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Can dynamic adaptation gain speed up recursive least squares
algorithm?

Ioan Doré Landau, Tudor-Bogdan Airimitoaie, Bernard Vau, and Gabriel Buche

Abstract— Dynamic adaptation gain/learning rate have been
introduced in the context of adaptation/learning algorithms
using scalar adaptation gains/learning rates in order to accel-
erate the adaptation transients. This paper shows by means of
theoretical analysis, simulations and experimental results (on an
active noise control system) that inserting a dynamic adaptation
gain into the recursive least squares algorithm speeds up the
adaptation transients in a deterministic environment and the
asymptotic convergence in the stochastic case.

I. INTRODUCTION

The paper [1] has introduced the concept of dynamic
adaptation gain/learning rate as an efficient way to accelerate
significantly the adaption/learning transients in the context of
adaptation/learning algorithms using constant scalar adapta-
tion gains/learning rates or time decreasing scalar adaptation
gains in a stochastic environment. An application of this type
of algorithms can be found in [2]. Continuous type version
of the dynamic adaptation gain is discussed in [3].
The dynamic adaptation gain (DAG) will filter the correcting
term of the adaptation/learning algorithm. This filter should
be characterized by a strictly positive real (SPR) transfer
function (such that the phase distortion introduced on the
correcting term be less than 90◦). Since it is SPR, its average
gain in the frequency domain (over the range 0 to 0.5fs) is
0 db (i.e., 1) [1]. But this filter will introduce a frequency
weighting of the adaptation gain leading to an improvement
of the adaption/learning transient.
The question addressed in this paper is the following:
could the dynamic adaptation gain (DAG) improve the
convergence speed of recursive least squares type adapta-
tion/learning algorithms? The answer is yes and this is sup-
ported by theoretical analysis, simulations and experimental
results obtained on an active noise control system.
The paper is organized as follows: Section II will present the
recursive least squares type adaptation/learning algorithms
incorporating a dynamic adaptation gain. The properties of
the algorithm in stochastic and deterministic environment are
discussed in Sections III and IV. Simulations and experimen-
tal results obtained on an adaptive active noise control system
are presented in Sections V and VI.
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II. THE ALGORITHMS

Consider a plant model of the form:

y(t+ 1) = θTϕ(t), (1)

where the unknown parameter vector θ has the form:

θT = [a1, a2, . . . anA
, b1, b2, . . . bnB

] (2)

and

ϕT (t) = [−y(t),−y(t− 1), . . . , u(t), u(t− 1), . . .] (3)

is the measurement vector.1 The adjustable prediction model
will be described in this case by:

ŷ◦(t+ 1) = ŷ[(t+ 1)|θ̂(t)] = θ̂T (t)ϕ(t) (4)

ŷ(t+ 1) = ŷ[(t+ 1)|θ̂(t+ 1)] = θ̂T (t+ 1)ϕ(t) (5)

where ŷ◦(t+1) and ŷ(t+1) are respectively the a priori and
the a posteriori predicted output depending upon the values
of the estimated parameter vector θ̂ at instants t and t+ 1:

θ̂T (t) = [â1(t), â2(t), . . . ânA
(t), b̂1(t), b̂2(t), . . . b̂nB(t)]

(6)
One defines an a priori and a posteriori prediction error as:

ϵ◦(t+ 1) = y(t+ 1)− ŷ◦(t+ 1) (7)

ϵ(t+ 1) = y(t+ 1)− ŷ(t+ 1) = [θ − θ̂(t+ 1)]Tϕ(t) (8)

In the context of this paper for the case of time varying
matrix adaptation gain/learning rate (generalized recursive
least squares) one considers an adaptation algorithm of the
form:

θ̂(t+ 1) = θ̂(t) +
1

D′(q−1)
F (t)C(q−1)[ϕ(t)ϵ(t+ 1)] (9)

where:

HDAG =
C

D′ =
1 + c1q

−1 + c2q
−2 + ..+ cnC

q−nC

1− d′1q
−1 − d′2q

−2..− d′nD′ q
−nD

(10)

is called the dynamic adaptation gain. It is a MIMO diagonal
transfer operator having identical terms.

A particular case used in practice is a second order filter
(ARIMA2 algorithm):

HDAG(q
−1) =

C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2

1− d′1q
−1

(11)

1u(t), y(t) ∈ R1, θ, ϕ ∈ Rn, n = na + nb, Rn is the real n-
dimensional Euclidean space.



Tthe dynamic adaptation gain should be SPR in order that
the distortion on the gradient direction be less than 90◦.
Bounds for the selection of the coefficients c1, c2, d′1 in order
to guarantee the strict positive realness of the DAG filter have
been provided in [1].
The explicit form of the adaptation algorithm becomes:

θ̂(t+ 1) = d1θ̂(t) + d2θ̂(t− 1) + . . .+

+F (t)[ϕ(t)ϵ(t+1)+c1ϕ(t−1)ϵ(t)+c2ϕ(t−2)ϵ(t−1)+. . .]
(12)

with:

di = (d′i − d′i−1) ; i = 1, . . . nD; d′0 = −1, d′nD
= 0 (13)

The expression of the matrix adaptation gain F (t) is :

F (t+ 1) =
1

λ1(t)

F (t)− F (t)ϕ(t)ϕT (t)F (t)
λ1(t)
λ2(t)

+ ϕT (t)F (t)ϕ(t)

 (14)

where λ1(t) and λ2(t) allow to obtain various profiles for
the adaptation gain F (t) (see [4] for details).
Specifically, we will consider the cases: 1) λ1(t) = 1,
λ2(t) = 1 (recursive least squares); 2) λ1(t) = 1, λ2(t) = λ2

with 0 < λ2 < 2 (decreasing adaptation gain/learning rate);
3) λ1(t) = λ0λ1(t − 1) + 1 − λ0, λ1(0) < 1, λ0 < 1
λ2(t) = λ2 with 0 < λ2 < 2 (recursive least squares
with variable forgetting factor); and 4) λ1(t), λ2(t) such that
trF (t) = trF (0) = const (constant trace algorithm).
ϕ(t) is given by Eq. (3) and ϵ(t+ 1) is given by:

ϵ(t+ 1) =
ϵ◦(t+ 1)

1 + ϕT (t)F (t)ϕ(t)
(15)

where ϵ◦(t+ 1) is given by:

ϵ◦(t+ 1) = y(t+ 1)− θ̂T0 (t)ϕ(t) (16)

and where θ̂0(t) is given by:

θ̂0(t) =d1θ̂(t) + d2θ̂(t− 1) + . . .

+ F (t)[c1ϕ(t− 1)ϵ(t) + c2ϕ(t− 2)ϵ(t− 1) + . . .]
(17)

In [1] the cases F = constant and F (t) = 1
tF have been

discussed.

III. STOCHASTIC ENVIRONMENT—ANALYSIS

We will discuss subsequently the asymptotic behavior of
the algorithm (9) for the case of an extended least squares
predictor when the measured output is described by an
ARMAX model. We will consider the ARMAX I/O model:

y(t) =
B(q−1)

A(q−1)
u(t) +

L(q−1)

A(q−1)
e(t) (18)

with {e(t)} centered (gaussian) white noise sequence (i.e.
a sequence of independently identically distributed normal
random variables (0, σ)). The optimal predictor is given by
(see [4]):

ŷ(t+ 1) = θ̂T (t+ 1)ϕ(t) (19)

where:

ϕT (t) = [−y(t),−y(t− 1), ., u(t), u(t− 1), .ε(t), ε(t− 1), .]
(20)

θT = [a1, a2, . . . anA
, b1, b2, . . . bnB

, . . . lnL
] (21)

and ε(t+1) is the a posteriori prediction error governed by
the equation [4]:

ε(t+ 1) =
1

L(q−1)
[θ − θ̂(t+ 1)]Tϕ(t) + e(t+ 1) (22)

We will consider the algorithm (9) with λ1(t) = λ1 = 1
and λ2(t) = λ2, 0 < λ2 < 2 (adaptation algorithms with
decreasing adaptation gain).
For the analysis of the algorithms, we will use the ODE
method of Ljung [5], [4]. This requires the following assump-
tions: (1) Stationary processes ϕ(t, θ̂) and ϵ(t+1, θ̂) can be
defined for θ̂(t) ≡ θ̂, (2) θ̂(t) generated by the algorithm
belongs infinitely often to the domain (Ds) for which the
stationary processes ϕ(t, θ̂) and ν(t + 1, θ̂) can be defined.
Define the convergence domain:

Dc :
{
θ̂ : ϕT (t, θ̂)[θ∗ − θ̂] = 0

}
(23)

One has the following result:
Lemma 1: Consider the predictor given in Eq. (19) and

the PAA given in Eqs (12), (14) and (15), with λ1(t) =
λ1 = 1 and λ2(t) = λ2, 0 < λ2 < 2. One has
Prob{limt→∞ θ̂(t) ∈ Dc} = 1, if:

1) e(t) is a sequence of independently identically dis-
tributed random variables (0, σ).

2)
1+

∑nC
j=1 cj

1−
∑n′

D
j=1 d′

j

1
L(q−1)−

λ2

2 is an SPR transfer operator with

1+
∑nC

j=1 cj

1−
∑n

D′
j=1 d′

j

> 0.

The proof of this result is given in the appendix.
Note that from the condition that HDAG be SPR, it results

that
1+

∑nC
j=1 cj

1−
∑n

D′
j=1 d′

j

> 0. Note also that, for cj = d′j = 0 for all

j, one finds the well known result for the recursive extended
least squares. See [5], [4].

Asymptotic convergence rate
One way for evaluating the convergence rate is to consider
the ODE equation associated to the algorithm and the Lya-
punov function V used for studying the stability of the ODE.
The rate of convergence of the Lyapunov function candidate
(defined as |V̇ |

V ) can be considered as an estimation of the
asymptotic convergence rate of the algorithm. The ODE
equations associated with the algorithm of Eq. (9) are given
in Eqs. (54) and (55). The Lyapunov function candidate is
given in Eq. (57) and its derivative is given in Eq. (58). It
results that an estimation of the asymptotic convergence rate
is given by:

| V̇ |
V

=
1 +

∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

[θ̂ − θ]T [2GH(θ̂)][θ̂ − θ]

[θ̂ − θ]TR(τ)[θ̂ − θ]
+

+
[θ̂ − θ]T [R(τ)− λ2G(θ̂)][θ̂ − θ]

[θ̂ − θ]TR(τ)[θ̂ − θ]
(24)



where G(θ̂) and GH(θ̂) are given in Eqs. (56) and
(53), respectively. The first term of the expression of the
convergence rate depends upon the coefficients of the
DAG filter. The convergence rate for the standard extended
recursive least squares algorithm is obtained for cj = 0 ,
d′j = 0, j = 1, 2, . . .. Using a dynamic adaptation gain, the
improvement of the rate of convergence with respect to the
recursive least squares algorithm is provided by the steady
state gain of Hii

DAG defined as SSG =
1+

∑nC
j=1 cj

1−
∑n

D′
j=1 d′

j

, which

should be > 1.

IV. ADAPTATION TRANSIENT ANALYSIS

Adaptation/learning algorithms with time varying matrix
adaptation gain of recursive least squares type are used in two
modes: 1) vanishing adaptation gain (for identification and
self-tuning control), 2) non-vanishing adaptation gain (for
adaptive control). A typical example of non vanishing matrix
gain used in applications is the so called ”constant trace
algorithm” (see comments after Eq.(14)) or the recursive
least squares gain algorithm with re-setting [6]. When using
a non vanishing adaptation gain, from practical reasons,
one often uses a low adaptation gain. This suggests that
an averaging approach [7] can be used for investigating the
properties of adaptation algorithms. Defining the parameter
error as:

θ̃(t) = θ̂(t)− θ (25)

from Eq. (9) on gets:

θ̃(t+ 1) = θ̃(t) +
1

D′(q−1)
F (t)C(q−1)[ϕ(t)ϵ(t+ 1)] (26)

Since we consider the case of the constant trace algorithm (or
RLS algorithm with re-setting), the value of the adaptation
gain matrix F (t) will vary around an average value F :

F =
1

N + 1

N∑
i=0

F (t− i). (27)

One has the following result:
Lemma 2: Consider the adaptation algorithm given in in

Eqs (12), (14) and (15), using a constant trace adaptation
gain updating. Under the assumption that the adaptation gain
F (t) is sufficiently low such that for N >> 1 :

1

N + 1

N∑
i=0

(ϕ(t− i)ϕ(t− i)T θ̃(t− i+ 1)) ≈

≈ 1

N + 1

N∑
i=0

(ϕ(t− i)ϕ(t− i)T )θ̃(t) ≈ Gϕ̂θ̃(t) (28)

where:

1

N + 1

N∑
i=0

(ϕ(t− i)ϕ(t− i)T ) ≈ Eϕ(t)ϕ(t)T = Gϕ (29)

the evolution of the parameter error on the average is
expressed by:

θ̃(t+ 1) = θ̃(t)− FHDAG(q
−1)[Gϕθ̃(t+ 1)]

= θ̃(t)− FGϕHDAG(q
−1)[θ̃(t+ 1)] (30)

where F is given by in Eqs (27).
Proof: Eq. (26) can be approximated by:

θ̃(t+ 1) = θ̃(t) + FHDAG(q
−1)[ϕ(t)ϵ(t+ 1)] (31)

= θ̃(t)− FHDAG(q
−1)[ϕ(t)ϕT θ̃(t+ 1)] (32)

because:

ϵ(t+ 1) = ϕT [θ − θ̂(t+ 1)] = −ϕT θ̃(t+ 1) (33)

We are now interested on the average of the correcting term
ϕ(t)ϕT θ̃(t+1). Under the hypothesis of Eq. (28) the average
of the correcting term is given by Gϕ̂θ̃(t) and the evolution of
the parameter error on the average will be given by Eq.(30).

Under the assumptions of persistence of excitation and low
adaptation gains (slow adaptation) one can push further the
approximation of the equation describing the behavior of
the adaptation algorithm via linearization. To go further
toward linearization of Eq. (30) one should add a persistence
excitation condition

σ1I <
1

N + 1

N∑
i=0

(ϕ(t− i)ϕ(t− i)T ) < σ1I; σ1, σ2 > 0

(34)
FGϕ can be approximated by FGϕ ≈ G where G is a con-
stant positive definite matrix. The linearized approximation
of the algorithm will be described by:

θ̃(t+ 1) = θ̃(t)−GHDAG(q
−1)[θ̃(t+ 1)] (35)

One considers the case of a single parameter to adapt (i.e.
dim(θ̃) = 1) and the matrix G becomes a positive scalar
g. The linearized approximation of the algorithm will be
described by:

θ̃(t+ 1) = θ̃(t)− gHDAG(q
−1)[θ̃(t+ 1)] (36)

which corresponds to a linear feedback system whose out-
put is θ̃(t + 1). The adaptation transient behavior will be
described by the output sensitivity function of this feedback
system.

S =
1− q−1

1 + gHDAG
=

(1− q−1)D′(q−1)

D′(q−1) + gC(q−1)
(37)

which can be particularized for the ARIMA2 algorithm
(Eq.(11)). We are interested on the response of this transfer
function with respect to a step parameter error. Fig.1 shows
the step response for various values of the DAG coefficients
and two values of the adaptation gain g.
As it can be observed for g = 0.01 the convergence time

for the basic algorithm is approximately 600 s. Adding the
DAG (d′1 = 0.75, c1 = 0.99; c2 = 0) the convergence time is
approximately 70 s. Note that a similar performance can be
obtained with the basic algorithm by multiplying the gain g
by 10.
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Fig. 1. Adaptation transient on the linearized system.

V. SIMULATION RESULTS

Identification of the following system is considered:

Sys =
q−2 + 0.5q−3

1− 1.5q−1 + 0.7q−2
=

B(q−1)

A(q−1)
(38)

The system is affected by measurement noise, and the output
is governed by Eq. (18) with L(q−1) = 1 − 1.05q−1 +
0.343q−2. A pseudo random binary sequence (PRBS) is used
as excitation signal. The extended least squares algorithm is
used for updating the adaptation gain F (t) (λ1(t) = λ1 =
1, λ2(t) = λ2 = 1). The initial parameter estimates are set
to 0 (initial squared parameter distance = 4). Figure 2 shows
the results of the simulation (zoom) for the classical extended
recursive least square algorithm(HDAG = 1, i.e. c1 = c2 =
d′1 = 0) and the ARIMA2 algorithm (c1 = 0.5, c2 =
0.05, d′1 = 0.5) added to the extended recursive least squares
algorithm. The case without measurement noise and the case
when noise is added on the output (signal/noise ratio= 33 dB)
have been considered. In both situations the ARIMA2+ERLS
algorithm provides better adaptation transients.

Fig. 2. Evolution of the squared parametric distance (zoom) using ARIMA2
algorithm with extended least squares adaptation gain and the standard
extended least squares algorithm (c1 = c2 = d′1 = 0)

VI. EXPERIMENTAL RESULTS

The algorithms presented in the paper have been tested
on an adaptive feedforward active noise attenuation system

featuring a strong acoustic positive feedback shown in Fig. 3
feedback2 . The detailed description of the system and of the
specific control algorithm can be found in [1] and [2].
The objective is to attenuate an incoming unknown broad-

Fig. 3. Duct active noise control test-bench.

band noise disturbance. The corresponding block diagram
for the adaptive feedforward noise compensation using FIR
Youla-Kucera (FIR-YK) parametrization of the feedforward
compensator is shown in Figure 4.

Global primary path

Positive feedback coupling 

Measurement of the

image of the disturbance

Secondary

path

Residual

 noise

measurement

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward compensator

Fig. 4. Feedforward AVC with FIR-YK adaptive feedforward compensator.

The adjustable filter Q̂ has the FIR structure:

Q̂(q−1) = q̂0 + q̂1q
−1 + ...+ q̂nQ

q−nQ (39)

and the parameters qi will be adapted in order to minimize
the residual noise.

The algorithm which was used (introduced in [8]) can be
summarized as follows. One defines:

θ̂T = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (40)

ϕT (t) = [v(t+ 1), v(t), . . . , v(t− nQ + 1)] (41)

where:

v(t+1) = BM û(t+1)−AM ŷ(t+1) = B∗
M û(t)−AM ŷ(t+1)

(42)

2Caused by the reverse path in Fig. 3
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One defines also the regressor vector (a filtered observation
vector) as:

ϕf (t) = L(q−1)ϕ(t) = [vf (t+1), vf (t), . . . , vf (t−nQ+1)]
(43)

where
vf (t+ 1) = L(q−1)v(t+ 1) (44)

Using R0 = 0 and S0 = 1, one uses a filter L = Ĝ.
7.1 Adaptive Control

In the adaptive control context, one uses a non vanishing
adaptation gain. There are 60 parameters to adapt. The
constant trace algorithm has been considered with trF (t) =
60 · g, g = 0.3. Fig. 5 provides a comparison of the
evolution of the attenuation for an incoming broad-band
disturbance covering the frequency range 70−170 Hz when
adding a DAG. One observes a significant acceleration of the
adaptation transient. It was observed that this acceleration is
higher than the one obtained with an adaptation gain 25 times
larger (7.5) on the basic algorithm.

7.2 Self-tuning control
The self tuning objective is to tune a linear controller with
constant parameters. The adaptation of these parameters is
done with a vanishing adaptation gain. The basic algorithm
is the Recursive Least Squares (RLS). In order to accelerate
the adaptation transient the most popular solution is to use
the RLS with variable forgetting factor. The questions are:
1) Could the DAG improve the adaption transient of the
basic RLS algorithm? 2) Could the DAG provide a faster
adaptation than the RLS with variable forgetting factor
(RLSVFF)? 3) Could the DAG improve the performance of
the RLSVFF algorithm? The answer to these three questions
is yes and this is illustrated in the following figures.
The experiments have been done with the same incoming
disturbance used in Section 7.1. Fig. 6 shows the evolution of
the global attenuation during the self tuning operation for the
RLS algorithm with various DAG. One clearly sees that the
DAG speed up the adaption transient and improves the final
tuning with respect to the basic RLS algorithm. Fig. 7 shows
a comparison between the RLS algorithm using the ARIMA2
DAG with the standard RLSVFF (the choice of the λ1(0) and
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with various DAGs1.

Fig. 7. Time evolution of the global attenuation for the RLS algorithm
with ARIMA2 DAG and the RLSVFF algorithm.

λ0 have been optimized for this application). One can see
that the RLS with ARIMA2 provides a better performance
both in terms of adaptation transient and steady state tuning.
It was observed that even for the RLSVFF algorithm adding
a DAG one still gets an improvement in performance.

VII. CONCLUSION

The paper has shown that the concept of dynamic adapta-
tion gain is extremely useful for accelerating the convergence
of recursive least squares type adaptation learning algorithm
both in deterministic and stochastic environment.

APPENDIX

One makes a change of variables: R(t) = 1
tF (t)−1. The

updating formula for R will be:

R(t+ 1) = R(t) +
1

t+ 1
[λ2ϕ(t)ϕ(t)

T −R(t)] (45)

Observe that for large t ≫ N

1

t+ i
R−1(t+ i) ∼=

1

N + 1
(

N∑
i=0

1

t+ i
)R−1(t) (46)



From Eq. (9) and taking into account the relations between
di and d′i one has:

θ̂(t+ 1) = θ̂(t) +

nD′∑
j=1

d′j [θ̂(t+ 1− j))− θ̂(t− j)]

+
1

t
R(t)−1

nC∑
j=0

cjϕ((t− j)ϵ(t+ 1− j); l0 = 1 (47)

where:

ϵ(t+1) = y(t+1)− ŷ(t+1) = [θ− θ̂(t+1)]Tϕ(t)+e(t+1)
(48)

The behavior of the algorithm for t >> 1 and an interval
N : 1 << N << t will be described by:

θ̂(t+N + 1) = θ̂(t)+

+

n′
D∑

j=1

d′j

N∑
i=0

[θ̂(t+ i− j + 1))− θ̂(t+ i− j)] +

nC∑
j=0

cj ·

·

[
N∑
i=0

1

t+ i
R(t+ i)−1ϕ((t+ i− j)ϵ(t+ 1 + i− j)

]
(49)

Observe that

N∑
i=0

[θ̂(t+ i)− θ̂(t+ i− 1)] = θ̂(t+N)− θ̂(t− 1) (50)

Taking into account the hypotheses on t and N and Eq. (46),
Eq. (49) becomes:1−

n′
D∑

j=1

d′j

 [θ̂(t+N + 1)− θ̂(t)]

≈
nC∑
j=0

cj

([(
N∑
i=0

1

t+ i

)
R(t)−1

]

1

N + 1

N∑
j=0

ϕ(t+ i− j)ϵ(t+ 1 + i− j)

 (51)

This is the formalism used in the ODE approach of Ljung
[5] and the associated ODE equation will take the form:

dθ̂

dτ
= −

1 +
∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

R(t)−1f(θ̂); ∆τN+1
t ≈

N∑
i=0

1

t+ i

(52)
where

f(θ̂) = GH(θ̂)(θ̂ − θ)−E
{
HDAG(q

−1)[ϕ(t, θ̂)e(t+ 1)]
}

(53)
with: GH(θ̂ = E

{
[ϕ(t, θ̂) 1

L(q−1)ϕ
T (t, θ̂)]

}
. But as a conse-

quence of condition (i) the second term in the right side of
Eq. (53) will be null and the equilibrium points of the ODE
(Eq. (52)) will be given by Dc (Eq. (23)).
We must examine now the stability of the associated ODE

given in Eq. (52) for f(θ̂) given in Eq. (53) without the
forcing term. i.e.

dθ̂

dτ
= −R(t)−1

1 +
∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

GH(θ̂)(θ̂ − θ) (54)

On the other hand, from Eq. (45) one gets

dR̂

dτ
= λ2G(θ)−R(τ) (55)

where G(θ) in this case is given by:

G(θ) = E
{
[ϕ(t, θ̂)ϕT (t, θ̂)]

}
(56)

To study the stability of the system formed by Eqs. (54) and
(55) we will consider the Lyapunov function candidate:

V = [θ̂ − θ]TR(τ)[θ̂ − θ] (57)

For studying the stability of the system formed by Eqs (54)
and (55), the derivative of the Lyapunov function candidate
along the trajectories of the system is computed:

dV

dτ
= −[θ̂ − θ]T ·

[
1 +

∑nL

j=1 lj

1−
∑nD′

j=1 d
′
j

2GH(θ̂)− λ2G(θ̂)

+R(τ)] [θ̂ − θ] (58)

In order to assure the stability of the associated ODE system,
it is sufficient that the matrix:

G(θ̂) =
1 +

∑nC

j=1 cj

1−
∑n′

D
j=1 d

′
j

GH(θ̂)− λ2

2
G(θ̂) (59)

be positive definite outside Dc. G(θ̂) can be rewritten as:

G(θ̂) = E

{
ϕ(t, θ̂)[

1 +
∑nC

j=1 cj

1−
∑n′

D
j=1 d

′
j

1

L(q−1)
− λ2

2
]ϕ(t, θ̂)T

}
(60)

Using the results of [4, pg. 129] one concludes that G(θ̂) will
be positive definite provided that condition (i) of Lemma 1
is satisfied.

REFERENCES

[1] I. D. Landau, T.-B. Airimitoaie, B. Vau, and G. Buche, “On a general
structure for adaptation/learning algorithms - stability and performance
issues,” Automatica, vol. 156, p. 111193, October 2023. [Online].
Available: https://hal.science/hal-04045239

[2] I. D. Landau, B. Vau, T.-B. Airimitoaie, and G. Buche, “Improving
performance of adaptive feedforward noise attenuators using a dynamic
adaptation gain,” Journal of Sound and Vibration, vol. 560, p. 117790,
2023.

[3] K. Zhang, K. Chen, M. M. Polycarpou, and T. Parisini, “Dynamic
adaptation gain for adaptive threat discrimination,” 2023, private com-
munication.

[4] I. D. Landau, R. Lozano, M. M’Saad, and A. Karimi, Adaptive control,
2nd ed. London: Springer, 2011.
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