.
This gives rc = r + [(ro− r) ·n]/[v ·n]v. From this, the number of timesteps

Nt of duration ∆t until the collision can be calculated as Nt = ‖rc−r‖
‖v‖∆t . The

collision position rc for each particle is calculated for every facet and, for
the facets where Nt ≥ 0, converted to the barycentric coordinates for the
triangles that compose that facet. The rc that is kept as the true one is that
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with minimum positive Nt that has all barycentric coordinates between 0
and 1 for a triangle. Figure 6 shows an illustration of the collision detection
for a single particle. This allows to complete the procedure for boundary
scattering described as follows:

1. Detect true rc and Nt . Update Nt every iteration by subtracting 1;

2. When Nt ≤ 0, rewind the particle to the collision position rc, and
compute the time t̃ left to the particle to complete the time step;

3. Draw a random number and compare it with pkj;

4. Assign a new mode k′j′ to the particle for specular or diffuse scattering;

5. Calculate the drift for the remaining time t̃ in the timestep (Eq. 11);

6. If the particle collides again, repeat the procedure.

The iteration is concluded and a new iteration starts. To sum up the
whole process, particles are added or removed by the reservoirs, drift through
the domain (Eq. 11), energy density is updated (Eq. 8), phonon-phonon scat-
tering and boundary reflections occur. Over time the system reaches steady
state, and the temperature distribution, heat flux, and thermal conductivity
of the nano-component can be analysed.

2.4.6. Thermal conductivity

The thermal conductivity κ can be estimated globally for the total geom-
etry, or locally for each of its subvolumes, by applying Fourier’s law in the
direction of the temperature gradient of interest.

The global thermal conductivity can be estimated for sliced geometries
only, since they have a defined temperature gradient, and hence a direction in
which κ can be analysed. The total temperature gradient is imposed, consid-
ering each reservoir as one extra slice, and the global heat flux is calculated
considering all particles in the geometry,

Φglobal =
1

Np/(3NaN)

1

V0N

Np∑
i=1

~ωiδnivi (35)

where Np is the instantaneous number of particles in the domain. This gives

κglobal = − r2 − r1

T2 − T1

·Φglobal (36)

where rs and Ts are the position and temperature of the reservoir number s.
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Figure 6: Exemplification of the collision detection process considering two crossing facets.
The algorithm calculates the intersection of the path on both planes, rc,1 and rc,2. The
former is located out of bounds of triangles 1 and 2, and is therefore discarded. The latter
is located within bounds of triangles 3 and 4, and has valid barycentric coordinates for
triangle 3. This validates the collision on that facet.

However, since Nps is the number of particle per mode in subvolume s,
we have

Np

3NaN
=
∑
s

Nps. (37)

This gives

Φglobal =
1∑
sNps

1

V0N

Np∑
i=1

~ωiδnivi (38)

=
∑
s

Vs
V

( 1

Nps

1

V0N

∑
i∈s

~ωiδnivi
)

(39)

=
∑
s

Vs
V

Φs (40)

where we have defined the local heat flux in the subvolume s,

Φs =
1

Nps

1

V0N

3NNaNps∑
i=1

~ωiδnivi. (41)
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A local thermal conductivity can then be calculated in two ways. If the
geometry is sliced, then κs, the thermal conductivity in subvolume s can
be estimated by considering the local heat flux in the subvolume s and es-
timating the local temperature gradient from finite differences between the
adjacent subvolumes, denoted as s− 1 and s+ 1. This gives

κs = − rs+1 − rs−1

Ts+1 − Ts−1

·Φs. (42)

However, if the subvolumes are generated from a grid or Voronoi poly-
hedra, then a local thermal conductivity is calculated in between each two
subvolumes, denoted as r and s, by taking the average heat flux and the
temperature gradient between them. This gives

κrs = − rs − rr
Ts − Tr

· Φr + Φs

2
. (43)

and we say that κrs is the thermal conductivity along the connection between
r and s.

2.4.7. Errors, convergence detection and simulation ending

To check the convergence of a calculation, we can monitor several quan-
tities,

• The temperature in each subvolume,

• The heat flux in each subvolume in x, y and z directions,

• The thermal conductivity in each subvolume or along a connection,

• The energy balance in each reservoir.

Every 100 iterations the errors εi are calculated for each quantity i. A
number of data-points defined by the parameter --n mean is used in the
calculation, each data-point being 10 timesteps apart from the previous. The
mean µi and standard deviation σi over time are taken. These values are the
ones shown in profile plots and in the value of global thermal conductivity.
The individual error εi is calculated as the relative change from the previous
mean value:

εi =

∣∣∣∣µk+1
i

µki
− 1

∣∣∣∣ (44)
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To avoid the errors shooting up to infinity, any quantity that contains
0 within the interval [µi − σi, µi + σi] is considered to have εi = 0. The
maximum individual error of any quantity is considered as the global error
ε.

It is the user who defines how low ε should be, by setting the parameter
--conv crit. Two values shall be passed: the first being the desired ε and
the second value being the number of consecutive checks that shall stay under
the desired maximum. If this is achieved, the simulation is considered to have
converged. The stochastic nature of Monte Carlo does not allow errors as low
as deterministic methods unless a very large number of particles are used,
which is usually impractical. Usual ε values are in the order of 1%, which
allows for fair uncertainty and reasonable execution time.

The simulation can also be interrupted by number of iterations (--iterations)
or by time limit (--max sim time). Whenever one of these conditions is
reached first, the simulation will be interrupted and results will be post-
processed.

2.5. Code structure

2.5.1. Organization

The code organises the relevant information into six classes for better
compartmentalisation: Constants, Mesh, Geometry, Phonon, Population and
Visualisation. Figure 7 shows the created objects and their relations inside
the code, and Fig. 8 shows a flowchart of the algorithm.

• The “Constants class” store all relevant physical constants and conver-
sion factors to be inherited by the requiring classes;

• The “Mesh class” stores the information about a single three-dimensional
triangular mesh.

• The “Geometry class” loads, processes and manages all information
about the relationships among the triangular mesh, the boundary con-
ditions and subvolumes.

• The “Phonon class” loads and processes material data from the ab-
initio simulations and stores the relevant methods to calculate energy
density, relaxation times and interpolate temperature. Each Phonon
object represents a different material.
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Figure 7: Code structure with relationships between objects.

• The “Population” class is where the simulation itself takes place, using
Phonon and Geometry objects as inputs along with additional param-
eters. It needs therefore one single Geometry object and one Phonon
object.

• The “Visualisation class” takes the information from the convergence
files and population object and translates it into figures to be analysed
by the user as the simulation runs. A Visualisation object is created
inside the Population object, and the geometry and phonon objects are
passed on by Population to Visualisation.

The main script, nanokappa.py takes the input parameters defined on
command line or in an external text file and parses them with the “arg-
parse” standard Python module. It then generates objects of the Geometry,
Phonon and Population classes, and iterates the calculation until one of the
termination conditions has been met.
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Figure 8: Nano-κ algorithm flowchart.
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Particle properties are stored sequentially as “Numpy” arrays, so the code
is able to apply vectorised calculations over them. For boundary scattering,
operations are applied on a slice of the arrays corresponding to the concerned
particles, and the new values are then substituted to the main arrays. Typ-
ically, convergence data is stored every 10 iterations. Other data and plots
are updated every 100 iterations.

3. Results and discussions

3.1. Sensitivity studies

In the following, a set of simple cases was run to study the sensitivity
of the algorithm by varying number of particles, the number of subvolumes
and the timestep value, from a reference calculation. Those directly affect
the uncertainty and speed of the calculation. Indeed, the more particles a
simulation uses, the more precise is the result and the longer it takes to
run. This remains a user decision to balance between expected accuracy and
simulation duration.

3.1.1. Reference case

The chosen reference case was set as a 2 µm thick silicon thin film, sub-
mitted to a temperature gradient ∆T = 4 K, where Thot = 302 K and Tcold =
298 K. The domain was sliced into 20 subvolumes and populated with 106

particles in total. The phonon properties computed from DFT simulations
were considered in a Brillouin zone discretised into 31 × 31 × 31 wavevectors.
Considering all 6 branches, acoustic and optical, this totalises 178,746 modes.
The timestep was set to 1 ps, and the number of timesteps was 10,000, simu-
lating the system for 10 ns. The initial temperature profile was set as varying
linearly from Thot to Tcold, and the local temperature was used as reference
for better statistics. The temperature for each particle was estimated by
linearly interpolating between subvolumes. No time limit or maximum error
criterion was imposed. Calculation ends after the 10,000th timestep.

Figure 9 shows the domain used. It was built as a box with 20.000 Å
sides, applying the temperature gradient in the x direction. Despite it being
possible to use shorter lengths in y and z directions to simulate a thin film, a
larger domain decreases the number of boundary scattering calculations for
the same end result, which decreases simulation time.

Figure 10 shows the number of particles in the domain, while Figs. 11
and 12 show respectively the temperature and heat flux evolution in each
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Figure 9: Domain and boundary conditions for the sensitivity study. The points are
the “centroids” of each facet. Blue facets show where are the reservoirs with imposed
temperature. The red facets are the ones with periodic boundary condition, with facet 2
connected to facet 3, and facet 4 to facet 5. The units of the axis are in Angstroms.
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Figure 10: Evolution of the number of particles in the reference case. Left: number
of particles in each subvolume over time. Right: Final profile with mean and standard
deviations.

Figure 11: Evolution of the temperature in the reference case. Left: number of particles
in each subvolume over time. Right: Final profile with mean and standard deviations.

subvolume. The mean values and standard deviations were computed over
the last 20 convergence data-points. In this reference case, initially the 106

particles are equally shared into the 20 domain cells. During the simulation,
these particles move from a cell to another and may exit or enter through
hot and cold black bodies. It clearly appears that this processes does not
induce instabilities as the average number of particles in a slice remains
close to 5.104. Here, the maximum variation of the number of particles in
each subvolume is around 1.5%, from the expected 5.104, and a maximum
variation in the whole domain is less than 0.5% from the expected 1 million.
Considering Fig. 11, the temperature profile in the right plot slightly bends

away from the linear profile predicted by the Fourier regime at macroscale.
This curvature is due to the ballistic transport of the phonons coming from
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Figure 12: Evolution of the heat flux in x, y and z directions in the reference case. Left:
number of particles in each subvolume over time. Right: Final profile with mean and
standard deviations.
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the reservoirs. The deviation can also be seen on the left plot, where the
initial temperature is the linear profile expected by Fourier’s law. This effect
is more pronounced at smaller length scales and lower temperatures. In
the first case, the higher temperature gradient allows phonons to keep a
high deviation from equilibrium distribution n0

kj(T ) as they travel in the
domain, allowing the temperature field to go away from the Fourier regime.
In the second case (low temperature) this leveling happens because of longer
relaxation times which allow phonons to travel farther without giving off
energy. Therefore, the distribution of energy is kept almost constant in the
domain, and consequently the temperature profile.

Since the temperature gradient is applied in the x direction, while periodic
BC are set in y and z directions, the energy carriers flow along x, and thus in
Fig. 12 φy and φz are kept around zero throughout the simulation. The heat
flux φx increases with time in the whole domain, starting from an initial null
value. As the modes transfer energy among each other and the temperature
gradient is adapted, the heat flux profile stabilises in a curved shape. This
shape is due to the ballistic transport on the edges of the system. The higher
temperature gradient at the borders induces a larger heat flux than in the
center.

Figure 13 shows the behaviour of the thermal conductivity during the
simulation. In the top left, the linear temperature gradient from the begin-
ning helps to stabilise the values of κs quickly after simulation start. The
effect of ballistic transport is observed in the thermal conductivity profile in
the top right plot (see Fig. Fig. 12). In agreement with what was observed
for temperature and heat flux spatial variation, direct evaluation of “local”
(i.e. per slice) thermal conductivity is somewhat biased as Fourier’s hypoth-
esis are not fulfilled on the edges of the sample. In this part of the spatial
domain, heat flux is not constant while thermal gradient remains globally the
same. This behaviour vanishes as samples are longer, temperatures higher
or in systems with increased boundary scattering. This is consistent with
the more “diffuse” behaviour expected in the latter situations. Anyway, the
global κ, however, arrives relatively quickly to a steady value, since it is cal-
culated with the fixed boundary temperatures and depends only in the global
heat flux. It means therefore that the final global flux of energy is rapidly
approximated, and is only adjusted as the local temperatures and phonon
distributions arrive to a steady state.

Another important quantity to keep track is the balance of energy in
the system considering wave-packets entering and leaving at blackbody BCs.
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Figure 13: Convergence of thermal conductivity for each subvolume (top) and globally
(bottom).
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Figure 14: Convergence of energy balance and heat flux balance in the domain.

Hence, Fig. 14 (left) shows the energy balance (net sum of carrier’s energy
entering/leaving) on each facet in contact with the hot side (blue curve) and
the cold side (orange curve) reservoirs, while on Fig. 14 (right) is plotted
in which direction this energy is crossing these boundaries considering heat
fluxes. As expected, the global energy balance curve (in black) is kept around
0 eV, since the net energy entering from one reservoir and leaving to the other
is approximately the same for the symmetric configuration. In the present
case, it takes roughly 4000 ps for the system to have achieved steady state.
On the perspective of heat flux, the values of net heat fluxes referring to both
hot and cold reservoirs are positive, since their directions are the same (+x).

3.1.2. Number of subvolumes

The first sensitivity study was done by changing the number of subvol-
umes while keeping the number of particles constant at 106. Because the
number of subvolumes affects the smoothness of ∇T , each number of subvol-
umes was simulated with “linear” and “nearest” value interpolation. In the
“linear” case, temperature profile in the system linearly varies from the center
of a cell to the center of the following cell, allowing to perform Bose-Einstein
and lifetime calculations, that both depends on T , at a temperature close
to the expected one. In the “nearest” case, the temperature profile in the
system is “step-like”, keeping constant T value on the whole cell. Obviously,
increasing the number of subvolumes makes the difference between linear
and steps profiles vanishing. The results of system thermal conductivity are
shown in Fig. 15. The calculated system κ starts very high, it decreases as the
number of subvolumes is increased and stabilizes around 100 W/m ·K. This
value agrees with the literature, as it will be shown in the next section (Sec.
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Figure 15: Variation of thermal conductivity as function of number of subvolumes.
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3.3). The κ overestimation occurs because, with longer slices, the estimation
of temperature is calculated in subvolumes that are too large as compared to
the local equilibrium assumption. This phenomena mostly affects the system
borders where ∇T is steeper. The difference between “linear” and “nearest
value” interpolation is due to what each particle “locally sees” when scatter-
ing. In the “nearest value” interpolation, the temperature is kept constant
inside a subvolume, and particles with short mean free path can easily reach
equilibrium state. This does not happen in the “linear” interpolation, since
the particle is always kept at a distance from the n0(T ) every-time it drifts,
even when it does not change subvolumes. This increases the obtained value
of Φ and, naturally, κ. However, as the number of subvolumes increase,
the two methods get closer to each other. The uncertainties remain stable
around 0.2 W/m ·K, indicating that the number of subvolumes affects more
the mean value than the standard deviation of the result.

3.1.3. Number of particles

Figure 16 shows the results of the sensitivity study with respect to the
number of particles used in the simulation. Two groups of simulations were
run: one with local Tref , that change from cell to cell, and another with
Tref = 300 K. There is no noticeable effect regarding the mean κ value
calculated using each method. The calculated κ is found to be stable for all
simulations, around 103 W/mK.

The major effect can be seen in the standard deviation variation. The
more particles are simulated, the more precise is the estimation of κ, both
locally in each subvolume and globally in the entire domain. For large Np,
the time spent in each iteration increases proportionally, being at the end for
the user to decide the acceptable σκ. Regardless, the calculations with local
Tref has consistently less noise than the simulations with fixed reference, with
an approximate σκ being obtained with 10 to 15 times less particles (note
the log x axis).

3.1.4. Timestep duration

The timestep duration was also varied, with the total simulated time be-
ing kept the same, at 10 ns. Both time discretisation schemes (linear and
exponential) exposed in Section 2.4.4 were compared. The results are shown
in Fig. 17. In this case, the number of data-points used for the average and
standard deviations evaluations must be changed, so that they are calculated
over the same time interval. By doing this, with the exponential scheme, we
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Figure 16: Variation of thermal conductivity as function of number of particles. In the
detail, the variation of the uncertainty with Np.
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can see an upward trend as timestep size increases. This increase is caused
by the longer travelled distance of the phonons in a single timestep, carry-
ing their energy farther without being affected by scattering, which in turn
increases Φ and consequently κ. A more correct estimation of interaction
between phonons is achieved by smaller timesteps. Here, below 1 picosec-
ond, thermal conductivity does not change much. Yet, the simulation time
needed to achieve steady state is inversely proportional to ∆t which can be
an issue in the case of long systems. To tackle this issue, further numerical
developments such as parallelisation are needed.

The results with the linear scheme are also shown in Fig. 17. In the
latter case, the largest timestep that could be applied was 2.5 ps. Above,
the simulations crashed due to the instabilities shown in Section 2.4.4. This
failure in calculations are due to the modes with shorter lifetimes that are the
ones that become unstable first, even if they weakly contribute to the overall
thermal conductivity. On the other hand, the modes with longer relaxation
times are not affected as much by the application of the linear scheme, and
their contribution to κ is kept stable. To conclude on this issue, for materials
with short lifetimes, the maximum dt needs to be reduced accordingly to

Figure 17: Variation of thermal conductivity as function of timestep for each time dis-
cretisation scheme. The instability regions for the linear scheme are highlighted.
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Figure 18: Convergence of local and global thermal conductivity with a constant cold
initial T profile.

ensure convergence and reliability.

3.1.5. Initial conditions

It is also of interest to see whether the initial conditions have any influence
on the final quantities. The main initial condition is the initial temperature
distribution. For example, the simulation can be started with a linear tem-
perature variation between hot and cold baths, or the whole domain can be
set at Tcold as it is done hereafter. Figure 18 shows the convergence of κsv
and κglobal for an initially constant profile as such. In the simulation with
initially constant profile, the temperatures of neighboring subvolumes are
very close at the beginning and, thus, the thermal gradient is small. As a
consequence, as shown in the top left plot, any small variation of ∇T induces
strong fluctuation of the local thermal conductivity until the body is suffi-
ciently heated and energy starts to find its way towards the colder side of
the thin film. Also for this reason, the last subvolume’s thermal conductivity
stabilises much later than the first ones. This differs from the behaviour
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Figure 19: Convergence of energy balance with a constant cold initial T profile.

of the base case, where all thermal conductivities rise together as the heat
flux increases. Comparing the plots at the bottom of each figure (Figs. 13
and 18), it can be seen also that the global κ approaches more quickly its
final value with a linear initial temperature profile condition. Since κglobal is
calculated based on fixed ∆T , it depends only on Φ, which in turn is much
faster adjusted because of the previously established temperature gradient.

The delayed convergence can be observed as well in the energy and heat
flux net balance. Figure 19 (left) shows the energy balance for the constant
cold case. In contrast with the data shown in Fig. 14, the balance of energy
starts high, as the only net energy exchange with the reservoir happens at
the heated side. As time passes and high energy phonons start to reach the
opposite side, the balance approaches zero and stabilises, but only near the
10 ns limit. In other words, based on the convergence of κ and energy balance
alone, the initial linear profile can offer convergence, in a limited number of
timesteps, that is at least half of that needed by the initial cold profile.

Another initial condition that can be set is the constant mean tempera-
ture, in this case 300 K. The behaviour is similar to the constant cold T case,
but the convergence is as faster as the linear case. This happens because the
system is already heated with an overall energy close to the final one, being
only necessary to adjust the phonon distribution to the heat flux.

3.1.6. Final observations

Given these preliminary observations, the following study cases were ran
with the following specifications:

• The number of subvolumes was varied by keeping each subvolume 500 Å
long;
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• The density of particles per length of film or wire was kept the same
by fixing 106 particles for every 2 µm;

• The reference temperature was always set as local;

• The initial temperature profile was set as linear;

• The timestep was 1 ps;

• The average values were taking with 100 timesteps, or 100 ps.

Dimensional parameters such as film thickness or wire diameter were
changed according to the available experimental data.

3.2. Thin films - cross-plane conduction

Several cases of silicon and germanium thin films were simulated to show
the effects of temperature and thickness in thermal conductivity. Figure 20
shows the results for both analyses.

Figure 20: Thermal conductivity of 2 µm thin film as a function of temperature (left);
Thermal conductivity at 300 K of thin film as a function of film thickness variation (right),
for both Si and Ge.

In figure 20 (left) the expected thermal conductivity variations are re-
covered for both Si and Ge. In the present case, 2 µm thin film, thermal
conductivities remain smaller than in the bulk counterparts for temperature
bellow 500 K. Above, our simulation results are in good agreement with
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the literature. This is consistent with the fact that phonon transport is
dominated by phonon-phonon scattering and energy carriers’ mean free path
becomes small. Bellow 500 K size effects matter as the distribution of phonon
mean free path can be larger than the system size. For the coldest temper-
atures, the relaxation time of phonons is greatly increased. If the distance
between thermal reservoirs is short enough, there will be a point where the
ballistic transfer between reservoirs will become more important and thermal
conductivity will decrease. This is visible below 100 K for the Si film. For
germanium, however, this limit is below the studied interval as Ge phonon
lifetime is globally smaller than for Si.

In figure 20 (right) the thermal conductivity is plotted versus film thick-
ness at room temperature. As the thickness increases, the closer to the
Fourier regime the heat transfer is. With less ballistic effects, κ gradually
approaches its bulk value (138.7 W/m ·K for Si and 46.6 W/m ·K for Ge,
extracted from DFT-based calculations with our dispersion and lifetimes).

In addition to this general information, one interesting aspect to observe is
the contribution of each frequency to the total heat flux. Figure 21 shows the
sum of ~ωn~v for each frequency interval. Presently the full phonon spectra of
silicon (ωmax = 94.6 THz rad) is discretised over 100 frequency intervals with
same width. The curve is smoothed out to facilitate analysis. In the latter
figure, each column correspond to a different film thickness (500, 1000 and
2000 nm). Top row shows the distribution for the first subvolume, near the
hot reservoir, while the bottom row shows the distribution for one subvolume
near the middle of the film. In those calculations, the number of subvolumes
(10, 20 and 40 respectively) is adjusted to keep same slice length.

First, it can be noticed a reduction of the heat flux peaks, for all polariza-
tion branches, from left to right, as the system length increases. This reflects
the fact that keeping the same hot and cold BCs the amount of energy flowing
in the system naturally decreases with a increase of length. Second, we can
see a major contribution of the three acoustic mode polarisations (Branches
0, 1 and 2 on sub-figures) as compared to the optical branches depicted by
the second peak above 60 THz · rad. However contribution of the latter is not
negligible and represents nearly 14% of the cumulated heat flux in the first
subvolume, and 8 to 11% in the middle section of the film. Third, comparing
the top and bottom rows, it can also be seen how the phonon-phonon inter-
actions change the shape of the distribution along the same film as energy
gets redistributed among modes. In particular we can observe a decrease of
large frequency acoustic mode peaks (between 30 and 40 THz · rad) toward
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Figure 21: Contribution of frequency in the total heat flux for three different film thickness.

low frequencies, corresponding to the scattering of phonons close to the edge
of the FBZ (Umklapp processes).

The same analysis can be done for temperature variation. Figure 22 shows
the distributions for 100 K, 300 K and 500 K. For low temperatures, longer
relaxation times allow higher heat flux and acoustic modes are dominant.
As temperature increases, the total flux is reduced and optical modes have
more importance in the energy transport in agreement with Bose-Einstein
distribution.

The results were also compared with experimental data by Asheghi et al.
[1] for temperature variation and Scott et al. [25] for film thickness variation,
both for Si. The thermal conductivity of the film was calculated in two
ways: first, considering the ∆T between reservoirs, secondly considering an
“internal” ∆T related to local temperature variation between subvolumes of
the domain. At low temperatures or thin thickness, however, when there is
a high ballistic effect on phonon transport, the actual temperature gradient
inside the film is drastically reduced, which affects the estimation of κ. For
this reason, the conductivity calculated considering the internal temperature
gradient was also added to the plot. The results show good agreement with
experimental data. For low temperatures and thinner films, as expected,
there were higher deviations between both, total and internal, calculated κ
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Figure 22: Contribution of frequency in the total heat flux for three different temperatures.

values. Nevertheless, the estimates from simulations still work well as an
upper and lower bounds for average values in low temperatures.

3.3. Thin films - in-plane conduction

In order to investigate the in-plane thermal conductivity, the thickness of
the film was varied. Concerning boundary conditions, two of the “regarding”
facets are set as periodic while the two others are set as rough faces. Figure 25
shows a scheme. The rough facets were considered to have a mean roughness
of η = 1 nm. The varying thickness is applied between the rough facets. The
results for κ are shown in Fig. 26.

As we have a very thick film and start to thin it, the thermal conductivity
shows little variation, with a value close to the cross-plane conductivity (here,
thickness along y varies, while it remains constant and equal to 2 µm along
x and z directions). As the rough facets are brought closer and closer, more
particles scatter on them and are diffusely reflected, decreasing heat flux and
therefore thermal conductivity.

Some simulations were also executed to compare results with experi-
mental data from Ju and Goodson [15], Liu and Asheghi [20], Hao et al.
[13], Aubain and Bandaru [2, 3], Chávez-Ángel et al. [7], Cuffe et al. [9] and
Bosseboeuf et al. [4]. For this, the thickness was varied from 20 nm to 1 µm.
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The roughness was set to very high (η = 10 nm) to ensure high diffusivity.
Results are shown in Figure 27. The results show good agreement with ex-
perimental data in the entire treated range. The variation shown by the
experimental data is due to different conditions and methods of measure-
ment, as well as film growth techniques. Nevertheless, the presented trend is
the same, with higher conductivity for thicker films. Due to the high rough-
ness set as boundary condition, the κ calculated with the total ∆T is very
close to the the one calculated with internal ∆T , acknowledging weak effects
related to ballistic phonons.

3.4. Nanowires

Investigating nanowires was a first attempt to increase complexity of the
system geometry. For the analysed nanowires, two different shapes were
tested. A first set was considered with a square cross-section and a second one
had a discretised quasi-circular cross-section (polygonal cross-section with 20
sides). Both shapes were defined in order to have the same cross-sectional

Figure 23: Simulation results for film cross-plane conductivity as function of temperature
compared with experimental data referenced by Asheghi et al. [1].
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Figure 24: Simulation results for film cross-plane conductivity as function of film thickness
compared with experimental data referenced by Scott et al. [25].

area. For both of them, the surface roughness of the walls were varied, and
κ was compared. Figure 28 shows the obtained values.

As expected, in the square wire increasing wall roughness reduces the
thermal conductivity. Yet, what is more interesting is the fact that the quasi-
circular wire already starts with a small thermal conductivity. This is due
to the polygonal side orientation that do not allow specular reflections to all
modes as the crystal lattice is no longer aligned with those facets like in the
square section case. This considerably increases diffuseness behaviour even
without any rough walls. The curves for thermal conductivity of both shapes
asymptotically approach nearly the same value, around 49 W/m ·K. The
latter can be considered to be the same after 2 nm roughness. No difference
in temperature profile and heat flux was also observed between the two shapes
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Figure 25: Example of boundary conditions set to evaluate in-plane conductivity. Red
facets are considered as periodical, black facets have an associated roughness, blue facets
have a set temperature.

when roughness was higher than this threshold.
The comparison between simulation and experimental is shown in Fig. 29.

For this the diameter of the nanowire was varied between 22 nm and 300 nm.
The simulated wire had a quasi-cylindrical cross section with 20 sides, and
high roughness. The plots show good agreement with the experimental data,
specially for large diameters. At small diameters, the conduction is slightly
overestimated. Similarly to the analysis of thin films, the experimental inputs
used for comparison relate to data-points obtained with different methods,
wires with slightly different configurations (grown in different directions, poly
or monocrystalline, etc.) and sometimes with missing information or error
bars. Nevertheless Nano-κ was able to give a good estimate of the thermal
conductivity in the entire diameter range.
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Figure 26: In-plane thermal conductivity of Si thin films as a function of film thickness and
comparison with calculated cross-plane result with similar simulation parameters; length
between thermostats is 2 µm; thermostats at 302 K and 298 K.

Figure 27: Simulation results for film in-plane conductivity compared with experimental
data [15, 20, 13, 2, 3, 7, 9, 4].

3.5. Complex geometry

To show the capabilities of Nano-κ, the relatively complex mesh in Fig. 30
was simulated. The top and bottom facets were set as periodic, and temper-
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Figure 28: Comparison between thermal conductivity values calculated by Nano-κ for
nanowires with square (4 sides) and polygonal (20 sides) cross-sections; length between
thermostats at 302 K and 298 K is 2 µm.

Figure 29: Simulation results for nanowire conductivity compared with experimental data
referenced by Li et al. [18], Doerk et al. [12], Maire and Nomura [21], Bosseboeuf et al. [4].
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atures were imposed on three facets, shown in blue. Facet 0 emits phonons at
302 K while facet 4 is at 298 K. The third reservoir at facet 8 had its temper-
ature set in two different cases: a cold one (298 K) and hot one (302 K). The
remaining facets were considered rough with η = 0 nm, making all reflections
specular. The bounding box of the geometry measures 500 nm × 300 nm ×
100 nm. For the subvolumes, a 18×9×1 grid layout was used, keeping only
the subvolumes contained inside the geometry. For the grid layout, the con-
ductivity is calculated locally for each connection between subvolumes, hence
no global κ can be calculated.

Figure 30: Complex geometry simulated. Left: Type of boundary conditions imposed on
each facet. Right: subvolumes’ reference points and connections.

Figure 3.5 shows the results after the system reaches steady state. Each
plot is colored according to a different quantity. The arrows show the mag-
nitude and direction of the heat flux. On the left, all plots refer to the cold
case (two cold BCs, one hot BC), while the plots on the right refer to the
hot case (one cold BC, two hot BCs).

The first plot is the temperature distribution. Because these simulations
did not use interpolation of temperature, the borders of the subvolume can
be seen clearly. The cold case has a fast decay of temperature on the left side,
until it reaches around 300 K where the flux branches divide in two. Most
of the heat flux goes straight to the right side, given that that is the path
with less resistance. In the hot case, the temperature follows the symmetry
of the domain and the boundary conditions, with the flux being redirected
from the x direction to the y direction, leaving at the cold reservoir at the
top.

A more refined view can be seen in the second plot, where it is shown
the distribution of particles coloured according to their energy deviation from
300 K, δekj = ~ωkj[nkj−n0

kj(300)]. It is possible to see the modes responsible
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for ballistic effects travelling through the straight portion of the geometry as
isolated blue dots close to the hot side or red dots near the cold side.

To analyse the heat flux, the two last figures show particles colored ac-
cording to their heat flux in x and y directions respectively, for each of
the simulated cases. To better see this on the plot, the energy flux of
each particle was calculated as a deviation to the local temperature (Tlocal):
Φ = ~ω[n − n0(Tlocal)]v. Moreover, every particle with a calculated |Φx| or
|Φy| of less than 2.5 × 10−3 TeV/Å2·s was filtered out of the plots, so only
the most significant particles, that carry energy are shown. This basically
results in filtering the optical modes, the ones with shorter lifetimes that are
often close to local equilibrium, and thus do not contribute much to Φ.

In the x direction, we can see the amount of particles that have a positive
flux (in the +x direction) for the cold case, concentrated in the bottom
straight path. Outside of this path, there are also particles with significant
Φx, but in equal amount for −x and +x, and thus the arrows indicate that
there is basically no flux horizontally. For the hot case, the flux is again
symmetric, with the left side showing shades of red and yellow (Φx > 0) and
the right side exhibiting shades of blue (Φx < 0). Below the square hole,
particles in both senses meet and balance out with a local flux equal zero.
Similarly, in the y direction, regions with balanced blue and yellow colored
particles have near zero Φy. The figure also shows the phonons that travel
upwards to the cold reservoir, in less extent for the cold case, but increasingly
high as the particles approach the top end of the geometry. Such calculations
and results visualization clearly point the ability of Nano-κ to handle complex
geometries and extract relevant and specific outputs that help to understand
thermal transport in complex nanodevices.

4. Future developments

Nano-κ was able to provide good estimates of thermal conductivity for
several configurations and conditions, validating its results by comparison
with experimental data. Nevertheless, we believe that more can be achieved
in the future to improve their precision.

Such deviations between simulation and experimental can be due to sev-
eral factors. First, any experimental data has uncertainties, which are often
not reported. Second, the code does not account for the amorphous layer
on the surface of the wire, for defects in the crystalline structure or for the
eventual deformation of the nanowire when supported by the edges, which
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Figure 31: Color scatter plots for the two cases with complex geometry. In the left, the
temperature of the reservoir at the right extremity is 298 K; on the right, it is 302 K.
The arrows represent the heat flux magnitude and direction for each subvolume. The hot
(red) and cold (blue) reservoirs’ locations are shown as attached rectangles. From top
to bottom: subvolume temperature, particle energy deviation (~ωδn) particle heat flux
(~ωδnv) in x and y directions.

50



can affect the conduction of heat. Such deviations can be also related to
the input ab-initio data used in our model that may not fully correspond to
synthesised materials. Beside, the boundary scattering model derived from
Ziman [30] for acoustic phonons and generalised for the whole FBZ is likely
incomplete. Presently, the reflections are considered to perfectly conserve
energy, with all energy being kept in the simulated phonons (in average). In
real nanostructures, this is probably not true, since there must be energy
exchange with the amorphous superficial layer.

Other additions that may help to increase the generality of the code are:

• Transmission between materials;

• Heat flux as boundary condition;

• Energy exchange with the boundary;

• Automatic optimisation capabilities;

• Code parallelisation and acceleration.

Next iterations of the model should consider the above cited issues, and
with this improve the accuracy of Nano-κ in comparison to experiments as
well as its computational speed.

5. Conclusion

This paper brought the description of Nano-κ, a Python code dedicated
to solve the Boltzmann Transport Equation for phonons in semiconducting
nano-devices. The equations used by the algorithm and its structure were
exposed. A sensitivity analysis was performed in order to analyse the effect
of each simulation parameter on the final result. Thin films and wires were
studied under different boundary condition settings and constitutive materi-
als. All those calculations were compared with results in the literature. The
results showed that satisfactory agreement can be achieved in all simple case
situations were experimental data were available.

An example calculation with a more complex geometry was also discussed
to show the flexibility and stability that Nano-κ can offer. Proposals for
future works include the development of new boundary scattering models,
modelling of phonon transport through interfaces between different materials
and addition of optimisation routines. Under its presents form, the code
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will be open through GitHub sharing in order to promote collaboration and
improvements by interested users.
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