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Differential properties of rough fractal surfaces

C. Poull C. Gentil C. Roudet L. Druoton and M. Roy

Laboratoire d’informatique de Bourgogne

Figure 1: Left: Two Differential Characteristic Functions (DCF) in red and blue of a Takagi curve in black. This concept was introduced
in [JGRP24] and is extended to tensor product surfaces in this paper.
Right: The tensor product of two Takagi curves is illustrated in blue wireframe, together with one of its SDCF in red.

Abstract
Rough surfaces have many applications in industry or computer graphics, including quality control, CAD, texture generation
and terrain synthesis. Analysing and controlling such surfaces can be tedious, making it difficult to obtain a desired rough-
ness. We introduce the Surface Differential Characteristic Function (SDCF), an analytical form that helps characterising and
analysing the differential properties of particular non differentiable fractal surfaces generated by tensor product of iterated
function systems (IFS). The IFS allows the generation of self-similar multiscale objects, encompassing a large variety of pos-
sible roughness. The SDCF approach is an extension of the Differential Characteistic Function DCF model that was defined
for analysing and characterising fractal curves. We use the SDCF tp compute the pseudo-curvatures. For smooth models, it
corresponds to the curvatures obtained with classical approaches, but for fractal models, we get ranges of curvature due to the
complex geometry. The self-similarity property of the surface results in these curvature to be transformed on all dyadic point in
a deterministic way.

CCS Concepts
•Computing methodologies → Parametric curve and surface models; •Mathematics of computing → Differential calculus;

1. Introduction1

Roughness has many applications in both industrial and computer2

graphics contexts. Often shunned as a defect in CAD, it is also3

sought after for its various properties: complex tribology (friction,4

lubrication, . . . ), high thermal exchange, diffuse lighting. . . It is5

also considered an important parameter for quality control, be it6

at the end of a manufacturing chain to assess the quality of ma-7

chined parts or to monitor the wear and tear of road surfaces. Com-8

puter graphics have been using roughness for a long time to model9

terrains [GGP∗19], generate textures [DLY∗20] or, more recently,10

to simulate the interaction between light and surface [ZZX∗22].11

Various methods exist for synthesising roughness [PJD∗22]: pro-12

cedural noises [LLC∗10], simulations [STBB14], point processes13

[GAD∗20]. . . Unfortunately, many methods lack geometric control,14

both global and local, or require user interaction [SPF∗23], making15

it difficult to control the generated roughness precisely. For exam-16

ple, using the well known Perlin Noise to generate terrains, it is17

impossible to specify where we want a valley and where we want18
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a mountain. We can only chance upon the desired geometry by19

changing the seed of the random number generator it uses. In order20

to remedy this lack of geometric control, we propose to use a de-21

terministic model that produces self-similar multiscale roughness,22

as it is an omnipresent property in roughness analysis contexts. We23

also propose to analyse the differential properties of this model in24

order to discriminate between orders of roughness. Our approach25

allows computing the pseudo-curvature of self-similar surfaces. For26

each fixed point of the transformations of an IFS, we compute a27

range of pseudo-curvatures on their SDCF.28

We start by a reminder on the concepts required for understand-29

ing our approach, including the notion of differential characteristic30

function from Janbein et al [JGRP24], then we present how to ex-31

tend the properties from curves to surface, and finally we highlight32

how to compute curvature on these surfaces.33

2. Background34

We introduce necessary notions for the study of fractal models and35

their curvature: first the Iterated Function System (IFS), a common36

model for generating fractals. Then, we present the Projected Iter-37

ated Function System (P-IFS) model, that allows free form defor-38

mations of the shapes generated by an IFS. Finally, we showcase39

the Differential Characteristic Function (DCF), a differential ge-40

ometry approach to roughness analysis of IFS generated curves.41

2.1. IFS42

An Iterated Function System (IFS) [Hut81,Bar88], is a finite set of43

contractive operators T= {Ti : X 7→ X}I−1
i=0 where (X,d) is a com-44

plete metric space, typically X is R2 or R3 and d is the euclidean45

distance. We call X the modeling space. Each operator can be rep-46

resented as a transformation in the form of a matrix. The eigenval-47

ues and eigenvectors of a transformation T are denoted by the pair48

(λi,vvvi). The Hutchinson operator T(K) consists in applying all op-49

erators Ti to K, an arbitrary non-empty subset of compacts of X:50

T(K) =
⋃I−1

i=0 TiK. Banach fixed-point theorem [Ban22] states that51

there exists a unique non empty compact A of X such that it satis-52

fies the self-similarity property: T(A) = A. This fixed point A is53

called the attractor of T, as it is the limit of iteratively applying the54

Hutchinson operator to K: A = limn 7→∞Tn(K). Note that the ge-55

ometry of the attractor A does not depend on the choice of K, but56

only on the operators of T. This approach allows the modeling of a57

large familly of self-similar objects, but not all are of interest to us,58

so we apply topological constraints on the operators Ti to ensures59

that the attractor is C(0) continuous, in other words, we are only60

interested in curves and surfaces. These adjacency constraints are61

similar to that used in Fractal Interpolation Functions (FIF) [Bar86]62

: T0c1 = T1c0 where ci is the fixed point of Ti. Without these con-63

straints, the attractor of an IFS can be analogous to a Cantor set.64

2.2. Barycentric space and projected IFS65

A barycentric coordinate system BN is a coordinate system whose66

points are defined as weight vectors of dimension N. Any point ω67

of BN can then be projected to another space using a set of N con-68

trol points Pω = ∑
N−1
i=0 ωiPi where ωi is the ith element of ω. The69

points of BN are constrained to normalised barycentric coordinates:70

∑
N
i=0 ωi = 1. A vector space is defined over of the barycentric space71

BN , and the vectors are constrained to homogeneous barycentric72

coordinates: for any vector ωωω of the barycentric vector space, we73

have ∑
N
i=0 ωωωi = 0 where ωωωi is the ith element of ωωω.74

An extension of the IFS model was presented by Zair et al.75

in [ZT96] as Projected Iterated Function System (P-IFS) in order to76

allow free-form deformations of the attractor, akin to Bezier curves77

and NURBS. If we use operators defined in BN , and a set of N con-78

trol points P = {Pi}N−1
i=0 , we can have better control on the global79

geometry of the attractor. This is illustrated in Figures 2 and 3 who80

both have the same operators, but their attractors (in black) are pro-81

jected in the modeling space using a different set of control points.82

Zair et al. [ZT96] actually showed that P-IFS can be used to model83

Bezier curves: a P-IFS with De Casteljau matrices as operators re-84

sults in Bernstein polynomials as attractor, which can then be pro-85

jected in X.86

2.3. DCF87

Because an attractor is constructed by iteratively applying recursive88

operators, a sequences of points is constructed by iteratively apply-89

ing a single operator T to a starting point q of BN . The DCF, defined90

by Janbein et al. in [JGRP24], is a parametric function that inter-91

polates the path q takes as one iteratively apply T , thus it allows92

the capture of the differential properties of the sequence of points.93

It leverages the work by Bensoudane et al. [Ben09] and Podko-94

rytov et al. [Pod13] that defines pseudo-tangents for IFS-generated95

fractals, allowing first-order continuity constraints on fractal curves96

and surfaces. For any operator T and starting point q, the DCF is97

defined as DCF(T,q, t) = ∑
N−1
i=0 xivvvitαi with xi the coordinates of q98

in the eigenbasis of T and αi =
log(|λi|)
log(|λ1|) . Note that this form is a99

reparametrization of the one in [JGRP24], which can be obtained100

with DCF(T,q, t
x1
). This parametric representation is used as a way101

to compute the curvature of a fractal curve at an extremity (the fixed102

point of the first operator). Due to the fractal nature of the attrac-103

tor, there is not only a single DCF, but a family of DCF when all104

the points of the attractor are considered as starting points. The key105

point of this approach is that there is a range of curvature, com-106

puted from the familly of DCF. There are three cases depending on107

the value of α2:108

• α2 < 2 there is a single DCF with infinite curvature109

• α2 = 2 there are multiple DCF, resulting in a range of curvature110

• α2 > 2 there is a single DCF with null curvature111

For differentiable curves such as Bezier curves, there is a single112

DCF that is superimposed with the attractor, resulting in a single113

value for curvature.114

3. Surface Differential Characteristic Function115

We aim to show that the DCF of surfaces generated by tensor prod-116

uct of two IFS behaves in the same way as the DCF for curves, then117

we introduce the surface DCF, a bivariate function that is analogous118

to DCF but for tensor product IFS.119

submitted to JFIG 2024.
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Figure 2: A P-IFS whose attractor (in black) is the Takagi curve.
c0 is the fixed point T0, c1 is the fixed point of T1. The DCF of
T1 with starting point c0 is shown in blue. The familly of DCF of
T0 we obtain when taking all the points of the attractor as starting
points is shown in red. The green sequence of points are the points
of the attractor obtained with T n

1 c0. The set of control points for the
projection is is {(0,0),(0,1),(1,1),(1,0)}.

Figure 3: The same P-IFS as in Figure 2 with a different projection.
The tangents of the transformations are shown in purple. The set of
control points for the projection is is {(0,0),(0,1),(1,−1),(1,0)}.

3.1. Tensor Product120

Given two P-IFS T = {Ti : BN 7→ BN}I−1
i=0 and T′ = {T ′

j : BM 7→121

BM}J−1
j=0 , we can construct a new P-IFS T⊗ using the tensor prod-122

uct: T⊗ = T⊗ T′ = {Ti j : BNM 7→ BNM}I−1,J−1
i=0, j=0 where Ti j =123

Ti ⊗ T ′
j . The attractor A of this new P-IFS is the tensor product124

of the attractors of T and T′ [Zai98]. This attractor requires a grid125

of N ×M control points to be projected to the modeling space X.126

An example of attractor obtained from this process is shown in red127

in Figure 4.128

We can use the definition of the DCF directly on tensor products129

of P-IFS, as the tensor product of two P-IFS is also an P-IFS. We130

aim to compute the DCF of the operator T = T ⊗ T ′ at starting131

point Q= q⊗q′. We have Λk the eigenvalues of T and their asso-132

ciated eigenvectors VVV k. Note that each pair (λi,λ j) corresponds to133

a unique Λk such that Λk = λiλ j, and similarly, each pair (vvvi,vvv′j)134

corresponds to a unique VVV k such that VVV k = vvvi ⊗ vvv′i . We order the135

eigenvalues such that they are of decreasing modulus. Similarly,136

we have Xk = xix′j the coordinates of Q in the eigenbasis of T . As137

it was done for curves, we use Ai =
log(|Λi|)
log(|Λ1|) and A′

j =
log(|Λ′

j|)
log(|Λ′

1|)
.138

Q= q⊗q′

q

q′

V0 DCF(T,q,s)

D
C

F(
T
′ ,

q′
,t
)

DCF(
T ,
Q,

r)

Figure 4: The attractor of a projected IFS that is the tensor prod-
uct of two P-IFS T and T′ is represented in wireframe (red). The
DCF of T0 and T ′

0 are in green and cyan respectively. The DCF of
T00 = T0 ⊗T ′

0 is represented in yellow. Finally, the SDCF of T00 is
represented in blue. Note that all 3 DCF are included in the SDCF.

DCF(T ,Q, t) = ∑
NM−1
k=0 XkVVV ktAk = ∑

N
i=0 ∑

N
i=0 xix′jvvvi ⊗ vvv′jt

αiα
′
j .139

A DCF computed on a tensor product of P-IFS is illustrated in140

yellow in Figure 4.141

We define the surface differential characteristic function (SDCF)142

of an operator T = T ⊗T ′ as the tensor product of the DCF of the143

operators T and T ′.144

SDCF(T ,Q,s, t) = DCF(T,q,s)⊗DCF(T ′,q′, t)

=
N−1

∑
i=0

M−1

∑
j=0

xix
′
jvvvi ⊗ vvv′js

αi tα
′
j

A SDCF obtained with this formula for one of the 4 operators of145

the P-IFS is illustrated in Figure 4 as the blue surface. It converges146

to the fixed point of T′,′ = T0⊗T ′
0 (bottom left corner) and emerges147

from the fixed point of T1,1 (top right corner).148

4. Range of Curvatures149

We first focus on the curvature at the fixed points of the transforma-150

tions. Since the attractor is built as an iterative process of transfor-151

mations, if we know a property at the fixed point, we can compute it152

on any dyadic point of the attractor. For surfaces, there exists mul-153

tiple definition of curvature. We compute the Gaussian curvature of154

the SDCF.155

4.1. Curvature of SDCF156

For brevity, we introduce the following notation: DDDi, j = xix′j · vvvi ⊗157

vvv′j, corresponding to the part of the SDCF formula that is indepen-158

dent of the variables. Using the common definition of curvature for159

surfaces, we can compute its limit for the second derivative of the160

SDCF as our parameters s and t approach to 0, in other word at the161

fixed point of the transformation. We denote nnns,t the normal of the162

surface at (s, t). Note that this normal is computed in the modeling163

space. We remind the formulas for the first and second fundamental164

forms, used to compute curvatures on surfaces, and the formulas for165

submitted to JFIG 2024.
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the gaussian curvature K, the mean curvature H and the principal166

curvatures K1 and K2 (denoted K□).167

E =
∂SDCF(s,t)

∂s

2
, F =

∂SDCF(s,t)
∂s · ∂SDCF(s,t)

∂t , G =
∂SDCF(s,t)

∂t

2
168

L =
∂

2SDCF(s,t)
∂s2 ·nnn, M =

∂
2SDCF(s,t)

∂s∂t ·nnn, N =
∂

2SDCF(s,t)
∂t2 ·nnn169

K = LN−M2

EG−F2170

H = EN+GL−2FM
2(EG−F2)

171

K□ = L+N±
√

L2+4M2+N2−2LN
2172

As the SDCF is an approximation of the fractal surface at s = 0173

and t = 0, we compute the limit of the normal and derivatives:174

lim(s,t)→(0,0)nnns,t = nnn0,0 =
PDDD1,0×PDDD0,1

||PDDD1,0×PDDD0,1||175

lim(s,t)→(0,0)
∂ SDCF(T ,Q,s,t)

∂s = DDD1,0176

lim(s,t)→(0,0)
∂ SDCF(T ,Q,s,t)

∂t = DDD0,1177

lim(s,t)→(0,0)
∂ SDCF(T ,Q,s,t)

∂s∂t = DDD1,1178

lim(s,t)→(0,0)
∂

2 SDCF(T ,Q,s,t)
∂s2 = lims→0 α2(α2 −1)DDD2,0sα2−2

179

lim(s,t)→(0,0)
∂

2 SDCF(T ,Q,s,t)
∂t2 = limt→0 α

′
2(α

′
2 −1)DDD0,2tα

′
2−2

180

We introduce the following notations:181

Ks(s, t) = Pα2(α2 −1)DDD2,0sα2−2
182

Kt(s, t) = Pα
′
2(α

′
2 −1)DDD0,2tα

′
2−2

183

The computation of the gaussian curvature of the SDCF at the184

point (0,0) is expressed as follows:185

lim
(s,t)→(0,0)

Ks(s, t) ·nnn0,0 ·Kt(s, t) ·nnn0,0 − (PDDD1,1.nnn0,0)
2

(PDDD1,0)2 · (PDDD0,1)2 − (PDDD1,0 ·PDDD0,1)2

We have 3 cases for the Gaussian Curvature of each operator:186

• α2 < 2: the first term α2(α2 − 1)DDD2,0sα2−2 is infinite and all187

other terms don’t matter (lims→0 sαi−2 =∞)188

• α2 = 2: the first term α2(α2 −1)DDD2,0sα2−2 is a constant and all189

other terms are either constant or null.190

• α2 > 2 all terms are zero (αi − 2 will always be positive so191

lims→0 sαi−2 = 0)192

Assuming we don’t have the degenerate case with linearly de-193

pendent vectors (pinched corner), we have 9 possibilities for the194

gaussian curvature:195

lim(s,t)→(0,0)K(s, t) α2 < 2 α2 = 2 α2 > 2
α
′
2 < 2 ±∞ ±∞ indefinite

α
′
2 = 2 ±∞ C C

α
′
2 > 2 indefinite C C

196

where C is a finite value of R.197

We can compute the mean curvature and the principal curvatures198

with the same reasoning.199

4.2. Curvatures of an attractor200

Just as it was for curves, the fractal nature of our attractors entails201

a familly of SDCF that leads to a range of curvature for each dif-202

ferent type of curvature we can compute. For curves, the familly of203

DCF gave an area that bounded the attractor. For surfaces, we have204

a familly of SDCF that gives a hull that bound the attractor. The205

lower and upper bound can be computed numerically as the tensor206

product of the lower bound DCF and the upper bound DCF of T207

and T ′. Thus, we have a range of gaussian pseudo-curvature, mean208

pseudo-curvature and principal pseudo-curvatures for all operators.209

5. Conclusion210

In this paper, we have extended the definition of pseudo-curvature211

from fractal curves to tensor product fractal surfaces. This was done212

through the definition of the surface differential characteristic func-213

tion as the tensor product of the two DCF of the curves from which214

the attractor was formed. This allows to compute curvatures on a215

fractal attractor generated by a tensor product of two P-IFS. Un-216

like for smooth surfaces that have a single value of curvatures per217

point, fractal curves have ranges of pseudo-curvature. For Bezier218

surfaces, there is a single SDCF that is superimposed to the Bezier219

attractor.220

6. Perspectives221

These ranges of pseudo-curvature will allow the characterisation of222

the nature of a fractal surface at any dyadic point: concave/convex223

ellipsoid, cylindrical, hyperboloid. . . It can also be used to specify224

constraints to enforce second order roughness. We are also inter-225

ested in studying the DCF, resp SDCF, of P-IFS with more than226

two, resp four, transformations. A similar approach could also be227

considered for non tensor-product surfaces.228
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