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Abstract: Most neurotransmitter systems are represented in the central and peripheral vestibular system 
and are thereby involved both in normal vestibular signal processing and pathophysiology of vestibular 
disorders. However, there is a special relationship between the vestibular system and the histaminergic 
system. The purpose of this review is to document how the histaminergic system interferes with normal 
and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as 
neuroinflammation that involve histamine to modulate and allow restoration of balance function in the 
situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic 
pharmacological compounds capable of restoring vestibular function in pathological situations. The 
clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically 
discussed. 
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1. VESTIBULAR SYSTEM ORGANIZATION AND 
DYSFUNCTIONS 

1.1. Anatomical and functional organization of the 
vestibular system 

 To maintain body's balance, the central nervous system 
uses visual, proprioceptive, tactile and above all, vestibular 
information. Vestibular inputs are detected by specific sensors 
located in the inner ear close to the cochlea. The vestibular 
sensors in each inner ear are organized in three cristae 
ampullaris and the two otolithic organs, the saccule and the 
utricle [1]. The crista ampullaris detects the accelerations 
resulting from angular movements, while the otolithic organs 
detect the accelerations resulting from linear movements of 
the head and gravitational accelerations. The sensory inputs 
generated by the vestibular sensors are conveyed through the 
vestibular nerve towards the first central nervous relay: the 
brainstem vestibular nuclei complex (VNC). This nuclear 
complex consists of four different vestibular nuclei (VN): the  
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median vestibular nuclei (MVN), the inferior vestibular nuclei 
(IVN), the lateral vestibular nuclei (LVN) and the superior 
vestibular nuclei (SVN). The VNs are located in the 
dorsolateral part of the pontomedullary junction of the 
brainstem, under the floor of the fourth ventricle. The 
vestibular sensory information reaching the VN level is then 
integrated and converted into a specific motor message 
dedicated to the regulation and control of postural, locomotor 
balance and oculomotor function [2]. Hence this sensorimotor 
system designation is attributed exclusively to the vestibular 
system. The vestibulo-ocular reflex (VOR) intends essentially 
for stabilizing the gaze during head movements, and the 
vestibulo-spinal reflex (VSR) directs readjustments and 
stabilization of the head and body in static (standing) and 
dynamic (walking) conditions. These compensatory 
vestibular reflexes are exerted at the level of the extrinsic 
musculature of the eye through the vestibulo-ocular reflex, as 
well as at the level of the neck and trunk axial musculature, 
and limbs proximo-distal musculature through the vestibulo-
spinal reflexes (Fig. 1).  
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Fig. (1). Anatomic and functional organization of the vestibular system. The vestibular nerve is in contact with the sensory hair cells located 
in the peripheral vestibular system. This nerve projects ipsilaterally to the four vestibular nuclei (VNs): superior, lateral, medial and inferior, 
located in the brainstem. From these nuclei, several output pathways exist. The vestibulo-oculomotor pathway originates from the lateral nuclei 
that project to the oculomotor nuclei via the medial longitudinal fasciculus (MLF), allowing the stabilization of gaze during head movements. 
The vestibulo-spinal pathway includes a lateral vestibulospinal fasciculus (LVSF) that connects the ipsilateral lateral VN to the spinal cord and 
a medial vestibulospinal fasciculus (MVSF) that connects the contralateral medial, inferior, and lateral VNs to the musculature of the neck and 
upper body axis. This organization establishes postural control and muscle tone. The vestibulo-vegetative pathway consists of the superior and 
medial VNs that activate the vagus nerve, responsible of vital functions. VNs are linked to several neurovegetative nuclei, such as dorsal nucleus 
of vagus nerve (DNV), solitary nucleus (NTS) and area postrema. Various vestibulo-cortical pathways originate from all VNs and project 
bilaterally to the cortex. The diversity of output from the VNs underlines a broad role of the vestibular system in posturo-locomotor, oculomotor 
and higher cognitive functions. The balanced resting activity between the bilateral VNs is crucial for these functions. Created with biorender. 

A particularity of this integrating nerve center is that the 
VNs receive a multitude of information from other sensory 
modalities such as vision, proprioception, touch and to a lesser 
degree hearing [3–7]. The vestibular system is also involved 
in perceptual and cognitive functions supported by cortical 
areas involved in the processing of peripheral vestibular 
inputs. Among these areas, well documented in the literature, 
the parieto-insular vestibular cortex is the most representative 
[8–11]. This multisensory area manages functions such as 
perception of verticality, representation of the body scheme 
and orientation of body in space [12–14]. The vestibular 
system also sends information to important nervous structures 
such as the hippocampus, the hypothalamus, the amygdala, 

the ventral tegmental area [15–20]. This is why VNs were 
recently referred as a “hub” linked to several networked 
nervous structures, receiving, organizing, and redirecting the 
sensory inputs to multiple functional targets [6, 21]. 

1.2. Unilateral peripheral vestibular syndrome and its 
compensation 

In human and most species, acute unilateral vestibular loss 
induces static and dynamic vestibular signs and symptoms 
consisting of vestibulo-ocular (nystagmus, cyclotorsion, 
altered vestibulo ocular reflex generating oscillopsia), 
posturo-locomotor (postural instability, falls, ispsilateral 
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deviation from the walking path), vegetative (nausea, 
vomiting, salivation) and perceptive-cognitive (spatial 
disorientation, vertigo) deficits. These static and dynamic 
deficits compensate differently, either partially or completely 
and with different time course. This spontaneous post-lesional 
functional recovery is referred in the literature as “central 
vestibular compensation” (Fig. 2) [22–24]. The static deficits 
(those present in absence of body movements) compensate for 
the most part. It is now well established that static deficits 
result from the imbalance of spontaneous resting activity 
between the ipsi- and contralesional VNs. Compensation 

approximately coincides with restoration of balanced 
electrical activity between VNCs. These events were 
confirmed electrophysiologically in many studies [25–27]. 
The dynamic deficits (those present during body movements) 
are compensated much less completely and over a longer time. 
Recovery of dynamic deficits seems not to depend on 
rebalanced activity in the VNs solely, but is attributed to 
multiple plasticity mechanisms occurring in various brain 
areas [22, 24, 28–36]. 

 

Fig. (2). Unbalanced resting activity within the vestibular nuclei complex and vestibular syndrome expression after unilateral vestibular 
neurectomy. Electrophysiological imbalance after unilateral vestibular neurectomy (UVN) between the bilateral vestibular nuclei (VNs) is 
responsible for the acute vestibular syndrome. After UVN, the ipsilateral VNs are deafferented and show a reduced excitability in contrast to 
the VNs contralateral to the lesion. This effect is explained by the absence of vestibular peripheral inputs from the lesion side. The syndrome 
generated by this unbalanced resting activity in the VNs is composed of oculomotor, posturo-locomotor, vegetative and perceptive-cognitive 
signs and symptoms. Over time, the syndrome disappears as neuroplasticity mechanisms result in a rebalanced activity between the bilateral 
VNs – a mechanism called vestibular compensation. Created with biorender. 

2. HISTAMINE AND VESTIBULAR FUNCTION 

A large variety of neurotransmitters is present in the 
vestibular system. However, histamine occupies a peculiar 
position in vestibular physiology due to the expression of all 
histamine receptors (HR) in the vestibular sensory network. 
Histamine is also involved in regulating both the normal 
response to vestibular stimulation and the reactive processes 
that support vestibular compensation. Pharmacological 
modulation of histamine production and release has been 
proven to enhance functional recovery in vestibular animal 
models [37–39] and patients with vestibular disorders [40]. 
Thus, histamine receptors seem suitable targets for 
modulating vestibular sensory information. 

2.1. Brain source of histamine 

 Histamine is synthesized from the amino acid L-histidine 
by the enzyme histidine decarboxylase and the main pathway 
of histamine degradation is based on the action of histamine 
N-methyltransferase followed by monoamine oxidase B [41] 
(Fig. 3a). Brain sources of histamine include mast cells, 
neurons and microglia [41–43]. In the adult mammalian brain, 
the histaminergic neurons are exclusively located in the 
tuberomammillary nucleus of the posterior hypothalamus 
(TMN) from where they project their fibers and terminals to 
the whole brain including VNs (Fig. 3b) [41, 44–47]. 
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Fig. (3). Synthesis, catabolism, and distribution of histamine in the adult mammalian brain. a) Neuronal histamine is synthetized from the 
amino acid L-histidine by the L-histidine decarboxylase enzyme. Histamine is then degraded by two enzymes, histamine N-methyltransferase 
and monoamine oxidase, resulting in tele-methylimidazoleacetic. b) Histaminergic neurons are restricted to the tuberomammillary nucleus of 
the posterior hypothalamus from where they project widely into the brain, including in the vestibular nuclei complexes. Created with biorender. 

2.2. Brain distribution of histamine receptors 
Histaminergic receptors are widely found in the central 

nervous system. 

Histamine type 1 receptor (H1R) exhibits a wide distribution 
in the central nervous system, particularly in brain areas 
involved in arousal, including the thalamus, cortex, 
cholinergic nuclei, locus coeruleus and raphe nuclei [41, 48, 
49]. These findings have been ascertained through binding 
assays [50] and RT-PCR techniques [51] in rat models, 
autoradiography in ginea pigs [52] and in situ hybridation and 
receptor binding autoradiography [53], or PET-scan imaging 
[54] in human samples. Moreover, H1R has been located in 
the limbic system (i.e. several nuclei of the hypothalamus, 
medial amygdala and hippocampus) [41, 48] using binding 
assay techniques across diverse mammalian species [49, 55]. 
Receptor autoradiography techniques carried out on both 
human and non-human primate samples [56], alongside 
human PET-scan imaging [54], have consistently revealed the 

presence of H1R in the limbic system. Additionally, H1R is 
detectable in the cerebellum [54] and basal ganglia [56]. 
Nevertheless, it is worth knowing that interspecies variations 
exist [49, 55].  

Given that both H1R and H2R are present in the same cerebral 
regions, an overlapping of their functions in behavior has been 
established [57]. H2R, akin to H1R, is localized in the 
hippocampus, amygdala, basal ganglia and cerebral cortex 
[41, 44]. These findings have been corroborated through 
several techniques, including in situ hybridization techniques 
in rat models [58], radioligand binding and in situ 
hybridization techniques in ginea pigs [59], as well as receptor 
binding autoradiography [56, 60] and in situ hybridization 
techniques [53] in non-human primates and humans samples. 
Finally, H2R is also localized in the cerebellum and 
hypothalamus [60].  

H3R shares common localization with H1R and H2R. High-
density expression of H3R is observed in the basal ganglia 
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(i.e. striatum and substantia nigra), as well as the hippocampus 
[41, 48, 61]. These localizations have been ascertained 
through various techniques applied in rodent models, such as 
immunohistochemistry [62], receptor binding 
autoradiography [63] and in situ hybridization [64]. In human 
and non-human primate studies, H3R has been found in the 
basal ganglia using in situ hybridization and receptor binding 
techniques [65] while its presence in the hippocampus has 
been established using autoradiography [56]. Additionally, 
H3R has also been identified in the hypothalamus, thalamus 
and cortex [41, 53, 61, 62]. 

H4R has been localized in various regions of the rat central 
nervous system, including the cortex, cerebellum, brainstem, 
amygdala, thalamus and striatum [66]. Furthermore, H4R has 
been detected in human samples within the hippocampus, 
cortex, thalamus and amygdala [66, 67]. It is noteworthy that 
discrepancies in the distribution of H4R within the brain exist 
among different species [66] and the expression and function 
of H4R in the central nervous system remains controversial 
and requires further investigation [68]. 

2.3. Expression of histaminergic receptors in the vestibular 
system 

The different types of histaminergic receptors are 
expressed at the levels of central and peripheral vestibular 
systems. At the central level (Fig. 4a), the VNs contain three 
types of histamine receptors (H1R, H2R and H3R), as shown 
using ligand-binding [38, 59, 69–71], in situ hybridization 
methods [59, 64, 72], or in immunohistochemistry [37]. H1R 
and H2R are located in a post-synaptic position in vestibular 
neurons, whereas H3R is located in a pre-synaptic position on 

histaminergic afferents from neurons of the posterior 
hypothalamus [73]. In this situation, H3R acts as an 
autoreceptor which regulates the synthesis and release of 
histamine. In addition, H3R can also be found on non-
histaminergic afferents and is then considered as a 
heteroreceptor that modulates the regulation and synthesis of 
other neurotransmitters. Finally, as H4R is expressed on 
microglia, known to be present in VNs, the presence of H4R 
in VNs is highly probable (this aspect is developed in section 
4). These aspects confer a neuromodulatory role to histamine 
in the brain. 

 In the peripheral labyrinth (Fig. 4b), the four types of 
histamine receptors (H1R, H2R, H3R and H4R) have been 
located in both hair cells and vestibular primary neurons [74–
77]. Using an RT-PCR approach, Takumida and colleagues 
recently revealed that the different types of histamine 
receptors are expressed in different proportions depending on 
the cell type considered. Vestibular hair cells are classified 
into two categories, distinguished by their morphology 
(bottle-shaped for type I vestibular hair cells and more 
cylindrical for type II vestibular hair cells), their ion channel 
equipment (gK,L current is specific to type I vestibular hair 
cells) as well as their afferentation by vestibular nerve fibers 
(calyx endings are found exclusively on type I vestibular hair 
cells) [78]. According to Møller et al, combined microarrays 
and immunohistochemistry approaches showed expression of 
the H1R in the epithelial lining of the endolymphatic sac, 
while H3R are expressed exclusively in the subepithelial 
capillary network. H2R and H4R were not found in the 
endolymphatic sac [79]. 
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Fig. (4). Localization of histaminergic receptors in the central (a) and peripheral (b) vestibular system. a) The vestibular nuclei complexes 
(VNCs) contain three types of histaminergic receptors (HR). The secondary vestibular neurons express histaminergic type 1 (H1R) and 
histaminergic type 2 (H2R) receptor while the afferents from the tuberomammillary histaminergic neurons (in purple) express the histaminergic 
type 3 (H3R) autoreceptor. It should be noted that other afferents releasing various neurotransmitter in the VNCs can express a histaminergic 
type 3 (H3R) heteroreceptor. b) The peripheral vestibular system contains all types of histaminergic receptors. Every type of HR is expressed 
in the Scarpa’s ganglion while only H1R and H3R are expressed in the endolymphatic sac. H1R, H3R and H4R are expressed in both type II 
and type I vestibular hair cells, while H2R is only found in type I vestibular hair cells. These schematic representations were created based on 
information found in [37, 59, 71] for the upper part and [74–76] for the lower part. Created with biorender. 

2.4. Function of the histamine receptors in the vestibular 
system 

Despite ongoing research efforts, the physiological 
relevance of histamine receptors expression in the vestibular 
system remains unclear and requires further investigation.  

 At the peripheral level, it is known for almost fifty years 
that the antagonization of H1R (i.e., pyrilamine, 
diphenhydramine) significantly alters the vestibular primary 
neuron excitability in a dose dependent manner [80]. 
Similarly, H3R antagonists (i.e., thioperamide, clobenpropit 
and betahistine) decrease the electrical discharge of primary 
vestibular neurons [81] and betahistine could reduce resting 
activation rate of peripheral vestibular sensors [82]. 

 At central level, in vitro extracellular and intracellular 
recordings in IVN, SVN, MVN and LVN neurons revealed 
histamine induced depolarization through postsynaptic H1R 
and H2R [83–89]. These findings attest that histamine has an 
excitatory action in the VNs. 

 Vestibular stimulations of rotatory [90], electric and 
caloric [91], or gravitational [92] nature commonly increase 
histamine release in the hypothalamus and brainstem. Local 
perfusion of the VN on one side with H2R antagonists or H3R 
agonists induces a stereotyped postural and oculomotor 
syndrome in the guinea pig that mimics that observed after 
labyrinthectomy [93]. 

 Given the presence of histaminergic receptors throughout 
the peripheral and central vestibular system and their proven 
involvement in vestibular signal processing, there is a high 
likelihood that histamine also plays a significant role in 
vestibular compensation. 

3. HISTAMINE AND VESTIBULAR COMPENSATION 

 A direct link between vestibular compensation and 
increased histamine turnover has been established in the 
central nervous system of adult cats [38, 39, 71, 94, 95]. 
Unilateral section of the vestibular nerve induces a 
spontaneous electrical activity imbalance between the 
bilateral vestibular VNs with hyperactivity on the intact side 
and hypoactivity on the deafferented side. This 
electrophysiological imbalance induces an activation of 
histaminergic tuberomammillary neurons of the posterior 
hypothalamus via vestibulo-hypothalamic loops [96] which 
results both in a local increase of the histamine synthesis and 
its release in the VNs (Fig. 5).  These mechanisms are 
prevented upon bilateral vestibular neurectomy [71]. This 
confirms that the electrophysiological asymmetry between the 
intact and deafferented VN is the cause of the histaminergic 
system activation. The elevated histamine release may 
participate in rebalancing the spontaneous activity between 
the bilateral VNs, a key parameter of the vestibular 
compensation, by its depolarizing effect on H1R and H2R 
(Fig. 5). Furthermore, altered histamine levels after a 
vestibular injury may have effects on various vestibular 
plasticity mechanisms, such as neuroinflammation. 
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Fig. (5). Involvement of histamine in vestibular compensation after unilateral vestibular neurectomy. The unilateral vestibular 
neurectomy (UVN) leads to an electrophysiological imbalance between the vestibular nuclei, which is conveyed to the posterior hypothalamus 
through direct vestibulo-hypothalamic loops. In consequence, the synthesis and release of histamine (HA) from the tuberomammillary nucleus 
(TMN) to the deafferented vestibular nuclei (VN) increases. In VN, HA will bind to the three types of histamine receptors. By the histamine 
H3 receptor (H3R), more HA will be synthesized and released because of the abolition of the negative feedback. By the histamine H1 (H1R) 
and H2 (H2R) receptors, HA will restore the electrophysiological imbalance, underlying the vestibular compensation. Created with biorender. 

4. EFFECT OF HISTAMINE ON 
NEUROINFLAMMATION IN VESTIBULAR 
DISORDERS 

 Inflammation is a multi-faced process which involves 
complex cellular and molecular mechanisms triggered by 
stress, injury, or infection, with the ultimate goal of returning 
to physiological homeostasis. In the central nervous system, 
inflammation is known as neuroinflammation and is 
characterized by the involvement of two key players: 
microglial cells and astrocytes, which, under physiological 
conditions, contribute to the central nervous system 
homeostasis. 

4.1. Neuroinflammation in acute peripheral vestibulopathy 

 Acute unilateral vestibulopathy (AUVP; vestibular 
neuritis), characterized by vertigo/dizziness, spontaneous 

nystagmus, postural imbalance and vegetative symptoms, has 
been associated with the presence of local and systemic 
inflammation in affected patients [97, 98]. Although its 
etiology is still debated (viral, vascular, inflammatory), 
inflammation of the vestibular afferents (labyrinth/vestibular 
nerve) is one of the proposed causes [99] and has led to the 
administration of corticosteroids as a treatment principle 
[100]. While data from clinical trials suggest some effect of 
early administration of corticosteroids on the recovery of 
peripheral vestibular function on the longer term [101], its 
benefit for vestibular compensation is questioned by recent 
meta-analyses [100, 102–104]. Accordingly, there is 
consensus that further drug research is needed to better control 
the acute symptoms of patients with AUVP. 
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4.2. Neuroinflammation in animal models of acute 
peripheral vestibulopathy 

 Some animal models of vestibular loss generate an 
inflammatory response in the central nervous structures which 
process vestibular information. Postganglionic damage to 
vestibular afferents by unilateral vestibular neurectomy 
(UVN) results in the recruitment of astrocytes [105–108] and 
microglia [107, 108] in the ipsilesional VNs. Given its ability 
to consistently reproduce the typical behavioral phenotype of 
AUVP, the UVN model is particularly relevant to study the 
role of central inflammation in vestibular pathophysiology 
and to investigate how pharmacological modulation of 
inflammation can affect the expression of this pathology. 
Other models of vestibulopathies are known to generate 
central vestibular inflammation, such as the surgical 
labyrinthine destruction model [106, 109–111] or chemical 
model using arsanilate [112]. Transtympanic injection of 
arsanilate irreversibly desensitizes the vestibular sensors of 
the inner ear [113]. This chemical vestibular lesion model 
induces the expression of two key inflammatory factors, the 
tumor necrosis factor-alpha (TNF-α) and the nuclear factor-
kappa B (NF-kB) in the deafferented VNs [112]. Furthermore, 
this model elicits both a peripheral (vestibular nerve) and 
central (VNC) inflammatory response [114]. Thus, all these 
models are appropriate to study the impact of 
neuroinflammatory processes in vestibular core hubs. The 
interest in understanding the role of inflammatory processes 
correlated with vestibular pathologies goes well beyond the 
vestibular models mentioned above since pro-inflammatory 
signatures have also been recently reported in Menière's 
disease and vestibular migraine [115]. 

4.3. The dual role of histamine in neuroinflammation 

 Astrocytes and microglial cells are crucial components of 
the glial inflammatory response in the central nervous system 
[116]. These cells express histamine receptors [117, 118] and 
microglial cells produce histamine [42]. The idea that 
histamine would play a role in inflammation has thus 
encouraged much research. Xu and al. demonstrated that 
histamine inhibits the production of the pro-inflammatory 
cytokine TNF-α and interleukin 1 beta (IL-1β) in a 
concentration-dependent manner in astrocytes. In addition, a 
knockout mouse model of the histamine-synthesizing 

enzyme, histidine decarboxylase, led to a decrease in 
microglial arborization [119]. Thus, there is a strong link 
between histamine and inflammation, but this link is complex. 
Multiple studies have demonstrated the dual role of histamine 
in modulating inflammation depending on the 
microenvironment [120, 121]. 

 In vitro and in vivo histaminergic stimulation of H1R and 
H4R results in the activation of microglia, which then secretes 
proinflammatory factors such as TNF-α, interleukin 6 (IL-6), 
IL-1β, prostaglandin E2 and reactive oxygen species (ROS) 
[117, 122–125]. Furthermore, activation of H1R also elicits 
an increase in phagocytic activity [123]. The proinflammatory 
response elicited by histamine administration can result in 
neuronal damage and even neuronal degeneration, both in 
vitro and in vivo [123, 126]. 

 Contrary to its proinflammatory effect in a physiological 
context, histamine has been demonstrated to possess anti-
inflammatory properties in an inflammatory micro-
environment (Fig. 6). The anti-inflammatory action of 
histamine is primarily mediated by H2R and H3R, which 
trigger the release of anti-inflammatory cytokines such as 
interleukin 10 (IL-10) [124, 127, 128]. In vitro studies have 
shown that histaminergic stimulation of H2R suppresses 
inflammation induced by lipopolysaccharide (LPS) injection 
in  human monocytes by decreasing TNF-α secretion [129] 
and cluster of differentiation 14 (CD14) expression [130]. 
Similar effects have been observed in human monocyte-
derived dendritic cells and immune cells, where histamine 
increased the production of anti-inflammatory cytokines (IL-
4), reduced the production of pro-inflammatory factors (TNF-
α, d’IFN-γ) and led to cytoskeleton rearrangements [131]. 
Additionally, after LPS injection, histamine modulated 
microglial cells in vitro by reducing migration and IL-1β 
release [121] and dose-dependently inhibited phagocytosis 
and cytokine production (TNF-α) through H3R activation 
[132]. The anti-inflammatory effects of histamine have also 
been established in vivo, where it has been showed to inhibit 
phagocytic activity and ROS production, contributing to a 
neuroprotective effect [120]. The relationship between the 
histaminergic system and neuroinflammation is thus robust 
and underscores the neuroprotective nature of histamine in an 
inflammatory context. 
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Fig. (6). Dual role of histamine depending on the context of the cellular environment. Histamine has a rather pro-inflammatory or anti-
inflammatory role via the four histamine receptor expressed by microglia depending on the micro-environment. Histamine has a pro-
inflammatory role via the histamine H1 (H1R) and H4 (H4R) in a physiological context. Their activation leads to increased secretion of pro-
inflammatory factors such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1 beta (IL-1β) and prostaglandin E2 (PGE2), 
but also to increased phagocytosis and reactive oxygen species (ROS) production. Conversely, histamine has a rather anti-inflammatory role in 
an inflammatory context via the histamine H2 (H2R) and H3 (H3R) receptors. Their activation leads to the inhibition of inflammatory process 
of lipopolysaccharide (LPS), to the increase of secretion of anti-inflammatory factors such as interleukin 10 (IL-10) and interleukin 4 (IL-4), to 
the inhibition of pro-inflammatory factors (TNF-α and IL-1β), cluster of differentiation 14 (CD14) and interferon gamma (IFN-γ). Finally, 
activation of these receptors also decreases phagocytosis and ROS production. Created with biorender. 

4.4. Neuroinflammation and vestibular compensation 

 Microglial and astrocytic responses are expressed at their 
peak during the acute phase of the vestibular syndrome and 
then gradually decrease over time, but persist during the 
chronic phase [106, 108, 109, 111, 133]. A recent longitudinal 
study utilizing advanced imaging and tracing techniques has 
revealed that a vestibular lesion activates microglia in the 
vestibular nerve and brainstem nuclei [114]. Thus, a vestibular 
lesion induces an inflammatory context in the VNs that plays 
a crucial role in vestibular compensation and functional 
recovery. There is a delicate balance between inflammation 
and vestibular compensation, since an anti-inflammatory 
treatment during the acute phase of the vestibular syndrome 
delays both vestibular compensation and adaptive plasticity 
[134]. However, the relationship between inflammation and 
vestibular compensation is complex. Indeed, sensorimotor 
rehabilitation [135] and pharmacological treatments such as 
L-thyroxine [136] or betahistine (unpublished data) have been 
shown to increase the differentiation and survival of 
microglial cells at the expense of neurons, and reduce 
significantly posturo-locomotor deficits in an animal model of 

vestibulopathy.  This surprising result, in view of the 
demonstration of functional reactive neurogenesis after 
vestibular injury [105, 108], could be explained by a 
microglial anti-inflammatory neuroprotective action, 
conferred by the effective rehabilitation or pharmacological 
treatment used. Moreover, a preliminary study has shown 
differential expression dynamics of microglial phenotypes 
during vestibular compensation [137]. Further studies on the 
amount of pro- or anti-inflammatory cytokines in these 
contexts are thus interesting. In betahistine-treated UVN 
animals, this anti-inflammatory effect may be mediated by 
H3R blockade, leading to activation of the cAMP/PKA/CREB 
pathway and the inhibition of glial-mediated inflammation 
[138]. This hypothesis is supported by the observation that 
histamine prevents the reduction of CREB protein levels only 
in an inflammatory context [139]. Thus, elevated histamine 
levels may promote differentiation towards a microglial 
phenotype with a neuroprotective role in a neuroinflammatory 
context triggered by vestibular injury. This neuroprotective 
phenotype could help to reduce the number of dying neurons, 
thus avoiding the cost of neuronal differentiation to the 
organism (Fig. 7). Further studies on the rate of apoptosis and 
cytokine levels in VN as a function of rehabilitation or 
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pharmacological therapy would be of great interest. The 
central role of inflammation in vestibular disorders is further 
supported by a recent study in Menière’s disease patients, 
where elevated levels of IL-1β and TNF-α were observed 

[140]. All these data highlight a modulation of vestibular 
functions by central histaminergic system and suggest 
potential targets for clinical treatment of vestibular disorders. 

Fig. (7). Anti-inflammatory and neuroprotective effect of betahistine after vestibular lesion. The vestibular lesion induces an inflammatory 
context in the deafferented vestibular nuclei (VN). Betahistine inhibits the histamine H3 receptor (H3R), which leads to the activation of a 
cAMP/PKA/CREB signaling pathway that induces glial-mediated inhibition of inflammation. These elements lead to a neuroprotective 
environment and would explain the decrease of neuronal differentiation in deafferented VN under this treatment. Created with biorender. 

5. HISTAMINE RECEPTORS MODULATORS AND 
PHARMACOTHERAPY OF VESTIBULAR 
DISORDERS 

5.1. Differential applications of histaminergic drugs in 
various vestibular disorders 

 The pharmacotherapy of the vestibular system is relatively 
well documented [75, 141, 142], but an effective treatment for 
the diverse symptoms of vestibular syndromes remains to be 
found. Histamine receptor modulation holds a central place in 
drug research on vestibular disorders, given the abundant 
expression of HRs across the peripheral and central vestibular 
networks. Modulators of the H1R and H3R are among the 
drugs most commonly used in the treatment of vestibular 
disorders [75, 143–145], while H4R modulators are under 
development in this field [74, 146]. From a conceptual 
perspective, HR modulators could be helpful in the following 
clinical scenarios, each of which require a slightly different 
mode of action based on the underlying pathophysiological 
mechanisms: 1) application as an antivertigo drug in episodes 
of vestibular imbalance by suppression of peripheral or central 
vestibular tone asymmetry, 2) reduction of attack frequency 
and duration in hydroptic ear disease (including Menière’s 
disease) by action on fluid homeostasis in the inner ear, 3) use 
for augmentation of central vestibular compensation 

following AUVP by modulation of adaptive neuroplasticity 
mechanism. 

5.2. Treatments based on histamine receptor type 1 
antagonization (antivertigo drugs) 

 Besides betahistine, there are a few drugs in clinical use 
for symptom control in vestibular disorders, which convey at 
least some of their therapeutic effects by antagonism to 
histamine receptors: 

 Dimenhydrinate predominently acts via antagonism to the 
H1R and muscarinergic acetylcholine receptor (mAChR): 
[147, 148]. Functionally, dimenhydrinate suppresses 
spontaneous as well as stimulation-induced firing of neurons 
in the vestibular nuclei [149]. It is considered as a vestibuar 
suppressent and frequently used for the symptomatic 
treatment of nausea and vomiting in acute episodes of vertigo 
or dizziness or the prevention of motion sickness. 

 Meclizine and cyclizine are antagonists at H1R, but in 
addition have anticholinergic effects. They are in use in the 
United States for the treatment of nausea, vomiting in 
vestibular disorders and motion sickness. Their antiemetic and 
antivertigo effects are not fully understood, but its central 
antihistaminergic and anticholinergic properties are likely 
involved. The drugs depress labyrinth excitability and 
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vestibular stimulation and may affect the medullary 
chemoreceptor trigger zone. 

 Cinnarizine has multiple actions, including blockage of L-
/T-type voltage-gated calcium channels and antagonism to the 
H1R [150]. It is also used for symptomatic treatment of 
vertigo, nausea, vomiting and motion sickness in clinical 
practice. Cinnarizine acts as a vestibular suppressant mostly 
on peripheral vestibular structures by inhibition of Ca2+ ion 
translocation across cell membranes of the vestibular sensory 
cells in the ampullae [151], by modulation of transmitter 
release in vestibular hair cells [152], and potentially also by 
anti-vasoconstrictive action in the stria vascularis [153]. Some 
binding of cinnarizine to voltage-gated calcium channels in 
the cerebral cortex has been reported [154]. Convincing 
experimental data for a direct receptor-mediated central action 
at the level of the vestibular nuclei is however missing [155]. 

 Cinnarizine is also available in fixed combination with 
dimenhydrinate in various countries for the indications 
vertigo, nausea and vomiting in acute and episodic vestibular 
disorders [156–158]. In a prospective study, 
cinnarizine/dimenhydrinate (20mg/40mg) showed a non-
inferiority to betahistine (16mg) for symptomatic treatment of 
vertigo in patients with peripheral vestibular disorders [159, 
160]. Observational studies also suggest an effect of either 
cinnarizine or cinnarizine/dimenhydrinate for attack reduction 
in vestibular migraine [161, 162]. 

 Flunarizine is a first-generation antihistaminergic drug, 
which acts as an antagonist to the H1R. In addition, it is a 
selective calcium entry blocker with calmodulin binding 
properties. Thus, it has pharmacological similarities to 
cinnarizine. Main indications in vestibular medicine are the 
symptomatic treatment of peripheral and central vertigo [163] 
as well as vestibular migraine [164, 165]. 

 In summary, vestibular suppressants such as the first-
generation anihistaminergic durgs dimenhydrinate, meclizine, 
cyclizine, cinnarizine or flunarizine have a reverse binding 
pattern to H1R compared to betahistine. In consequence, the 
major difference of their action may be that the H1R 
antagonists suppress symptoms, while having the risk to delay 
mechanisms of central vestibular plasticity after unilateral 
peripheral vestibular loss. In contrast, betahistine does have 
less acute symptomatic effects, but a positive action for 
adaptive vestibular neuroplasticity (developped in section 
5.5). Further, H1R antagonists but not the H1R agonist 
betahistine tend to have sedative side effects such as 
drowsiness. 

5.3. Treatments based on histamine receptor in the inner ear 
(hydroptic ear disease) 

 In terms of the pharmacological treatment of Menière 
disease, betahistine has remained the most widely used drug 
in Europe for several decades [75, 143, 166, 167]. 
Experimental data from animal models give a strong rationale 
for a positive action of betahistine in the inner ear. At the 
peripheral vascular system level, betahistine has been shown 
to increase cochlear and vestibular blood flows, improving the 
inner ear microcirculation [168–171]. This effect is believed 
to be mediated by histamine H3 heteroreceptors and H1 
receptors [172–175] which could alleviate the 

microcirculation impairments and decrease the 
endolymphatic hydrops accompanying Menière’s disease 
[168, 173]. 

 Nevertheless, the clinical literature differs on the 
betahistine efficacy [176]. No effect of betahistine treatment 
has been found at low or high dose in Menière’s disease 
patients in a double blind, randomized and placebo controlled 
trial [177], while others studies found positive effect of 
betahistine treatment in vestibular disorders [40, 178–182]. 
There is a need for more thorough research on the 
effectiveness of betahistine in patients suffering from 
Menière’s disease [183]. Future studies should use the 
consented diagnostic criteria, select drug formulations, which 
take the specific metabolism of betahistine into account, 
always include a control group, and apply meaningful patient-
oriented outcome measures. 

5.4. Treatments based on augmentation of vestibular 
compensation by histamine receptor modulation (AUVP) 

 Preclinical research on the use of betahistine in animal 
models of acute unilateral vestibular deafferentation is 
limited. The few reported works show a beneficial action of 
an oral treatment with betahistine on the acute vestibular 
syndrome in a cat and rodent UVN model [38, 184] 
(unpublished data). Another study highlights that the faster 
recovery in posturo-locomotor symptoms in cats following 
UVN occurs in conjunction with elevated plasma 
concentrations of betahistine and an upregulation of histidine 
decarboxylase in the hypothalamus [39]. In the rodent model 
of surgical labyrinthectomy, either microinjection of 
betahistine in MVNs, intragastric infusion of betahistine or 
continuous administration through an osmotic minipump had 
beneficial effects on the restauration of vestibular functions 
[37, 185, 186]. In a chemical labyrinthectomy rat model, 
betahistine had dose-dependent beneficial effects on postural 
imbalance and mobility (unpublished data). Surgical 
vestibulopathy models, such as UVN and labyrinthectomy, as 
well as the unilateral intratympanic gentamycin application 
model [187] are comparable as they all lead to similar 
vestibular symptoms [188]. These lesions induce a vestibular 
syndrome similar to AUVP encountered in the clinic, 
characterized by sudden onset of vertigo or dizziness, 
accompanied by nausea and vomiting, gait instability, head 
motion intolerance and nystagmus, which persist over at least 
a day. Besides the sporadic cases of AUVP (i.e., vestibular 
neuritis), surgical or chemical damage to the peripheral 
vestibular system is also used sporadically to treat vestibular 
disorders in humans (e.g., in vestibular schwannoma, 
intractable Menière’s disease) [189–191].  However, a 
recently published prospective controlled trial comparing the 
intranasal application of betahistine against placebo in 
patients undergoing vestibular neurectomy failed to show 
significant group effects [192]. 

 Given these considerations, it appears that there are still 
some problems with translating positive preclinical 
experimental data into the clinical setting, which may be 
explained by the special betahistine mode of action and 
metabolism. The mechanisms are outlined in the following 
chapters. 



12    Title of the Journal, Year, Vol. 0, No. 0 Principle Author et al. 
 
5.5. Betahistine mechanism of action 

 As evoked above, betahistine has the potential to modulate 
peripheral and central vestibular networks and thus improve 
pathophysiology of various vestibular disorders based on its 
specific mode of action. 

5.5.1. antagonistic action on histamine H3 autoreceptors 
and heteroreceptors 

 Betahistine is a partial H1R agonist and H3R antagonist. 
Different mechanisms account for the effect of betahistine on 
the restoration of vestibular function. It is now well 
established that histamine H3 autoreceptor mediates 
autoinhibition of brain histamine release and autoregulation of 
histamine synthesis [44, 193–196]. The histamine H3 
heteroreceptor mediates autoinhibition of neurotransmitters 
such as glutamate, GABA, acetylcholine, norepinephrine, 
dopamine, serotonin, and peptides [41, 197, 198]. These 
neurotransmitters are all located in the VNs and play a role in 
regulating vestibular functions and the compensation process 
[75]. 

 Through blocking the histamine H3 autoreceptors, 
betahistine increases the synthesis and release of histamine in 
the TMN and the VN, as shown by immunohistochemistry, in 
situ hybridization and binding to H3R methods and improves 
vestibular compensation in the UVN cat model [38, 39, 70, 

94, 95, 199]. Thus, betahistine may increase histamine 
release, which may bind to H1R and H2R in the VN, leading 
to depolarization which may participate in restoring balanced 
activity between the deafferented and intact VN. 

5.5.2. agonistic action on histamine H1 receptors 

 Betahistine can restore electrophysiological balance 
between the VNCs either by histamine depolarization action 
on central vestibular neurons expressing H1R or H2R or by 
agonistic action on H1R located on vestibular excitatory 
neurons on the deafferented side. This electrophysiological 
balance is necessary for the vestibular compensation (Fig. 8). 

 Betahistine has also been demonstrated to restore 
electrophysiological balance between homologous VN and 
promotes a faster vestibular compensation by reducing 
activity in the contralateral VN through its agonistic effect on 
H1R located on inhibitory GABAergic vestibular 
commissural neurons in the deafferented MVN [37]. This H1 
receptor-mediated asymmetric activation of the vestibular 
commissural inhibitory system participate in rebalancing the 
two medial vestibular nuclei and contributes to recovery of 
both static and dynamic symptoms in locomotion and motor 
coordination. 
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Fig. (8). Pharmacological mechanisms of betahistine underlying the rebalanced activity between the deafferented and intact vestibular 
nuclei after a vestibular lesion. Betahistine increases histamine (HA) synthesis and secretion by blocking histamine H3 (H3R) auto-receptors. 
Several events participate in the restoration of vestibular functions. Histaminergic activation of histamine H1 receptor (H1R) by betahistine and 
histamine and of histamine H2 receptor (H2R) by histamine in excitatory neurons of the deafferented vestibular nuclei (VN) induces 
depolarization. Betahistine and histamine bind to H1R on ipsilesional commissural GABAergic neurons, inhibiting the VN contralateral to the 
lesion. Peripherally, betahistine could increase the cochlear and vestibular blood flow improving the microcirculation of the inner ear via 
histamine H3 heteroreceptors while activation of H1R by betahistine and histamine induces a reduction in activity of intact vestibular inputs. 
Created with biorender. 

 In addition to this central mechanism of action, betahistine 
could reduce both vestibular receptors and afferent vestibular 
neurons resting firing rate leading to a decrease in the sensory 
input from the vestibular endorgans [75, 82, 200, 201]. This 
effect of betahistine on the intact side may restore an 
electrophysiological homeostasis between the two peripheral 
vestibular systems. Betahistine could also restore the 
homeostasis of endolymphatic fluid by acting on H3R and 
H1R [79, 173]. This could be a way to reduce the increased 
pressure observed in the endolymphatic hydrops, which is 
considered as the pathophysiological correlate of Menière's 
disease [173]. 

5.5.3. action of betahistine on histaminergic glial receptors 
leading to restauration of excitability 

 Betahistine could enhance excitability in the deafferented 
vestibular environment by an action on histamine receptors 
carried by glial cells and thus restore an electrophysiological 
balance between the two VNCs. It Is well known that 
astrocytes and microglial cells play a crucial role in regulating 
brain circuit activity through dynamic interactions with 
neurons. Astrocytes can modulate neuronal network 
excitability thanks to different processes, such as K+ 
clearance [202] or intracellular Ca2+ elevations regulating 
release of gliotransmitters and neuronal excitability [203]. 
The expression of H1R, H2R, and H3R has been identified on 
astrocytes [204]. Histamine interacts with the H1R expressed 
by astrocytes and leads to the release of glutamate in a 
concentration-dependent manner in cell cultures [205]. This 
mechanism increasing glutamate concentration might occur in 
the deafferented VNs, leading to a higher excitability thus 
enhancing the restoration of activity between the two VNCs 
and vestibular compensation. Moreover, H1R regulates the 
glutamate clearance to avoid the excitotoxic effect [206]. 
Microglia also controls neuronal network excitability via 
BDNF signaling [207]. Furthermore, microglia is involved in 
the oligodendrocyte progenitor cell homeostasis and the 
myelin components [208], which are capital for the 
excitability. Since microglial cells express all H1R, H2R, 
H3R and H4R [117], the increase in histamine promoted by 
betahistine could intervene on these key mechanisms in order 
to restore an electrophysiological balance and thus improve 
vestibular compensation. 

5.5.4. clinical use of betahistine 

Previous clinical studies on the use of betahistine in various 
vestibular disorders often neglected its specific 

pharmacokinetic properties when applied via an oral route. 
Betahistine undergoes extensive first-pass metabolism and 
therefore has short biological half-life (3-4 hours). The lack of 
efficacy of betahistine in vestibular disorders could be due to 
its fast metabolism, given that 95% of the drug is rapidly 
metabolized by the monoamine oxidase a/b (MAO). 
Furthermore, genetic polymorphism may cause different rates 
of metabolism across patients. To increase efficacy in patients 
with high metabolism, the daily dose may need to be higher 
and/or the treatment duration longer. Combination of 
betahistine with a MAO inhibitor (such as selegiline or 
rasagiline) could also improve its effectiveness in patients 
with vestibular disorders, as the plasma level of betahistine 
may rise up by factor 100 (unpublished data). In fact, a low 
betahistine dose (0.2 mg/kg) co-administrated with selegiline 
(1mg/kg) accelerated balance recovery in UVN animals 
similarly to a single-drug treatment with a 10-times higher 
betahistine dose (2 mg/kg) [39]. This data strongly supports 
that the betahistine effect is dependent on its plasma 
bioavailability. Taken together, co-administration of 
betahistine with selegiline could be a promising 
pharmacological therapy both for patients with Menière's 
disease and AUVP. Changing the route of administration 
could also be an interesting track given the presence of high 
concentration of MAO in the digestive tract. One possibility 
would be to administer betahistine through the nasal route, 
which would bypass the digestive system and reduce its 
metabolism. This new administration route has been recently 
tested in a double-blind clinical study [209].  

Finally, pharmacokinetic studies have shown that betahistine 
is transformed into aminoethylpyridine and 
hydroxyethylpyridine at the hepatic level and is then excreted 
as pyridylacetic acid in urine. It was shown that 
aminoethylpyridine was able to reduce the resting discharge 
of ampullar receptors like betahistine [210].  In addition, 
aminoethylpyridine and hydroxyethylpyridine, were found to 
induce similar effects on the micro-circulation than 
betahistine in the guinea pig model [168]. This might be of 
some clinical interest. Based on these data, the anti-vertigo 
action of betahistine may initially be achieved by the drug 
itself and then sustained by its metabolites. A therapeutic 
perspective would be to use betahistine as well as its 
metabolites. 

6. FUTURE DEVELOPMENT OF HISTAMINE-
RECEPTOR MODULATORS 
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6.1. Histamine H4 receptor modulators 

 Following the demonstration of a preferred expression of 
H4R in rodent vestibular primary neurons [74], selective H4R 
antagonists have been found to have a strong inhibitory effect 
on the excitability of both isolated mammalian vestibular 
primary neurons [74] and rodent vestibule explants [77]. 
Since H3R antagonist used in pharmacology, such has 
betahistine, share this peripheral effect [81], these results 
suggested a potential application of H4R antagonists in 
vestibular disorders. 

 Recently, a selective inhibitor of the H4R, SENS-111, was 
given orally to healthy volunteers who underwent caloric 
tests. This administration significantly improved the latency 
of vertigo appearance, disappearance and duration, as well as 
the European Evaluation of Vertigo questionnaire parameters 
compared to baseline [146]. Although the drug had no 
significant effect on nystagmus, this study suggests that 
SENS-111 may be a promising drug for managing dizziness 
associated with vestibular disorder. Another recent 
investigation in Menière’s disease patients reported that a 
particular H4R gene variant, rs77485247 polymorphism, may 
be linked to an increased risk of Menière’s disease [211]. H4R 
are highly expressed on peripheral blood mononuclear cells 
[212], which are critical components of the immune system. 
There is growing evidence of an autoimmune background for 
Menière’s disease in a subset of patients [213] and that 
proinflammatory cytokines contribute to pathogenesis of 
Menière’s disease [140]. These findings suggest a connection 
between inflammation, histamine receptors, and vestibular 
disorders. 

6.2. Histamine, neuroinflammation and H4 receptor 

 As mentioned above, microglial cells, which are the innate 
immune cells in the central nervous system and primarily 
express H4R [68], can be activated by histamine, resulting in 
the production of pro-inflammatory cytokines [117]. This 
observation is supported by data showing that 
intracerebroventricular infusion of H4R agonists increased the 
total microglia cell number in a dose-dependent manner [119]. 
In a rat model of Parkinson’s pathology, Zhou and al, showed 
that H4R antagonist inhibits pro-inflammatory microglia 
response and prevents the progression of Parkinson-like 
pathology and behavior [214]. Given the presence of H4R in 
microglial cells and the high level of expression of these cells 
in the VN following vestibular loss, it can be postulated that 
histamine may play a role in the inflammatory response 
observed in this model of vestibulopathy. Therefore, the use 
of H4R antagonist pharmacological compounds may be 
appropriate to inhibit the inflammation associated with certain 
vestibular pathologies, such as AUVP. 

7. CONCLUSION 

 As evidenced by the wide expression of its various specific 
receptors throughout the vestibular sensory network, 
histamine appears to be a major modulator of vestibular signal 
processing. However, its precise actions on the detection, 
transmission and integration of vestibular sensory information 
in normal physiological conditions, which could globally 
favor the activation of the vestibule in case of need, still 

remain to be specified. The fine interactions between the 
histaminergic system and the inflammation modulating cells 
reveal a neuroprotective action of histamine, which could be 
valuable in an inflammatory context associated with 
peripheral vestibular damage. In addition, the extensive 
histamine receptor expression across the peripheral and 
central vestibular network offers a large opportunity for 
pharmacological modulation of the central compensation 
process with the hope of optimizing functional restoration of 
peripheral vestibular loss.  Current efforts to improve the 
delivery of pharmacological compounds that have already 
proven their efficacy on the symptoms of vestibular disorders 
should soon lead to more targeted and effective drugs for 
vestibular pathologies.  
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