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Leveraging Foundation Models To learn the shape of semi-fluid

deformable objects.

Omar El Assal1,2, Carlos M. Mateo3, Sebastien Ciron1 , David Fofi2

Abstract— One of the difficulties imposed on the manip-
ulation of deformable objects is their characterization and
the detection of representative keypoints for the purpose of
manipulation. A keen interest was manifested by researchers
in the last decade to characterize and manipulate deformable
objects of non-fluid nature, such as clothes and ropes. Even
though several propositions were made in the regard of object
characterization, however researchers were always confronted
with the need of pixel-level information of the object through
images to extract relevant information. This usually is ac-
complished by means of segmentation networks trained on
manually labeled data for this purpose. In this paper, we
address the subject of characterizing weld pool to define stable
features that serve as information for further motion control
objectives. We achieve this by employing different pipelines.
The first one consists of characterizing fluid deformable objects
through the use of a generative model that is trained using a
teacher-student framework. And in the second one we leverage
foundation models by using them as teachers to characterize
the object in the image, without the need of any pre-training
and any dataset. The performance of knowledge distillation
from foundation models into a smaller generative model shows
prominent results in the characterization of deformable objects.
The student network was capable of learning to retrieve the
keypoitns of the object with an error of 13.4 pixels. And the
teacher was evaluated based on its capacities to retrieve pixel
level information represented by the object mask, with a mean
Intersection Over Union (mIoU) of 75.26%.

I. INTRODUCTION

In order to accomplish manipulation tasks successfully,

a robot has to perceive and comprehend the manipulated

object. This consists of analysing information from sev-

eral sources like images, points clouds or the model of

the object [1], [2], [3]. Most of the research found in

the literature focused on modeling and characterising rigid

bodies [4]. However, the ever-increasing need for robots to

interact with day-day objects, alongside the recent advances

in machine learning and computer vision have raised an

interest in the subject of deformable objects. For instance,

the topic of modeling and estimating the state of these

objects have attracted the interest of several researchers [5],

[6], [7], [8], [9]. Which indicates that the manipulation

of deformable objects presents several challenges imposed
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Fig. 1: Teacher-Student framework adopted for training a

student network to characterize fluid deformable objects.

by the deformations of the manipulated object [10]. This

paper targets fluid-like objects of deformable nature, and

that presents high-dynamical topological surface changes. A

texture rarely discussed in state of the art deformable objects

manipulation of fabric and ropes [10], [11], [12], [13]. The

shape of these fluid bodies is often governed by complex

physical modeling, and their shape is difficult to predict.

For instance, weld pools are fluid deformable objects, often

described as visco-elastic, and their shape is influenced by

different process parameters: robot speed, welding position,

and the type of welded geometry [14], [15].

We tackle the issue of characterizing fluid deformable

objects by describing them according to the shape of their

contours. Our approach is based on a Teacher-student frame-

work in which the knowledge of a teacher that consists of

foundation models is distilled into a student lighter genera-

tive network as shown in Fig. 1. The teacher network consists

of two foundation models, DINO [16] and SAM2 [17] to

retrieve the shape of the object. We describe the object

through heatmaps representing the keypoints of the object.

These heatmaps are first generated by the teacher, and the

knowledge is later transferred to the student network. The

proposed approach targets an industrial application which

is the state and shape estimation of weld pool in robotic

welding task. Because modelling the deformations of molten

metal pool is a key element to perform advanced control of

the process such as feature based visual servoing. We also

test and validate our proposal on this task and on a real-world

dataset, generated in harsh industrial conditions.

II. RELATED WORK AND MOTIVATION

Describing deformable objects have always been a re-

search question that accompanied the manipulation of these

objects [18]; In many cases they were represented as ob-

jects as continuous geometrical entities like surfaces and



Fig. 2: Framework of the proposed ResNet-VAE method

curves [19], [20]. Some researchers however described them

in a discrete representation through meshes, skeletons or

landmark points [21]. And these objects were of different

shapes and natures. In some cases they were of a linear

deformable objects nature, and their characterization serves

as a feedback for for later use in a geometric optimal control

problem [22]. In other cases they were of more complex

shapes to represent such as clothes [23]. The problematic

of deformable clothing grasping in this case was resolved

by assimalting clothes to polygonal shapes described by

their corners. From a different perspective, [24] relied on

the detection of extremed edges and points to represent

objects such as towels and ropes. They presented a method

that is based on the use of Convolutional Neural Networks.

While this approach worked well for fabric, it still does not

take into account the deformable nature of fluid objects. In

[25], Coherent Point Drift (CPD) is applied after the points

are registered with a Gaussiant Mixture model (GMM), to

maintain feature from one frame to another. Softer objects

such as dough characterization and manipulation have also

been studied by researchers, in [26] visual images with depth

maps are analyzed by Graph Neural Netwroks to learn a

particle-based model of the object. Besides that, tissues are

another type of soft deformable objecs that were explored

by researchers. Feature extraction and state tracking of

deformable of soft tissues by deep neural networks approach

exist in the literature [27]. Nevertheless, manipulation and

characterization of softer deformable objects, such as fluid

and fluid like objects have been introduced [28], [5]. Where

in [28] the manipulation of semi-fluid objects in a wok is

addressed. These objects are considered as a single particle

represented by the center of the object. In [5] a model-based

method was used to manipulate water.

As discussed in earlier sections, the methods present in

the state of the art do not apply to fluid and semi-fluid

deformable objects. Although these methods are efficient

for their specific task, they fail to be generalized for other

types of applications and objects, since many of the proposed

solutions are application oriented [29]. Providing model-free

methods to estimate the shape and to characterize deformable

objects is the main motivation of this work. This motivation

is backed by the unpredictable nature of semi-fluid objects,

such as weld pool and glue, and the difficulties of predicting

their deformations. To address the problem of generalization,

we propose the use of foundation models. Foundation models

are large-scale models trained on a large scale of data and

tasks, which allows for better analysis and understanding of

this data [31]. We use these models as teachers for a smaller

student network as depicted in Fig. 1.

As for the student network, we use a generative model.

Generative models are mathematical models that analyze

the underlying patterns in the streams of data. They have

the capacity of generating new data with similar character-

istics by learning underlying representations [30]. Several

architectures are present in the literature such as Generative

Adversarial Networks [32], Auto-encoders architectures [33],

Gaussian Mixture Models (GMM), and Hidden Markov

Models (HMM)) [30]. As for visual image generation the

most commonly used are diffusion models [34], GANs [32],

auto-encoders [33] and Variational Auto-encoders [35].

These models often need heavy computing powers and have

complex convergence criteria [36]. Amongst these models,



the lighter, the fastet to covnerge and the most convenient at

learning latent representation are Variational Autoencoders.

The only cost is the clarity of the output data [37]. Thus,

we define the architecture of the student network to be

Variational Auto-Encoder (VAE).

III. FEATURE POINTS EXTRACTION USING GENERATIVE

MODELS

We employ the teacher-student architecture of Fig. 1 in our

framework. We consider the output of the teacher to be the

corresponding ground truth. In this framework, the teacher

takes as input the corresponding image of the deformable

object and outputs a heatmap describing its shape. This

heatmap is stacked with the mask of the object in the image

to represent the output of the teacher. On the other hand, the

student network has a variational auton-encoder architecture

with a ResNet backbone. As illustrated in Fig. 2, the teacher

consists of two different pipelines. The first one consists

of finding the mask of the object by combining the two

foundation models discussed earlier, DINO and SAM2, and

the second one is dedicated to generate relevance heatmaps

describing the keypoints of the object. In first place, the

image is passed through DINO model. DINO is a self

distillation network that is capable of generating attention

maps describing the observed scene. After retrieving the six

attention maps, their average is thresholded with respect to

the mean value of attention to propose a 2D array with

highest attention values. After that, we employ a pipeline

to extract SAM2 prompts. SAM2 is another prompt based

foundation model, that takes as input an image and possible

prompts, and proposes a possible mask for these prompts

on the output. We pass the original image through the

SAM2 model, alongside with the extracted prompts from

the DINO attention map in order to retrieve the pixel-level

information of the object represented by the mask. After

that, a heatmap that describes the keypoints of the object

is proposed by Algorithm 1, this heatmap represented the

most probable location of the keypoints, according to the

normal lines on the contour of the object. Subsequently, the

extracted heatmap alongside the previously defined mask are

concatenated to represent the ground truth label which is

distilled into the student network.

The generation of the heatmap goes through the different

steps that are highlighted in Algoirhtm 1 and depcited in

Fig 3. The contour of the object is extracted from the output

mask of DINO-SAM. And Sobel operator is applied to find

the values of normal lines. We refer to these lines according

to their angle θ. Let C be the set of these points pi,

[(xi, yi) , θi] = pi (1)

the pair (xi, yi) represents the coordinates of each point pi in

the contour C of the object, and θi the corresponding angular

coordinate, codifying its normal angle.

The difference between θi and θi−1 is calculated and

filtered to find the points at which the variation is the highest.

The set of found points P is denoted as,

P = {(xi, yi) | |θi − θi−1| > λ} (2)

Fig. 3: The phases of finding the Gaussian heatmap for

an image. (a) Initial image. (b) Output of DINO-SAM.

(c) potential candidates clustered into 4 clusters. (d) The

Gaussian heatmap at the center of each cluster. (e) Output

of teacher : mask and heatmap.

λ is the threshold value for filtering out low frequency

variations. K-means is later applied to cluster the points of

P into k groups. And each of these groups Pj is a region of

interest described by a 2D Gaussian distribution, of center µ

and covariance matrix Σ
Following the clustering of the points and the calculation

of the covariance matrices, the heatmap Fj of cluster Pj is

defined at the center of this cluster, Thus the ground truth

heatmap is finally computed as the mixture of all Fj ,

F =

k∑

j=1

Fj (3)

Algorithm 1 highlights the steps of the heatmap calculation

discussed before.

The output of the teacher framework, Fig. 3e, represents

the ground truth knowledge that is distilled into the ResNet-

VAE stduent [39], [35], [40]. This type of networks encodes

the input into a latent probabilistic space of continuous

nature.

In our application, we encode the image of the weld pool

using resnet [40], and we decode the probabilistic latent

vector to reconstruct the heatmap and the mask using a

fully connected convolutional layer, outputing a two channels

matrix of shape (W,H,2). Here, W and H are the dimension

of the input image, and each of the channels represent re-

spectively the DINO-SAM mask and the calculated heatmap

of Fig.3

The purpose of reconstructing the mask of the image

instead of the image itself using the student network (the

VAE), is that reconstructing a single element of the image

instead of all three channels helps the network focus on a

single zone and a single shape, which helps converging the

network and accelerates it. t

IV. DATA ACQUISITION AND DATASET

An industrial application that consists of characterizing the

shape of weld pool as taken as case in point. Characterizing

weld pool is important to control the robotized welding



Algorithm 1: Heatmap calculation

Data: I and λ. Respectively, the input image and a

threshold parameter

Result: F a matrix of the shape (W,H,2); first

channel is the heatmap, second channel is

the mask

S = Block B(I);
C = findContour(S);
∇Sx = sobelx(S);
∇Sy = sobely(S);
Θ = {};

foreach pi ∈ C do

θi = ∇Sx ¹∇Sy;

Θ = Θ ∪ {θi};

end

P = {};

foreach θi ∈ Θ do

if |θi − θi−1| > λ then
P = P ∪ {(xi, yi)}

end

end

Pj = Kmeans(P );
F = {};

foreach Pj do

Σj = covMatrix(Pj);
F+ = fj(Pj ;µj ,Σj)

end

return F ¹ S

process and to analyze the quality of the weld. Since no

existing benchmark or dataset exist for that purpose we create

our own dataset by equipping a camera to an industrial robot,

equipped with a welding source. The changes in geometry,

robot speed, and process parameters accompanied with ex-

ternal perturbations impose deformations on the molten pool

manipulated by the robot. Nine video sequences are taken

of the weld pool in these conditions and by welding actual

samples in a fillet joint configuration (Tee joint). Fig. 4 shows

the different elements of the welding setup. Table I shows

the different parameters used to acquire the dataset.

TABLE I: The conditions of dataset acquisitions. In addition

to these conditions, positional offset is applied.

Wire feed rate
(10 m/min)

Voltage
(V)

Current
(A)

Arc Length
Correction(%)

Robot Velocity
(cm/min)

10 31.9 328 1.5/3.5/4.2 30

10 31.9 309 4 30/35/40

9.5/9.8/10
Synergic

laws
Synergy lines

laws
4 30

This dataset is manually labeled with the possible key-

points that represent the shape of the weld pool, to validate

the performance of the student network. A subset of the

acquired sequences are labele for segmentation task, for the

purpose of validating the performance of the DINO-SAM2

framework for object shape retrieval. Some examples of the

shapes encountered in the dataset are shown in Fig. 5

Fig. 4: The setup used for dataset generation (arc-off)

Fig. 5: Examples of the different shapes encountered in the

dataset. In red are the features that should be used to control

the robot

V. RESULTS

The performance of the teacher network is validated

according to its capacity of retrieving accurate masks of

the designated object. We use the Intersection Over Union

(IoU) for that objective. Several configuration are tested in an

ablation study manner to decide the type and number prompts

to optimize the performance of the SAM2 detections. We

firstly experiment with the results of SAM2 without any

prompts. We secondly introduce the prompts proposed by

DINO networks: the center of the attention map and the

different prompt values presented in Fig. 2

The performance of solely using SAM is first evaluated,

however, the model in this case failed to achieve reliable

values of mIoU with only 35.37%, with an upper quartile

of 59%. Introducing DINO predicition with a single prompt

ameliorated significantly the upper quartile without a signif-

icant impact on the value of mIoU that is 34.82%. On the

other hand, after applying some heuristics such as clustering

the thresholded mean attention map into different clusters,

applying DBSCAN to propose a best fit bounding box and

filtering the propmt points increased significantly the values

of mIoU. After applying these heuristics, we obtained an

mIoU of 75.26%, with an upper quartile of 85%. Fig. 6

depicts experimenting with different heuristics and different



configurations to retreive the mask of the object.

mIoU measures the similarity between the predicted seg-

mentation mask and the ground truth mask by calculating

the ratio of their intersection to their union.

Fig. 6: The value of mIoU of DINO-SAM for diffrent

configurations and with different heuristics.

The student model represented by the VAE architecture

is lastly trained on a 32GB Tesla V100s GPU. We train the

model for 100 epochs before evaluating its performance with

respect to manually labeled data.

Validation metrics. Our validation metric consist of the

euclidean distance between the ground truth labels and the

centers of predicted heatmap of the student network. We

denote the average value of euclidean distance over the

dataset, and for all the heatmaps as mED. And the average

euclidean distance for each heatmap as mEDk. Ideally, this

distance should not surpass 15 pixels.

Baselines. We compare our method with the most relevant

works found in the state of the art for similar type of

problems such as using active contours [42], Kernelized

correlation filters (KCF) [43], fully connected Convolutional

Neural Networks [44], and also without the use of foundation

models [45]. Table II shows the results of experiments and

comparison with different baselines.

TABLE II: Mean Euclidean distance using different base-

lines.

mED1 mED2 mED3 mED4 mED
Standard

Deviation

Active Contour 141.70 63.84 42.74 94.68 85.74 23.67
KCF 37.20 83.51 53.05 38.5 53.08 30.62
SIFT 32.05 26.87 35.32 36.97 32.8 3.85

CPD + Active

Contour
30.59 30.74 24.36 32.73 29.61 9.84

CPD 33.77 23.30 24.34 24.96 26.59 8.62
CNN 26.29 16.42 12.75 9.59 18.92 12.99
VAE 9.55 15.62 13.07 19.96 14.55 3.4
Ours 6.01 15.35 12.89 19.34 13.4 3.1

VI. DISCUSSION

Qualitative evaluation. As opposed to baseline methods, the

student-teacher framework of our approach provided stable

estimation of the shape of the deformable object without

the need of any prior labeling. However, the automatically

generated masks by the DINO-SAM2 framework were in

some cases subject to ambiguity coming from erroneous

prompt points, resulting low values of IoU. This ambiguity

is due to the presence of impurities and intrusions in some

cases, such as the presence of greases on the robot trajectory.

Quantitative evaluation In addition to qualitative evaluation,

the calculated value of the Euclidean distance between the

predicted points and the ground truth is relatively small and

acceptable for such an application. However, this error is

the result of two main factors: human factor and the lack

of visual features in some images. We recall that validation

images were labeled manually with the possible centers of

the heatmap, which makes these annotations biased and

prone to error. Since defining accurate labels for these

tasks is not possible. To resolve this kind of uncertainty,

we recommend adopting the automatically generated GT

labels as ground truth for evaluation and not the manually

defined GT. As a proposed solution to this, we propose

the use of sequential generative models students, such as

Long Shot Term Memory Variational Autoencodre (LSTM-

VAE) [46] capable of preserving temporal information about

the process.

On the other hand, the lack visual features in some frames,

due to several factors; such as noise and process instability

have also resulted low fidelity predicitions of the heatmap.

VII. CONCLUSION

A clear representation of the shape of the manipulated

object is a required step for robotic manipulation task. In

the case of deformable objects, this step is dependent on the

shape of the deformations of the object. In this paper we

address the case of highly-deformable fluid and viscoelastic

objects. We propose a teacher-student framework that does

not require any prior labeling to represent them. Our method

is independent from the complex physical modeling require-

ments. During inference time, we use only the student of our

framework. The student model, a generative model in our

case, generates a heatmap that estimates the current state of

the object. This heatmap represents the locations at which the

most important deformation occurs, according to the contour

of the object. The student network distils the knowledge of a

teacher that is composed of two foundation models and the

heatmap proposal algorithm 1. The two foundation models

employed in the case of this paper are DINO and SAM2.

We use DINO as a prompts generator for the SAM2 model.

We demonstrate first the capabilities of foundation models

to retrieve pixel-level information about the deformable ob-

jects. Secondly, we show that the generative student network

is capable of learning the shape of the fluid deformable object

by absorbing the knowledge provided by the foundation

models successfully.

Further research directions include ameliorating the per-

formance of the teacher by including the human in the loop

through techniques such as active learning on one hand. On

the other hand, integrating the retrieved shape of the weld



pool in a control tasks such as visual servoing is also a

perspective to this work.
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