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To support accidental spill rapid response efforts, oil spill simulationsmay generally

need to account for uncertainties concerning the nature and properties of the spill,

which compound those inherent in model parameterizations. A full detailed

account of these sources of uncertainty would however require prohibitive

resources needed to sample a large dimensional space. In this work, a variance-

based sensitivity analysis is conducted to explore the possibility of restricting a

priori the set of uncertain parameters, at least in the context of realistic simulations

of oil spills in the Red Sea region spanning a two-week period following the oil

release. The evolution of the spill is described using the simulation capabilities of

Modelo Hidrodinâmico, driven by high-resolution metocean fields of the Red Sea

(RS) was adopted to simulate accidental oil spills in the RS. Eight spill scenarios are

considered in the analysis, which are carefully selected to account for the diversity

of metocean conditions in the region. Polynomial chaos expansions are employed

to propagate parametric uncertainties and efficiently estimate variance-based

sensitivities. Attention is focused on integral quantities characterizing the

transport, deformation, evaporation and dispersion of the spill. The analysis

indicates that variability in these quantities may be suitably captured by

restricting the set of uncertain inputs parameters, namely the wind coefficient,

interfacial tension, API gravity, and viscosity. Thus, forecast variability and

confidence intervals may be reasonably estimated in the corresponding four-

dimensional input space.

KEYWORDS

Red Sea, oil spill, parametric uncertainty, regularized regression, polynomial chaos

expansion, global sensitivity analysis
1 Introduction

Oil spill forecasting is extremely important in preventive planning and post-oil spill

management. Forecasting requires a solid understanding of the prevailing oil spill

dynamics, typically gained through a high-fidelity model that captures the transport of

oil and its physio-chemical transformations, referred to as weathering (Zodiatis et al.,
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2021). Weathering processes include evaporation, dispersion into

the water column, emulsification, and spreading (Lehr et al., 2002),

all of which depend on the local atmospheric and oceanic

conditions (Oudot et al., 1998; Transportation Research Board

and National Research Council, 2003).

Most oil spill models employ a Lagrangian particle tracking

algorithm (van Sebille et al., 2018), for example, MEDSLIK II (De

Dominicis et al., 2013b; De Dominicis et al., 2013a) and Modelo

Hidrodinâmico [MOHID; http://www.mohid.com/; e.g., (Neves,

2013)]. These models rely on ocean currents and atmospheric

conditions and incorporate parametrizations to account for

subgrid-scale processes. When subgrid parametrizations are

adequately calibrated, and the spill conditions are faithfully

described, the spill models effectively forecast the evolution of oil

spills (Hodges et al., 2015; Barker et al., 2020).

Many sources of uncertainty arise when modeling oil spills in

oceanic flows, including uncertainties in metocean conditions,

forcing and model parameters (Xu et al., 2012; Iskandarani et al.,

2016a; Iskandarani et al., 2016b). In a rapid response scenario, these

uncertainties may be further compounded by a lack of knowledge of

the nature of the spill oil and/or its physical properties. Addressing

all these sources of uncertainty simultaneously is computationally

prohibitive, and it is consequently advantageous to explore whether

it is possible to ignore some of the uncertain inputs characterizing

oil properties and model parametrizations, without significantly

deteriorating our ability to quantify the variability of the

predictions. This is the central question that we explore in the

present study, namely in in the framework of a limited, two-week

long, simulations of oil spills in the RS region, which is at risk of oil

spill events due to the significant number of oil tankers traversing

the basin (Alkhshall and Westcott, 2019; Kleinhaus et al., 2020;

Kostianaia et al., 2020; Dong et al., 2022). Our approach to this

question is based on considering a limited set of scenarios that

captures the diversity of met-ocean conditions in the region, and to

conduct a systematic analysis of the impact of parametric

uncertainties for this set of scenarios. This offers to enable us to

identify a priori a small set of key parameters that dominate the

variability of the predictions, and to ignore the others. Of course,

such parameter space would lead to substantial gains, as one would

be able to determine confidence bounds at a reduced

computational burden.

Despite its fundamental and practical relevance, little work has

been done in the literature to quantify the sensitivity of oil spill

forecasts on the oil and model parameters. Previous studies dealt

with a qualitative assessment of the model output’s sensitivity to

input parameters (Lopes, 2016), whereas others were relied on a

quantitative assessment based on local sensitivities (Mateus and

Franz, 2015); namely on relative model output variation for

variations in the input, or based on a normalized error approach

(Oliveira et al., 2020). Whereas local sensitivity methods provide

simple and effective means to analyze forecast variability, their

application to reduce the space of random parameters may be prone

to errors, especially when mixed effects are important. To overcome

such potential drawbacks, global sensitivity analysis (GSA)

considers the full space of uncertain inputs (Adetula and Bokov,

2011). Generally, GSA implementations are categorized as variance-
Frontiers in Marine Science 02
based (Sobol, 1993; Homma and Saltelli, 1996; Sobol, 2001) or

entropy-based (Lüdtke et al., 2008; Martorell et al., 2008). In both

cases, the analysis considers the variability of an entire set of

parameters, simultaneously and in the entire range of their priors

(Sudret, 2008). Additionally, it yields total sensitivity indices that

account for both direct and mixed interactions, providing robust

means for identifying which parameters can be effectively neglected.

In the present study, we rely on Sobol’s total sensitivity indices

to analyze the variability of the model forecast (Homma and Saltelli,

1996). These provide a variance-based estimate of the sensitivity of

selected model outputs due to uncertainties in individual

parameters. This approach relies on an orthogonal hierarchical

decomposition of the variance to produce robust estimates that can

be readily leveraged for the purpose of parameter space reduction. It

has in fact shown to be an effective tool in a different areas,

including ocean modeling applications (Srinivasan et al., 2010;

Alexanderian et al., 2012; Winokur et al., 2013; Goncalves et al.,

2016; Wang et al., 2016) among others [e.g. (Navarro Jimenez et al.,

2016; Huan et al., 2018; KC et al., 2021)].

The paper is structured as follows. Section 2 outlines the scope of

the study, providing a brief description of the oil spill model, the

selection of metocean conditions and spill scenarios, and of a

screening study used to define a reasonable set of key uncertain

inputs. As described in Section 3, a polynomial chaos (PC) approach

is adopted to construct surrogates of selected quantities of interest

(QoIs), quantify variances, and efficiently estimate Sobol indices

(Crestaux et al., 2009). Simulation results are presented and

analyzed in Section 4. Concluding remarks are provided in Section 5.
2 Data and methodology

This section describes the metocean data of the RS, which were

used to drive the oil spill model. Specifically, Sections 2.1.1 and 2.1.2

describe the metocean fields and their spatial and seasonal

variabilities, respectively. The selected oil spill scenarios are

outlined in Section 2.1.3. Section 2.2 presents the oil spill model

employed to simulate the evolution of an oil spill. The QoIs

describing the evolution of the oil slick geometry, transport, and

weathering processes are reported in Section 2.3. Finally, Section 2.4

discusses the screening process conducted to select uncertain

parameters with the strongest influence on the released oil.
2.1 Red Sea and metocean dataset

2.1.1 Metocean numerical modeling
The RS hosts one of the world’s most diverse tropical marine

habitats (Chiffings et al., 1995), including the third-largest coral reef

system in the world (Carvalho et al., 2019). Fisheries, water

desalination plants, and several mega-projects, such as NEOM, lie

along its coast (Hoteit et al., 2021). The RS seasonally and regionally

experiences widely varying metocean conditions (Yao et al., 2014a;

Yao et al., 2014b). Accordingly, the RS is divided into three regions:

the northern, central, and southern RS, each with unique but

interweaving circulation patterns (Carvalho et al., 2019).
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Further described below, the RS metocean fields we employ in

the present work were extracted from high-resolution simulations

(Langodan et al., 2017; Viswanadhapalli et al., 2017; Dasari et al.,

2019; Hoteit et al., 2021), which provide reliable descriptions of the

oceanic and atmospheric circulation of the RS region. The zonal and

meridional winds were extracted from an in-house 5-km regional

atmospheric reanalysis specifically generated for the RS region

using the weather research forecasting (WRF) model. The WRF

initial and boundary conditions were obtained from the European

Centre for Medium-Range Weather Forecasts Reanalysis Interim

(Dee et al., 2011) data. The WRF downscaling simulations were

performed using the consecutive daily reinitialization method over

36-h periods (Viswanadhapalli et al., 2017; Dasari et al., 2019). The

wave conditions in the RS were reconstructed using the

WAVEWATCH III model forced with the mentioned high-

resolution WRF reanalysis winds on a 1-km grid (Langodan

et al., 2017).

The three-dimensional (3D) ocean currents were simulated

using the Massachusetts Institute of Technology general

circulation model (MITgcm) (Marshall et al., 1997) implemented

at an approximately 1-km grid resolution with 50 nonuniform

vertical layers. The model was forced with the mentioned WRF

atmospheric reanalysis fields and open boundary in the Gulf of

Aden, which were obtained from the Copernicus Marine and

Environment Monitoring Service global ocean reanalysis fields, on

a 6-h and 24-h basis, respectively (https://marine.copernicus.eu/).

Readers are referred to (Hoteit et al., 2021) for a detailed description

and validation of the WRF, WAVEWATCH III, and MIT general

circulation model fields.

2.1.2 Variability of metocean condition in the
Red Sea

The high mountain ranges on both sides of the RS force the

wind to blow along its main axis (Langodan et al., 2014). During

summer, from April to October, a northwesterly wind blows along

the whole length of the sea (Langodan et al., 2014). In winter, the

same northerly wind dominates over the northern part of the basin,

and southeasterly winds associated with the northeasterly winds of

the monsoon in the Indian Ocean prevail over the southern RS. The

coexistence of northerly and southerly winds creates a convergence

zone at the center of the RS (Langodan et al., 2017). The larger and

smaller valleys across the bordering mountain ridge lead to typical

local winds relevant for characterizing local wind regimes, for

example, the wind passing through the Tokar Gap along the

Sudan coast in summer and the westward blowing jets along the

northeastern coast of the RS in winter (Langodan et al., 2014;

Viswanadhapalli et al., 2017).

The wave variability in the RS is naturally associated with the

dominant regional wind regimes (Langodan et al., 2014). During

summer, the northwesterly winds prevailing over the whole RS

generate mean wave heights of 1 to 1.5 m in the north (Langodan

et al., 2014). In winter, the monsoon-associated winds generate

mean wave heights of approximately 2 m in the southern RS,

leading to a convergence zone in the central part when they meet

the waves from the north (Langodan et al., 2017).
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The mean surface circulation in the southern RS is largely

moderated by the wind regime, which reverses between seasons.

During winter, when the southeasterly winds prevail, the surface

inflow from the Gulf of Aden intensifies as a western boundary

current in the southern basin and switches to an eastern boundary

current north of 24°N (Yao et al., 2014a). In summer, the dominant

northeasterly winds push the surface outflow from the RS into the

Gulf of Aden (Yao et al., 2014b). In the central and northern RS

regions, circulation is primarily characterized by multiple mesoscale

eddies that tend to become more energetic during winter following

the development of intense baroclinic instabilities (Zhan et al.,

2019), except for some strong semi-permanent wind-driven gyres

that occur in summer (Zhan et al., 2019).

2.1.3 Oil spill scenarios
Pertaining to our main objective of exploring whether the space

of uncertain parameters can be restricted a priori, eight scenarios

were selected corresponding to four release locations and two

release times. Note that the selection was guided by a desire to

cover a wide range of relevant environmental conditions,

particularly to build confidence in any a priori reduction. Of

course, the surrogate models constructed for the selected

metocean conditions are not expected to be representative of

other ocean states. However, quantitative variability and

sensitivity trends established for a sufficiently diverse set of

scenarios are also expected to hold in more general conditions.

The selected release locations are depicted in Figure 1, which

also displays some of the surface fields at the first of January and

August. Specifically, the selected release locations include one spot

in the northern RS, two in the central RS, and one in the southern

RS. Spills initiated on the first of January and another on the first of

August were selected to assess the influence of various metocean

circulation conditions on the oil spill dynamics. As can be seen from

the illustrations provided in Figure 1, the selected metocean

conditions reflect distinct ocean states. Specifically, the spill

conditions considered may be initiated at the center or periphery

of coherent ocean eddies, or in situations characterized by turbulent

small scale eddies. Similarly, the release may occur in conditions

involving large or small wave heights, strong or weak surface winds,

and high or low sea surface temperature. The resulting diversity of

release conditions considered thus helps build confidence that any a

priori reduction in the space of parameters that results from the

analysis will also hold generally hold for the Red Sea region.

The release locations in the central RS cover the center and

periphery of a long-lived eddy that experiences predictable

movement during summer but more complex chaotic motion

during winter. The release location in the northern RS is prone to

strong wind effects that generate strong waves during summer. The

circulation in the north is also dominated by mesoscale eddies that

intensify in energy in winter. Finally, release Location 4 is selected to

examine the influence of the metocean conditions in the south,

which are tightly related to the Indian Monsoon, and the effect of

the inflow current from the Arabian Sea. In the analysis below,

Location 1 is the release location in the northern RS, and Location 2

is the release location at the center of the eddyin the central RS.
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Location 3 is the release location at the periphery of the eddy in the

central RS, and Location 4 is the release location in the southern RS.
2.2 Oil spill model

Modelo Hidrodinâmico’s (MOHID) Lagrangian and oil models

are components of the MOHID Water Modeling System (http://

www.mohid.com/) adopted to simulate the results of oil spills. In

addition, MOHID is an open-source, 3D water modeling system
Frontiers in Marine Science 04
developed by the Marine and Environmental Technology Research

Center at the Technical University of Lisbon (Leitao et al., 2013).

Together, the models simulate oil trajectories while accounting for

the physico-chemical transformations of the oil. The Lagrangian

model is responsible for transporting individual particles,

accounting for the effects of diffusion, buoyancy, Stokes drift,

windage, linear degradation, and land interaction, such as

beaching. Moreover, the oil model simulates the effects of the

weathering processes, including dispersion, evaporation,

sedimentation, spread, dissolution, and emulsification. The
A B

DC

FIGURE 1

Left column (A, C): composite illustration of significant wave height (m) and surface currents (m/s); right column (B, D): composite illustration of sea
surface temperature (°C) and surface winds (m/s). The top (A, B) and bottom (C, D) rows illustrate the average fields for the first of August and
January of 2016, respectively. The release locations L1–4 are also depicted.
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MOHID Lagrangian and oil spill models are driven by the outputs

of the high-resolution RS metocean fields discussed in Section 2.1.1

(Hoteit et al., 2021).

A Cartesian grid uniformly spaced in the horizontal directions,

longitude and latitude, and nonuniformly spaced in vertical layers

was adopted for the current applications. The grid covers the entire

RS between longitudes 32°E and 46°E and latitudes 10°N and 30°N

up to a depth of approximately 2,746 m. The longitudinal and

latitudinal axes are divided into 1,401 and 2,001 equally spaced

nodes, respectively, corresponding to a grid resolution of

approximately 1 km on both axes. The metocean input fields,

including the daily averaged 3D ocean currents, hourly winds,

wave height, and period, are specified on the same horizontal and

vertical grids. The time step of the oil model was set to 60 s to

properly describe the weathering processes, which vary over very

short time scales, and the results were reported at 15-min intervals.

The time step of the Lagrangian model to transport the individual

particles was set to 3,600 s, and the results were reported at 3-h

intervals. For each release scenario, 5,000 oil particles were released

from the release point, where the Lagrangian and oil models

advected and simulated weathering under metocean conditions.

The performance and accuracy of MOHID for oil spill modeling

have already been demonstrated in many previous studies and

ocean basins [e.g., (Li, 2017) and (Mittal et al., 2021)].
2.3 Quantities of interest

This section discusses the QoIs used to characterize the

transport and geometry of the oil slick and selected weathering

processes. We explored several ways to characterize the shape and

deformation of the surface oil. Specifically, we examined the

second-order particle moments centered on the centroid of the

realized oil slick or nominal oil slick. A more detailed description of

these integral quantities is provided. We also investigated distance

measures between the realized and reference spills, such as the

Hausdorff distance and the ‘2 distance between concentration or

binary maps, attributing a value of 1 to the grid cells with surface oil

and 0 for no oil. For brevity, we focus on the central and nominal

second-order particle moments.

The general (p, q)-moment is defined according to the

following:

Mp,q =o
i
xp1,(i)x

q
2,(i), (1)

where the sum is performed over all surface particles with

nonzero mass. The transportation of the oil slick is characterized by

the location of its centroid or first moment, estimated as follows:

�x =
M1,0

M0,0
= oix

1
1,(i)x

0
2,(i)

N
, (2)

�y =
M0,1

M0,0
= oix

0
1,(i)x

1
2,(i)

N
, (3)
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where N is the total number of particles with a nonzero mass.

These equations yield the longitude and latitude of the centroid (C

Lon and C Lat, respectively) that describe the mean geometric

location of the oil slick.

To characterize the shape of the surface slick, we rely on the

second-order central particle moments (Rocha et al., 2002).

Specifically, we extracted the particle covariances expressed by the

following:

a =
M2,0

M0,0
− �x2 = oix

2
1,(i)x

0
2,(i)

N
− �x2, (4)

b =
M1,1

M0,0
− �x  �y = oix

1
1,(i)x

1
2,(i)

N
− �x  �y, (5)

c =
M0,2

M0,0
− �y2 = oix

0
1,(i)x

2
2,(i)

N
− �y2  , (6)

which enables characterizing an elliptical region associated with

the surface slick.

In addition, the second-order moments relative to the nominal

oil slick centroid are introduced, leading to covariances denoted by

â , b̂ , and ĉ , which are obtained by replacing �x and �y in the system

above with �xo and �yo, respectively, which are the longitude and

latitude of the centroid of the nominal oil slick. The nominal

scenario corresponds to the deterministic prediction obtained

using the average value of the input parameters. Whereas a, b,

and c characterize the shape of individual oil slicks, â , b̂ , and ĉ

characterize the region where spilled oil is likely to be present.

Finally, we rely on the fraction of mass evaporated (FME) and

the fraction of mass dispersed (FMD) to characterize weathering

processes. In addition, the QoIs are summarized and briefly

described in Table 1. Figure S1 illustrates an example for release

at Location 3 during summer. The distribution of surface oil

particles and the ellipse characterized using the first and second

particle moments are presented.
2.4 Uncertain input parameters

The evolution of simulated ocean oil spills is governed by

several parameters related to the physical oil properties and

model parametrizations. An initial screening was conducted by

varying a single parameter at a time and observing its effects on the

oil spill evolution. The parameters examined in this preliminary

screening study are summarized in Table 2. These include Fay’s

spread, the empirical thickness gradient (ETG) spread coefficient,

the emulsification coefficient, the water uptake parameter (WUP),

wind coefficient (WC), the American Petroleum Institute gravity

(API), pour point temperature, asphaltene content, dynamic

viscosity, and interfacial tension (IFT).

The effects of each parameter in Table 2 on the QoIs were

analyzed, focusing on the resulting total (peak-to-peak) variability.

The results indicated that the parameters with the strongest
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influence on the QoIs consisted of oil properties (API, viscosity,

IFT) and model parameterizations (wind coefficient, ETG, and

water uptake parameter). These six parameters were consequently

retained in the GSA.

Table 3 reports the retained uncertainty parameters and the

variability ranges extracted from the literature. The choice of prior

distributions has a significant impact on the results of PC models,

and it is generally considered advantageous to rely on distributions

that reflect the prior state of knowledge (Thacker et al., 2015; Wang

et al., 2016). Because information on the joint or marginal

distributions of the parameters in Table 3 was not available,

however, the analysis treated the individual parameters as
Frontiers in Marine Science 06
uncorrelated and imposed an uninformative prior for each of the

parameters considered. Because the parameters had bounded

ranges, a uniform prior was consequently selected.
3 Polynomial chaos methodology

This section discusses the PC methodology (Wiener, 1938;

Ghanem and Spanos, 1991; Le Maıt̂re and Knio, 2010) to

construct functional representations of QoIs in terms of uncertain

inputs. A nonintrusive regularized regression technique outlined in

Section 3.1 is applied for this purpose. A brief discussion is provided
TABLE 2 Screening study to shortlist uncertainty parameters of the oil spill model, keeping those of interest to construct surrogate models.

Uncertainty Parameter Qualitative effects on the weathering and geometry of the oil

API Affects weathering, limited effect on transport

Pour Point No observed effect

Asphaltene Content Little changes in weathering

Dynamic Viscosity Limited effects on geometry, noticeable changes in dispersion

Interfacial Tension Noticeable weathering effects causing changes in particle distribution

Spread Coefficient (Fay’s Model) Noticeable effect on oil slick geometry

Spread Coefficient (Empirical Thickness Gradient) Noticeable effect on oil slick geometry

Emulsification Coefficient Little effects on weathering and geometry

Water Uptake Parameter Noticeable effects on weathering

Wind Coefficient Noticeable effects on oil evaporation, geometry, and transport
Ten input parameters are examined and varied individually, observing the effect of changing one parameter on the quantities of interest. Parameters with a negligible effect were ignored.
TABLE 1 Quantities of interest and their associated abbreviations or notation and descriptions.

Quantity of
Interest

Abbreviation or
Notation

Description

Fraction of Mass
Dispersed

FMD Ratio of the oil mass dispersed into the water column to the total released oil mass, which is a measure of one
mode of weathering.

Fraction of Mass
Evaporated

FME Ratio of the evaporated oil mass to the total released oil mass, which is a measure of weathering by evaporation

Longitude of the
Centroid

C Lon Location of the centroid of the particles comprising the surface oil slick along the longitudinal direction.

Latitude of the
Centroid

C Lat Location of the centroid of the particles comprising the surface oil slick along the latitudinal direction.

Second-Order
Central Moments

a First diagonal entry of the particle covariance matrix. Characterizes the stretch of the ellipse fitting the oil slick
along the longitudinal direction.

b Off-diagonal entry of the particle covariance matrix. Characterizes the tilt of the ellipse fitting the oil slick.

c Second diagonal entry of the particle covariance matrix. Characterizes the stretch of the ellipse fitting the oil slick
along the latitudinal direction.

Nominal Second-
Order Moments

â First diagonal entry of the particle covariance matrix. Characterizes the stretch of the ellipse fitting the oil slick
along the longitudinal direction.

b̂ Off-diagonal entry of the particle covariance matrix. Characterizes the tilt of the ellipse fitting the oil slick relative
to the nominal oil slick.

ĉ Second diagonal entry of the particle covariance matrix. Characterizes the stretch of the ellipse fitting the oil slick
along the latitudinal direction.
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in Section 3.2 concerning how surrogates are exploited to estimate

the global variance-based sensitivities of QoIs to uncertain inputs.
3.1 Polynomial chaos expansions

In the PC approach (Knio and Le Maıt̂re, 2006; Le Maıt̂re and

Knio, 2010; Sraj et al., 2017), uncertain inputs are parametrized in

terms of a vector of independent canonical random variables, x. The
dependence of a generic QoI, X, on the uncertain inputs is

approximated by a truncated series of the following form:

X(x) ≈ o
P

k=0

ckYk(x), (7)

whereYkdenotes the orthogonal basis function defined over the

probability space associated with x, ck represents the expansion

coefficients to be determined, and P + 1 indicates the size of the

approximation basis.

In light of the discussion in Section 2, d uncertain input

parameters are parametrized using d independent canonical

random variables uniformly distributed over ½−1, 1�d . Thus, the
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random vector x = fx1,…, xdg has components whose physical

ranges coincide with those of the associated model parameters in

Table 3. The basis functions (Y) are the multidimensional Legendre

polynomials in the random vector x. A generic input parameter is

expressed as pi(x) = mi + sixi for i = 1,…, d. In this formulation,

mi =
1
2 (ai + bi) denotes the nominal value of pi, si =

1
2 (bi − ai)

represents half its range, and ai and bi represent the lower and

upper bounds of the physical range of pi, respectively. We adopted a

total order truncation technique so that the truncated basis size is as

follows:

P + 1 =
(d + p) !
d !  p !

,

where p denotes the maximal polynomial degree of the

truncated expansion.

PC expansions are generally classified as global or local

depending on the span of the stochastic space covered by the

model (Najm, 2009). In the present study we focus on global PC

models, rely on a so-called non-intrusive methodology to determine

the PC coefficients (Eldred, 2009; Lüthen et al., 2021). This indicates

that the coefficients are determined using the outputs deterministic
TABLE 3 Uncertainty parameters with variable notation, value range considered in the referenced literature, range selected for constructing the
surrogate model, and a brief description of the uncertain input.

Parameter Variable Literature Range Selected
Range

Description

API x1 Heavy oil with< 20 (Al-
Maamari et al., 2006; Schenk
et al., 2006) Light oil with >
40 (Geary, 2017) Medium oil
with ∈ [20, 40] (Lord et al.,

2018)

½20,  40� ° The American Petroleum Institute (API) gravity is a commonly used index of the
density of crude oil or refined products. The API is inversely proportional to the
specific gravity of the hydrocarbon. Oils can be typically classified into light,

medium, and heavy oils depending on their (Hollebone, 2014

IFT x2 [1, 35] dynes (Abdul-Majeed
and Abu Al-Soof, 2000)

[0.5, 35] dynes
approximately (Whitson and

R Brule, 2000)

½1,  34�dynes Two immiscible fluids in contact experience forces at the interface (Ling and He,
2012).

These forces are called interfacial tension when both fluids are liquids (Fogang
et al., 2020). The potency of this force is characterized by a constant, denoted by

IFT, which is a property of the fluids at contact (Deguillard et al., 2013).

ETG x3 [2, 30] (Reed et al., 1995;
Reed et al., 1999) [5, 30]

(Neves, 1985; Janeiro et al.,
2012)

½5,  30� The Fay oil spread and ETG spread models are both commonly used to estimate
the spread of surface oil. Fay (Fay, 1969) proposed a model based on oil spread in
a quiescent water body. The ETG model assumes a continuously decreasing oil
slick thickness in the radial direction, associating a speed for the spread at the

edge of the oil slick

Wind
Coefficient

x4 [0, 3] % (De Dominicis et al.,
2013b,a) [1, 4] % with fine-

tuning when needed
(Fernandez, 2010)< 6%
(Reed et al., 1994; Kako
et al., 2011; Maximenko

et al., 2012)

½0,  0:06� Wind at the surface of the sea create shear forces that distort the oil slick at the
surface. The wind effect at the surface can be incorporated by adding a fraction of
the wind speed to the surface currents. This fraction is called the wind coefficient,

which must be calibrated to the motion of passive drifters, such as buoys, to
achieve physically consistent results.

Water
Uptake

Parameter

x5 ≈ 2 × 10−5 (Mackay and
Zagorski, 1981)

≈ 2 × 10−5 (Fingas, 1995)
≈ 10−6 (Wang et al., 2008)
≈ 2 × 10−6 (Mishra and

Kumar, 2015)

½1� 10−6,  2� 10−5� Water-in-oil emulsions form when sufficient water is taken up by oil and
sufficient energy is provided to promote the emulsion (Fingas and Fieldhouse,
2014). Some of the most widely used models were proposed by Mackay and

Zagorski (1981; 1982). The models suggest that emulsification is proportional to
the water uptake coefficient, the time the oil spends in water, the fraction of the

water content in the oil slick, and the square of the wind speed.

Viscosity x6 [10 − 500]cP (Sánchez-
Minero et al., 2014) [0.02 −

1000]cP (Abdul-Majeed
et al., 1990) > 0.08cP (Khan

et al., 1987)

[0.2, 150]cP Oil viscosity characterizes the ability of the fluid to resist flowing. The viscosity
was correlated with the (Al-Maamari et al., 2006; Alomair et al., 2015)
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forward model runs, performed at suitable realizations of the

uncertain inputs. An overview of different methods to generate

PC surrogate models could be found in (Najm, 2009; Hadigol and

Doostan, 2018; Lüthen et al., 2021).

In preliminary work, we investigated constructing surrogates

using projection-based methods based on Gauss and Gauss–

Kronrod–Paterson quadratures (Laurie, 1997) and regularized

regression following the least absolute shrinkage and selection

operator (LASSO) algorithm (Tibshirani, 1996; Roth, 2004;

Ranstam and Cook, 2018). The study suggested that surrogates

obtained using the LASSO regression yielded lower reconstruction

errors than the pseudospectral projection counterparts. The large

errors in the projection-based surrogates were due to the noisy

particle approximations of the QoIs. Because the regression

approach is robust to noisy estimates, it was adopted to construct

the surrogates and support the GSA. Note that several open source

libraries such as UQ toolkit (Debusschere et al., 2017) and UQLab

(Marelli and Sudret, 2014) provide implementations of projection

and regression methods that can be readily used to efficiently build

PC surrogates.

In the LASSO regression, the coefficients are obtained by

minimizing the sum of residuals between the observed variable

and PC expansion prediction, and an ‘1 regularization term is

introduced to prevent overfitting. The functional to be minimized is

as follows:

R(ck) =
1
2No

N

i=1
yi −o

P

k=0

ckYk(x
(i)Þ

 !2

+lo
P

k=1

ckj j
 !

, (8)

where N represents the number of observations, yi indicates the

QoI at observation i, x(i) denotes the ith observation point, and l
represents a positive regularization constant to be determined. The

LASSO algorithm is applied with 10-fold cross-validation to

estimate the model error (Obuchi and Kabashima, 2016). The

optimal value of l yields the smallest cross-validation mean

squared error. Once determined, the corresponding coefficient

vector is adopted to define the PC surrogate.
3.2 Global sensitivity analysis

The Sobol indices estimate the influence of the input

uncertainties on the variability in the model output by evaluating

the ratio of the conditional variances to the total variance of the

output. Using the same notation as in the work by (Crestaux et al.,

2009), the sensitivity index corresponding to the index set i ⊂ D ≡
f1,…, dg are defined as:

Si ≡
Vi(X)
V(X)

=
E½X2(xi)�
V(X)

(9)

whereas the corresponding total sensitivity index is defined

according to:

Ti ≡
Ex∼i ½Vxi (Xjx∼i)�

V(X)
, (10)
Frontiers in Marine Science 08
where X is a generic QoI, d is the total number of dimensions, E

and V denote the expectation and variance operators, respectively,

and ∼ i represents the complement of the subset i in D.

The Sobol sensitivity indices could be estimated efficiently using

the PC expansion by exploiting the orthogonality of the PC basis

(Sobol, 1993; Homma and Saltelli, 1996; Sobol, 2001; Sudret, 2008;

Crestaux et al., 2009; Le Maıt̂re and Knio, 2010; Alexanderian et al.,

2012). The Sobol indices are given by:

Si ≈
ok∈Si

c2kj Ykj jj22
ok≥1c

2
kj Ykj jj22

, (11)

where Si = fk j Yk has degree 0 in all xj with j ∉ ig. Similarly,

the total sensitivity index corresponding to the singleton figcan
be readily obtained using:

Ti ≈
ok∈Ti

c2kj Ykj jj22
ok≥1c

2
kj Ykj jj22

, (12)

where Ti = fk j Yk has degree  〉 0 in xig. Note that the Sobol

indices Si account for the so-called direct contributions of the

uncertain parameters xi, and that Ti accounts for both the direct

contributions of the uncertain variable xi as well as its mixed

interactions with the remaining variables. In particular, it can

readily be seen that a small Ti justifies neglecting xi and

according restricting the uncertain input space.
4 Results and discussion

4.1 Assessment of the surrogate model

The N = 600 realizations (x(i)) of the random germ (x) were

generated using a Latin hypercube sampling algorithm to generate PC

surrogates. The same realizations of the germ were used for each of the

eight considered scenarios, and MOHID was applied to simulate the

evolution of the corresponding spills. As discussed in the previous

section, PC surrogates of the selected QoIs were determined by solving

the LASSO regression problem based on the simulation outputs. This

section analyzes the performance of the PC surrogates by computing

the associated time-dependent normalized ‘2errors:

E2(t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NoN

i=1(f (x
(i), t) − f̂ (x(i), t))2

q
max
x

f (x, t) −min
x
f (i, t)

� �  , (13)

where f denotes a generic QoI obtained from the MOHID

simulation, f̂ is the corresponding QoI approximated by the PC

surrogate, and the maximum and minimum function values are

defined over all realizations and simulation times in the order

indicated. PC surrogate models ranging from first to sixth total

order expansions were constructed, and their reconstruction errors

were evaluated. The fifth-order PC model was selected because it

offered the best compromise between suitable reconstruction errors

and computational time. Consequently, the study presents results

obtained using a degree five total order truncation.
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An illustration of the performance of the PC surrogate is

provided in Figure 2A, which depicts the evolution of C Lon and

C Lat for a randomly selected realization of x. The results for release
Location 1 are used, and curves are generated for winter and

summer release scenarios using the MOHID outputs and

corresponding PC surrogates. The PC representation errors are

depicted in Figure 2B. As expected, errors corresponding to C Lon

and C Lat increase with time for both release seasons. Nonetheless,

the E2 metric remains below 6% throughout the simulation period,

indicating that the PC representation remains suitable for

estimating sensitivities over the entire simulation time, which is

reflected in the close alignment between the curves in Figure 2A.

We also analyzed the maximum values over time of E2 for all

considered QoIs and all release scenarios; see Supplementary

Table S1. Overall, the results exhibit small error values and

alignment between the surrogate and the MOHID predictions

for the various realizations, indicating that the PC surrogate

suitably represents the functional dependence of the QoIs on

uncertain inputs.
4.2 Spill motion and deformation

Figures 3A, B illustrate the evolution of the standard deviation

of C Lon and C Lat, respectively. Curves are generated for all eight

considered scenarios. The results indicate that C Lon and C Lat

generally experience substantial variability, with values of the

standard deviation exceeding 0:25o in all scenarios. In addition, C

Lat generally exhibits greater variability during the winter scenarios,
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attributed to the more chaotic nature of the RS flow field during the

selected winter events. A more chaotic flow leads to higher

variability (Zhan et al., 2016).

The figures also demonstrate that the standard deviation of C

Lat is greater than that of C Lon, which may be attributed to the

topography of the RS basin with a greater extent along the latitude.

The evolution of the standard deviation is generally nonmonotonic

because of the stretching and folding of the oil slick by the ocean

eddies. This nonmonotonic behavior has important implications for

analyzing sensitivities, as discussed below. Finally, the figures

indicate strong variability across release scenarios for C Lon and

C Lat, which indicates that different metocean conditions along the

RS basin strongly affect the motion of the spilled oil and

significantly affect the evolution of parametric uncertainties.

These findings may be readily appreciated by contrasting the

mean displacements and their variabilities across the eight

considered scenarios. The present observations also underscore

the importance of using accurate wind information in oil spill

modeling (Keramea et al., 2021).

Figure 4 depicts the particle distributions corresponding to four

randomly selected realizations of the parameters. The distributions

are plotted two weeks after the initial release. Simulations

corresponding to a summer release scenario originating at Location

2 are used for this purpose. The distributions reveal that for two out

of the four selected realizations of x, C Lat is around 18.25°N (frames

b and c), whereas for the other two realizations of C Lat is around

17.5°N (frames a and d). The illustrations correspond to samples at
A

B

FIGURE 2

Illustration of the (A) evolution of C Lon (triangles) and its Lat
(circles) for the winter (W, hollow) and summer (S, filled) releases as
predicted by the surrogate model and compared to the
corresponding MOHID output (black) for winter (solid) and summer
(dashed) releases; (B) evolution of E2 in time for C Lon and C Lat for
summer and winter releases.
A

B

FIGURE 3

Evolution of the standard deviation of the (A) C Lon and (B) C Lat of
the ellipse that fits the oil particles. Evolution curves are presented
for summer (S, circles) and winter (W, triangles) and release
Locations 1–4.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1185106
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hammoud et al. 10.3389/fmars.2023.1185106
the modes of C Lat for the summer release scenario with an initial

release from Location 2. The particle distributions also illustrate the

variability resulting from using different inputs with the same

metocean conditions, see also Figure S2, which depicts the evolution

of the PDFs of C Lon and C Lat revealing multimodal behavior. This

highlights the importance of properly selecting key model parameters

and physical oil properties and accounting for residual uncertainties.

Figures 5A, B display the evolution of the total sensitivity indices

for C Lon and C Lat for all release locations. The curves are depicted

for the summer release scenarios. The results for the winter scenarios

were similar and, thus, omitted. The results indicate that the wind

coefficient has the greatest influence on the location of the oil spill
Frontiers in Marine Science 10
centroid. Around Day 9, the sensitivity of C Lon and C Lat with

respect to the viscosity briefly rises, but this behavior is insignificant

because the variances drop to small values around that time. Similar

behavior also occurs with IFT and approximately 10 days after the

initial release of oil. These results imply that, among the investigated

parameters, the wind coefficient is the dominant input parameter

affecting the transport of an oil spill.

These findings are consistent with and enhance well-established

results in the literature, which have demonstrated that the transport of

surface oil is strongly influenced by wind speed and direction and that

wind stresses tend to elongate the surface of the oil slick in the direction

of the surface winds (Androulidakis et al., 2018; Lodise et al., 2019;
A B

DC

FIGURE 4

Particle distributions at the last simulation time step (14 days from release) for four realizations of the random germ $\xi$. The distributions are
plotted individually and presented in frames (A–D). All simulations correspond to a release occurring during summer from release Location 2. Each
frame presents the release source location (green square), oil particles (blue dots), and their center of gravity(red cross). Particles are distributed
differently for various combinations of uncertainty parameters. Specifically, for some realizations, the center of gravity is located at a similar latitude
as the initial release (frames B, C), whereas for others, the center of gravity is located noticeably southward of the initial release (frames A, D).
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Duran et al., 2021). Our results provide quantitative estimates of the

contribution of the uncertain variables on the location of the center of

volume of the oil slick and allows to rule out uncertain parameters with

lower contribution to the variability in the location of the center of

volume. These results not only reveal that uncertainties in the wind

coefficient dominate uncertainties in transport, but also indicate that all

other uncertain parameters have a negligible contribution to the

observed variabilities. Therefore, for the sake of predicting oil

transport and estimating relevant confidence bounds, one could

restrict the input space to the wind coefficient only, thus disregarding

the remaining uncertain parameters.

The geometry of the oil slick is characterized using the central

particle moments a, b, and c. We analyzed the variances of a, b, and c

and generally observed that the prevailing behavior for C Lon and C

Lat also holds for the second-order central particle moments.

Figures 6A–C illustrate the evolution of the standard deviation of

a, b, and c over the two-week release period. The curves outline a

general increase in the variability of the central particle moments over

time, except for the summer release scenario originating from release

Location 3, which exhibits large oscillations. These oscillations may

arise because the original release location is at the periphery of an

eddy, inducing a rotational motion about its core.

The standard deviation of a is significantly smaller than that of c,

which may be attributed to the elongated shape of the RS basin. For a

given spill scenario (i.e., when the spill location and metocean
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conditions are specified), the variability of all three second moments

is dominated by the uncertainty of the wind coefficient. This result can

be readily appreciated from Figure 7, displaying the evolution of the

total sensitivity indices of the central particle moments for the summer

release scenarios. Locations 1 and 2 display a nonmonotonic change in

the total sensitivity, with the wind coefficient having the largest

influence. This outcome is unsurprising because the shear stresses

imposed by the surface winds stretch the oil slick along the main wind

direction, directly distorting its shape (Kampouris et al., 2021).

However, the effects of the IFT and viscosity are generally not

negligible, as observed from the results for Locations 1 and 2.

Empirical findings have suggested that more-viscous oils spread less

than less-viscous oils (Olugbenga et al., 2020), explaining the observed

sensitivity of the slick deformation to the oil viscosity. Moreover, the

IFT directly influences surface oil spreading, ultimately affecting the

shape of the oil slick and how it stretches under the action of surface

currents (Winoto et al., 2014; Speight, 2020). These results indicate that

uncertainties about the shape of the oil slicks are primarily dependent

on the wind coefficient and to a lesser degree on IFT and viscosity, and

that the contribution of the remaining parameters is negligible.

As discussed in Section 2.3, we rely on the second-order nominal

particle moments, â , b̂ , and ĉ to characterize the properties of the

elliptical region, centered at the centroid of the nominal oil slick,

where spilled oil is likely to be present. Figures 6D–F illustrate the

evolution of the standard deviation of â , b̂ , and ĉ for all release
A

B

FIGURE 5

Evolution of the TI of (A) C Lon and (B) C Lat. Evolution curves are presented for the summer release scenarios from Locations 1–4.
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scenarios. The evolution of the standard deviation of the nominal

moments is similar to that of the central moments; however, the

magnitude of the nominal particle moments is much larger than that

of the central particle moments. This result is expected because the

central particle moments measure the extent of the oil slick, whereas

the nominal particle moments characterize the extent of the region

centered on the centroid of the nominal oil slick, where individual oil

slick realizations are likely to be present. The latter may be well

separated from the nominal oil slick, explaining the higher values of

the second-order nominal particle moments.

Unlike the variability of the central moments, which primarily

depends on the wind coefficient and to lesser extent IFT and

viscosity, the variability of the nominal moments is controlled by

the wind coefficient. The total sensitivity indices (not shown)

corresponding to the wind coefficient are approximately 1 for the

entire simulation duration, and the remaining uncertainty

parameters have total sensitivities close to zero. This behavior is

unsurprising because the nominal moments reflect the combined
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effects of deformation (substantially affected by the wind coefficient)

and mean motion (controlled by the wind coefficient). This

approach substantially filters out the effects of IFT and viscosity,

whose influence on the variability of the nominal moments can be

deemed negligible. Thus, uncertainties in the second-order nominal

particle moments are dominated solely by the wind coefficient.
4.3 Weathering quantities

This section analyzes the variability of the FME and FMD. The

evolution of the standard deviation of the FME is reported in Figure 8A

for all release scenarios. The figure indicates that the standard deviation

of the FME increases monotonically as time progresses over a two-

week period, with considerable variance after one week of the initial

release. On the other hand, these predictions are fairly similar for the

various release scenarios. As can be seen in Figure S3, the PDFs of FME

also exhibit similar profiles, with widths increasing over time.
A

B

D

E

FC

FIGURE 6

(A–C) Evolution curves of the standard deviation of the “a”, “b”, and “c” variables for all considered release scenarios. (D–F) Evolution of the standard

deviation of â , b̂ , and ĉ for the summer release scenarios.
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The evolution of the total sensitivity indices for the summer

release scenarios is presented in Figure 8B. The curves demonstrate

that, except for a short time following the release, the FME is most

sensitive to the oil's API. The total sensitivity indices corresponding

to the wind coefficient also appear to be more significant than the

other uncertainty parameters; however, the influence of the wind

coefficient on the FME is secondary compared to the API. These

observations are consistent with the findings by (French-McCay

et al., 2021), and also indicate that except at early times following

the release, the variance of FME is dominated by uncertainty in API,

and that contributions from other sources can be neglected.
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Figure 9 presents a scatterplot of the 600 FME values predicted by

MOHID one week after the initial release of oil from Location 1 for the

winter and summer scenarios. The figure also illustrates the conditional

expectation of FME and the 10th and 90th percentiles for varying

obtained from the PC surrogate. The plots reveal that the FME

increases nearly linearly with increasing. Realizations falling below

the 10th percentile curves exhibit a larger scatter compared with

realizations falling above the 90th percentile curves. This result is

consistent with the skewness of the PDFs and the structure of their

tails (see Figure S3). We examined the origin of these events by

examining their parameters. The analysis indicated that extreme
A

B

C

FIGURE 7

(A–C) Evolution curves of the total sensitivity indices corresponding to variables “a”, “b” and “c”, respectively, for the summer release scenarios.
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FME values correlate with extreme values of the wind coefficient. As

expected, due to convective effects induced by surface winds, low FME

values occur for low values of the wind coefficient and vice versa for

higher wind coefficient values, which aligns with the results from

(Saltymakova et al., 2020).

Figure 10A illustrates the evolution of the standard deviation of the

FMD for all considered release scenarios. The figure indicates that the

standard deviation of the FMD increases monotonically over time. The

standard deviation estimated from the PC surrogate is comparable to

the empirical standard deviation; however, the empirical standard

deviation is smoother than that of the PC surrogate, possibly due to

the cross-validation strategy adopted to obtain the PC coefficients. The

results also reveal that the standard deviations vary substantially across

various release scenarios, indicating that uncertainty in the input

parameters over the considered ranges leads to appreciable relative

differences in the FMD estimates. Overall, however, the FMD estimates
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exhibit small values in all scenarios considered, despite the large

coefficients of variation. This is consistent with the empirical PDFs

plotted in Figure S4. In contrast to the FME, the FMD PDFs reveal

long-tailed unimodal distributions peaking at a small values (< 1%).

The evolution of the total sensitivity indices of the FMD for all

summer release scenarios is presented in Figure 10B. Initially, the IFT

exhibits the highest total sensitivity index. As time progresses, the total

sensitivity index of the IFT decreases to just below 0.5; thus, the IFT

remains significant throughout the release. The FMD is also initially

sensitive to the water uptake parameter after the oil release; however, it

becomes insignificant later. The sensitivity of the FMD to viscosity

increases with time, and the total sensitivity index of viscosity becomes

the largest parameter and remains so over the remaining simulation

time. Because the standard deviation of the FMD is very small in the

first two days following the release, for the range of considered

scenarios, the variability of the FMD is primarily sensitive to
A

B

FIGURE 8

Evolution of the (A) standard deviation of the FME in time for all release scenarios considered. Subplot (B) illustrates the evolution of the total
sensitivity indices of the FME corresponding to the summer release scenarios.
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viscosity and IFT. The sensitivity of the FMD to the IFT may also be

anticipated because the IFT affects the oil breakup dynamics and,

consequently, the dispersion into the water column, as suggested from

the observations by (Delvigne and Sweeney, 1988).

Note in the cases of FME and transport QoIs the analysis revealed

the presence of a dominant parameter, but in the case of FMDmultiple

parameters have significant contributions to the variance. This leads us

to examine the behavior of higher order sensitivities in this instance.

Figure S5 illustrates the evolution the evolution of the first-order and

second-order Sobol sensitivity indices for FMD. The results indicate

that in addition to direct contributions from the uncertainty in IFT and

viscosity, the mixed (cross-sensitivity) term between the IFT and

viscosity also has significant impact. Thus, the contributions of these

two dominant sources of uncertainty are clearly not additive.

A summary of the GSA results for the summer scenarios is

presented in Table 4. The table present the average total sensitivity

index for each QoI for each uncertainty parameter for the summer

releases, respectively. As indicated, the total sensitivities are averaged

over the release locations and across various time spans. Specifically,

sensitivity values are averaged over early (≤ 3 days), intermediate (> 3

and< 10 days), and late (≥ 10 days) integration periods to further aid

in identifying the uncertain input to which the QoI is most sensitive.

Consistent with earlier discussions, for all considered time ranges, the

location and geometry of the oil slick are most sensitive to the wind

coefficient, and the variability of the FME is predominantly affected

by the API. In contrast, the FMD exhibits strong sensitivity to

viscosity and IFT. The results corresponding to the winter release

exhibited similar behaviors and are presented in Table S2.
5 Conclusion

We considered eight scenarios for oil spill incidents in the RS by

specifying four release locations and two metocean conditions

characteristic of winter and summer. For each scenario, the
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evolution of the released oil is simulated using the MOHID oil

spill model over two weeks following the release.

Six uncertainty parameters that strongly influence the evolution

of the oil were selected following a preliminary screening study. The

six uncertain inputs include oil properties and oil-model parameters,

including the API gravity (API), interfacial tension (IFT), empirical

thickness gradient (ETG), wind coefficient (WC), water uptake

parameter (WUP), and viscosity. We constructed PC surrogates of

QoIs characterizing the location and geometry of the slick as well as

weathering effects. A nonintrusive, regularized regression approach

was used for this purpose. We analyzed the suitability of the surrogate

models by quantifying the representation errors and exploited them

to investigate the variability, distribution, and sensitivity of the QoIs.

In particular, the study indicated that, for the range of considered

scenarios, QoIs characterizing the motion and deformation of the oil

slick generally have large variances and exhibit strong dependence on

metocean conditions. For a given scenario, the analysis demonstrated

that the wind coefficient generally controls the influence of the

motion and deformation of the oil slick. Specifically, the wind

coefficient governs the variability in the centroid and nominal

particle moments of the oil slick. The effects of viscosity and IFT

are not negligible to determine the variability of the central particle

moments. The analysis also indicated that the variability of FME is

controlled by the API, with higher FME values for summer scenarios

than for winter scenarios, as expected. Extreme values of the FME are

positively correlated with extreme values of the wind coefficient.

Finally, the results indicate that the variability of the FMD primarily

depends on the oil viscosity followed by the IFT.

Overall, the present experiments indicate that, for the considered

conditions, the prediction of areas affected by an accidental oil spill

depends onmetocean conditions and is highly sensitive to uncertainties

in the metocean field and wind-coupling parametrization. For the

range of tested conditions, the amount of oil affecting a region may be

substantially affected by oil evaporation, which is highly sensitive to the

API. For the assessment of spill effects over relatively short periods
FIGURE 9

Scatterplot of the FME value one week after the initial release of oil from Location 1 for the summer and winter release scenarios, as predicted by
MOHID. The figure also portrays the projection of the mean (black dashed line) and the 10th (lower boundary of the shaded area) and 90 th (upper
boundary of the shaded area) percentiles of the FME for values.
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FIGURE 10

Evolution of the (A) standard deviation of the FMD in time. This plot presents the results for all considered release scenarios. Subplot (B) illustrates
the evolution of the total sensitivity indices of the FME corresponding to the summer release scenarios.
TABLE 4 Table listing the average total sensitivity indices for short (≤ 3 days), intermediate (> 3 days and< 10 days), and long (≥ 10 days) term.

API IFT ETG WC WUP Visc

FMD t ≤ 3 0.11225 0.62574 0.028801 0.04101 0.24731 0.63961

3 < t < 10 0.042218 0.41732 0.006038 0.019015 0.031412 0.78574

t ≥ 10 0.064339 0.3296 0.001439 0.006212 0.00344 0.73624

FME t ≤ 3 0.87997 0.00078 0.000291 0.090411 0.031802 0.000709

3 < t < 10 0.96435 0.00034 4.06E-05 0.034939 0.001012 0.000597

t ≥ 10 0.98456 0.001564 6.93E-05 0.011619 0.001523 0.003301

C Lon t ≤ 3 0.000955 0.00726 0.015054 0.98725 0.005222 0.00056

3 < t < 10 0.002996 0.00559 0.000986 0.99151 0.002528 0.008226

(Continued)
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following an accidental release, these findings suggest that effective

approaches can be conceived that focus primarily on metocean

conditions, wind effects, evaporation, and their associated variabilities.

In conclusion, the present analysis focused on the influence of

uncertainties in key oil properties and model parametrizations and

ignored other sources of uncertainty, such as those affecting metocean

conditions. In future work, we plan to account for these uncertainties

using a flow ensemble approach while leveraging the results of the

present study to restrict the number of uncertain oil and model

parameters to a reasonably sized set. This plan would enable efficient

means to simultaneously address forecasting and parameter

uncertainties and effectively capitalize on the resulting predictions

for impact assessments, source identification, or decision support.
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TABLE 4 Continued

API IFT ETG WC WUP Visc

t ≥ 10 0.005914 0.013128 0.001296 0.96885 0.001726 0.026242

C Lat t ≤ 3 0.001705 0.002053 0.002319 0.99533 0.001196 0.001364

3 < t < 10 0.0191 0.026885 0.002147 0.95025 0.010396 0.047219

t ≥ 10 0.010077 0.017942 0.003118 0.94284 0.00455 0.0516

a t ≤ 3 0.014952 0.089145 0.008293 0.91344 0.046241 0.069087

3 < t < 10 0.022201 0.10196 0.002737 0.85138 0.007729 0.12626

t ≥ 10 0.026967 0.072676 0.002187 0.88324 0.003541 0.076154

b t ≤ 3 0.03867 0.2049 0.024025 0.79452 0.08919 0.14753

3 < t < 10 0.021553 0.10676 0.004159 0.86079 0.010572 0.1124

t ≥ 10 0.021521 0.068708 0.002967 0.89682 0.00577 0.081479

c t ≤ 3 0.01493 0.12443 0.011497 0.84562 0.075593 0.079597

3 < t < 10 0.020627 0.11939 0.003532 0.81426 0.008395 0.12839

t ≥ 10 0.023634 0.068933 0.001546 0.89621 0.004381 0.078065
The quantity of interest results are indicated along the leftmost column, and the uncertainty parameters are indicated along the top row. The results correspond to the summer scenarios, averaged
across all release locations.
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