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Abstract— Climate change, coupled with the rise in pollen 

concentrations and extended pollen seasons, poses significant 

challenges to public health, particularly for individuals with 

pollen allergies and/or respiratory diseases. In response to these 

challenges, the work here’s objective is to pioneer an automated 

trainable system for the recognition and counting of pollen 

grains. Such a system would enhance efficiency, allowing for 

quicker and more accurate assessments of airborne pollen 

concentrations, ultimately aiding in the mitigation of allergy 

symptoms associated with changing environmental conditions 

and the spread of allergenic species. This approach utilizes 

image processing tools to segment pollens on digitalized slides 

and several deep learning tools to recognize them among 17 

different allergenic species in total. The system has been 

designed to avoid the time spent by palynologists on the 

microscope and to considerably increase the number of 

observation sites above the current European standards in 

allergenic pollen concentrations evaluation. In turn reducing 

associated errors with such analysis. 
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I. INTRODUCTION 

Pollen allergies and respiratory diseases are expected to 
become a major public health issue due to increased pollen 
concentrations and extended pollen seasons, exacerbating 
allergy symptoms [1]. 

The spread of invasive species like Ambrosia 
artemisiifolia (ragweed) introduces highly allergenic pollen to 
new regions, further exacerbating the issue. To address these 
concerns and mitigate pollinosis symptoms, daily 
identification of airborne pollen using computer vision 
methods is crucial. Currently, the standard approach involves 
collecting airborne pollen with a Hirst-type trap, where pollen 
and other particles adhere to an adhesive tape. Subsequent 
analysis, illustrated in Fig. 1, involves chemical treatment and 

manual microscopy inspection by a palynologist. This 
method, commonly known as the Hirst method [2], is the 
standard for monitoring airborne pollen grain concentrations 
in ambient air for aerobiological networks. However, it is 
time-consuming and labor-intensive for detecting and 
quantifying pollen grains.  

Automated airborne pollen recognition can assist 
palynologists during the annotation process in the Hirst 
method by automatically annotating pollen grains. Depending 
on the country, not all species of pollen are present in the air 
[3], as some plants or trees emitting specific airborne pollen 
may not be found in the surrounding area. In France, the 
Réseau National de Surveillance Aérobiologique (R.N.S.A.) 
[4] coordinates the weekly analysis of airborne pollen content 
from over 70 sites across the country, averaging 35 weeks per 
year. They identify 17 allergenic taxa of airborne pollen and 
provide a weekly pollen risk index. 

Manual recognition by palynologists is challenging due to 
the presence of up to 10 different pollen species on a single 
slide, with overlapping seasonal patterns. Identification relies 
on size, shape, contour, texture, and pore count, but some 
species share similar features, making accurate labeling 
difficult. Therefore, a large dataset of well-labeled pollen 
grains is crucial for developing an effective computer vision 
recognition model [5]. 

Our goal is to propose a procedure adhering to Hirst 
method standards by (i) generating a large dataset of well-
labeled allergenic pollen grain images and (ii) developing a 
computer vision model to recognize and quantify airborne 
pollen grains. 

II. RELATED WORK 

There are two steps to achieve the recognition of pollen on 
a microscopy slide, the first one is the segmentation of pollen
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Fig. 1. Illustration of the Hirst Method used to evaluate allergenic pollen concentrations in the air. 

grains and the second one is the identification of the pollen 
class. 

In the segmentation phase, pollen grains are stained with 
fuchsin (a pink dye) during slide preparation. The primary 
challenge is addressing multifocal information, as 
neighboring pollen grains may not lie in the same focal plane, 
rather than grain extraction itself. Consequently, some studies 
employ advanced techniques like Convolutional Neural 
Networks (CNNs) with multifocal information merging to 
resolve focal plane discrepancies [6]. Others utilize Coarse-
Grained Pollen Localization [7] with sliding windows to 
determine the optimal focus for each pollen grain. These 
approaches generate individual pollen grain thumbnails for 
subsequent identification.  

Early classification methods relied on morphological 
feature extraction, followed by SVM or K-NN classifiers [8] 
operating on these parameters. The main challenges involved 
automating and fusing data like size, shape, aperture count, 
and texture. However, due to frequent morphological 
similarities between pollen grains and other particles (e.g., 
moisture, dirt), a reliable approach is to first distinguish pollen 
from non-pollen items, then utilize morphological features for 
accurate pollen family identification [9]. 

 Recent works [10, 11, 12] favor CNNs for classification 
due to their superior performance. A survey [13] compares 
state-of-the-art CNN architectures (ResNet-50, Inception V3, 
DenseNet-121) for pollen identification, revealing that 
DenseNet-121, fine-tuned on pollen datasets [14], excels in 
this task. 

TABLE I.  DATA SAMPLES DISTRIBUTION WITH ILLUSTRATION 

Pollen samples 

Dataset Name 
Number of 

Classes 
Number of images 

Pollen13K [15] 4 13.000 

Pollen23E [16] 23 805 

Pollen20L-det [17] 20 7.750 

 

In the literature, there are commonly three datasets used to 
train CNN. The specification of each dataset is resumed in 
table 1. 

The Pollen13K and Pollen23E have microscopic images 
without the use of fuchsin, the Pollen20L-set stands closer to 
Hirst standard, however the target classes in this dataset do not 
cover all the allergenic species in France. 

The use of Fast R-CNN and YOLO models for 
simultaneous segmentation and classification has been 
explored [18], demonstrating reliable classification but noise-
sensitive pollen grain detection.  

Some commercial pollen measurement devices utilize 
holographic imaging and fluorescence measurement [19] for 
pollen identification, offering reduced noise sensitivity. 
However, their high cost and the need for expertise in 
holographic pollen recognition limit their accessibility. 
Alternatively, more affordable devices employing multi-angle 
lighting in visible and UV wavelengths [20] generate pollen 
images compatible with recognition techniques developed for 
Hirst method slide samples. 

Therefore, this work focuses on developing a pollen 
classification method using visible spectrum particle slide 
images. The segmentation step involves: (i) utilizing high-
quality colored images stained with fuchsin, (ii) employing 
Laplacian information as a blur metric to select the optimal 
focal plane for each pollen grain, and (iii) combining pollen 
grain circularity, size, and hue properties for segmentation.  

Regarding the classification step, the Imagenet-1K 
database [21] is used to pre-train a DenseNet121 CNN which 
is fine-tuned on the considered pollen dataset. To avoid the 
tedious labelling work required with supervised deep learning 
methods, the CNN is trained on data extracted from 
“exemplar” slides with a single pollen grain type and then is 
generalized to recognize pollen classes on “ambient” slides 
with several different pollen types on the same image. This 
approach yields a supervised computer vision algorithm that 
can automatically estimate the concentration of 17 different 
pollen classes. 

III.  POLLEN RECOGNITION 

A. Image Acquisition 

Fresh pollen from trees and herbs were collected and fixed 
on microscopy slides following the actual normative
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Fig. 2. Illustration of the process to segment best quality of pollen thumbnails 

procedure for pollen identification and counting. We used the 
fuchsin to highlight the pollens (pink color) by applying it to 
each slide. A SQ Nanozoomer (Hamamatsu, France [22]) 
wasthen utilized to digitalize the entire sample surface as 
illustrated Fig. 2-top-left. 

In this work, ambient slides and exemplar slides are 
considered during the acquisition process. Ambient slides are 
slides where different kinds of pollen grains are collected 
outside along with possible dirt or moisture (cf. Fig. 2-top-
left). On the other side, to avoid the fastidious human labelling 
task, slides with one pollen grain type only have been 
generated in lab conditions. As a consequence, the labelling 
process of those exemplar slides is very easy since only a 
single pollen species is present. 

The scanner produces high-resolution images using a x20 
microscope objective. We decide to digitalize each slide into 
images of 4096 x 4096 pixels. The scanner also takes a bunch 
of images at 31 z stacks, with a minimum space of 1 µm in a 
range of + or – 15µm from where the scanner does its auto 
focus. 17 exemplar slides were collected, one for each pollen 
species, resulting in 31 x 338 associated images of 4096 x 
4096 pixels per class, representing the slides along the X, Y, 
and Z axes. 

B. Pollen Image Segmentation 

 Given that the scanner provides a stack of images with 
varying focal planes for each image (cf. Fig. 2 top-left), it is 
essential to select the area with the best focus before 
segmentation. 

 For each image, pollen grains are filtered using upper and 
lower thresholds applied to the rose-fuschia hue of pollen 
within the HSV (Hue, Saturation, Value) color space. 
Simultaneously, a bitwise mask is used to convert all pixels 
except those with pink hues to a white value. Consequently, 
each resulting image contains only rose-tinted objects, 
including pollen grains as well as other particles of similar hue 
(e.g., moisture, bacteria). 

 The variance of the Laplacian calculation is then applied 
to the image stack to assess the level of blur in each image 
[23]. Blurred images exhibit low variance; therefore, to obtain 
the best-focused image for each slide, the image with the 
lowest Laplacian variance score is selected. 

 After extracting the image with the optimal focus on 
pollen grains, a Watershed Algorithm [24] is employed to 
delineate the contours of each item present in the image, 
including pollen grains and noise such as moisture, bacteria, 
and air bubbles. To isolate pollen grains from noise, a circular 
Hough transform [25] is applied, as pollen grains typically 
exhibit a circular shape, unlike noise particles. Fig. 2 (steps 1 
to 4) illustrates this process for some segmentation results. 
The Hough transform also enables the elimination of any 
remaining pollen grain clusters after the Watershed process. 

C. DenseNet 121 CNN Fine Tuning for Pollen Grain 

Recognition 

A labeled dataset was constructed by extracting pollen 
grains from 17 exemplar slides, each containing a different 
pollen species. Table 2 presents the distribution of samples 
among the 17 species, along with an example image of each 
species' pollen grain. 

As evident, the classes for the identification training 
process are imbalanced, as an equal number of pollen grains 
were not collected for each species to produce the exemplar 
slides. Prior to the training loop, several data augmentation 
techniques were applied : 

• The height and width of each thumbnail were 
rescaled by multiplying them by a randomly chosen ratio 
between 0.9 and 1.1. This enhances the model's robustness to 
variations in pollen size. 

• Random hue variations of ± 0.005  and brightness 
variations of ± 0.01 were applied to ensure robustness to 
variations in grain color. 
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• A low-pass Gaussian filter with a kernel size of 19 
was applied to enhance robustness to image blur. 

• Horizontal and vertical flips, as well as rotations of 
90, 180, and 240 degrees, were incorporated. 

• White pixel padding was used to resize each pollen 
grain image to 128 x 128 pixels, ensuring uniformity within 
the dataset for the training process. 

TABLE II.  DATA SAMPLES DISTRIBUTION WITH ILLUSTRATION 

Pollen samples 

Selected Taxa 
Number of 

Thumbnails 
Illustration 

Ash 9320 

 

Ragweed 8578 
 

Olive 5481 

 

Birch 5359 
 

Grasses 5257 

 

Willow 3976  

Plane 3675 
 

Cypress 3601 

 

Sorrel 2959 

 

Alder 2942 

 

Plantain 2496 

 

Mugwort 1779  

Nettle 1296  

Linden 1012 

 

Hornbeam 780 

 

Pine 767 

 

Oak 380 

 
 

 For pollen recognition, the DenseNet-121 CNN, pre-
trained on ImageNet-1K, was adapted and fine-tuned using 
our dataset. Only the final layer was modified and retrained to 
perform the 17-class classification. 

 The model was trained using 80% of the dataset, with the 
remaining 20% reserved for evaluation. Stochastic Gradient 
Descent (SGD) optimization was employed with a learning 
rate of 0.001, a batch size of 64 and 60 epochs.  

Fig. 3. Metrics of training and validaiton of the model. 

Fig. 3 illustrates the progression of training and validation 
accuracies over epochs, with the validation accuracy reaching 
98.45%. 

 Detailed results of the validation test can be observed in 
the confusion matrix (cf. Fig. 4.). Our model demonstrates the 
ability to recognize nearly all labels, even for pollen species 
with limited thumbnail samples (such as Oak and Hornbeam). 

 

Fig. 4. Confusion matrix of the validation set. 

D. Pollen Grain Recognition on Ambient Slides 

Following the training of the model on exemplar samples, 
it is crucial to assess its generalization ability in recognizing 
pollen grains extracted from ambient slides. To this end, an 
ambient slide acquired during the peak of Birch pollen 
emission in the spring in Paris was considered. A total of four 
different species were present for identification: Birch, 
Cypress, Pine, and Willow.  

Labeling each pollen thumbnail within the test dataset, 
consisting of nearly 500 thumbnails, would be excessively 
time-consuming. Therefore, the classification step was 
performed using our CNN model, and misclassifications were 
manually counted to generate the confusion matrix for the test 
dataset. The accuracy reached 94.1%. The model appears to 
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exhibit a slight bias towards Birch pollen due to the larger 
quantity of Birch pollen thumbnails in the training set. This 
bias could potentially be mitigated by employing adjusted 
class weights during training. Further investigation with 
additional ambient test slides and other allergenic species is 
warranted to validate these findings. The complete confusion 
matrix is presented in Fig. 5. 

 

Fig. 5. Confusion matrix of the ambient test set. 

IV. CONCLUSIONS 

For the purpose of automatic pollen recognition, this study 
successfully developed an efficient CNN-based model trained 
on images acquired from exemplar slides, thereby avoiding 
the need for tedious manual labeling. The results demonstrate 
that the developed model generalizes well, maintaining 
comparable performance in classifying multiple pollen types 
on ambient slides. These results indicate that this automated 
computer vision approach can facilitate the development of a 
real-time pollen concentration estimation system, which is 
essential for predicting the allergenic exposure risk for the 
population according to the Hirst method standards. 
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