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Abstract

In this article we study the spectral, linear and nonlinear stability of stationary shock profile solutions
to the Lax-Wendroff scheme for hyperbolic conservation laws. We first clarify the spectral stability
of such solutions depending on the convexity of the flux for the underlying conservation law. The main
contribution of this article is a detailed study of the so-called Green’s function for the linearized numerical
scheme. As evidenced on numerical simulations, the Green’s function exhibits a highly oscillating behavior
ahead of the leading wave before this wave reaches the shock location. One of our main results gives a
quantitative description of this behavior. Because of the existence of a one-parameter family of stationary
shock profiles, the linearized numerical scheme admits the eigenvalue 1 that is embedded in its continuous
spectrum, which gives rise to several contributions in the Green’s function. Our detailed analysis of the
Green’s function describes these contributions by means of a so-called activation function. For large times,
the activation function describes how the mass of the initial condition accumulates along the eigenvector
associated with the eigenvalue 1 of the linearized numerical scheme. We can then obtain sharp decay
estimates for the linearized numerical scheme in polynomially weighted spaces, which in turn yield a
nonlinear orbital stability result for spectrally stable stationary shock profiles. This nonlinear result is
obtained despite the lack of uniform ℓ1 estimates for the Green’s function of the linearized numerical
scheme, the lack of such estimates being linked with the dispersive nature of the numerical scheme. This
dispersive feature is in sharp contrast with previous results on the orbital stability of traveling waves or
discrete shock profiles for parabolic perturbations of conservation laws.
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Notation

Throughout this article, we let N∗ denote the set of positive integers {1, 2, 3, . . . } and N denote the set
of integers (including 0). We let R denote the set of real numbers, R+ := [0,+∞) the set of nonnegative
real numbers and R+∗ := (0,+∞) the set of positive numbers. We also let C denote the set of complex
numbers. We shall use the notation:

U := {ζ ∈ C | |ζ| > 1} , D := {ζ ∈ C | |ζ| < 1} , S1 := {ζ ∈ C | |ζ| = 1} ,
U := U ∪ S1 , D := D ∪ S1 .

If w is a complex number, the notation Br(w) stands for the (round) open ball in C centered at w and
with radius r > 0, that is Br(w) := {z ∈ C | |z−w| < r}. We shall also use “square balls” in the complex
plane. Namely, for any r > 0, the notation Br(w) stands for the open set:

Br(w) :=
{
z ∈ C

∣∣ max
(
|Re(z − w)|, |Im(z − w)|

)
< r
}
.

The notation Br(w), resp. Br(w), refers to the closure of Br(w), resp. Br(w), in C. For any positive
number r, we let r S1 denote the circle in C centered at the origin and with radius r. We also let Mn,k(C)
denote the set of n× k matrices with complex entries. If n = k, we simply write Mn(C).

For q ∈ [1,+∞), we let ℓq(Z;C) denote the space of complex valued sequences v = (vj)j∈Z indexed
by Z and such that the quantity: ∑

j∈Z
|vj |q

is finite. The 1/q-th power of this quantity defines a norm with which ℓq(Z;C) becomes a Banach space.
This norm is denoted ∥ · ∥ℓq . For q = +∞, we let ℓ∞(Z;C) denote the space of bounded complex valued
sequences indexed by Z. This space is equipped with the norm:

sup
j∈Z

|vj | ,

which we shall refer to as ∥ · ∥ℓ∞ . When equipped with this norm, the space ℓ∞(Z;C) is a Banach algebra
(the product between two sequences being here understood in the pointwise sense (v w)j := vj wj for each
j ∈ Z). Sequences will be denoted with bold letters, while their evaluation at a given integer will be
denoted with standard letters.

We let C, resp. c, denote some (large, resp. small) positive constants that may vary throughout the
text (sometimes within the same line). A typical example is the inequality:

∀x ∈ R+ , x exp(−c x) ≤ C exp(−c x) ,
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where, of course, the constant c on the right-hand side of the inequality is not the same as in the left-hand
side. The dependance of the constants on the various involved parameters is made precise throughout
the article.

In order to avoid overloading some expressions, we sometimes write:

x∑
m=0

for a sum that runs over the integer m from m = 0 to m = x, even when x is a positive real number that
is not an integer. In that case, it is understood that the sum runs up to the largest number that is less
than x. This will allow us to avoir using the integer part of several quantities.
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Chapter 1

Introduction

This article is devoted to a detailed stability analysis of stationary shock profiles for the Lax-Wendroff
scheme. The Lax-Wendroff scheme is a finite difference approximation of hyperbolic conservation laws
that is formally second order accurate (at least for smooth solutions), see [19, 21]. As any second order
accurate numerical scheme, the Lax-Wendroff scheme gives rise to spurious oscillations once the solution to
the conservation law develops discontinuities, that is, once shock waves have appeared. This is evidenced
for instance in the numerical simulation reported in Figure 2.4 below. This undesirable numerical feature
is usually corrected by introducing flux limiters or other more involved numerical treatments (essentially
non-oscillatory schemes, weighted non-oscillatory schemes and so on). Our goal here is to show that
despite the formation of oscillatory wave trains in the numerical computation of shock waves, the Lax-
Wendroff scheme gives rise to stable stationary shock profiles for convex or concave fluxes, and for even
other situations. The whole point is to clarify the meaning of “stable” in the previous sentence.

Following a long line of research, we aim at studying this stability problem by first showing a spectral
stability result, then turning this spectral stability result into a linear stability result by proving sharp
decay estimates for the linearized numerical scheme. Obtaining these sharp linear decay estimates is the
cornerstone of our work. The final step of the analysis is to use the linear decay estimates in order to
obtain an orbital stability result for the nonlinear dynamics. The approach is definitely not new. For
the Lax-Wendroff scheme, it was followed by Smyrlis [28] who dealt with the exact same problem as
the one we are looking at here. However, the functional framework that we use is much larger than the
one in [28] where the introduction of exponential weights stabilizes the linearized operator. Actually,
the introduction of exponential weights gives rise to a spectral gap for some carefully chosen parameters,
thus bypassing a detailed stability analysis that would take the flux properties into account. We consider
here a larger and, probably, more natural functional framework in which the spectrum of the linearized
operator depends on the flux of the conservation law.

The overall strategy is the same as the one followed in the contributions [14, 6, 7]. We start from a
given discrete shock profile, which is quite easy for the Lax-Wendroff scheme since this numerical scheme
exhibits exact, piecewise constant, stationary discrete shock profiles that are the mere projections on the
numerical grid of the continuous step shock. We linearize the Lax-Wendroff scheme around this stationary
solution and try to locate the spectrum of the linearized evolution operator. Enlarging the functional
framework has some major impacts, the first of which being that we have to take into account the (neutral)
eigenvalue 1 for the linearized numerical scheme. This eigenvalue arises by “translation invariance”, as
explained in [28] (see also [27] for a general overview on discrete shock profiles). Translation invariance
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means here that there exists a one-parameter smooth family of stationary discrete shock profiles1. The
rest of the spectrum is located by analyzing the so-called Evans function associated with the shock profile.
The Evans function plays the role of a characteristic polynomial for the linearized operator. The general
construction of the Evans function is detailed in [27], see also [14, 6]. In our case, the construction is
far easier because our reference discrete shock is piecewise constant so the Evans function reduces to
what could be referred to as a Lopatinskii determinant (by analogy with the stability analysis of shock
waves [2]). Our problem is similar to the stability analysis of the discrete shock profiles for the Godunov
scheme [5] in which the shock profiles are also piecewise constant. For scalar equations, as we consider
here, the expression of the Lopatinskii determinant is simple enough so that we can analyze the location
of its zeroes in the case where the flux of the conservation law is either convex or concave. Namely, we
shall show that for convex or concave fluxes, the Lopatinskii determinant has only 1 as a (simple) zero
in the region U of the complex plane. This corresponds, in the terminology of [27] to a spectrally stable
situation. Our analysis encompasses a particular (symmetric) case that was considered in the seminal
work [15].

Once we have located the spectrum of the operator, we can construct the so-called spatial Green’s
function, that is the fundamental solution of the resolvent equation. For spectrally stable configurations,
we show that the spatial Green’s function has a meromorphic extension near 1 and it can also be holomor-
phically extended near any other point of the unit circle. This is a key step towards the decomposition
and the proof of sharp decay bounds for the Green’s function of the linearized evolution operator. In the
parabolic case, the Green’s function satisfies uniform (in time) ℓ1 estimates (in space) and it also satisfies
decaying (in time) ℓ∞ estimates (in space), just like the heat kernel. For the Lax-Wendroff scheme, there
is unfortunately no hope to obtain such favorable uniform bounds. Indeed, it is already known that when
applied to the transport equation, the Green’s function of the Lax-Wendroff scheme does not enjoy uni-
form ℓ1 estimates. This failure of ℓ1 stability, that is linked to the dispersive behavior of the Lax-Wendroff
scheme, has been identified in a general context by Thomée [29] for convolution operators. The analysis
of ℓ1 instability was later refined in [16, 17] in order to make the instability growth rates percise. Rather
than following [16, 17] for the Lax-Wendroff scheme, we shall build here on the recent work [9] by one
of the authors. The analysis in [9] gives a precise description of the Green’s function for this numerical
scheme in the context of the Cauchy problem for the transport equation2. We extend here the analysis of
[9] to the context of the shock profile stability analysis in which Fourier analysis is no longer available due
to spatial variations. We therefore substitute the so-called spatial dynamics approach in place of Fourier
analysis and use the inverse Laplace transform to obtain a representation formula for the Green’s function
of the linearized operator. The main difficulty that we shall face arises from the singularity of the spatial
Green’s function at the eigenvalue 1 (that is imbedded in the continuous spectrum). This pole gives rise
to a leading contribution in the Green’s function which, following [7], we refer to as an activation function.
This function can be thought of as a primitive of the Green’s function for the Cauchy problem. Detailed
bounds on this activation function are given in Appendix A at the end of this article. In particular, a
lengthy -though crucial- argument here is to obtain a uniform bound for the activation function. This is
rather trivial in the parabolic setting thanks to uniform ℓ1 estimates for the Green’s function but such
uniform ℓ1 estimates are known to fail in the dispersive setting. Our uniform bound for the activation
function is reminiscent of the main result in [13] where such a uniform bound is also the cornerstone of

1For continuous problems, such as parabolic perturbations of conservation laws, the one-parameter family of profiles
is obtained by simply translating in space a given profile, but the construction of shock profiles is unfortunately more
complicated for discrete problems.

2The quantitative estimates in [9] are more accurate in many regimes than the ones in [16, 17] and this is crucial for
several arguments that we use below.
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the argument.
Once we have an accurate description of the Green’s function with sharp bounds for each term in its

decomposition, the nonlinear orbital stability result follows more or less by using standard tools as in [1].
Since our Green’s function does not satisfy uniform ℓ1 estimates and exhibits a dispersive instability3,
we can not complete an orbital stability for small ℓ1 perturbations. We need to work in polynomially
weighted ℓp spaces and carefully play with the weights in the definition of the norms in order to recover
some integrability in time, which is a crucial feature of bootstrap arguments. This is less favorable than
the situation for semi-discrete shocks that is dealt with in [1] where the time translation invariance also
allows to use a larger functional framework. The fully discrete situation does not give as many tools to
deal with the nonlinear argument.

The plan of this article is the following. In Chapter 2 we introduce the numerical scheme, we give
the expression of the reference shock profile that we consider and state our main results. For the sake of
clarity, we have split the main results in four theorems, the first two being devoted to spectral stability,
the third one being devoted to linear stability, and the fourth and main one being devoted to nonlinear
orbital stability. We also report on some numerical simulations that illustrate these results. Chapter 3
is devoted to the spectral analysis. The linear decay estimates are proved in Chapter 4 with the help
of several key estimates that are given in Appendix A. Eventually, the nonlinear analysis is detailed in
Chapter 5.

3The ℓ∞ decay of the Green’s function for the Lax-Wendroff scheme is also slower than for the parabolic situation that
is considered in [1].
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Chapter 2

The Lax-Wendroff scheme. Notation
and main results

2.1 The Lax-Wendroff scheme and its stationary shock profiles

We consider in this article a scalar conservation law of the form:

∂tu+ ∂xf(u) = 0, x ∈ R, (2.1)

with a smooth flux f ∈ C∞(R;R). Since the solutions to the Cauchy problem for (2.1) generically
develop singularities in finite time [12, 26], we directly consider piecewise smooth solutions to (2.1), which
we assume to be stationary for simplicity:

u(t, x) =

{
uℓ, x < 0,
ur, x > 0.

(2.2)

For (2.2) to be a weak solution to (2.1), the so-called Rankine-Hugoniot relation must hold:

f(uℓ) = f(ur) , (2.3)

and we also enforce the so-called entropy criterion [26]:

f ′(ur) < 0 < f ′(uℓ) . (2.4)

The Lax entropy inequalities (2.4) imply that the characteristics stemming from either side of the shock
wave (that is located here at x = 0) enter the shock in positive time, as depicted in Figure 2.1.

Our goal here is to understand the influence of a high order discretization procedure on the stability
of the shock (2.2) and more specifically whether dispersion in a numerical scheme may rule out linear
or nonlinear stability. Let us recall that a rather complete existence and stability theory for monotone
schemes has been developed in [18] but monotone schemes are at most first order accurate [19, 21]. We
therefore pursue the analysis of [28] and try to develop a rather complete stability analysis of discrete shock
profiles for the Lax-Wendroff scheme. This is a model situation for a high order finite difference scheme
and we hope that some of our arguments below may prove useful for other discretization procedures of
conservation laws.

We therefore introduce a space step ∆x > 0 and a time step ∆t > 0 that are always chosen such that
the ratio λ := ∆t/∆x is kept constant. For any couple of integers n ∈ N and j ∈ Z, the solution to (2.1)

9



x

t

{
x0 + f ′(uℓ)t, x0 < 0

} {
x0 + f ′(ur)t, x0 > 0

}

0

uruℓ

Figure 2.1: The characteristics on either side of the shock.

is approximated, on the time-space cell [n∆t, (n+1)∆t)× [j∆x, (j+1)∆x) by a constant value unj , that
is iteratively defined with respect to n according to the formula:

∀ (n, j) ∈ N× Z , un+1
j = unj − λ

(
Fλ(u

n
j , u

n
j+1)− Fλ(u

n
j−1, u

n
j )
)
, (2.5)

with a numerical flux Fλ that is defined by:

∀ (u, v) ∈ R2 , Fλ(u, v) :=
1

2
(f(u) + f(v))− λ

2
f ′
(
u+ v

2

)
(f(v)− f(u)) . (2.6)

The numerical scheme (2.5)-(2.6), that is referred to as the Lax-Wendroff scheme and dates back to [20],
is a formally second order accurate approximation procedure for (2.1), see [19, 21]. The initial condition
(u0j )j∈Z for (2.5) will be chosen as a small perturbation of a discretized version of the shock wave (2.2).

A very specific feature of the numerical scheme (2.5)-(2.6) is the fact that it captures exactly the
stationary piecewise constant solutions to (2.1). Namely, if we consider the weak solution (2.2) to (2.1),
then the following sequence:

unj :=

{
uℓ, j ≤ 0,
ur, j ≥ 1,

n ∈ N , (2.7)

defines a stationary solution to (2.5)-(2.6) since it does not depend on n and satisfies (we omit the index
n in uj from now on):

∀ j ∈ Z , Fλ(uj , uj+1) = Fλ(uj−1, uj) = f(uℓ) = f(ur) ,

the final equality coming from the Rankine-Hugoniot relation (2.3). The aim of this article is to study the
stability of the stationary solution u = (uj)j∈Z defined in (2.7) with respect to the dynamics of (2.5)-(2.6).
Some numerical experiments are reported below in Section 2.3. Let us recall that the piecewise constant
discrete shock (2.7) is not the only discrete shock for the Lax-Wendroff scheme (2.5) associated with (2.2).
As explained in [28], a stationary discrete shock profile for (2.2) is a real valued sequence u = (uj)j∈Z
such that:

∀ j ∈ Z , Fλ(uj , uj+1) = Fλ(uj−1, uj) ,
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and
lim

j→−∞
uj = uℓ , lim

j→+∞
uj = ur .

The sequence in (2.7) is a particular case of a stationary discrete shock profile but there are many other
ones. We refer to [27] and references therein for a thorough description of the existence theory (both in
the scalar and system cases), and to [28] for the specific case of the Lax-Wendroff scheme (2.5)-(2.6) in
the scalar case. We recall the following result that is one of the achievements in [28]:

Theorem 2.1 (Smyrlis [28]). Let the shock (2.2) satisfy the Rankine-Hugoniot condition (2.3) and the
entropy condition (2.4). Let λ satisfy the so-called CFL condition:

max (λ f ′(uℓ), λ |f ′(ur)|) < 1 . (2.8)

Then there exist θ > 0 and a one-parameter family of stationary discrete shock profiles vθ = (vθj )j∈Z,
θ ∈ (−θ, θ), that satisfies the following properties:

(i) v0 = u is the piecewise constant discrete shock (2.7),

(ii) for every j ∈ Z, the map θ 7→ vθj is C∞ on the interval (−θ, θ),

(iii) there exist δ > 0 and C > 0 such that for any θ ∈ (−θ, θ), the discrete shock profile vθ converges
towards its end states exponentially fast at rate δ, namely:

∀ j ∈ N ,
∣∣vθj − ur

∣∣ + ∣∣vθ−j − uℓ
∣∣ ≤ C e−δ j ,

and furthermore
∀ j ∈ Z ,

∣∣vθj − v0j
∣∣ ≤ C |θ| e−δ |j| ,

(iv) for every θ in the interval (−θ, θ), the “excess mass” of vθ equals θ, namely1:∑
j∈Z

vθj − v0j = θ .

Since the numerical scheme (2.5)-(2.6) is conservative, it preserves mass. More precisely, given an
initial sequence h in ℓ1(Z;R), we want to consider the dynamics of (2.5)-(2.6) for the initial condition
v0+h (see the numerical experiments in Section 2.3). Let (unj )j∈Z,n∈N denote the corresponding solution
to (2.5)-(2.6). By mass conservation, we have:

∀n ∈ N ,
∑
j∈Z

unj − v0j =
∑
j∈Z

u0j − v0j =
∑
j∈Z

hj .

In particular, if we can prove that (unj )j∈Z,n∈N converges, as n tends to +∞, towards a stationary discrete

shock profile, then this limit can only be vθ where θ denotes the mass of the initial perturbation h. In
other words, we rather intend to show that the whole curve {vθ, θ ∈ (−θ, θ)} of stationary discrete shock
profiles is orbitally stable.

To study the stability of (2.7), or rather the orbital stability of the curve {vθ, θ ∈ (−θ, θ)}, we follow
a common approach that is based on first studying the spectral stability of (2.7) and then on proving

1The series is indeed convergent because stationary shock profiles converge exponentially fast towards their end states.
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linear and nonlinear decay estimates. We therefore introduce the linearized numerical scheme that is
obtained by linearizing (2.5)-(2.6) around the constant solution v0 that is given by (2.7). For future use,
we introduce the notation:

αℓ,r := λ f ′(uℓ,r) , αm := λ f ′
(
uℓ + ur

2

)
. (2.9)

The linearization of (2.5)-(2.6) around the discrete shock profile (2.7) leads to the iteration:

wn+1 = L wn, wn = (wn
j )j∈Z, (2.10)

and the bounded linear operator L : ℓq(Z;C) → ℓq(Z;C) is defined by:

(L w)j :=



wj −
αr

2
(wj+1 − wj−1) +

α2
r

2
(wj+1 − 2wj + wj−1) , j ≥ 2,

wj −
αℓ

2
(wj+1 − wj−1) +

α2
ℓ

2
(wj+1 − 2wj + wj−1) , j ≤ −1,

w0 −
1

2
(αr w1 − αℓw−1) +

1

2

(
αr αmw1 − αℓ (αℓ + αm)w0 + α2

ℓ w−1

)
, j = 0,

w1 −
1

2
(αr w2 − αℓw0) +

1

2

(
α2
r w2 − αr (αr + αm)w1 + αℓ αmw0

)
, j = 1.

(2.11)

Let us observe that the values αℓ = −αr and αm = 0 correspond to the particular “symmetric” case
studied in [15]. This case corresponds for instance to an even function f with respect to the mid-point
(uℓ + ur)/2. Actually, the spectral stability result of [15] is, to some extent, the starting point for our
analysis in Chapter 3 below.

2.2 Main results

Our first main result is a spectral stability result for the stationary discrete shock (2.7) when the flux f
is either convex or concave.

Theorem 2.2 (Spectral stability for convex or concave fluxes). Let the flux f in (2.1) be either convex
or concave, and let the weak solution (2.2) satisfy the Rankine-Hugoniot relation (2.3) and the entropy
inequalities (2.4). Then under the condition2:

max (αℓ, |αr|) < 1 , (2.12)

the operator L has no spectrum in U \ {1}. Moreover, 1 is an eigenvalue of L in ℓq(Z;C) for any
q ∈ [1,+∞].

Actually, it will turn out in Chapter 3 that in the case of a convex or concave flux f , the operator L
will have no spectrum in the exterior of the curve3:{

1− 2α2 sin2
ξ

2
+ iα sin ξ | ξ ∈ R

}
, α := max(αℓ, |αr|) . (2.13)

2This condition is a mere restriction on the ratio λ = ∆t/∆x. We recall that αℓ and αr are defined in (2.9). The condition
(2.12) is the exact same one as in the existence theorem for stationary discrete shock profiles, see (2.8).

3This curve is actually an ellipse that is centered at 1− α2.
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The exterior of this curve will always be denoted O in Chapter 3. It can be parametrized as:

O =
{
z = x+ i y ∈ C | (x− 1 + α2)2 + α2 y2 > α4

}
,

see for instance Figure 3.1 in Chapter 3 below where O corresponds to the complement of the grey shaded
area.

We wish to encompass slightly more general situations than the sole case of convex (or concave) fluxes.
Indeed, our goal is to show that spectral stability of a stationary discrete shock is a sufficient condition
for linear and orbital nonlinear stability. In practice, this requires having at our disposal a convenient tool
that locates the spectrum of L just as the characteristic polynomial does so for a matrix. Constructing
such a tool, which we shall refer to as a Lopatinskii determinant (in analogy with the shock wave theory
for systems of conservation laws, see e.g. [2]), is the purpose of part of Chapter 3 below. Examples of
numerical calculations of such Lopatinskii determinants can be found in [4] in the context of numerical
boundary conditions for transport equations but the analysis is entirely similar here.

Going beyond the case of a convex or concave flux requires making a stability assumption that is
given as Assumption 1 in Chapter 3 below. This stability assumption is meant to exclude the possibility
of having some spectrum of L in U \ {1}. Our hope is that Assumption 1 can be “easily” verified (or
proved not to hold) in specific situations. The generalization of Theorem 2.2 is the following result.

Theorem 2.3. Let the weak solution (2.2) satisfy the Rankine-Hugoniot relation (2.3) and the entropy
inequalities (2.4). Then under the condition (2.12) on the parameter λ, we can define a function ∆ that is
holomorphic on a neighborhood of U (see (3.3) in Chapter 3). Then 1 is an eigenvalue of L in ℓq(Z;C)
for any q ∈ [1,+∞]. Moreover, under Assumption 1 below on the location of the zeroes of ∆, the operator
L has no spectrum in U \ {1}.

Once we know that spectral stability holds, we expect that the favorable localization of the spectrum
of L will imply some decay estimates for the semigroup of operators {L n |n ∈ N}. We gather here
these estimates but, to some extent, our main result is rather Theorem 4.1 that will be stated in Chapter
4 below. Theorem 4.1 gives accurate bounds for the Green’s function of the operator L so that, with
classical convolution estimates, we can infer estimates on the norm of L n in some polynomially weighted
spaces. These spaces are defined as follows. We recall that ℓq(Z;C) denotes the space of complex valued
sequences that are indexed by Z and such that their q-th power is integrable (bounded sequences if
q = +∞). The norm is denoted ∥ · ∥ℓq . Given a real number γ ≥ 0, we then introduce the polynomially
weighted ℓq space:

ℓqγ(Z;C) :=
{
h ∈ ℓq(Z;C) |

(
(1 + |j|γ)hj

)
j∈Z ∈ ℓq(Z;C)

}
. (2.14)

For h ∈ ℓqγ , we denote:

∥h∥ℓqγ :=
∥∥∥((1 + |j|γ)hj

)
j∈Z

∥∥∥
ℓq

,

the norm of h, so that ℓqγ(Z;C) is endowed with a Banach space structure. Our main decay estimates for
the operator L read as follows.

Theorem 2.4. Let the weak solution (2.2) satisfy the Rankine-Hugoniot relation (2.3) and the entropy
inequalities (2.4). Let the parameter λ satisfy the condition (2.12) and let Assumption 1 on the zeroes
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of ∆ be satisfied. Then for any real numbers γ2 ≥ γ1 ≥ 0, there exists a constant C such that, for any
h ∈ ℓ1γ2(Z;C) that satisfies: ∑

j∈Z
hj = 0 ,

there holds:

∀n ≥ 1 , ∥L n h∥ℓ1γ1 ≤ C

nγ2−γ1−1/8
∥h∥ℓ1γ2 ,

∥L n h∥ℓ∞γ1 ≤ C

nγ2−γ1+min(1/3,γ1)
∥h∥ℓ1γ2 .

The first estimate in Theorem 2.4 is consistent with all known results on the behavior of the Lax-
Wendroff scheme for the transport equation. Indeed, if one chooses γ2 = γ1 = 0, the first estimate in
Theorem 2.4 corresponds to the well-known (weak) instability of the Lax-Wendroff scheme in either the
ℓ1 or ℓ∞ norm. The growth n1/8 is known to be sharp, see e.g. [16, 17, 9]. Since we wish to obtain a
nonlinear orbital stability result by means of a bootstrap argument, some decay should be gained one way
or another, and the introduction of the polynomial weight is a way to compensate for the weak instability
of the numerical scheme (and to gain enough time integrability as well). If we compare with the more
standard Cauchy problem on Z for the transport equation, the main new difficulty that we are facing
here is the eigenvalue 1 for the operator L , this eigenvalue being imbedded into the continuous spectrum.
Nevertheless, our decay estimates in Theorem 2.4 (and some complementary estimates that are detailed
in Chapter 4) are strong enough to yield the following orbital nonlinear stability result for the family of
stationary discrete shock profiles exhibited in Theorem 2.1.

Theorem 2.5. Let the weak solution (2.2) satisfy the Rankine-Hugoniot relation (2.3) and the entropy
inequalities (2.4). Let the parameter λ satisfy the condition (2.12) and let Assumption 1 on the zeroes of
∆ be satisfied. Let now β, σ ∈ R+ satisfy β + σ ≥ 5

12 and 0 ≤ σ < β + 1
8 . We define the constant:

γ := σ + β +
1

8
. (2.15)

Then there exist some positive real numbers C0, ϵ > 0 such that for any sequence h ∈ ℓ1γ(Z;R) satisfying

∥h∥ℓ1γ < ϵ ,

then one has
θ :=

∑
j∈Z

hj ∈ (−θ, θ) ,

and the solution (un)n∈N of the Lax-Wendroff scheme (2.5)-(2.6) with the initial condition u0 := u+h is
well-defined. Furthermore, if we introduce the sequence (pn)n∈N defined as

∀n ∈ N , pn := un − vθ ,

then for all n ∈ N one has pn ∈ ℓ1β(Z;R) together with the estimates:

∀n ∈ N , ∥pn∥ℓ1β ≤ C0

(1 + n)σ
∥h∥ℓ1γ , and ∥pn∥ℓ∞β ≤ C0

(1 + n)σ+
11
24

∥h∥ℓ1γ ,

so that un tends to vθ in ℓ∞β (Z;R) (and also in ℓ1β(Z;R) if σ is positive).
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Figure 2.2: Discrete shock profiles for the Lax-Wendroff scheme applied to the Burgers equation. Left: the reference
shock (2.2). Middle: a discrete shock profile with same end states but negative mass difference (θ < 0 in Theorem
2.1). Right: a discrete shock profile with same end states but positive mass difference (θ > 0 in Theorem 2.1).

2.3 Numerical experiments

We first present some numerical computations of stationary shock profiles. We consider for simplicity the
Burgers equation, which corresponds to the convex flux function f(u) = u2/2. By Theorem 2.2 above,
every stationary discrete shock of the form (2.7) with uℓ > 0 and ur = −uℓ is spectrally and therefore
nonlinearly orbitally stable (in the sense of Theorem (2.5)) if the parameter λ is chosen to satisfy the
CFL stability condition. Figure 2.2 displays three possible stationary discrete shock profiles for the Lax-
Wendroff scheme with the same end states uℓ = 1/2, ur = −1/2. The Rankine-Hugoniot conditions (2.3)
and the Lax entropy condition (2.4) are satisfied. The CFL parameter λ is chosen to be 1/2 so that the
CFL condition (2.12) is also satisfied.

As follows from Theorem 2.1, discrete shock profiles can be parametrized, at least for small enough
mass perturbations, by their mass difference with respect to the reference discrete shock profile (2.7). The
first graph on the left of Figure 2.2 corresponds to the reference shock (2.2) with end states uℓ = 1/2,
ur = −1/2. The value of that discrete shock at j = 0 is highlighted in red. The middle and right graphs
in Figure 2.2 correspond to stationary discrete shock profiles as given by Theorem 2.1, one being with
negative mass difference (middle graph), and the other one being with positive mass difference (on the
right of Figure 2.2).

It turns out that the family {vθ} of stationary discrete shock profiles given in Theorem 2.1 can be
parametrized globally for the Burgers equation. This was already mentioned in [28] and we report here
on the numerical computation of the whole family. As a first observation, we remark that the translation
of the shock profile (2.7), namely: {

uℓ , j ≤ 1 ,

ur , j ≥ 2 ,
(2.16)

is also a stationary discrete shock profile for (2.5) with mass difference uℓ − ur = 1 with respect to (2.7)
(the only difference with (2.7) is in the cell labeled with the index j = 1). In other words, if we can
parametrize the family vθ of Theorem 2.1 for θ ∈ [0, 1] with v0 being equal to the stationary discrete
shock profile (2.7) and v1 being equal to the translated discrete shock profile (2.16), then by repeated
translations -either to the left or to the right- one can parametrize a global family {vθ | θ ∈ R} where
θ still refers to the mass perturbation. This is illustrated in Figure 2.3 where we plot the evaluation at
j = 0 and j = 1 of the family of stationary discrete shock profiles with θ ∈ [−2, 2]. For θ = 1, both v10
and v11 equal 1/2 in agreement with (2.16). For θ = −1, the translation of the reference discrete shock is
to the left. Both curves that are plotted in Figure 2.3 are translates one of the other.
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Figure 2.3: The evaluation at j = 0 and j = 1 of the family of stationary discrete shock profiles vθ, θ ∈ R.

We now report on some computations that illustrate the dynamics of the numerical scheme (2.5).
In Figure 2.4, we give several plots corresponding to the evolution of a zero mass perturbation of the
reference discrete shock (2.7). By appealing to Theorem 2.5, we expect that the numerical solution
converges asymptotically towards (2.7) and this is what we observe. The convergence is illustrated in
Figure 2.4 where two waves, one emanating from the right and one from the left of the shock, hit the
shock one after the other, giving first rise to a translation of the initial shock to the right (due to positive
mass excess) and then going back to the reference discrete shock (2.7). Another view of this computation
is given in Figure 2.5 where the plot is in the (j, n) plane. The translation of the shock to the right after
the first wave hit the shock is more visible.

As a conclusion, we illustrate the behavior of the Lax-Wendroff scheme (2.5) for a positive mass initial
perurbation, see Figures 2.6 and 2.7. The asymptotic state is a stationary discrete shock that corresponds
to a non-integer value of θ > 0, thus displaying the typical oscillations associated with the Lax-Wendroff
scheme. Despite these oscillations, these solutions are spectrally and nonlinearly stable.
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Figure 2.4: Evolution of a perturbation with zero mass of the reference discrete shock (2.2). First line (from left
to right): the initial condition, the solution at n = 40, the solution at n = 150. Second line (from left to right):
the solution at n = 400, the solution at n = 700, the solution at n = +∞ (convergence towards the reference shock
(2.2)).

Figure 2.5: Evolution of a perturbation with zero mass of the reference discrete shock (2.2).
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Figure 2.6: Evolution of a perturbation with positive mass of the reference discrete shock (2.2). First line (from left
to right): the initial condition, the solution at n = 100, the solution at n = 200. Second line (from left to right):
the solution at n = 300, the solution at n = 400 (convergence towards a discrete shock profile).

Figure 2.7: Evolution of a perturbation with positive mass of the reference discrete shock (2.2).

18



Chapter 3

Spectral stability

Localizing the spectrum of the linearized operator L proceeds in several steps. In the first Section below,
we analyze the eigenvalue problem1 L v = z v for z in the exterior O of the curve (2.13). We show that
the existence of a nonzero eigensequence v ∈ ℓq(Z;C) is equivalent to a scalar equation ∆(z) = 0, where
the so-called Lopatinskii determinant ∆ is a holomorphic function on O, and, actually, even on a larger
region of the complex plane. This result is independent of the considered space ℓq(Z;C), 1 ≤ q ≤ +∞,
and the Lopatinskii determinant ∆ does not depend on q. Since the discrete shock profile u in (2.7) is
piecewise constant and the numerical scheme (2.5) only involves a three point stencil, the Lopatinskii
determinant ∆ is explicitly computable2. We analyze the zeroes of the function ∆ in the case of a convex
(or concave) flux f in (2.1) which seems to be new, up to our knowledge. The symmetric case αr = −αℓ,
αm = 0 is dealt with in [15]. We shall also show in Section 3.4 that for a non-convex flux, the Lopatinskii
determinant ∆ can have zeroes in the unstable region U = {z ∈ C | |z| > 1} or that it can have a double
root at 1. In Section 3.2, we use our knowledge on ∆ to compute the so-called spatial Green’s function,
that is, the solution to the resolvent problem:

(z Id− L )Gj0(z) = δj0 ,

where δj0 denotes the discrete Dirac mass located at the index j0 ∈ Z:

∀ j ∈ Z , (δj0)j :=

{
1 , if j = j0,

0 , otherwise.

The construction of the spatial Green’s function and the estimates we find on it will directly show that
the operator L has no spectrum outside the curve (2.13) as long as f is convex or concave, as claimed
in Theorem 2.2. Theorem 2.3, that considers more general flux functions f , will follow from similar
arguments. The spatial Green’s function is our starting point for the analysis of the large time behavior
of the linearized numerical scheme (2.10).

1Since the only discrete shock profile that will appear in this Chapter is the piecewise constant one in (2.7), we feel free
to use the notation v for generic sequences. No possible confusion can be made with the family of discrete shock profiles vθ

that will not be mentioned in this Chapter.
2The situation is opposite to the case of the Lax-Friedrichs scheme, for instance, where the discrete shock profiles depend

on the spatial variable and the localization of the spectrum of the linearized operator involves an Evans function that is
not accessible analytically, see [14, 6] or [27]. Shock profiles such as (2.2) for the Lax-Wendroff scheme rather look like the
stationary shock profiles for the Godunov scheme that are studied in [5].
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3.1 The Lopatinskii determinant

We consider a complex number z in the exterior O of the curve (2.13) and we shall be first looking for
solutions v = (vj)j∈Z ∈ ℓq(Z;C) to the eigenvalue problem L v = z v. Our goal is to reduce the existence
of a non-trivial solution v to an equation of the form ∆(z) = 0 where the holomorphic function ∆ plays
the role of a characteristic polynomial for the operator L . Specifying the relation (L v)j = z vj to those
indices j ≤ −1 or j ≥ 2 (see (2.11) for the definition of the operator L ), we are led to solving the
dispersion relations:

αℓ (αℓ − 1)

2
κ2 + (1− α2

ℓ − z)κ+
αℓ (αℓ + 1)

2
= 0 , (3.1a)

αr (αr − 1)

2
κ2 + (1− α2

r − z)κ+
αr (αr + 1)

2
= 0 . (3.1b)

The behavior of the roots of the above dispersion relations (3.1) is encoded in the following result.

Lemma 3.1. Let the conditions (2.4) and (2.12) be satisfied, and let z ∈ C belong to the exterior O
of the curve (2.13). Then the dispersion relation (3.1a) has one solution κℓ(z) ∈ U and one solution
κuℓ (z) ∈ D \ {0}. Both functions depend holomorphically on z over O, and they can be holomorphically
extended to the set:

C \
{
1− α2

ℓ + i t αℓ

√
1− α2

ℓ

∣∣∣ t ∈ [−1, 1]

}
,

on which they satisfy κℓ(z) ̸= κuℓ (z) and κℓ(z)κ
u
ℓ (z) ̸= 0.

Furthermore, assuming still that z ∈ C belongs to the exterior O of the curve (2.13), the dispersion
relation (3.1b) has one solution κr(z) ∈ D \ {0} and one solution κur (z) ∈ U . Both functions depend
holomorphically on z over O, and they can be holomorphically extended to the set:

C \
{
1− α2

r + i t αr

√
1− α2

r

∣∣∣ t ∈ [−1, 1]
}
,

on which they satisfy κr(z) ̸= κur (z) and κr(z)κ
u
r (z) ̸= 0.

Let us quickly observe that, for β ∈ [−1, 1], the compact domain Dβ that is delimited by the ellipse:{
1− 2β2 sin2

ξ

2
+ iβ sin ξ

∣∣∣ ξ ∈ R
}

=
{
1− β2 + β2 cos ξ + iβ sin ξ

∣∣ ξ ∈ R
}
,

satisfies Dβ1 ⊂ Dβ2 as long as |β1| ≤ |β2|. This is the reason why the exterior O of the curve (2.13) does
not contain any element of the two curves:{

1− 2α2
ℓ sin

2 ξ

2
+ iαℓ sin ξ

∣∣∣ ξ ∈ R
}

and

{
1− 2α2

r sin
2 ξ

2
+ iαr sin ξ

∣∣∣ ξ ∈ R
}

.

We also observe that the segment:{
1− α2

ℓ + i t αℓ

√
1− α2

ℓ

∣∣∣ t ∈ [−1, 1]

}
,

is located in the closed ball of C centered at 0 and with radius
√

1− α2
ℓ . Moreover, it is located within

the curve (2.13). Same for the analogous segment associated with the “right” state ur rather than with
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uℓ (with obvious modifications). In what follows, we shall mainly be interested in the fact that some
quantities can be holomorphically extended through the unit circle S1. The exterior O of the curve (2.13)
contains some elements of D far from the point 1 where it is tangent to S1, and this is the reason why,
sometimes, we need to consider the set:

O ∪
{
ζ ∈ C | |ζ| > max

(√
1− α2

ℓ ,
√

1− α2
r

)}
.

S1 C

••
11− α2

ℓ

Figure 3.1: Locating the spectrum of the operator L . In blue: the unit circle. In black: the curve (2.13). The region
O is the complement of the grey shaded area. In red: the segment [1 − α2

ℓ − iαℓ

√
1− α2

ℓ , 1 − α2
ℓ + iαℓ

√
1− α2

ℓ ]

outside of which one can holomorphically extend κℓ and κu
ℓ . The chosen parameter is αℓ =

√
3/2 with αℓ ≥ |αr| so

that α = αℓ.

Proof of Lemma 3.1. We shall only give the proof of Lemma 3.1 for the case of Equation (3.1a), the case
of Equation (3.1b) being entirely similar. We begin with some preliminary observations. First of all,
the curve (2.13) is a closed curve that is enclosed within the closed unit disk D, and that encompasses a
strictly convex region. It is actually an ellipse that is centered at 1− α2 with axis of half-length α2 and
α. This ellipse is tangent to the unit circle S1 from within at 1, see Figure 3.1 for an illustration. As we
have pointed out above, thanks to our choice for α, the curve (2.13) encompasses both curves:{

1− 2α2
ℓ,r sin

2 ξ

2
− iαℓ,r sin ξ

∣∣∣ ξ ∈ R
}
.

Let us also note that the exterior O of the curve (2.13) is a connected set and that, when z belongs to O,
Equation (3.1a) has no root κ ∈ S1, for otherwise we would have:

z = 1− 2α2
ℓ sin

2 θ

2
− iαℓ sin θ
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for some θ ∈ R, and this fact would imply that z belongs either to the interior of the curve (2.13) or to
its boundary (depending whether α = αℓ or α = αr), which is precluded here by our assumption z ∈ O.
Consequently, the number of roots of Equation (3.1a) in U , resp. in D, does not depend on z ∈ O, and
these two numbers (whose sum is 2) are determined by letting z tend to infinity. In that case, one root of
Equation (3.1a) tends to zero and the other one tends to infinity, which gives the first half of Lemma 3.1.

Once the functions κℓ and κuℓ have been defined on the exterior O of the curve (2.13), it only remains to
determine how they can be holomorphically extended. The product κℓ(z)κ

u
ℓ (z) equals −(1+αℓ)/(1−αℓ).

It is then rather easy to observe that the two roots of (3.1a) have same modulus if and only if z belongs
to the segment: {

1− α2
ℓ + i t αℓ

√
1− α2

ℓ

∣∣∣ t ∈ [−1, 1]
}
,

and that segment is located within the interior of the curve (2.13). If α = αℓ, the segment is actually part
of one axis of the ellipse. Away from that segment, we can therefore always extend κℓ(z) as the root of
largest modulus to (3.1a), and since that root is necessarily simple3, it depends locally holomorphically
on z. The proof of Lemma 3.1 is thus complete.

Remark 3.1. We observe from (3.1) that in the case αr = −αℓ, there holds κr(z) = 1/κℓ(z) for any z
in the exterior O of the curve (2.13).

Specifying the relation (L v)j = z vj to the indices j ≥ 2, we obtain:

∀ j ≥ 2 ,
αr (αr − 1)

2
vj+1 + (1− α2

r − z) vj +
αr (αr + 1)

2
vj−1 = 0 ,

and because the sequence v = (vj)j∈Z belongs to ℓq(Z;C), with 1 ≤ q ≤ +∞, we obtain, thanks to Lemma
3.1, the expression:

∀ j ≥ 1 , vj = v1 κr(z)
j−1 .

Since κr(z) belongs to the unit disk D, the sequence (κr(z)
j−1)j≥1 has exponential decay and therefore

belongs to any of the spaces ℓp(Z;C), 1 ≤ p ≤ ∞. Specifying now to the indices j ≤ −1, we obtain in a
similar way:

∀ j ≤ 0 , vj = v0 κℓ(z)
j .

There now remains to determine whether we can find a nonzero pair (v0, v1) ∈ C2 such that, with the
sequence v = (vj)j∈Z ∈ ℓq(Z;C) defined by:

vj :=

{
v1 κr(z)

j−1 , if j ≥ 1,

v0 κℓ(z)
j , if j ≤ 0,

then there holds (L v)0 = z v0 and (L v)1 = z v1, which would provide us with a nonzero solution to the
eigenvalue problem L v = z v. Substituting the values of v2 and v−1 and collecting the terms, we find
that the eigenvalue problem L v = z v amounts to solving the 2× 2 linear system:

αℓ

2

(
αℓ − αm + (1− αℓ)κℓ(z)

)
−αr

2
(1− αm)

αℓ

2
(1 + αm)

αr

2

(
αr − αm − 1 + αr

κr(z)

) [v0
v1

]
= 0 . (3.2)

3The endpoints of the segment correspond precisely to the two values of z at which (3.1a) has a double root, the so-called
“glancing” points. These two glancing points lie here in the unit disk D since the Lax-Wendroff scheme is dissipative.
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Here we have used the relations (3.1a) and (3.1b) in order to simplify some coefficients of the linear system
(3.2) and also used the fact that κr(z) is nonzero. Up to the harmless nonzero factor αℓ αr/4, we are led
to study the so-called Lopatinskii determinant ∆ associated with the linear system (3.2). Its expression
is explicitly given here by:

∆(z) := 1− α2
m +

(
αℓ − αm + (1− αℓ)κℓ(z)

)(
αr − αm − 1 + αr

κr(z)

)
. (3.3)

If ∆(z) = 0, then we can find a nonzero solution to (3.2), which means that we can find a nonzero solution
to the eigenvalue problem L v = z v. The converse is also true. We have therefore reduced, for z ∈ O,
the eigenvalue problem for the operator L to determining the zeroes of the function ∆.

Remark 3.2. In the symmetric case αr = −αℓ (and therefore κr(z) = 1/κℓ(z)), that is considered in
[15], the expression (3.3) of the Lopatinskii determinant reduces to:

∆(z) = (1− αℓ) (1− κℓ(z))
(
1 + αℓ + (1− αℓ)κℓ(z)

)
,

independently of the value of αm. For z ∈ O, we have κℓ(z) ∈ U so κℓ(z) can not equal 1. Hence, for
z ∈ O, we have ∆(z) = 0 if and only if:

κℓ(z) = − 1 + αℓ

1− αℓ
.

Plugging this value in (3.1a), we obtain z = 1 ̸∈ O, meaning that ∆ does not vanish on O. This spectral
stability result is independent of the convexity or concavity properties of the flux f .

We explain below how to analyze the general case of a convex (or concave) flux f . We summarize the
properties of the Lopatinskii determinant ∆ in the following result. It is important to observe that the
first part of Lemma 3.2, namely the holomorphy properties of ∆ is independent of f .

Lemma 3.2. Let the weak solution (2.2) satisfy the Rankine-Hugoniot relation (2.3) and the entropy
inequalities (2.4). Then under the condition (2.12) on the parameter λ, the Lopatinskii determinant ∆
defined in (3.3) is holomorphic on the open set:

O ∪
{
ζ ∈ C

∣∣∣ |ζ| > max
(√

1− α2
ℓ ,
√
1− α2

r

)}
,

and ∆(1) = 0. Furthermore, if the flux f in (2.1) is either convex or concave, then ∆ satisfies:

• ∆′(1) ̸= 0,

• ∆ does not vanish on O.

The fact that ∆ vanishes at 1 is associated with the presence of an eigenvalue at 1 for the operator L .
This is discussed in more details below (we refer to [27] for a general discussion on this fact). In the
terminology of [27, Definition 4.1], if the flux f is either convex or concave, the stationary discrete shock
profile (2.2) is thus spectrally stable since the non-vanishing of ∆ on O will imply that the spectrum of L
is located within D∪{1} (see the final argument below in Section 3.3 after our construction of the spatial
Green’s function).
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Proof of Lemma 3.2. The holomorphy of ∆ follows from that of κℓ and κ−1
r as given in Lemma 3.1.

Indeed, κℓ is holomorphic on:

C \
{
1− α2

ℓ + i t αℓ

√
1− α2

ℓ

∣∣∣ t ∈ [−1, 1]
}
,

and the segment that has to be excluded is contained in the closed ball B√
1−α2

ℓ
(0) and within the

spectral curve (2.13). Arguing similarly with κ−1
r , one sees that ∆ is holomorphic on O ∪

{
ζ ∈ C | |ζ| >

max(
√

1− α2
ℓ ,
√

1− α2
r)
}
.

For the behavior of ∆ at 1, we have:

κℓ(1) = − 1 + αℓ

1− αℓ
∈ U , κr(1) = − 1 + αr

1− αr
∈ D ,

and we thus compute ∆(1) = 0 (plug the above values at z = 1 in (3.3)). This proves the first part of
Lemma 3.2, which holds independently of the convexity or concavity of f .

Differentiating ∆ with respect to z, we also get:

∆′(1) = (1− αℓ) (1− αm)κ′ℓ(1)− (1 + αm)
(1− αr)

2

1 + αr
κ′r(1) ,

and the derivatives κ′ℓ(1), κ
′
r(1) are obtained by differentiating (3.1a) and (3.1b) and evaluating at z = 1:

κ′ℓ(1) = − 1 + αℓ

αℓ (1− αℓ)
, κ′r(1) = − 1 + αr

αr (1− αr)
.

We end up with the expression:

∆′(1) = −(1 + αℓ)(1− αm)

αℓ
+

(1− αr)(1 + αm)

αr
. (3.4)

Let us from now on assume that the flux f is either convex or concave. The crucial consequence is
that we have αm ∈ [αr, αℓ], and we recall the entropy inequalities (2.4) as well as the stability restriction
(2.12). This implies that αm belongs to the open interval (−1, 1) and therefore ∆′(1) is the sum of two
negative quantities. It therefore does not vanish.

It remains to study the other possible zeroes of ∆ and specifically to show that ∆ does not vanish
on O. We are first going to expand the expression of ∆ in (3.3). Because of the form of the dispersion
relations (3.1a) and (3.1b), we first write:

κℓ(z) =
z − 1 + α2

ℓ +Wℓ(z)

αℓ (αℓ − 1)
, Wℓ(z)

2 = (z − 1 + α2
ℓ )

2 + α2
ℓ (1− α2

ℓ ) ,

κr(z) =
z − 1 + α2

r +Wr(z)

αr (αr − 1)
, Wr(z)

2 = (z − 1 + α2
r)

2 + α2
r (1− α2

r) ,

where we do not mind at this stage which square root should be picked for Wℓ(z) and Wr(z). Plugging
these expressions for κℓ(z) and κr(z) in (3.3), we obtain the expression:

αℓ αr ∆(z) = Z2 + αm(αℓ + αr)Z + αℓ αr + (Z + αmαr)Wℓ − (Z + αmαℓ)Wr −WℓWr , (3.5)
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where here and from now on, we use the notation Z := z − 1 and we rather consider Wℓ and Wr as
functions of Z.

Let us now assume that z ∈ O is a point where the Lopatinskii determinant ∆ vanishes. Then (3.5)
provides us with an expression for the product WℓWr which we can raise to the square (this is the reason
why we do not care at this stage about which square root should be preferred). Namely, we introduce the
polynomials:

Q(Z) := Z2 + αm(αℓ + αr)Z + αℓ αr , Pℓ,r(Z) := Z + αmαℓ,r ,

and we see from (3.5) that if ∆ vanishes at z ∈ O, then Z = z − 1 satisfies:

WℓWr = Q(Z) + Pr(Z)Wℓ − Pℓ(Z)Wr .

Squaring both left and right-hand sides, and then substituting the expression:

Pr(Z)Wℓ − Pℓ(Z)Wr = WℓWr −Q(Z),

we obtain the relation:

2 (Q−Pℓ Pr)WℓWr = W2
ℓ W2

r +Q2 + P2
r W2

ℓ + P2
ℓ W2

r .

Expanding each side with respect to Z and simplyfing by the nonzero factor αℓαr, we obtain:

(1− α2
m)WℓWr =

{
1 + α2

m + 2αℓαr − 2αm(αℓ + αr)
}
Z2 + αℓαr(1− α2

m) (2Z + 1) .

Raising one last time to the square and collecting the various terms, we end up with the following
polynomial equation for Z:

Z2
(
4 γ Z2 + 2β Z + β

)
= 0 , (3.6)

with the parameters β and γ being defined by:

β := (1− α2
m)
{
(αℓ − αr)

2 −
(
αm(αℓ + αr)− 2αℓαr

)2}
, (3.7)

γ := (αm − αr)(αℓ − αm)
(
1 + αℓαr − αm(αℓ + αr)

)
. (3.8)

Let us summarize where we are at this stage. We have shown that that if z ∈ O is a point where
the Lopatinskii determinant ∆ vanishes, then Z = z − 1 is a root of (3.6), with coefficients β, γ given by
(3.7)-(3.8). Since the function:

αm ∈ [αr, αℓ] 7−→ (αℓ − αr)
2 −

(
αm(αℓ + αr)− 2αℓαr

)2
is concave, its minimum on the segment [αr, αℓ] is attained either at αℓ or αr (that is, at one of the
endpoints) and this minimum is therefore necessarily positive. In other words, we have β > 0 for all
relevant values of αm (let us recall that αm ∈ [αr, αℓ] follows from the convexity or concavity of f).

In the cases αm = αr or αm = αℓ, the coefficient γ vanishes. In these two extreme cases, it is clear
that all the roots of (3.6) are real. If αm belongs to the open interval (αr, αℓ), then γ is also positive,
and we need to compute the discriminant of the second order factor in (3.6) in order to determine the
location of its two roots. Since β is positive, the discriminant has the same sign as the quantity4:

β − 4 γ =
(
(αℓ + αr)(1 + α2

m)− 2 (1 + αℓαr)αm

)2
≥ 0 .

4The key final argument is that the quantity β − 4 γ can be explicitly factorized !
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This means that for αm ∈ [αr, αℓ], all the roots of (3.6) are real, which means that the only possible roots
of ∆ in O are real.

To complete the proof of Lemma 3.2, we thus restrict to real values of the parameter z ∈ O, that is
we consider either z ∈ (−∞, 1−2α2) or z ∈ (1,+∞) (see Figure 3.1 for visualizing the set O ∩R). Let us
first consider the case z > 1, that is Z = z − 1 > 0 for which we have, with the standard determination
of the square root5:

κℓ(z) =
Z + α2

ℓ +
√

Z2 + 2α2
ℓ Z + α2

ℓ

αℓ (αℓ − 1)
, κr(z) =

Z + α2
r −

√
Z2 + 2α2

r Z + α2
r

αr (αr − 1)
.

We then compute, for z > 1, the expression:

αℓ αr ∆(z) =Z2 + αm(αℓ + αr)Z + αℓ αr + (Z + αmαr)
√
Z2 + 2α2

ℓ Z + α2
ℓ

+ (Z + αmαℓ)
√
Z2 + 2α2

r Z + α2
r +

√
Z2 + 2α2

ℓ Z + α2
ℓ

√
Z2 + 2α2

r Z + α2
r ,

where we recall that αℓ, αm and αr satisfy:

−1 < αr ≤ αm ≤ αℓ < 1 , αr < 0 < αℓ .

The function ∆ is real valued and smooth (that is, analytic) on [1,+∞). It vanishes at 1, and its derivative
is given, for z ≥ 1, by:

αℓ αr ∆
′(z) = 2Z + αm(αℓ + αr) +

√
Z2 + 2α2

ℓ Z + α2
ℓ +

√
Z2 + 2α2

r Z + α2
r

+ (Z + αmαr)
Z + α2

ℓ√
Z2 + 2α2

ℓ Z + α2
ℓ

+ (Z + αmαℓ)
Z + α2

r√
Z2 + 2α2

r Z + α2
r

(3.9)

+ (Z + α2
ℓ )

√
Z2 + 2α2

r Z + α2
r√

Z2 + 2α2
ℓ Z + α2

ℓ

+ (Z + α2
r)

√
Z2 + 2α2

ℓ Z + α2
ℓ√

Z2 + 2α2
r Z + α2

r

.

For z ≥ 1, we have Z ≥ 0, and this implies:

Z + α2
ℓ√

Z2 + 2α2
ℓ Z + α2

ℓ

≥ αℓ ,
Z + α2

r√
Z2 + 2α2

r Z + α2
r

≥ |αr| ,

which gives (deriving lower bounds for the above three blue terms in (3.9)), for z ≥ 1:

αℓ αr ∆
′(z) ≥ D(αm, Z) :=αm(αℓ + αr) + 2αℓ |αr|+

√
Z2 + 2α2

ℓ Z + α2
ℓ +

√
Z2 + 2α2

r Z + α2
r

+ (Z + αmαr)
Z + α2

ℓ√
Z2 + 2α2

ℓ Z + α2
ℓ

+ (Z + αmαℓ)
Z + α2

r√
Z2 + 2α2

r Z + α2
r

.

(3.10)

5Since Z is now restrained to real values only, we shall only take square roots of positive real numbers.
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We now consider the quantity D(αm, Z) that is defined in (3.10) and try to show that it does not
vanish for αm ∈ [αr, αℓ] and Z > 0. This is shown by deriving a positive lower bound. Indeed, the
quantity D(αm, Z) for αℓ αr ∆

′(z) is an affine function with respect to αm ∈ [αr, αℓ]. Its value is therefore
not smaller than its values at the endpoints of the interval [αr, αℓ]. For αm = αr, we compute:

D(αr, Z) =αℓ |αr|+ α2
r +

√
Z2 + 2α2

ℓ Z + α2
ℓ +

√
Z2 + 2α2

r Z + α2
r

+ (Z + α2
r)

Z + α2
ℓ√

Z2 + 2α2
ℓ Z + α2

ℓ

+ (Z − αℓ |αr|)
Z + α2

r√
Z2 + 2α2

r Z + α2
r

≥αℓ |αr|

(
1− Z + α2

r√
Z2 + 2α2

r Z + α2
r

)
︸ ︷︷ ︸

≥0

+
√

Z2 + 2α2
ℓ Z + α2

ℓ +
√
Z2 + 2α2

r Z + α2
r .

We thus obtain the (far from optimal but nevertheless sufficient !) uniform lower bound:

∀Z ≥ 0 , D(αr, Z) ≥ αℓ + |αr| > 0 ,

and similar arguments lead to the analogous estimate:

∀Z ≥ 0 , D(αℓ, Z) ≥ αℓ + |αr| > 0 .

For αm ∈ [αr, αℓ], we have thus obtained the lower bound:

∀ z ≥ 1 , αℓ αr ∆
′(z) ≥ αℓ + |αr| > 0 ,

which implies that ∆ does not vanish on the open interval (1,+∞). (Let us recall that ∆ vanishes at 1.)

It remains to examine the case z ∈ (−∞, 1− 2α2), for which we now have Z ≤ −2α2 and we get the
expressions:

κℓ(z) =
Z + α2

ℓ −
√

Z2 + 2α2
ℓ Z + α2

ℓ

αℓ (αℓ − 1)
, κr(z) =

Z + α2
r +

√
Z2 + 2α2

r Z + α2
r

αr (αr − 1)
,

which yields:

αℓ αr ∆(z) =Z2 + αm(αℓ + αr)Z + αℓ αr − (Z + αmαr)
√
Z2 + 2α2

ℓ Z + α2
ℓ

− (Z + αmαℓ)
√
Z2 + 2α2

r Z + α2
r +

√
Z2 + 2α2

ℓ Z + α2
ℓ

√
Z2 + 2α2

r Z + α2
r .

Once again, the right-hand side of the latter equality, which we denote D(αm, Z), is an affine function
with respect to αm and we are going to derive a lower bound for either αm = αr or αm = αℓ, which will
give a lower bound for any value of αm ∈ [αr, αℓ]. For αm = αr and Z ≤ −2α2, we have:

D(αr, Z) =Z2 + α2
r Z + αℓ αr Z

+ (|Z| − α2
r)
√
Z2 + 2α2

ℓ Z + α2
ℓ + (|Z|+ αℓ |αr|)

√
Z2 + 2α2

r Z + α2
r

+
√
Z2 + 2α2

ℓ Z + α2
ℓ

√
Z2 + 2α2

r Z + α2
r − αℓ |αr| .
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Recalling that α stands for the maximum of |αr| and αℓ, we find that both functions:

Z 7−→ Z2 + 2α2
ℓ Z + α2

ℓ , Z 7−→ Z2 + 2α2
r Z + α2

r

are decreasing on (−∞,−2α2], and we thus derive the lower bounds:

∀Z ≤ −2α2 , Z2 + 2α2
ℓ,r Z + α2

ℓ,r ≥ α2
ℓ,r .

Using these lower bounds in the expression of D(αr, Z) leads to:

∀Z ≤ −2α2 , D(αr, Z) ≥Z2 + α2
r Z + αℓ |αr| |Z|

+
√
Z2 + 2α2

ℓ Z + α2
ℓ

√
Z2 + 2α2

r Z + α2
r − αℓ |αr|

≥Z2 + α2
r Z ≥ 2α2 (2α2 − α2

r) ≥ 2α4 > 0 .

Similar arguments lead to:
∀Z ≤ −2α2 , D(αℓ, Z) ≥ 2α4 > 0 ,

and we have therefore proved that ∆(z) does not vanish on the interval z ∈ (−∞, 1 − 2α2]. In other
words, the Lopatinskii determinant ∆ does not vanish on O. The conclusion of Lemma 3.2 follows.

Lemma 3.2 has an immediate consequence regarding the solvability of the eigenvalue problem. The proof
is a straightforward application of all above results on the Lopatinskii determinant ∆.

Corollary 3.1. Let the flux f in (2.1) be either convex or concave. Let the weak solution (2.2) satisfy
the Rankine-Hugoniot relation (2.3) and the entropy inequalities (2.4). Then, under the CFL condition
(2.12), for any z ∈ O and 1 ≤ q ≤ +∞, the only solution v ∈ ℓq(Z;C) to the eigenvalue problem L v = z v
is the zero sequence.

3.2 The spatial Green’s function

In this section, we intend to construct the so-called Green’s function, which amounts to inverting the
operator z Id− L . We have already seen that the Lopatinskii determinant ∆ plays a crucial role in the
location of the eigenvalues of the operator L . We are going to show below that the condition ∆(z) ̸= 0
is actually necessary and sufficient for a complex number z ∈ U \ {1} to lie in the resolvent set of L . We
do not wish any longer to assume that the flux f is either convex or concave. We rather wish to deal more
generally with spectrally stable configurations. We shall therefore substitute Assumption 1 below in place
of the convexity (or concavity) assumption on f . In particular, there is now no obvious reason for the
parameter αm in (2.9) to belong to the interval [αr, αℓ]. We make from now on the following assumption.

Assumption 1. The Lopatinskii determinant ∆ in (3.3) associated with the discrete shock (2.7) satisfies:

• ∆′(1) ̸= 0,

• ∆ does not vanish on U \ {1}.
As we have seen in the proof of Lemma 3.2, the holomorphy of ∆ on an open set that contains U

always holds as long as the CFL condition (2.12) is satisfied (the CFL condition (2.12) allows us to
define the modes κr,ℓ by Lemma 3.1, and therefore the function ∆). The property ∆(1) = 0 also holds
independently of the convexity properties of f . Moreover, Lemma 3.2 shows that Assumption 1 is satisfied
whenever the flux f is either convex or concave. There is no real difficulty to generalize the analysis of the
previous Section in order to consider a slightly larger context than the sole case of a convex or concave
flux f . We can indeed extend Corollary 3.1 and obtain the following result.
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Corollary 3.2. Let the weak solution (2.2) satisfy the entropy inequalities (2.4). Let the parameter λ
satisfy the CFL condition (2.12) and let Assumption 1 be satisfied. Then for any z ∈ U \ {1} and
1 ≤ q ≤ +∞, the only solution v ∈ ℓq(Z;C) to the eigenvalue problem L v = z v is the zero sequence.

For z in the resolvent set of the operator L , we denote by Gj0(z) =
(
Gj0
j (z)

)
j∈Z

∈ ℓq(Z;C) the

solution to the resolvent problem:
(z Id− L )Gj0(z) = δj0 , (3.11)

where δj0 = (δj0(j))j∈Z stands for the discrete Dirac mass located at the index j0 ∈ Z. The following
result gives an explicit expression for the spatial Green’s function Gj0(z) for z ∈ U \ {1}. This makes
use of the fact that the Lopatinskii determinant does not vanish (which is the reason for Assumption 1).
Corollary 3.2 above shows that the solution to (3.11) is necessarily unique for z ∈ U \ {1}.

Proposition 3.1. Let the weak solution (2.2) satisfy the entropy inequalities (2.4). Let the parameter λ
satisfy the CFL condition (2.12) and let Assumption 1 be satisfied. Then for any z ∈ U \ {1} and for
any j0 ∈ Z, there exists a unique solution Gj0(z) ∈ ℓq(Z;C) to the equation (3.11).

For j0 ≥ 1, this sequence Gj0(z) =
(
Gj0
j (z)

)
j∈Z

is explicitly given by:

Gj0
j (z) =



−2 (1− αm)

αℓ∆(z)
κur (z)

1−j0 κℓ(z)
j , if j ≤ 0,

−2 (αℓ − αm + (1− αℓ)κℓ(z))

αr ∆(z)
κur (z)

1−j0 κr(z)
j−1

+
2
(
κur (z)

1−j0 κr(z)
j−1 − κur (z)

j−j0
)

αr(1− αr)(κur (z)− κr(z))
, if 1 ≤ j ≤ j0,

−2 (αℓ − αm + (1− αℓ)κℓ(z))

αr ∆(z)
κur (z)

1−j0 κr(z)
j−1

+
2
(
κur (z)

1−j0 κr(z)
j−1 − κr(z)

j−j0
)

αr(1− αr)(κur (z)− κr(z))
, if j > j0,

(3.12)
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and for j0 ≤ 0, Gj0(z) is explicitly given by:

Gj0
j (z) =



2 (1 + αm)

αr ∆(z)
κuℓ (z)

−j0 κr(z)
j−1, if j ≥ 1,

−2 (αr − αm − (1 + αr)κr(z)
−1)

αℓ∆(z)
κuℓ (z)

−j0 κℓ(z)
j

+
2
(
κuℓ (z)

−j0 κℓ(z)
j − κuℓ (z)

j−j0
)

αℓ(1− αℓ)(κℓ(z)− κuℓ (z))
, if j0 ≤ j ≤ 0,

−2 (αr − αm − (1 + αr)κr(z)
−1)

αℓ∆(z)
κuℓ (z)

−j0 κℓ(z)
j

+
2
(
κuℓ (z)

−j0 κℓ(z)
j − κℓ(z)

j−j0
)

αℓ(1− αℓ)(κℓ(z)− κuℓ (z))
, if j < j0 ≤ 0.

(3.13)

The result of Proposition 3.1 is independent of the space ℓq(Z,C) that is considered since for any j0 ∈ Z
and z ∈ U \ {1}, the sequence Gj0(z) belongs to the intersection of all spaces ℓp(Z,C), p ∈ [1,+∞] (it
has exponential decay at infinity with respect to j).

Proof of Proposition 3.1. We shall give the proof of Proposition 3.1 in the case αm ̸= 1. This assumption
is used below to rewrite the second order scalar recurrence relation (3.11) as a first order recurrence
relation for a vector Vj+1 in terms of Vj . In the case αm = 1, which is left to the interested reader,
one should rather write a first order recurrence relation for a vector Vj−1 in terms of Vj , that is, going
backwards.

Let us, for a moment, consider the slightly more general problem where we let h = (hj)j∈Z be a given
sequence in ℓq(Z,C) and take z ∈ U \ {1}. We then wish to construct a solution v(z) ∈ ℓq(Z;C) to the
resolvent equation:

(z Id− L )v(z) = h .

To do so, we first introduce the augmented vectors

∀ j ∈ Z , Vj(z) :=

(
vj−1(z)
vj(z)

)
∈ C2, and Hj :=

(
0
hj

)
∈ C2 .

Using the definition of L , we obtain that
Vj+1(z) = Mr(z)Vj(z) + ArHj , j ≥ 2,

Vj+1(z) = Mℓ(z)Vj(z) + AℓHj , j ≤ −1,

V2(z) = M2,1(z)V1(z) + ArH1,

V1(z) = M1,0(z)V0(z) + Ar,mH0,

(3.14)

where the above matrices in (3.14) are defined as

Mk(z) :=

 0 1
1 + αk

1− αk

2(1− α2
k − z)

αk(1− αk)

 , Ak :=

0 0

0
2

αk(1− αk)

 , k ∈ {r, ℓ},
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and6

M2,1(z) :=

 0 1
αℓ(1 + αm)

αr(1− αr)

2− αr(αr + αm)− 2z

αr(1− αr)

 ,

M1,0(z) :=

 0 1
αℓ(1 + αℓ)

αr(1− αm)

2− αℓ(αℓ + αm)− 2z

αr(1− αm)

 ,

Ar,m :=

0 0

0
2

αr(1− αm)

 .

Keeping the notation of Lemma 3.1, we denote, for z ∈ U \ {1}, by κr(z) ∈ D and κur (z) ∈ U
the two eigenvalues of Mr(z) (these are the roots of the dispersion relation (3.1b)), while we denote by
κℓ(z) ∈ U and κuℓ (z) ∈ D the two eigenvalues of Mℓ(z) (these are the roots of the dispersion relation
(3.1a)). Upon denoting Πs,u

r,ℓ (z) the corresponding stable/unstable spectral projections together with

Es,u
r,ℓ (z) the associated eigenspaces, we have that7:

C2 = Es
k(z)⊕ Eu

k(z), k ∈ {r, ℓ} ,

with

Es
k(z) := Span

(
1

κk(z)

)
, Eu

k(z) := Span

(
1

κuk(z)

)
, k ∈ {r, ℓ} .

Integrating the stable and unstable parts in (3.14), we have that

∀ j ≥ 2 ,


Πu

r (z)Vj(z) = −
+∞∑
p=0

κur (z)
−1−pΠu

r (z)ArHj+p,

Πs
r(z)Vj(z) = κr(z)

j−2Πs
r(z)V2(z) +

j−1∑
p=2

κr(z)
j−p−1Πs

r(z)ArHp,

(3.15)

from which we already deduce that

Πu
r (z)V2(z) = −

+∞∑
p=0

κur (z)
−1−pΠu

r (z)ArH2+p.

On the other hand, we get

∀ j ≤ 0 ,


Πu

ℓ (z)Vj(z) =
+∞∑
p=0

κuℓ (z)
pΠu

ℓ (z)AℓHj−p−1,

Πs
ℓ(z)Vj(z) = κℓ(z)

j Πs
ℓ(z)V0(z)−

−1∑
p=j

κℓ(z)
pΠs

ℓ(z)AℓHj−p−1,

(3.16)

6The definition of M1,0(z) and of Ar,m uses the assumption αm ̸= 1.
7It should be kept in mind that the stable eigenvalue for the “right” state is κr(z) ∈ D since it corresponds to the dynamics

for j ≥ 1, while the stable eigenvalue for the “left” state is κℓ(z) ∈ U since it corresponds to the dynamics for j ≤ 0.
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such that

Πu
ℓ (z)V0(z) =

+∞∑
p=0

κuℓ (z)
pΠu

ℓ (z)AℓH−p−1.

We notice that both vectors Πs
r(z)V2(z) and Πs

ℓ(z)V0(z) still need to be determined, and if we are able to
do so, then we shall have a solution to (3.14) at our disposal. First, we use the remaining two equations
in (3.14) to obtain that

V2(z) = M2,1(z)M1,0(z)V0(z) +M2,1(z)Ar,mH0 + ArH1,

which we write instead as:

Πs
r(z)V2(z)−M2,1(z)M1,0(z)Π

s
ℓ(z)V0(z)

= M2,1(z)M1,0(z)Π
u
ℓ (z)V0(z)−Πu

r (z)V2(z) +M2,1(z)Ar,mH0 + ArH1 .

Upon writing

Πs
r(z)V2(z) = χ2(z)︸ ︷︷ ︸

∈C

Es
r(z), Es

r(z) :=

(
1

κr(z)

)
,

and

Πs
ℓ(z)V0(z) = χ0(z)︸ ︷︷ ︸

∈C

Es
ℓ (z), Es

ℓ (z) :=

(
1

κℓ(z)

)
,

with the vector (χ2(z), χ0(z)) ∈ C2 still to be determined, we have that

Πs
r(z)V2(z)−M2,1(z)M1,0(z)Π

s
ℓ(z)V0(z) =

(
Es

r(z) −M2,1(z)M1,0(z)E
s
ℓ (z)

)︸ ︷︷ ︸
:=B(z)∈M2(C)

(
χ2(z)
χ0(z)

)
. (3.17)

We thus obtain the last two relations:

χ2(z) = et1 B(z)−1 (M2,1(z)M1,0(z)Π
u
ℓ (z)V0(z)−Πu

r (z)V2(z) +M2,1(z)Ar,mH0 + ArH1) ,

χ0(z) = et2 B(z)−1 (M2,1(z)M1,0(z)Π
u
ℓ (z)V0(z)−Πu

r (z)V2(z) +M2,1(z)Ar,mH0 + ArH1) ,

with (e1, e2) the canonical basis of C2, at least as long as the matrix B(z) ∈ M2(C) in (3.17) is invertible.
The invertibility property of the matrix B(z) is summarized in the following result which is a mere
consequence of the analysis in the previous Section and of Assumption 1.

Lemma 3.3. Let the parameter λ satisfy the CFL condition (2.12) and let Assumption 1 be satisfied.
Then, for any z ∈ U \ {1}, the matrix B(z) defined in (3.17) is invertible and its determinant ∆(z)
satisfies:

∀ z ∈ U \ {1} , ∆(z) = − αℓ κℓ(z)

αr(1− αr)(1− αm)
∆(z) ,
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with ∆(z) the Lopatinskii determinant given in (3.3). Moreover, the matrix B(z) is given for z ∈ U \ {1}
by:

B(z) =
(

1 b1(z)
κr(z) b2(z)

)
,

with b1(z) = −αℓ κℓ(z) (αℓ − αm + (1− αℓ)κℓ(z))

αr (1− αm)
,

b2(z) = −
αℓ κℓ(z)

(
αr (1− α2

m)− (2 (z − 1) + αr(αr + αm)) (αℓ − αm + (1− αℓ)κℓ(z))
)

α2
r (1− αr) (1− αm)

.

We omit the proof of Lemma 3.3, which is a mere algebra exercise that uses the definition of the
matrices M2,1(z), M1,0(z) and the dispersion relations (3.1). The above methodology shows how to
construct a solution v(z) to the resolvent equation for any source term h and z ∈ U \ {1}. From
Corollary 3.2, we know that the solution to the resolvent equation is necessarily unique in ℓq(Z;C) for
any z ∈ U \ {1} since the eigenvalue problem does not have any nontrivial solution8. We are now going
to specify the above calculations to the case h = δj0 (the discrete Dirac mass located at j0 ∈ Z) and
therefore derive the expression of the spatial Green’s function Gj0(z). We split the calculations according
to the location of j0 with respect to the discontinuity in the discrete shock u.

Let us recall that we denote by Gj0(z) =
(
Gj0
j (z)

)
j∈Z

∈ ℓq(Z,C) the solution to the resolvent equation:

(zId− L )Gj0(z) = δj0 .

This solution exists and is unique for any z ∈ U \ {1}. We also introduce the corresponding augmented
vectors

∀ j ∈ Z , Gj0
j (z) :=

(
Gj0
j−1(z)

Gj0
j (z)

)
∈ C2, and Hj0

j :=

(
0

δj0(j)

)
∈ C2.

Case I: j0 ≥ 2. We first recall that for j ≥ 2 we have

Πu
r (z)G

j0
j (z) = −

+∞∑
p=0

κur (z)
−1−pΠu

r (z)ArH
j0
j+p,

which yields two cases:

• if 2 ≤ j ≤ j0 then
Πu

r (z)G
j0
j (z) = −κur (z)

−1+j−j0 Πu
r (z)Are2;

• if j > j0 then
Πu

r (z)G
j0
j (z) = 0.

Next, for j ≤ 0, we readily get that

Πu
ℓ (z)G

j0
j (z) =

+∞∑
p=0

κuℓ (z)
pΠu

ℓ (z)AℓH
j0
j−p−1 = 0.

8Let us recall that the existence of a nontrivial solution to the eigenvalue problem L v = z v is equivalent to ∆(z) = 0,
which is precluded for z ∈ U \ {1} by Assumption 1.
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Using the above results, we deduce that

M2,1(z)M1,0(z)Π
u
ℓ (z)G

j0
0 (z)−Πu

r (z)G
j0
2 (z) +M2,1(z)Ar,mHj0

0 + ArH
j0
1 = −Πu

r (z)G
j0
2 (z)

= κur (z)
1−j0 Πu

r (z)Are2,

which implies that (the matrix B(z) is invertible for z ∈ U \ {1} by Lemma 3.3):

Πs
r(z)G

j0
2 (z) = κur (z)

1−j0
[
et1 B(z)−1Πu

r (z)Are2
]
Es

r(z) ,

Πs
ℓ(z)G

j0
0 (z) = κur (z)

1−j0
[
et2 B(z)−1Πu

r (z)Are2
]
Es

ℓ (z) .

Now, for j ≥ 2, we observe that

Πs
r(z)G

j0
j (z) = κr(z)

j−2Πs
r(z)G

j0
2 (z) +

j−1∑
p=2

κr(z)
j−p−1Πs

r(z)ArH
j0
p ,

which yields two cases:

• if 2 ≤ j ≤ j0 then

Πs
r(z)G

j0
j (z) = κr(z)

j−2 κur (z)
1−j0

[
et1 B(z)−1Πu

r (z)Are2
]
Es

r(z);

• if j > j0 then

Πs
r(z)G

j0
j (z) = κr(z)

j−2 κur (z)
1−j0

[
et1 B(z)−1Πu

r (z)Are2
]
Es

r(z) + κr(z)
j−j0−1Πs

r(z)Are2.

Finally, for j ≤ 0, we have

Πs
ℓ(z)G

j0
j (z) = κℓ(z)

j Πs
ℓ(z)G

j0
0 (z)−

−1∑
p=j

κℓ(z)
pΠs

ℓ(z)AℓH
j0
j−p−1

= κℓ(z)
j Πs

ℓ(z)G
j0
0 (z) = κℓ(z)

j κur (z)
1−j0

[
et2 B(z)−1Πu

r (z)Are2
]
Es

ℓ (z) .

As a consequence, summarizing the above results, we have obtained for j0 ≥ 2 that

Gj0
j (z) =


κr(z)

j−2 κur (z)
1−j0

[
et1 B(z)−1Πu

r (z)Are2
]
Es

r(z) + κr(z)
j−j0−1Πs

r(z)ArE2, j > j0,
κr(z)

j−2 κur (z)
1−j0

[
et1 B(z)−1Πu

r (z)Are2
]
Es

r(z)− κur (z)
j−j0−1Πu

r (z)ArE2, 2 ≤ j ≤ j0,
κur (z)

1−j0
[
et2 B(z)−1Πu

r (z)Are2
]
M1,0(z)E

s
ℓ (z), j = 1,

κℓ(z)
j κur (z)

1−j0
[
et2 B(z)−1Πu

r (z)Are2
]
Es

ℓ (z), j ≤ 0.

To recover the expression for the spatial Green’s function Gj0
j (z), one just notes that

Gj0
j (z) = et2G

j0
j (z) ,

meaning that Gj0
j (z) ∈ C is the second coordinate in the vector Gj0

j (z) ∈ C2. Further computations give

et2Π
s
r(z)Are2 =

2κr(z)

αr(1− αr)(κr(z)− κur (z))
, et2Π

u
r (z)Are2 =

2κur (z)

αr(1− αr)(κur (z)− κr(z))
,
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and

et1 B(z)−1Πu
r (z)Are2 =

2 (b2(z)− b1(z)κ
u
r (z))

αr(1− αr)∆(z)(κur (z)− κr(z))
, et2 B(z)−1Πu

r (z)Are2 =
2

αr(1− αr)∆(z)
.

This yields for j0 ≥ 2 that

Gj0
j (z) =



κr(z)
j−1 κur (z)

1−j0
2 (b2(z)− b1(z)κ

u
r (z))

αr(1− αr)∆(z)(κur (z)− κr(z))

+κr(z)
j−j0

2

αr(1− αr)(κr(z)− κur (z))
, j ≥ j0,

κr(z)
j−1 κur (z)

1−j0
2 (b2(z)− b1(z)κ

u
r (z))

αr(1− αr)∆(z)(κur (z)− κr(z))

−κur (z)
j−j0

2

αr(1− αr)(κur (z)− κr(z))
, 2 ≤ j ≤ j0,

κur (z)
1−j0

2 (αℓ(1 + αℓ) + κℓ(z)(2− αℓ(αℓ + αm)− 2z))

α2
r(1− αr)(1− αm)∆(z)

, j = 1,

κℓ(z)
1+j κur (z)

1−j0
2

αr(1− αr)∆(z)
, j ≤ 0.

Next, we remark two points (by using Lemma 3.3):

2 (αℓ(1 + αℓ) + κℓ(z)(2− αℓ(αℓ + αm)− 2z))

α2
r(1− αr)(1− αm)∆(z)

= − 2 b1(z)

αr(1− αr)∆(z)
,

and
2 (b2(z)− b1(z)κ

u
r (z))

αr(1− αr)∆(z)(κur (z)− κr(z))
= − 2 b1(z)

αr(1− αr)∆(z)
+

2

αr(1− αr)(κur (z)− κr(z))
,

so that the above expressions for Gj0
j (z) simplify to

Gj0
j (z) =



−κr(z)
j−1 κur (z)

1−j0
2 b1(z)

αr(1− αr)∆(z)
+

2
(
κr(z)

j−1 κur (z)
1−j0 − κr(z)

j−j0
)

αr(1− αr)(κur (z)− κr(z))
, j ≥ j0,

−κr(z)
j−1 κur (z)

1−j0
2 b1(z)

αr(1− αr)∆(z)
+

2
(
κr(z)

j−1 κur (z)
1−j0 − κur (z)

j−j0
)

αr(1− αr)(κur (z)− κr(z))
, 1 ≤ j ≤ j0,

κℓ(z)
1+j κur (z)

1−j0
2

αr(1− αr)∆(z)
, j ≤ 0.

To conclude the analysis of this first case (j0 ≥ 2), we recall the expression of the coefficient b1(z) and
the link between the determinant ∆(z) of B(z) and the Lopatinskii determinant ∆(z) (see Lemma 3.3).
This gives, for any j0 ≥ 2, the expression (3.12) for Gj0

j (z) as given in Proposition 3.1.

Case II: j0 = 1. We directly notice that for j ≥ 2 we have

Πu
r (z)G

1
j (z) = −

+∞∑
p=0

κur (z)
−1−pΠu

r (z)ArH
1
j+p = 0,

together with

∀ j ≤ 0 , Πu
ℓ (z)G

1
j (z) =

+∞∑
p=0

κuℓ (z)
pΠu

ℓ (z)AℓH
1
j−p−1 = 0.
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Using the above two results, we deduce that

M2,1(z)M1,0(z)Π
u
ℓ (z)G

1
0(z)−Πu

r (z)G
1
2(z) +M2,1(z)Ar,mH1

0 + ArH
1
1 = Are2,

which implies that

Πs
r(z)G

1
2(z) =

[
et1 B(z)−1Are2

]
Es

r(z),

Πs
ℓ(z)G

1
0(z) =

[
et2 B(z)−1Are2

]
Es

ℓ (z).

Now, for j ≥ 2, we get that

Πs
r(z)G

1
j (z) = κr(z)

j−2Πs
r(z)G

1
2(z) +

j−1∑
p=2

κr(z)
j−p−1Πs

r(z)ArH
1
p = κr(z)

j−2Πs
r(z)G

1
2(z)

= κr(z)
j−2

[
et1 B(z)−1Are2

]
Es

r(z).

Finally, for j ≤ 0, we have

Πs
ℓ(z)G

1
j (z) = κℓ(z)

j Πs
ℓ(z)G

1
0(z)−

−1∑
p=j

κℓ(z)
pΠs

ℓ(z)AℓH
1
j−p−1 = κℓ(z)

j Πs
ℓ(z)G

1
0(z)

= κℓ(z)
j
[
et2 B(z)−1Are2

]
Es

ℓ (z).

As a consequence, when j0 = 1, the spatial Green’s function reads (in vector form):

G1
j (z) =

{
κr(z)

j−2
[
et1 B(z)−1Are2

]
Es

r(z), j ≥ 2,
κℓ(z)

j
[
et2 B(z)−1Are2

]
Es

ℓ (z), j ≤ 0.

Retaining only the second coordinate in each vector (or the first for j = 2, which gives the expression of
G1
1(z)), we obtain the expressions:

G1
j (z) =


−κr(z)

j−1 2 b1(z)

αr(1− αr)∆(z)
, j ≥ 1,

κℓ(z)
j+1 2

αr(1− αr)∆(z)
, j ≤ 0.

The expression (3.12) (with j0 = 1) for G1
j (z) as given in Proposition 3.1 follows from the expression of

b1(z) and of the determinant ∆(z), see Lemma 3.3.

Case III: j0 = 0. We now feel free to shorten some details of the computations since many steps in
Case III are similar to those in Case II (j0 = 1). Since the Dirac mass is located at j0 = 0, we have
Πu

r (z)G
0
j (z) = 0 for j ≥ 2 and Πu

ℓ (z)G
0
j (z) = 0 for j ≤ 0. Using these two facts, we deduce that

M2,1(z)M1,0(z)Π
u
ℓ (z)G

0
0(z)−Πu

r (z)G
0
2(z) +M2,1(z)Ar,mH0

0 + ArH
0
1 = M2,1(z)Ar,me2,

which implies that

Πs
r(z)G

0
2(z) =

[
et1 B(z)−1M2,1(z)Ar,me2

]
Es

r(z),

Πs
ℓ(z)G

0
0(z) =

[
et2 B(z)−1M2,1(z)Ar,me2

]
Es

ℓ (z).
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Now, for j ≥ 2, we get that

Πs
r(z)G

0
j (z) = κr(z)

j−2
[
et1 B(z)−1M2,1(z)Ar,me2

]
Es

r(z).

and for j ≤ 0, we have

Πs
ℓ(z)G

0
j (z) = κℓ(z)

j
[
et2 B(z)−1M2,1(z)Ar,me2

]
Es

ℓ (z).

At this stage, the spatial Green’s function (in vector form) for j0 = 0 reads:

G0
j (z) =

{
κr(z)

j−2
[
et1 B(z)−1M2,1(z)Ar,me2

]
Es

r(z), j ≥ 2,
κℓ(z)

j
[
et2 B(z)−1M2,1(z)Ar,me2

]
Es

ℓ (z), j ≤ 0.

We compute the expressions:

et1 B(z)−1M2,1(z)Ar,me2 =
2

αr(1− αm)∆(z)

(
b2(z)− b1(z)

2(1− z)− αr(αr + αm)

αr(1− αr)

)
,

et2 B(z)−1M2,1(z)Ar,me2 =
2

αr(1− αm)∆(z)

(
−κr(z) +

2(1− z)− αr(αr + αm)

αr(1− αr)

)
.

Looking at either the first or second coordinate of the vector G0
j (z) for j ≥ 2, we obtain the expression of

G0
j (z) for any j ≥ 1. Looking then at the second coordinate of G0

j (z) for j ≤ 0, we obtain the expression

of G0
j (z) for any j ≤ 0. In the end, we obtain that for j0 = 0, the Green’s function reads:

G0
j (z) =


κr(z)

j−1 2

αr(1− αm)∆(z)

(
b2(z)− b1(z)

2(1− z)− αr(αr + αm)

αr(1− αr)

)
, j ≥ 1,

κℓ(z)
j+1 2

αr(1− αm)∆(z)

(
−κr(z) +

2(1− z)− αr(αr + αm)

αr(1− αr)

)
, j ≤ 0.

The expression of G0
j (z) for j ≥ 1 is then simplified one last time by using the expressions of b1(z) and

b2(z) in Lemma 3.3 and by using the relation between ∆(z) and ∆(z), while the expression of G0
j (z) for

j ≤ 0 is simplified by using the dispersion relation (3.1b) as well as the relation between ∆(z) and ∆(z).
We are then led to the expression (3.13) (with j0 = 0) of G0

j (z) given in Proposition 3.1.

Case IV: j0 ≤ −1. We directly notice that we have Πu
r (z)G

j0
j (z) = 0 for j ≥ 2, while for j ≤ 0 the

expression

Πu
ℓ (z)G

j0
j (z) =

+∞∑
p=0

κuℓ (z)
pΠu

ℓ (z)AℓH
j0
j−p−1,

gives two cases:

• if j0 < j ≤ 0 then
Πu

ℓ (z)G
j0
j (z) = κuℓ (z)

j−j0−1Πu
ℓ (z)Aℓe2;

• if j ≤ j0 then
Πu

ℓ (z)G
j0
j (z) = 0.

37



Now, using the above results, we deduce that

M2,1(z)M1,0(z)Π
u
ℓ (z)G

j0
0 (z)−Πu

r (z)G
j0
2 (z) +M2,1(z)Ar,mHj0

0 + ArH
j0
1

= M2,1(z)M1,0(z)Π
u
ℓ (z)G

j0
0 (z) = κuℓ (z)

−j0−1M2,1(z)M1,0(z)Π
u
ℓ (z)Aℓe2,

which implies that

Πs
r(z)G

j0
2 (z) = κuℓ (z)

−j0−1
[
et1 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

r(z),

Πs
ℓ(z)G

j0
0 (z) = κuℓ (z)

−j0−1
[
et2 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

ℓ (z).

Now, for j ≥ 2, we observe that

Πs
r(z)G

j0
j (z) = κr(z)

j−2Πs
r(z)G

j0
2 (z)

= κr(z)
j−2 κuℓ (z)

−j0−1
[
et1 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

r(z).

Finally, for j ≤ 0, we have

Πs
ℓ(z)G

j0
j (z) = κℓ(z)

j Πs
ℓ(z)G

j0
0 (z)−

−1∑
p=j

κℓ(z)
pΠs

ℓ(z)AℓH
j0
j−p−1,

which yields two cases:

• if j ≤ j0 then

Πs
ℓ(z)G

j0
j (z) =κℓ(z)

j κuℓ (z)
−j0−1

[
et2 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

ℓ (z)

− κℓ(z)
j−j0−1Πs

ℓ(z)Aℓe2;

• if j0 < j ≤ −1 then

Πs
ℓ(z)G

j0
j (z) = κℓ(z)

j κuℓ (z)
−j0−1

[
et2 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

ℓ (z).

As a consequence, summarizing the above results, we have obtained for j0 ≤ −1 that

Gj0
j (z) =


κr(z)

j−2 κuℓ (z)
−j0−1

[
et1 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

r(z), j ≥ 2,
κℓ(z)

j κuℓ (z)
−j0−1

[
et2 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

ℓ (z)
+κuℓ (z)

j−j0−1Πu
ℓ (z)Aℓe2, j0 < j ≤ 0,

κℓ(z)
j κuℓ (z)

−j0−1
[
et2 B(z)−1M2,1(z)M1,0(z)Π

u
ℓ (z)Aℓe2

]
Es

ℓ (z)
−κℓ(z)

j−j0−1Πs
ℓ(z)Aℓe2, j ≤ j0.

(3.18)

For later use, we introduce the notation:

M2,1(z)M1,0(z) =

(
m1(z) m2(z)
m3(z) m4(z)

)
,

We then compute:

et2Π
s
ℓ(z)Aℓe2 =

2κℓ(z)

αℓ(1− αℓ)(κℓ(z)− κuℓ (z))
, et2Π

u
ℓ (z)Aℓe2 =

2κuℓ (z)

αℓ(1− αℓ)(κ
u
ℓ (z)− κℓ(z))

,
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as well as

et1 B(z)−1M2,1(z)M1,0(z)Π
u
ℓ (z)Aℓe2 =

2
(
b2(z)(m1(z) + κuℓ (z)m2(z))− b1(z)(m3(z) + κuℓ (z)m4(z))

)
αℓ(1− αℓ)∆(z)(κuℓ (z)− κℓ(z))

,

et2 B(z)−1M2,1(z)M1,0(z)Π
u
ℓ (z)Aℓe2 =

2
(
− κr(z)(m1(z) + κuℓ (z)m2(z)) +m3(z) + κuℓ (z)m4(z)

)
αℓ(1− αℓ)∆(z)(κuℓ (z)− κℓ(z))

.

Looking at either the first or second coordinate of the vector Gj0
j (z) for j ≥ 2, we obtain the expression

of Gj0
j (z) for any index j ≥ 1:

Gj0
j (z) = κr(z)

j−1 κuℓ (z)
−j0−1

2
(
b2(z)(m1(z) + κuℓ (z)m2(z))− b1(z)(m3(z) + κuℓ (z)m4(z))

)
αℓ(1− αℓ)∆(z)(κuℓ (z)− κℓ(z))

.

Because of the definition of the matrix B(z), we have the relations:

m1(z) + κuℓ (z)m2(z) = −b1(z) + (κuℓ (z)− κℓ(z))m2(z) ,

m3(z) + κuℓ (z)m4(z) = −b2(z) + (κuℓ (z)− κℓ(z))m4(z) ,

from which we deduce:

∀ j ≥ 1 , Gj0
j (z) = κr(z)

j−1 κuℓ (z)
−j0−1 2 (b2(z)m2(z)− b1(z)m4(z))

αℓ(1− αℓ)∆(z)
,

and we now use the relations:

b1(z) = −m1(z)− κℓ(z)m2(z) , b2(z) = −m3(z)− κℓ(z)m4(z) , (3.19)

to further simplify the expression of Gj0
j (z), j ≥ 1, into:

Gj0
j (z) =κr(z)

j−1 κuℓ (z)
−j0−1 2 (m1(z)m4(z)−m2(z)m3(z))

αℓ(1− αℓ)∆(z)

=κr(z)
j−1 κuℓ (z)

−j0−1 2 detM2,1(z) detM1,0(z)

αℓ(1− αℓ)∆(z)

=κr(z)
j−1 κuℓ (z)

−j0−1 2αℓ(1 + αℓ) (1 + αm)

α2
r(1− αr)(1− αm)(1− αℓ)∆(z)

.

To obtain the expression (3.13) of Gj0
j (z) for j0 ≤ −1 and j ≥ 1, it only remains to use the relation

κℓ(z)κ
u
ℓ (z) = −(1 + αℓ)/(1 − αℓ) (see (3.1a)), and the link between the determinant ∆(z) of B(z) and

∆(z) (Lemma 3.3).

The only remaining task is to derive the expression (3.13) of Gj0
j (z) for j0 ≤ −1 and j ≤ 0. We go

back to (3.18) and retain the second coordinate of the vector Gj0
j (z) for j ≤ 0. We obtain:

Gj0
j (z) =



κℓ(z)
j+1 κuℓ (z)

−j0−1 2 (−κr(z)(m1(z) + κuℓ (z)m2(z)) +m3(z) + κuℓ (z)m4(z))

αℓ(1− αℓ)∆(z)(κuℓ (z)− κℓ(z))

+
2κuℓ (z)

j−j0

αℓ(1− αℓ)(κ
u
ℓ (z)− κℓ(z))

, j0 < j ≤ 0,

κℓ(z)
j+1 κuℓ (z)

−j0−1 2 (−κr(z)(m1(z) + κuℓ (z)m2(z)) +m3(z) + κuℓ (z)m4(z))

αℓ(1− αℓ)∆(z)(κuℓ (z)− κℓ(z))

+
2κℓ(z)

j−j0

αℓ(1− αℓ)(κ
u
ℓ (z)− κℓ(z))

, j ≤ j0.
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Recalling the relations (3.19), we get:

−κr(z)(m1(z) + κuℓ (z)m2(z)) +m3(z) + κuℓ (z)m4(z) = (κuℓ (z)− κℓ(z))(m4(z)− κr(z)m2(z))−∆(z) ,

and this simplifies the expression of Gj0
j (z) into:

Gj0
j (z) =



κℓ(z)
j+1 κuℓ (z)

−j0−1 2 (m4(z)− κr(z)m2(z))

αℓ(1− αℓ)∆(z)

+
2(κuℓ (z)

j−j0 − κℓ(z)
j+1 κuℓ (z)

−j0−1)

αℓ(1− αℓ)(κ
u
ℓ (z)− κℓ(z))

, j0 < j ≤ 0,

κℓ(z)
j+1 κuℓ (z)

−j0−1 2 (m4(z)− κr(z)m2(z))

αℓ(1− αℓ)∆(z)

+
2(κℓ(z)

j−j0 − κℓ(z)
j+1 κuℓ (z)

−j0−1)

αℓ(1− αℓ)(κ
u
ℓ (z)− κℓ(z))

, j ≤ j0.

It turns out that we can slightly modify the above expression as follows. Using the expressions:

∆(z) = b2(z)− κr(z) b1(z) = κr(z)m1(z)−m3(z) + κℓ(z)(κr(z)m2(z)−m4(z)) ,

m1(z) =
αℓ(1 + αℓ)

αr(1− αm)
, m3(z) = − αℓ(1 + αℓ)

α2
r(1− αr)(1− αm)

(2(z − 1) + αr(αr + αm)) ,

we notice that

1

κuℓ (z)

m4(z)− κr(z)m2(z)

αℓ(1− αℓ)∆(z)
= − 1

αℓ(1 + αℓ)∆(z)
(−∆(z) + κr(z)m1(z)−m3(z))

=
1

αℓ(1 + αℓ)
+

1

αr(1− αm)∆(z)

(
−κr(z) +

2(1− z)− αr(αr + αm)

αr(1− αr)

)
= − 1

αℓ(1− αℓ)κℓ(z)κ
u
ℓ (z)

+
αr − αm − (1 + αr)κr(z)

−1

αr(1− αr)(1− αm)∆(z)
.

We end up with the following expression

Gj0
j (z) =



2κℓ(z)
j+1κuℓ (z)

−j0

αr(1− αr)(1− αm)∆(z)

(
αr − αm − (1 + αr)κr(z)

−1
)

+
2
(
κℓ(z)

j−j0 − κℓ(z)
j κuℓ (z)

−j0
)

αℓ(1− αℓ)(κ
u
ℓ (z)− κℓ(z))

, j ≤ j0,

2κℓ(z)
j+1κuℓ (z)

−j0

αr(1− αr)(1− αm)∆(z)

(
αr − αm − (1 + αr)κr(z)

−1
)

+
2
(
κuℓ (z)

j−j0 − κℓ(z)
j κuℓ (z)

−j0
)

αℓ(1− αℓ)(κ
u
ℓ (z)− κℓ(z))

, j0 ≤ j ≤ 0.

We then use the expression of ∆(z) given in Lemma 3.3 and derive the expression (3.13) of G0
j (z) given

in Proposition 3.1 (for j0 ≤ −1 and j ≤ 0). The proof of Proposition 3.1 is therefore complete.

The expression of the spatial Green’s function given in Proposition 3.1 gives us in a straightforward
way the following estimates away from the point 1. From inspection of the expressions (3.12) and (3.13),
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it is useful to introduce a tiny modification of the spatial Green’s function that we define as follows. For
any couple of integers (j0, j) ∈ Z2, we define the following function:

G̃j0
j (z) :=



Gj0
j (z) +

2κur (z)
j−j0

αr(1− αr)(κur (z)− κr(z))
, if 1 ≤ j ≤ j0,

Gj0
j (z) +

2κr(z)
j−j0

αr(1− αr)(κur (z)− κr(z))
, if 1 ≤ j0 < j,

Gj0
j (z) +

2κuℓ (z)
j−j0

αℓ(1− αℓ)(κℓ(z)− κuℓ (z))
, if j0 ≤ j ≤ 0,

Gj0
j (z) +

2κℓ(z)
j−j0

αℓ(1− αℓ)(κℓ(z)− κuℓ (z))
, if j < j0 ≤ 0,

Gj0
j (z) , otherwise.

(3.20)

Under the assumptions made in Proposition 3.1, Proposition 3.1 and Lemma 3.1 show that G̃j0
j is well-

defined on U \{1}. Furthermore, this function is holomorphic on U and can be holomorphically extended
in the neighborhood of any point of S1 \ {1}. The interest for defining this reduced function G̃j0

j will be
made clear in Chapter 4. Our result is the following.

Corollary 3.3. Let the weak solution (2.2) satisfy the entropy inequalities (2.4). Let the parameter λ
satisfy the CFL condition (2.12) and let Assumption 1 be satisfied. Then for any ε⋆ > 0, there exist
constants η⋆ > 0, C > 0 and c > 0 such that, if we define the set:

Zε⋆,η⋆ := {ζ ∈ C | e−η⋆ ≤ |ζ| ≤ 2} \ {ζ = eτ ∈ C | τ ∈ Bε⋆(0)} , (3.21)

then, for any couple (j, j0) ∈ Z2, the function G̃j0
j defined in (3.20) depends holomorphically on z on

Zε⋆,η⋆ and it satisfies the uniform bound:

∀ z ∈ Zε⋆,η⋆ , ∀ (j0, j) ∈ Z2 ,
∣∣∣G̃j0

j (z)
∣∣∣ ≤ C exp(−c (|j|+ |j0|)) .

The region Zε⋆,η⋆ is schematically depicted in Figure 3.2.

Proof of Corollary 3.3. The proof of Corollary 3.3 directly follows from the expressions (3.12) and (3.13)
and the definition (3.20). Indeed, let ε⋆ > 0 be given. Then the set:

{ζ ∈ C | 1 ≤ |ζ| ≤ 2} \ {ζ = eτ ∈ C | τ ∈ Bε⋆(0)} ,

is a compact subset of O and also of U \ {1}. Moreover, thanks to Assumption 1, we know that the
Lopatinskii determinant ∆ does not vanish on that set. Lemma 3.1 also shows that the dispersion
relation (3.1a), resp. (3.1b), has two distinct roots κℓ and κuℓ , resp. κr and κur , for any z in that set. By
using Lemma 3.1 (for the holomorphy properties of the roots of (3.1a) and (3.1b)), Lemma 3.2 (for the
holomorphy properties of ∆) and Assumption 1, we can thus choose some η⋆ > 0 such that:

• the set Zε⋆,η⋆ defined in (3.21) is a compact subset of O so that ∆ is holomorphic on Zε⋆,η⋆ ,
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S1

C

•
1

•
2

e−η⋆

e−ε⋆

eε⋆

Figure 3.2: The region Zε⋆,η⋆ (in red) of Corollary 3.3. In grey: the set {ζ = eτ ∈ C | τ ∈ Bε⋆(0)}. In blue: the
unit circle S1.

• κℓ(z), κ
u
r (z) belong to U , κr(z), κ

u
ℓ (z) belong to D for any z ∈ Zε⋆,η⋆ and those four functions

depend holomorphically on z on Zε⋆,η⋆ ,

• κℓ(z) is different from κuℓ (z), resp. κr(z) is different from κur (z), for any z ∈ Zε⋆,η⋆ ,

• ∆ is holomorphic and does not vanish on Zε⋆,η⋆ .

All the above properties imply that for any couple (j, j0) ∈ Z2, the function G̃j0
j defined in (3.20) extends

to a holomorphic function on Zε⋆,η⋆ .
We now consider j0 ≥ 1 and look at the expression (3.12) for the spatial Green’s function and the

definition (3.20) for G̃j0
j (z). Since Zε⋆,η⋆ is compact, we can find some constants C such that for any

z ∈ Zε⋆,η⋆ , there holds: ∣∣∣G̃j0
j (z)

∣∣∣ ≤

C |κur (z)|−j0 |κℓ(z)|j , if j ≤ 0,

C |κur (z)|−j0 |κr(z)|j , if j ≥ 1.

It remains to use uniform lower or upper bounds:

|κur (z)| ≥ e−c , |κℓ(z)| ≥ e−c , |κr(z)| ≤ e−c ,

with a uniform constant c > 0, and the conclusion of Corollary 3.3 follows in the case j0 ≥ 1. The case
j0 ≤ 0 follows from similar arguments by using the expression (3.13) for the spatial Green’s function and
the definition (3.20) for G̃j0

j (z).
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3.3 Spectral stability. Proof of Theorem 2.3

This short paragraph is devoted to the proof of Theorem 2.3 (which is a more general version of Theorem
2.2) using all above ingredients, that is our analysis of the Lopatinskii determinant and the construction
of the spatial Green’s function for z ∈ U \ {1}.

We shall only give the proof of Theorem 2.3 and leave the analogous analysis for either convex or
concave fluxes to the interested reader. Let us first quickly show that 1 is an eigenvalue of L , which is
reminiscent of the fact that the Lopatinskii determinant vanishes at 1 (Lemma 3.2), see [15, 5, 14, 28, 27].
The fact that 1 is an eigenvalue for L was already proven in [28, Theorem 2.3]. We just reproduce a
proof here, with our notation, for the sake of completeness.

We consider the expressions (3.12) and (3.13) of the spatial Green’s function. Since ∆ vanishes at 1,
these expressions incorporate a (simple) pole at z = 1. We thus introduce the sequence (Hj)j∈Z that is
defined by:

Hj := lim
z→1

(z − 1)Gj0
j (z) ,

and whose precise expression is given by:

Hj =


−2 (1− αm)

αℓ∆
′(1)

κℓ(1)
j , if j ≤ 0,

2 (1 + αm)

αr ∆
′(1)

κr(1)
j−1, if j ≥ 1,

(3.22)

the expression being independent of j0 ∈ Z. The sequence given in (3.22) is nonzero and it belongs to
any ℓq(Z;C) since it has exponential decay at infinity (recall that κr(1) belongs to D and κℓ(1) belongs
to U ). It is also a mere algebra exercise to verify that the sequence given in (3.22) belongs to the kernel
of the operator Id− L , as expected from the above formal analysis. This means that 1 is an eigenvalue
for L in any ℓq(Z;C).

Let us now show that the set9 U \ {1} lies in the resolvent set for L . We consider h ∈ ℓq(Z;C) and
we wish to construct a solution in ℓq(Z;C) to the resolvent equation:

(z Id− L )v(z) = h . (3.23)

The solution will necessarily be unique because of Corollary 3.2. For z ∈ U \ {1} and j ∈ Z, we define:

vj(z) :=
∑
j0∈Z

Gj0
j (z)hj0 ,

with Gj0
j (z) given in Proposition 3.1. Let us first show that the sequence v(z) = (vj(z))j∈Z thus defined

belongs indeed to ℓq(Z;C). The arguments below are given for a fixed z ∈ U \{1} and the constants may
depend on z. From the expressions (3.12), (3.13) and using Lemma 3.1 and Assumption 1, we obtain
bounds of the form:

∀ (j0, j) ∈ Z2 ,
∣∣∣Gj0

j (z)
∣∣∣ ≤ Cz exp(−cz (|j|+ |j0|)) + Cz exp(−cz |j − j0|) ,

9In the case of a convex or concave flux, one can show that the whole set O lies in the resolvent set of L since the
Lopatinskii determinant ∆ does not vanish on O and Proposition 3.1 extends to any z ∈ O in that case.
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Figure 3.3: An example of flux f that yields spectrally unstable shock profiles. The graph of the flux is depicted in
blue and the chord between ur = −1 and uℓ = +1 is depicted in red. The Rankine-Hugoniot condition (2.3) and
Oleinik’s entropy condition are satisfied.

with positive constants Cz, cz that may depend on z but that do not depend on (j0, j). Applying either
the Hölder or the Young inequality, we obtain that the above defined sequence v(z) := (vj(z))j∈Z belongs
to ℓq(Z;C). It is then a mere exercise to verify that v(z) is a solution to the resolvent equation (3.23)
(this is rather easy in this framework since L involves a finite stencil). We have thus shown that any
point z ∈ U \ {1} belongs to the resolvent set of L , which completes the proof of Theorem 2.3.

3.4 Instability cases

This whole article will be devoted to stable discrete shock profiles, but let us just take a little time to
discuss two unstable cases, just to show that spectral instabilities may occur. We go back to the expression
(3.3) of the Lopatinskii determinant. As explained in Remark 3.2, in the symmetric case f ′(uℓ) = −f ′(ur),
the Lopatinskii determinant ∆ is independent of the mid-point derivative f ′((uℓ + ur)/2) and spectral
stability10 always holds.

Let us therefore assume from now on f ′(uℓ) ̸= −f ′(ur) so that one has αℓ + αr ̸= 0. We first go back
to the expression (3.4) of the derivative ∆′(1). We observe from this expression that ∆′(1) can be zero if
αm is given by:

αm =
αr − αℓ + 2αℓ αr

αℓ + αr
. (3.24)

This gives for instance the value αm = 13/3 in the case (αℓ, αr) = (1/3,−2/3). The case ∆′(1) = 0 is
a weak form of instability that we do not study here but that can be achieved with a non-convex flux

10Spectral stability means here that Assumption 1 is satisfied.
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function f . An example of such a function f is depicted in Figure 3.3 with the choice ur = −1, uℓ = +1
and f(ur) = f(uℓ) = 1 so that the Rankine-Hugoniot condition (2.3) is satisfied. The entropy inequalities
(2.4) are also satisfied and we can choose the CFL parameter λ sufficiently small in such a way that the
condition (2.12) is met. We can then tune the “small amplitude” oscillations near the origin in such a
way that the derivative f ′(0) satisfies (3.24) (recall the relation αm = λ f ′(0), see (2.9)) and the graph of
f between −1 and 1 lies below the horizontal chord of height 1. This means that not only the Lax shock
entropy inequalities (2.4) are satisfied but also Oleinik’s entropy condition which is stronger, see [12, 26].

A more severe instability scenario corresponds to finding a root of ∆ in the instability region U . For
concreteness, we still assume that the end points of the shock are ur = −1, uℓ = +1, that the flux f
satisfies f(ur) = f(uℓ) = 1, f ′(ur) = −2 f ′(uℓ) and that the parameter λ has been chosen in such a way
that (αℓ, αr) = (1/3,−2/3). We then compute:

κℓ(2) = −5 − 3
√
3 , κr(2) =

13 − 3
√
21

10
.

We then see on the expression (3.3) that ∆ vanishes at z = 2 ∈ U provided that we have11:

αm

(
3

2
+ 2

√
3−

√
21

2

)
=

7

2
+ 3

(
√
3 +

√
7 +

√
21

2

)
.

Once again, this can be achieved by tuning small amplitude oscillations near the origin to have the desired
value for f ′(0), as shown in Figure 3.3. Spectral instabilities may therefore occur for stationary shock
profiles of the Lax-Wendroff scheme even though Oleinik’s entropy condition is satisfied.

3.5 Decomposing the spatial Green’s function

The detailed expression of the spatial Green’s function (Gj0
j (z))j∈Z is given in Proposition 3.1. For later

use, we need to decompose the expression of Gj0
j (z) by isolating several parts in it and specifically its

singular behavior near z = 1. A convenient way to do so is to introduce yet two other Green’s functions
which correspond to that of the Lax-Wendroff scheme for a constant coefficient transport operator on the
whole real line. The chosen velocity will be either f ′(uℓ) or f ′(ur) depending on the sign of the initial
position j0. The choice of the velocity f ′(uℓ) corresponds to the expression of the operator L in the
region {j ≤ −1}, see (2.11), and the choice of the velocity f ′(ur) corresponds to the expression of the
operator L in the region {j ≥ 2}, see again (2.11). We thus devote the following paragraph to recalling
several facts on the Green’s function for the Lax-Wendroff on the whole real line. Additional material in
this case can be found in [10] and [9].

3.5.1 The free Green’s function on the whole real line

We pause for a while and go back to the definition (2.11) of the linearized operator L . In the regions
{j ≥ 2} and {j ≤ −1}, the coefficients in the operator L are independent of the spatial index, meaning
that L reduces to a convolution operator that corresponds to the linearization of the Lax-Wendroff scheme

11This gives the value αm ≃ 8, 79.
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at the constant state uℓ or ur. We thus introduce the convolution operators Lℓ,Lr that are defined on
complex valued sequences v = (vj)j∈Z defined on Z as follows:

∀ j ∈ Z , (Lℓ v)j := vj −
αℓ

2
(vj+1 − vj−1) +

α2
ℓ

2
(vj+1 − 2 vj + vj−1) , (3.25a)

(Lr v)j := vj −
αr

2
(vj+1 − vj−1) +

α2
r

2
(vj+1 − 2 vj + vj−1) . (3.25b)

We recall that αℓ and αr are defined in (2.9). The operators in (3.25) are nothing but the operators arising
from the Lax-Wendroff scheme applied to the transport equation with velocity equal to either f ′(uℓ) or
f ′(ur). Thanks to the Lévy-Wiener Theorem [22], the spectrum of the operators Lℓ and Lr on any space
ℓq(Z;C) is completely known (see [30] for more on the spectral analysis of convolution operators). We
have:

σ(Lℓ) =
{
1− 2α2

ℓ sin2
ξ

2
+ iαℓ sin ξ | ξ ∈ R

}
,

σ(Lr) =
{
1− 2α2

r sin2
ξ

2
+ iαr sin ξ | ξ ∈ R

}
,

where the result is independent of q ∈ [1,+∞]. For instance, the spectrum of Lℓ is represented as the
black curve (an ellipse, actually) in Figure 3.1. Due to the restriction (2.12), the spectrum of both Lℓ

and Lr is included in the closed unit disk D with a single tangency point at 1 with the unit circle.

We can then proceed as in Section 3.2 above and introduce the spatial Green’s function for either Lℓ

or Lr. Because of the spatial invariance in (3.25a) and (3.25b), it is sufficient to look at the case where the
Dirac mass δj0 is located at j0 = 0. Hence, for z in the exterior O of the curve (2.13), we have that z lies
in the resolvent set of both Lℓ and Lr, and we can therefore introduce the solutions Gℓ(z) = (Gℓ,j(z))j∈Z
and Gr(z) = (Gr,j(z))j∈Z to the resolvent problems:

(z Id− Lℓ)Gℓ(z) = δ0 , (z Id− Lr)Gr(z) = δ0 . (3.26)

The computations that lead to the precise expressions for (Gℓ,j(z))j∈Z and (Gr,j(z))j∈Z follow from the
same methodology as in Sections 3.1 and 3.2 (we refer to [10] for an even more general analysis in
the case of finite difference schemes with arbitrary, possibly infinite, stencils). The analysis is actually
much simpler for pure convolution operators than what we did in Sections 3.1 and 3.2 since there is no
Lopatinskii determinant involved. We thus feel free to state without proof the following result that is in
the same vein as Proposition 3.1.

Proposition 3.2. Under the condition (2.12) on λ, for any z in the exterior O of the spectral curve
(2.13), there exist unique solutions Gℓ(z) = (Gℓ,j(z))j∈Z ∈ ℓq(Z;C) and Gr(z) = (Gr,j(z))j∈Z ∈ ℓq(Z;C) to
the equations (3.26). These sequences are given by:

Gr,j(z) =


−2κur (z)

j

αr(1− αr)(κur (z)− κr(z))
, if j ≤ 0,

−2κr(z)
j

αr(1− αr)(κur (z)− κr(z))
, if j ≥ 0,

(3.27)
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and

Gℓ,j(z) =



−2κℓ(z)
j

αℓ(1− αℓ)(κℓ(z)− κuℓ (z))
, if j ≤ 0,

−2κuℓ (z)
j

αℓ(1− αℓ)(κℓ(z)− κuℓ (z))
, if j ≥ 0.

(3.28)

The expressions in (3.28) and (3.27) can be recognized in (3.12) and (3.13). This is made more explicit
in the following paragraph.

3.5.2 Decomposing the spatial Green’s function

The decomposition proceeds as follows. From inspection of the expressions (3.12) and (3.13) and the
result of Proposition 3.2, the definition (3.20) can be recast as follows:

G̃j0
j (z) =

{
Gj0
j (z) − 1j≥1 Gr,j−j0(z) , if j0 ≥ 1,

Gj0
j (z) − 1j≤0 Gℓ,j−j0(z) , if j0 ≤ 0,

(3.29)

where the notation 1j≥1 is used to denote 1 if j ≥ 1 and 0 otherwise (and similarly for 1j≤0). It is also
useful to introduce the following two fourth degree polynomial functions φr and φℓ:

∀ τ ∈ C , φr,ℓ(τ) := − 1

αr,ℓ
τ +

1− α2
r,ℓ

6α3
r,ℓ

τ3 −
1− α2

r,ℓ

8α3
r,ℓ

τ4 . (3.30)

With such notation, our result is the following.

Proposition 3.3. Let the weak solution (2.2) satisfy the entropy inequalities (2.4). Let the parameter λ
satisfy the CFL condition (2.12) and let Assumption 1 be satisfied. Then there exists ε0 > 0, there exist
constants C > 0 and c > 0, there exist two complex valued sequences (γrj )j∈Z and (γℓj)j∈Z, there exist
two bounded holomorphic functions Ψr and Ψℓ on the square Bε0(0), and there exist sequences (Φr,j)j∈Z,
(Φℓ,j)j∈Z, (Θr,j)j∈Z, (Θℓ,j)j∈Z and (Θ1,j)j∈Z of bounded holomorphic functions on the square Bε0(0) such
that the following hold:

• the sequences (γrj )j∈Z and (γℓj)j∈Z satisfy the estimates:

∀ j ∈ Z , |γrj | + |γℓj | ≤ C exp(−c |j|) ;

• the sequences (Φr,j)j∈Z, (Φℓ,j)j∈Z, (Θr,j)j∈Z and (Θℓ,j)j∈Z satisfy the estimates:

∀ j ∈ Z , ∀ τ ∈ Bε0(0) , |Φr,j(τ)| + |Φℓ,j(τ)| + |Θr,j(τ)| + |Θℓ,j(τ)| + |Θ1,j(τ)| ≤ C exp(−c |j|) ;

• for any couple of integers (j0, j) ∈ Z2, the function:

τ ∈ Bε0(0) ∩
{
ζ ∈ C |Re ζ > 0

}
7−→ G̃j0

j (eτ ) ,

whose expression is given in (3.29), has a meromorphic extension to the square Bε0(0) with a first
order pole at 0 only, and there holds:

eτ G̃j0
j (eτ ) =



(
Hj

τ
+ γrj + τ Φr,j(τ)

)
exp

(
− j0 φr(τ) + j0 τ

5Ψr(τ)
)
, if j0 ≥ 1,

(
Hj

τ
+ γℓj + τ Φℓ,j(τ)

)
exp

(
− j0 φℓ(τ) + j0 τ

5Ψℓ(τ)
)
, if j0 ≤ 0,

(3.31)
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for any τ ∈ Bε0(0) \ {0}, where we recall that Hj is defined in (3.22);

• for any couple of integers (j0, j) ∈ Z2, the function:

τ ∈ Bε0(0) ∩
{
ζ ∈ C |Re ζ > 0

}
7−→ G̃j0

j (eτ )− G̃j0−1
j (eτ )

has a holomorphic extension to the square Bε0(0), and there holds:

eτ
(
G̃j0
j (eτ )− G̃j0−1

j (eτ )
)

=



(
Hj

αr
+ τ Θr,j(τ)

)
exp

(
− j0 φr(τ) + j0 τ

5Ψr(τ)
)
, if j0 ≥ 2,

Hj

αr
+ γrj − γℓj + τ Θ1,j(τ) , if j0 = 1,

(
Hj

αℓ
+ τ Θℓ,j(τ)

)
exp

(
− j0 φℓ(τ) + j0 τ

5Ψℓ(τ)
)
, if j0 ≤ 0,

(3.32)
for any τ ∈ Bε0(0).

Proof. We give the proof in the case j0 ≥ 1 and construct all quantities associated with the “right” state
ur. The proof in the case j0 ≤ 0 is entirely similar and is left to the interested reader. We thus always
consider from on some j0 ≥ 1 and some arbitrary integer j ∈ Z. We also define, for later use, the function:

z 7−→ Θ(z) :=
∆(z)

z − 1
,

where the Lopatinskii determinant ∆ is defined in (3.3). Thanks to Lemma 3.2 and Assumption 1,
we know that Θ can be holomorphically extended to some set of the form {ζ ∈ C | e−δ0 < |ζ|} for an
appropriate δ0 > 0. This is because ∆ has a simple zero at 1. Furthermore, we know that, up to restricting
δ0, Θ does not vanish on the set {ζ ∈ C | e−δ0 < |ζ|}.

From the definition (3.20) and the expressions (3.12), (3.27), we get the factorization:

∀ z ∈ U , G̃j0
j (z) = χr

j(z)Gr,1−j0(z) ,

where we have set

χr
j(z) :=


χ−
r (z)

z − 1
κℓ(z)

j , if j ≤ 0,

(
χ+
r (z)

z − 1
− 1

)
κr(z)

j−1 , if j ≥ 1,

(3.33)

with

χ+
r (z) :=

(
αℓ − αm + (1− αℓ)κℓ(z)

)
(1− αr) (κ

u
r (z)− κr(z))

Θ(z)
,

χ−
r (z) :=

αr (1− αr) (1− αm) (κur (z)− κr(z))

αℓΘ(z)
.

It appears from those expressions and from Lemma 3.1 that, up to restricting δ0 again, both functions
χ±
r have a holomorphic extension to the set {ζ ∈ C | e−δ0 < |ζ|} and there is no loss os generality in
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assuming that both κℓ and κr are also holomorphic functions and do not vanish on that set (see Lemma
3.1). Moreover, we compute:

χ+
r (1) = − 2 (1 + αm)

∆′(1)
, χ−

r (1) =
2αr (1− αm)

αℓ∆
′(1)

.

For z in a neighborhood of 1, we may then write (see (3.33)):

χr
j(z) =

ξrj
z − 1

+ Γr
j + Ξr

j(z) ,

where ξrj and Γr
j are complex numbers defined by:

ξrj := lim
z→1

(z − 1)χr
j(z) =

{
χ−
r (1)κℓ(1)

j , if j ≤ 0,

χ+
r (1)κr(1)

j−1 , if j ≥ 1,

Γr
j := lim

z→1

(
χr
j(z) −

ξrj
z − 1

)
,

and the function (z 7→ Ξr
j(z)) is defined by:

Ξr
j(z) := χr

j(z) −
ξrj

z − 1
− Γr

j ,

so that Ξr
j has a holomorphic extension to the set {ζ ∈ C | e−δ0 < |ζ|} and vanishes at 1. In other words,

we have isolated the first order pole at 1 in χr
j . Moreover, it is not difficult to compare the expression for

ξrj and the defining equation (3.22) for Hj and to find the relation ξrj = −αr Hj .
We know from Lemma 3.1 and from Section 3.3 that κℓ(1) belongs to U and κr(1) belongs to D.

Hence we can infer from the above definitions the exponentially decaying bounds:

|ξrj | + |Γr
j | ≤ C e−c |j| ,

as well as the local bound in z close to 1:

|Ξr
j(z)| ≤ C |z − 1| e−c |j| .

In the same way, we find from the expression (3.27) that for j0 ≥ 1, the function Gr,1−j0 has a
holomorphic extension to the set {ζ ∈ C | e−δ0 < |ζ|} (up to restricting δ0 one more time). Since κur (1)
equals 1, for τ in a sufficiently small square Bε0(0) centered at the origin, we can write:

κur (e
τ ) = exp(ωr(τ)) ,

where ωr is holomorphic and bounded on Bε0(0). It is then a mere algebra exercise to infer from (3.1b)
the Taylor expansion of ωr at 0 and we get:

ωr(τ) = φr(τ) + O(τ5) ,

with the fourth degree polynomial φr defined in (3.30). We can thus write, for any τ ∈ Bε0(0):

eτ Gr,1−j0(e
τ ) =

(
− 1

αr
+ µr τ + τ2 Φ̃r(τ)

)
exp

(
− j0 φr(τ) + j0 τ

5Ψr(τ)
)
,

where Φ̃r and Ψr are two holomorphic bounded functions on Bε0(0) and µr is a complex number. It then
remains to perform the Taylor expansion of χr

j(e
τ ) at τ = 0 and to multiply with the above expansion of

eτ Gr,1−j0(e
τ ) to get the result of Proposition 3.3.

We now turn to the proof of our main estimates for the Green’s function of the operator L (see
Theorem 4.1 below). This will lead to time decay estimates as stated in Theorem 2.4.
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Chapter 4

Linear stability

The goal of this chapter is to derive sharp bounds for the temporal Green’s function, that is, for any given
j0 ∈ Z, the solution (G n(j, j0))(n,j)∈N×Z to the recurrence relation:{

G n+1(j, j0) = (L G n(·, j0))j , (n, j) ∈ N× Z ,

G 0(·, j0) = δj0 .
(4.1)

The relevance of this sequence is motivated by the fact that for any initial condition h ∈ ℓq(Z;R), the
solution to the recurrence relation:

∀n ∈ N , vn+1 = L vn ,

v0 = h ,

can be decomposed into:

∀ (n, j) ∈ N× Z , vnj =
∑
j0∈Z

G n(j, j0)hj0 ,

and we expect that sharp bounds on G n(j, j0) will quantify the decay properties of the semigroup of
operators (L n)n∈N. We first decompose the temporal Green’s function by following the decomposition
given in Proposition 3.3 for the (reduced) spatial Green’s function. We then analyze each contribution in
the decomposition and derive bounds that are meant to be as sharp as possible in order to obtain large
time decaying bounds for the semigroup (L n)n∈N.

4.1 Preliminary facts

We always consider from now on that the weak solution (2.2) satisfies the entropy inequalities (2.4) and
that the CFL parameter λ satisfies the stability condition (2.12). We also assume that Assumption 1
is satisfied so that the analysis of Chapter 3 can be used. The value of the temporal Green’s function
G n(j, j0) is given by the so-called functional calculus (see [8]):

G n(j, j0) =
1

2πi

∫
Γ̃
zn Gj0

j (z) dz, (4.2)

where Γ̃ is any contour that encompasses the spectrum of the operator L . In view of Theorem 2.3, one
can choose for instance Γ̃ = (1 + δ) S1 = {ζ ∈ C | |ζ| = 1 + δ} for any δ > 0, since the spectrum of L is
included in D ∪ {1}.
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Two other key quantities of interest to us are the temporal Green’s functions associated with the
operators Lℓ and Lr that are defined in (3.25). The associated temporal Green’s functions for these
operators are defined as the solutions to the recurrences:{

G
n+1
ℓ = Lℓ G

n
ℓ , n ∈ N ,

G
0
ℓ = δ0 ,

(4.3a){
G

n+1
r = Lr G

n
r , n ∈ N ,

G
0
r = δ0 ,

(4.3b)

and the same functional calculus rules as before yield the expressions:

G
n
ℓ (j) =

1

2πi

∫
Γ̃
zn Gℓ,j(z) dz , G

n
r (j) =

1

2πi

∫
Γ̃
zn Gr,j(z) dz ,

where Γ̃ is once again any closed contour that encompasses the spectrum of both Lℓ and Lr in its interior.
We can choose, for instance, Γ̃ = (1 + δ)S1 for any δ > 0. A crucial observation for what follows is that
the sequences (G

n
ℓ (j))(n,j)∈N×Z and (G

n
r (j))(n,j)∈N×Z have been thoroughly studied in [9], though with a

different point of view since the framework allows for the use of Fourier analysis. We shall feel free to
use repeatedly several results from [9], which are themselves more accurate estimates for the free Green’s
functions (in the whole space) than previous bounds obtained in [16, 17]. The main results of [9] are
gathered in Appendix A together with some supplementary material that is needed to carry out the
analysis below.

We start our analysis with a first elementary observation. Since the Lax-Wendroff scheme as a finite
stencil, we readily see from the recurrence equation (4.1) defining the Green’s function that for all n ∈ N
and (j, j0) ∈ Z2:

|j − j0| > n ⇒ G n(j, j0) = 0 .

this fact is repeatedly used below in order to restrict the possible regimes for j, j0, n. As a second crucial
observation, we have the following Lemma.

Lemma 4.1. Let j0 ∈ Z and n ∈ N. If j0 ≥ 1 and n ≤ j0 − 1, then there holds:

∀ j ∈ Z , G n(j, j0) = G
n
r (j − j0) .

If j0 ≤ 0 and n ≤ |j0|, then there holds:

∀ j ∈ Z , G n(j, j0) = G
n
ℓ (j − j0) .

Proof. We give the proof in the case j0 ≥ 1 and leave the other situation to the interested reader.
The proof directly follows from the expression (2.11) of the operator L and from the definition

(3.25b) of the convolution operator Lr. Indeed, we easily see that if w = (wj)j∈Z is a sequence that is
supported in {j ∈ Z | j ≥ jmin} with jmin ≥ 2, then Lw equals Lrw and both sequences are supported
in {j ∈ Z | j ≥ jmin − 1}.

For j0 = 1, the proof of Lemma 4.1 is obvious. We thus assume j0 ≥ 2. Then we can prove by
induction that for any n = 0, . . . , j0 − 2, the two sequences G n(·, j0) and G

n
r (· − j0) are equal and they

are supported in {j ∈ Z | j ≥ j0 − n}. Applying one last time the above fact when n equals j0 − 2, we see

that G j0−1(·, j0) and G
j0−1
r (· − j0) are equal and they are supported in {j ∈ Z | j ≥ 1}. This is when we

cannot use the above fact any longer.
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Finally, as a last preparatory step, we shall change variable in the integral representation (4.2) to
write instead

G n(j, j0) =
1

2πi

∫
Γ
en τ Gj0

j (eτ ) eτ dτ,

with Γ = {τ = ρ+ i θ | θ ∈ [−π, π]}, for any ρ > 0. This change of variable justifies the decomposition
made in Proposition 3.3 (see (3.31)). We now introduce some further notations and clarify the bounds
that we intend to prove on the Green’s function of the operator L .

4.2 Notation and bounds for the Green’s function

We first introduce some constants:

c3,ℓ :=
αℓ (1− α2

ℓ )

6
> 0 , c4,ℓ :=

α2
ℓ (1− α2

ℓ )

8
> 0 , (4.4a)

c3,r :=
αr (1− α2

r)

6
< 0 , c4,r :=

α2
r (1− α2

r)

8
> 0 . (4.4b)

We then define the following two functions1 Aℓ and Ar on R× R+∗ as follows. For η > 0, we set:

∀ (x, y) ∈ R× R+∗ , Aℓ(x, y) :=
1

2π

∫
R
ex (η+i θ) e−c3,ℓ y (η+i θ)3 e−c4,ℓ y (η+i θ)4 dθ

η + i θ
, (4.5a)

Ar(x, y) :=
1

2π

∫
R
ex (η+i θ) e−c3,r y (η+i θ)3 e−c4,r y (η+i θ)4 dθ

η + i θ
, (4.5b)

where both definitions (4.5a) and (4.5b) make sense since c4,ℓ and c4,r are positive. The definitions (4.5)
are shown to be independent of η > 0 thanks to the Cauchy formula for holomorphic functions. Eventually,
we introduce two other functions Mℓ and Mr on R+∗ × R× R+∗ as follows:

∀ (c, x, y) ∈ R+∗ × R× R+∗ , Mℓ(c, x, y) :=



1

y1/3
exp

(
− c |x|3/2/y1/2

)
, if x ≥ 0,

1

y1/3
, if −y1/3 ≤ x ≤ 0,

1

|x|1/4 y1/4
exp

(
− c x2/y

)
, if x ≤ −y1/3,

(4.6a)

Mr(c, x, y) :=



1

y1/3
exp

(
− c |x|3/2/y1/2

)
, if x ≤ 0,

1

y1/3
, if 0 ≤ x ≤ y1/3,

1

|x|1/4 y1/4
exp

(
− c x2/y

)
, if y1/3 ≤ x.

(4.6b)

These functions encode the bounds for the free Green’s functions associated with the convolution operators
Lℓ and Lr, as recalled in Appendix A (see for instance Corollary A.1).

1The letter A refers to “activation” in analogy with [6].

52



A crucial property for what follows is that both Mℓ and Mr are non-increasing with respect to their
first argument. When various positive constants c1, c2, . . . appear, we can always use the largest function
Mr(mini ci, ·, ·) as an upper bound for all functions Mr(ci, ·, ·). This will be used repeatedly in order to
avoid using specific notations for the various small positive constants c that appear.

Our main result for the Green’s function of the operator L reads as follows.

Theorem 4.1 (The Green’s function of the linearized numerical scheme). Let the weak solution (2.2)
satisfy the Rankine-Hugoniot condition (2.3) and the entropy inequalities (2.4). Let the parameter λ satisfy
the CFL condition (2.12) and let Assumption 1 be satisfied. Then there exist some positive constants C
and c such that, for any j0 ≤ 0, there holds:

∀ (n, j) ∈ N∗ × Z ,
∣∣G n(j, j0) − Hj Aℓ(j0 + nαℓ, n)

∣∣ ≤CMℓ (c, j0 − j + nαℓ, n) 1j≤0

+ C e−c |j|Mℓ (c, j0 + nαℓ, n) (4.7)

+ C e−c n e−c |j| e−c |j0| ,

and for any j0 ≥ 1, there holds:

∀ (n, j) ∈ N∗ × Z ,
∣∣G n(j, j0) − Hj Ar(−j0 + n |αr|, n)

∣∣ ≤CMr (c, j − j0 + n |αr|, n) 1j≥1

+ C e−c |j|Mr (c,−j0 + n |αr|, n) (4.8)

+ C e−c n e−c |j| e−c |j0| ,

where in both (4.7) and (4.8), Hj is defined in (3.22).

4.3 Decomposing the temporal Green’s function

Throughout this section, we assume that n ≥ 1 is an integer and (j, j0) ∈ Z2 satisfy |j − j0| ≤ n. We
will mainly focus on the case j0 ≥ 1, and present at the end of the section the corresponding results for
the case j0 ≤ 0. From Lemma 4.1, we shall further assume that 1 ≤ j0 ≤ n since for n ≤ j0 − 1 we have
already obtained an explicit expression for the temporal Green’s function in terms of the free Green’s
function associated to Lr (so the final derivation of a bound for the Green’s function will be simpler).

The starting point of our analysis is to exploit our expression for the spatial Green’s function to get

G n(j, j0) = G
n
r (j − j0)1j≥1 +

1

2πi

∫
Γ
en τ G̃j0

j (eτ ) eτ dτ , (4.9)

and define

G̃ n(j, j0) :=
1

2πi

∫
Γ
en τ G̃j0

j (eτ ) eτ dτ .

At this stage, Γ denotes the segment {τ = ρ+ i θ | θ ∈ [−π, π]} for any ρ > 0, but we shall be allowed to
deform Γ thanks to Cauchy’s formula.

Let ε0 > 0 be given by Proposition 3.3 and let C0 > 0 be such for all τ ∈ Bε0(0) one has the uniform
bound: ∣∣τ5Ψr(τ)

∣∣ ≤ C0

(
|Re(τ)|5 + |Im(τ)|5

)
. (4.10)

Then, let ε∗ ∈ (0, ε0) be such that for all ε ∈ (0, ε∗) the following conditions are satisfied:

0 < ε < min

[
1− α2

r

16α2
r C0

,

(
1

3

)1/5
]
, (4.11)
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Figure 4.1: Schematic illustration of the contour Γ and its decomposition into Γout (in red) and Γin (in blue). The
contour Γin can be any path joining −η − i ε to −η + i ε, which remains within Bε(0) and passes to the right of the
origin. The black bullets represent the end points of the contours.

4 |αr|
1− α2

r

[
max

(
|αr|
2

, 1− α2
r

)
+ |αr|C0

]
ε+ ε3 +

3

2
ε8 +

1

3
ε11 +

4α2
r

1− α2
r

C0 ε
21 <

1

8
, (4.12)

1− α2
r

4|αr|

(
1 +

3

2
ε5
)
ε2 +

α2
r

2
C0 ε

20 <
|αr|
4

. (4.13)

Finally, once for all, we fix ε ∈ (0, ε∗), and we let ηε > 0 be provided by Corollary 3.3 associated to this
ε > 0 and we also set 0 < η < min(ηε, ε

5).
We can now proceed by choosing an appropriate contour Γ in our integral defining G̃ n(j, j0). We

would like to choose the segment {τ = −η + i θ | θ ∈ [−π, π]} but this is not possible right away because
of the pole at the origin, so we shall make a detour on the right of the origin. We thus decompose Γ into
two pieces Γout and Γin where

Γout := {−η + i θ | ε ≤ |θ| ≤ π} ,

and Γin is any path joining −η − i ε to −η + i ε, which remains within Bε(0) and passes to the right of
the origin. These contours are depicted in Figure 4.1. From Corollary 3.3 in Chapter 3, we infer that∣∣∣∣ 1

2πi

∫
Γout

en τ G̃j0
j (eτ ) eτ dτ

∣∣∣∣ ≤ C e−η n e−c (|j|+|j0|) . (4.14)

Since Γin ⊂ Bε(0) ⊂ Bε0(0), we can use Proposition 3.3 and the expression (3.31) to decompose the
remaining integral as

1

2πi

∫
Γin

en τ G̃j0
j (eτ ) eτ dτ = G̃ n

1,r(j, j0) + G̃ n
2,r(j, j0) + Rn

1,r(j, j0) ,
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where we have set

G̃ n
1,r(j, j0) := Hj × 1

2πi

∫
Γin

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
) dτ

τ
,

G̃ n
2,r(j, j0) := γrj × 1

2πi

∫
Γin

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
dτ , (4.15)

and

Rn
1,r(j, j0) :=

1

2πi

∫
Γin

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
τ Φr,j(τ) dτ . (4.16)

Thank’s to Cauchy formula for holomorphic functions, it is important to remark that the above integrals
do not depend on Γin, and we shall later on in this section choose specific contours Γin depending on
various regimes between n and j0. In fact, for G̃ n

2,r(j, j0) and Rn
1,r(j, j0), we can select any contour Γin

that joins −η − i ε to −η + i ε and which remains within Bε(0) since both integrand are holomorphic
functions in Bε(0), while for G̃ n

1,r(j, j0) we need to keep the constraint that the contour Γin passes to the
right of the origin because of the pole at the origin of the integrand.

Our next task is to extract the leading order term of G̃ n
1,r(j, j0). For that, we may simply further

decompose
G̃ n
1,r(j, j0) = Hj A n

r (j0) + G̃ n
3,r(j, j0) + Rn

2,r(j, j0),

where we have set

A n
r (j0) :=

1

2πi

∫
Γin

en τ−j0 φr(τ) dτ

τ
, (4.17)

G̃ n
3,r(j, j0) := Hj × j0 × Ψr(0)×

1

2πi

∫
Γin

en τ−j0 φr(τ) τ4 dτ , (4.18)

and

Rn
2,r(j, j0) := Hj × 1

2πi

∫
Γin

en τ−j0 φr(τ)

(
exp

(
j0 τ

5Ψr(τ)
)
− 1− j0 τ

5Ψr(0)

τ

)
dτ . (4.19)

For convenience, we further define Bn
r (j, j0) := G̃ n

2,r(j, j0) + G̃ n
3,r(j, j0) (with the definitions (4.15) and

(4.18)) and Rn
r (j, j0) = Rn

1,r(j, j0)+Rn
2,r(j, j0), such that we have obtained the intermediate decomposition

1

2πi

∫
Γin

en τ G̃j0
j (eτ ) eτ dτ = Hj A n

r (j0) + Bn
r (j, j0) + Rn

r (j, j0) . (4.20)

For future reference, we gather the previous definitions of Bn
r (j, j0) and Rn

r (j, j0):

Bn
r (j, j0) = γrj × 1

2πi

∫
Γin

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
dτ

+Ψr(0)×Hj × j0 ×
1

2πi

∫
Γin

en τ−j0 φr(τ) τ4dτ , (4.21)

Rn
r (j, j0) =

1

2πi

∫
Γin

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
τ Φr,j(τ) dτ

+Hj × 1

2πi

∫
Γin

en τ−j0 φr(τ)

(
exp

(
j0 τ

5Ψr(τ)
)
− 1− j0 τ

5Ψr(0)

τ

)
dτ . (4.22)

We shall now study each term appearing in (4.20) separately.
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Bε(0)

Γ−

Γ+

ΓηΓ−η

−η
× ×0

η
×

−i ε×

i ε
×• •

• •

××
−ε ε

Figure 4.2: In blue: the contour Γin used in the regime n |αr|
2 ≤ j0 ≤ n in Lemma 4.2 and its decomposition into

three parts (Γ−, Γη and Γ+). In red dash: the contour Γ−η. The black bullets represent the end points of the
contours.

4.3.1 Estimates of the leading order term A n
r (j0)

In this subsection, we obtain a sharp estimate on the term A n
r (j0) in (4.17) and prove that it behaves

like an activation function. This clarifies the behavior of the first term in the right-hand side of the
decomposition (4.20). We shall consider here and in all the remainder of this Section, two different
regimes for n and j0:

(i) the main regime : n |αr|
2 ≤ j0 ≤ n;

(ii) the tail : 1 ≤ j0 <
n |αr|

2 .

The main result of this subsection is the following Lemma.

Lemma 4.2. Let n ≥ 1 and let 1 ≤ j0 ≤ n. Let A n
r (j0) be defined in (4.17). Then there exist some

positive constants C and c that are uniform with respect to n and j0 such that with the functions Ar

defined in (4.5b) and Mr defined in (4.6b), there holds:∣∣A n
r (j0) − Ar (−j0 + n |αr|, n)

∣∣ ≤ CMr(c,−j0 + n |αr|, n) + C e−c n−c j0 . (4.23)

Proof. Case (i). We assume that j0 and n satisfy n |αr|
2 ≤ j0 ≤ n. The contour Γin is decomposed into

three parts as depicted in Figure 4.2. From the definition (4.17), we thus have:

A n
r (j0) =

1

2πi

∫
Γ−∪Γ+

en τ−j0 φr(τ)dτ

τ
+

1

2πi

∫
Γη

en τ−j0 φr(τ)dτ

τ
,

where Γη = {η + i θ | |θ| ≤ ε} and Γ± are the two horizontal paths joining −η ± i ε to η ± i ε. Upon
denoting

ω :=
j0 − n |αr|

n
∈
[
−|αr|

2
, 1− |αr|

]
and ζ :=

j0
n

1− α2
r

2α2
r

∈
[
1− α2

r

4 |αr|
,
1− α2

r

2α2
r

]
, (4.24)

56



we get

n τ − j0 φr(τ) =
n

|αr|

[
−ω τ +

ζ

3
τ3 − ζ

4
τ4
]
. (4.25)

Let now τ ∈ Γ− so that τ reads τ = t− i ε with t ∈ [−η, η]. We compute

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4
)

= −ω t− ζ ε2 t+
ζ

3
t3 +

3 ζ

2
ε2 t2 − ζ

4
t4 − ζ

4
ε4 .

Recalling that η ≤ ε5 by assumption, we obtain that

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4
)

≤ −ζ

4
ε4 + |ω| ε5 + ζ ε7 +

3 ζ

2
ε12 +

ζ

3
ε15 ≤ −ζ

8
ε4 , (4.26)

thanks to our smallness assumption (4.12) on ε. Thus, we get the estimate∣∣∣∣ 1

2πi

∫
Γ−

en τ−j0 φr(τ)dτ

τ

∣∣∣∣ ≤ C e
−n

1−α2
r

32α2
r
ε4

= C e−c n .

There is of course a similar estimate on Γ+. Since n dominates j0, one deduces that∣∣∣∣∣A n
r (j0)−

1

2πi

∫
Γη

en τ−j0 φr(τ)dτ

τ

∣∣∣∣∣ ≤ C e−c n−c j0 ,

for constants C, c > 0 that are independent of both n and j0.
Next, we complete the remaining integral along Γη as follows:

1

2πi

∫
Γη

en τ−j0 φr(τ)dτ

τ
=

1

2πi

∫
η+iR

en τ−j0 φr(τ)dτ

τ
− 1

2πi

∫
Γc
η

en τ−j0 φr(τ)dτ

τ
,

where Γc
η := {η + i θ | |θ| > ε}. The reader can verify indeed that the integral along the line η + iR

converges. This is due to the form of the function φr and the fact that j0 is positive. We now estimate
the integral along Γc

η and show that it is a remainder term just like several other contributions that we
have already estimated.

We keep the notation (4.24) and use the relation (4.25). For τ ∈ Γc
η, we write τ = η+ i θ with |θ| > ε,

so that we have

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4
)

= −ω η +
ζ

3
η3 − ζ

4
η4 − ζ

4
θ4 − ζ η

(
1− 3

2
η

)
θ2 .

Since 0 < η ≤ ε5 and ε is assumed to be small enough to satisfy (4.11) and (4.12), we have that

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4
)

≤ −ω η +
ζ

3
η3 − ζ

4
θ4 − ζ η

2
θ2

≤ −ζ

4
ε4 + |ω| ε5 + ζ

3
ε15 − ζ η

2
θ2 ≤ −ζ

8
ε4 − ζ η

2
θ2 ,

and as a consequence, we obtain∣∣∣∣∣ 1

2πi

∫
Γc
η

en τ−j0 φr(τ)dτ

τ

∣∣∣∣∣ ≤ C e
−n

1−α2
r

32α2
r
ε4
∫ +∞

ε
e−n ζη

2
θ2dθ ≤ C e−c n ≤ C e−c n−c j0 ,
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where we have used once again that n dominates j0. As a partial summary, we have obtained that∣∣∣∣A n
r (j0)−

1

2πi

∫
η+iR

en τ−j0 φr(τ)dτ

τ

∣∣∣∣ ≤ C e−c n−c j0 ,

for positive constants C and c that are independent of n and j0 and for integers that satisfy n |αr|
2 ≤ j0 ≤ n.

Cauchy’s formula shows that the value of the integral:

1

2πi

∫
η+iR

en τ−j0 φr(τ)dτ

τ

does not depend on η > 0 so choosing the parametrization τ = |αr| (η + i θ) in the integral, we get:

1

2πi

∫
η+iR

en τ−j0 φr(τ)dτ

τ
=

1

2π

∫
R
e−(j0+nαr) (η+i θ) e j0

1−α2
r

6
(η+i θ)3 ej0 αr

1−α2
r

8
(η+i θ)4 dθ

η + i θ
.

Recalling the definitions (4.4b) and (4.5b), we may write the above integral as

1

2πi

∫
η+iR

en τ−j0 φr(τ)dτ

τ
= Ar

(
−j0 + n |αr|,

j0
|αr|

)
,

so that we have obtained the estimate:∣∣∣∣A n
r (j0)−Ar

(
−j0 + n |αr|,

j0
|αr|

)∣∣∣∣ ≤ C e−c n−c j0 .

With the definition (4.6b), Corollary A.7 in Appendix A can be rewritten as:∣∣∣∣Ar

(
−j0 + n |αr|,

j0
|αr|

)
−Ar (−j0 + n |αr|, n)

∣∣∣∣ ≤ CMr(c,−j0 + n |αr|, n) ,

for suitable constants C and c, since we have assumed n |αr|
2 ≤ j0 ≤ n. We can combine the previous two

estimates and obtain the estimate (4.23) that we were aiming at. This completes the analysis of case (i).

Case (ii). For 1 ≤ j0 < n |αr|
2 , we rather use the residue theorem. In other words, as suggested in

Figure 4.2, we close the contour Γin by using the segment Γ−η and we thus get:

A n
r (j0) = 1 +

1

2πi

∫
Γ−η

en τ−j0 φr(τ)dτ

τ
,

with Γ−η := {−η + i θ | |θ| ≤ ε}. Along Γ−η, for each τ = −η + iθ with |θ| ≤ ε, we keep the notation
(4.24) and compute (recall (4.25)):

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4
)

= ω η − ζ

3
η3 − ζ

4
η4 − ζ

4
θ4 + ζ η

(
1 +

3

2
η

)
θ2 ,

where ω and ζ are defined in (4.24) and now satisfy

ω ∈
(
−|αr|,−

|αr|
2

)
, and ζ ∈

(
0,

1− α2
r

4|αr|

)
.
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As a consequence, we have

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4
)

≤ η

(
−|αr|

2
+ ζ

(
1 +

3

2
ε5
)

ε2
)

≤ −|αr|
4

η ,

thanks to our smallness assumption (4.13) on ε. Thus, we get∣∣∣∣∣ 1

2πi

∫
Γ−η

en τ−j0 φr(τ) dτ

τ

∣∣∣∣∣ ≤ C e−c n−c j0 ,

which implies that
|A n

r (j0)− 1| ≤ C e−c n−c j0 ,

for positive constants C and c that are independent of n and j0, and 1 ≤ j0 <
n |αr|

2 .
Using now Corollary A.6 in Appendix A, we have the estimate:

|1−Ar(−j0 + n |αr|, n)| ≤ C e−c n ≤ C e−c n−c j0 ,

where the second inequality comes from the fact that n dominates j0. Adding the two previous estimates,
we get

|A n
r (j0)−Ar(−j0 + n |αr|, n)| ≤ C e−c n−c j0 .

This completes the analysis of case (ii).

4.3.2 Estimates of the next order term Bn
r (j, j0)

We now focus our attention to the next term Bn
r (j, j0) appearing in the decomposition (4.20). Our main

result is the following.

Lemma 4.3. Let n ≥ 1 and let 1 ≤ j0 ≤ n. Let Bn
r (j, j0) be defined in (4.21). Then there exist some

positive constants C and c that are uniform with respect to n, j ∈ Z and j0 such that with the function
Mr defined in (4.6b), there holds:∣∣Bn

r (j, j0)
∣∣ ≤ C e−c |j|Mr(c,−j0 + n |αr|, n) + C e−c n−c |j|−c j0 . (4.27)

Proof. Once again, we shall consider two different regimes identified in the previous section, namely:

(i) n |αr|
2 ≤ j0 ≤ n;

(ii) 1 ≤ j0 <
n |αr|

2 .

From its definition, Bn
r (j, j0) splits into two parts:

Bn
r (j, j0) = G̃ n

2,r(j, j0) + G̃ n
3,r(j, j0),

with quantities G̃ n
2,r(j, j0) and G̃ n

3,r(j, j0) defined in (4.15) and (4.18). We shall estimate separately each
of theses two terms below for either case (i) or case (ii).
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Case (i). We shall first focus on the term G̃ n
2,r(j, j0) whose expression is given (see (4.15)) by:

G̃ n
2,r(j, j0) = γrj × 1

2πi

∫
Γin

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
dτ ,

where, at first, Γin is a contour that joins −η − i ε to −η + i ε and that passes to the right of the origin
(as depicted in Figure 4.1). Since we now integrate a holomorphic function (there is no longer a pole at
the origin !), we shall feel free to deform Γin and choose any contour that joins −η − i ε to −η + i ε and
remains within the closed square Bε(0) on which Ψr is a holomorphic function. We shall only focus on
the integral that depends on j0 and n since we already know that the factor γrj satisfies an exponential
estimate (see Proposition 3.3).

For n |αr|
2 ≤ j0 ≤ n, we may take Γin as the union of the following paths:

Γin = Γ− ∪ Γ+ ∪ Γ0 ,

where Γ0 := {i θ | |θ| ≤ ε} and Γ± are horizontal paths joining −η ± i ε to ±i ε (this is rather similar to
what is depicted in Figure 4.2 except that we have shifted the right segment to the abscissa 0 instead of
+η). Upon writing as usual now (see (4.24) and (4.25)):

n τ − j0 φr(τ) + j0 τ
5Ψr(τ) =

n

|αr|

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4 +

j0
n
|αr| τ5Ψr(τ)

)
,

and noticing that for any τ ∈ Γ± ⊂ Bε0(0) there holds (see (4.10)):

|τ5Ψr(τ)| ≤ C0 (ε
5 + η5) ,

we have for each τ ∈ Γ±:

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4 +

j0
n
|αr| τ5Ψr(τ)

)
≤ −ζ

4
ε4 + |ω| η + ζ η ε2 +

3 ζ

2
η2 ε2 + |αr|C0 (ε

5 + η5)

≤ −ζ

4
ε4 + (|ω|+ |αr|C0) ε

5 + ζ ε7 +
3 ζ

2
ε12 + |αr|C0 ε

25

≤ −ζ

8
ε4 ,

thanks to condition (4.12) on ε. As a consequence, we have∣∣∣∣ 1

2πi

∫
Γ±

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
dτ

∣∣∣∣ ≤ C e−c n ≤ C e−c n−c j0 ,

since n dominates j0 in this regime.

For the remaining integral along Γ0, we use the parametrization τ = i |αr| θ and we thus get the
expression:

1

2πi

∫
Γ0

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
dτ

=
|αr|
2π

∫ ε
|αr |

− ε
|αr |

exp

(
i (−j0 + n |αr|) θ + i

j0
|αr|

c3,r θ
3 − j0

|αr|
c4,r θ

4 + j0 i θ
5 |αr|5Ψr(i |αr| θ)

)
dθ .
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We can now apply Theorem A.2 from Appendix A, and obtain that there exists some small enough
ε > 0 with ε ≤ ε/|αr| some constants C and c such that for any j0, n ∈ N∗ with n |αr|

2 ≤ j0 ≤ n, there
holds2:∣∣∣∣∫ ε

−ε
exp

(
i (−j0 + n |αr|) θ + i

j0
|αr|

c3,r θ
3 − j0

|αr|
c4,r θ

4 + j0 i θ
5 |αr|5Ψr(i |αr| θ)

)
dθ

∣∣∣∣
≤ CMr

(
c,−j0 + n |αr|,

j0
|αr|

)
.

Since we are in the regime n |αr|
2 ≤ j0 ≤ n, we deduce that we always have an upper estimate

Mr

(
c,−j0 + n |αr|,

j0
|αr|

)
≤ CMr(c,−j0 + n |αr|, n) ,

so that the latter estimate also reads:∣∣∣∣∫ ε

−ε
exp

(
i (−j0 + n |αr|) θ + i

j0
|αr|

c3,r θ
3 − j0

|αr|
c4,r θ

4 + j0 i θ
5 |αr|5Ψr(i |αr| θ)

)
dθ

∣∣∣∣
≤ CMr(c,−j0 + n |αr|, n) .

The only remaining task is to control the integral with respect to θ on the two intervals [−ε/|αr|,−ε] and
[ε, ε/|αr|]. This is entirely similar to what we have already done on the segments Γ± so we feel free to
skip the details. The final estimate on these segments is of exponential type with respect to both n and
j0 (that are of comparable sizes in case (i)). Combining all above estimates on the segments Γ± and on
Γ0, we have obtained the following estimate for G̃ n

2,r(j, j0):∣∣∣G̃ n
2,r(j, j0)

∣∣∣ ≤ C e−c |j|Mr(c,−j0 + n |αr|, n) + C e−c n−c |j|−c j0 ,

for suitable constants C and c and n |αr|
2 ≤ j0 ≤ n (the integer j ∈ Z is arbitrary).

We finally turn our attention to the next term G̃ n
3,r(j, j0) that enters the definition of Bn

r (j, j0). We

recall that G̃ n
3,r(j, j0) is defined as follows:

G̃ n
3,r(j, j0) = Hj ×Ψr(0)× j0 ×

1

2πi

∫
Γin

exp (n τ − j0 φr(τ)) τ
4dτ ,

and we shall mainly focus our efforts on the above integral on the right-hand side since we already know
that Hj decays exponentially with respect to j, and Ψr(0) is just a constant factor. We still focus here

on case (i), that is on the regime n |αr|
2 ≤ j0 ≤ n. It is important to observe that we need to absorb the

factor j0 that is unbounded.
Since we integrate a holomorphic function, we may use Cauchy’s formula and deform the contour Γin.

We therefore choose Γin to be the union of the paths Γ0 := {i θ | |θ| ≤ ε} and Γ± which are horizontal
paths joining −η± i ε to ±i ε, just as we did above for the analysis of the term G̃ n

2,r(j, j0). For the integrals

2With the notation of Theorem A.2, we use x := −j0 +n |αr| and y := j0/|αr|. In case (i), we are in a regime where |x|/y
is bounded and y is bounded from below so that we can tune the constant C.
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along Γ±, we may use again the estimate (4.26) and combine with a uniform bound for the factor τ4.
Since n and j0 are comparable in this first regime, we readily obtain the estimate:∣∣∣∣j0 × 1

2πi

∫
Γ±

exp (n τ − j0 φr(τ)) τ
4 dτ

∣∣∣∣ ≤ C j0 e
−c n−c j0 ≤ C e−c n−c j0 .

For the remaining integral along Γ0, we add and subtract to get:

j0 ×
1

2πi

∫
Γ0

exp (n τ − j0 φr(τ)) τ
4 dτ

= j0 ×
1

2πi

∫
iR

exp (n τ − j0 φr(τ)) τ
4 dτ − j0 ×

1

2πi

∫
Γc
0

exp (n τ − j0 φr(τ)) τ
4 dτ ,

with rather obvious notation. For τ = i θ ∈ Γc
0, we have (see the definition (3.30)):

Re
(
n τ − j0 φr(τ)

)
= −c j0 θ

4 ,

for some constant c > 0, so we have the straightforward estimate:∣∣∣∣∣ j0 × 1

2πi

∫
Γc
0

exp (n τ − j0 φr(τ)) τ
4 dτ

∣∣∣∣∣ ≤ C j0

∫ +∞

ε
θ4 e−c j0 θ4 dθ ≤ C j0 e

−c j0 ≤ C e−c j0 .

Since j0 and n are comparable in case (i), we can collect all the above estimates and already obtain the
estimate:∣∣∣∣G̃ n

3,r(j, j0) − Hj ×Ψr(0)× j0 ×
1

2πi

∫
iR

exp (n τ − j0 φr(τ)) τ
4 dτ

∣∣∣∣ ≤ C e−c n−c |j|−c j0 ,

for suitable uniform constants C and c, and integers n, j0, j that satisfy n |αr|
2 ≤ j0 ≤ n and j ∈ Z.

It thus only remains to estimate the integral over the imaginary axis for which we refer to the definition
(A.49) in Appendix A of the function G4 (the constants c3 and c4 should be taken to be c3,r and c4,r since
we deal here with the right state of the shock). Using the parametrization τ = i |αr| θ in the integral, we
get the relation:

j0 ×
1

2πi

∫
iR

exp (n τ − j0 φr(τ)) τ
4 dτ = |αr|5 j0G4

(
−j0 + n |αr|,

j0
|αr|

)
,

and we can then use the estimates provided by Theorem A.4 to get3:∣∣∣∣j0 × 1

2πi

∫
iR

exp (n τ − j0 φr(τ)) τ
4 dτ

∣∣∣∣ ≤ CMr

(
c,−j0 + n |αr|,

j0
|αr|

)
≤ CMr (c,−j0 + n |αr|, n) ,

since we have n |αr|
2 ≤ j0 ≤ n. Collecting all the above estimates for the various contributions in the

decomposition of G̃ n
3,r(j, j0), we end up with the estimate:∣∣∣G̃ n

3,r(j, j0)
∣∣∣ ≤ C e−c |j|Mr(c,−j0 + n |αr|, n) + C e−c n−c |j|−c j0 ,

for n |αr|
2 ≤ j0 ≤ n, j ∈ Z, and for suitable constants C and c that are uniform with respect to n, j and

j0. This completes the analysis of case (i) by combining with the estimate for G̃ n
2,r(j, j0).

3The fact that we consider the function G4 is crucial here since 4 is the first index where the gain in the estimates of
Theorem A.4 is sufficient to absorb the factor j0.
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Case (ii). In the case 1 ≤ j0 ≤ n |αr|
2 , we simply take Γin = Γ−η (see Figure 4.2) for evaluating the

integrals arising in the definition of both G̃ n
2,r(j, j0) and G̃ n

3,r(j, j0). This is legitimate because we integrate

holomorphic functions on the closed square Bε(0) so we can apply Cauchy’s formula. Reproducing similar
computations as in the previous subsection, we get that for each τ = −η+i θ ∈ Γ−η (with therefore |θ| ≤ ε),
there holds:

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4 +

j0
n
|αr| τ5Ψr(τ)

)
≤ η

(
−|αr|

2
+ ζ

(
1 +

3

2
ε5
)

ε2 +
α2
r

2
C0 ε

20

)
− θ4

(
ζ

4
− |αr|C0 |θ|

)
≤ −|αr|

4
η ,

and similarly:

Re

(
−ω τ +

ζ

3
τ3 − ζ

4
τ4
)

≤ −|αr|
4

η ,

where once again we have used conditions (4.11) and (4.12) on ε and our choice for η. By applying the
triangle inequality (with a uniform bound for τ ∈ Γ−η), we deduce that∣∣∣∣∣ 1

2πi

∫
Γ−η

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
dτ

∣∣∣∣∣ ≤ C e−c n ≤ C e−c n−c j0 ,

and ∣∣∣∣∣j0 1

2πi

∫
Γ−η

exp (n τ − j0 φr(τ)) τ
4 dτ

∣∣∣∣∣ ≤ C j0 e
−c n−c j0 ≤ C e−c n−c j0 ,

where we use once again the fact that n dominates j0. As a consequence, using the exponential estimate
of γrj from Proposition 3.3 and the fact that Hj is also exponentially decaying, we obtain the uniform
exponential estimate:

|Bn
r (j, j0)| C e−c n−c |j|−c j0 ,

for 1 ≤ j0 ≤ n |αr|
2 and j ∈ Z. This completes the analysis of case (ii).

4.3.3 Estimates of the remainder term Rn
r (j, j0)

In this section, we shall prove some estimates on the remainder term Rn
r (j, j0) whose expression is gathered

in (4.22). We recall that Rn
r (j, j0) is decomposed into Rn

r (j, j0) = Rn
1,r(j, j0) +Rn

2,r(j, j0) with Rn
1,r(j, j0)

and Rn
2,r(j, j0) defined in (4.16) and (4.19). In both (4.16) and (4.19), the path Γin is any path joining

−η − i ε to −η + i ε which remains in Bε(0) since the integrand is holomorphic with respect to τ on that
set. We further recall that the sequence (Hj)j∈Z in (3.22) is exponentially decreasing and the sequence of
holomorphic functions (Φr,j)j∈Z satisfies the exponential bound stated in Proposition 3.3, uniformly with

respect to τ ∈ Bε0(0). Restricting to the smaller set Bε(0) ⊂ Bε0(0), we thus have

|Hj | + |Φr,j(τ)| ≤ C e−c |j| ,

for all j ∈ Z and τ ∈ Bε(0) with uniform constants C, c > 0. Our main result in this section is the
following.
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Proposition 4.1. There exist C, c > 0 such that for all n ∈ N∗ and (j, j0) ∈ Z2 such that 1 ≤ j0 ≤ n,
one has:

|Rn
r (j, j0)| ≤ C



1

n1/4

e−c |j|

n1/3
exp

(
−c

(
j0 − n |αr|

n1/3

)3/2
)

, if j0 − n |αr| ≥ 0,

e−c |j|

n7/12
, if −n1/3 |αr| ≤ j0 − n |αr| ≤ 0,

1

n1/8

e−c |j|

n1/2
exp

(
−c

(
|j0 − n |αr||

n1/2

)2
)

, if j0 − n |αr| ≤ −n1/3 |αr|.

In particular, we have:
|Rn

r (j, j0)| ≤ C e−c |j|Mr(c,−j0 + |αr|n, n) ,

with the function Mr defined in (4.6b).

Proof. We will mainly focus on the remainder term Rn
1,r(j, j0) and briefly explain how to recover similar

estimates for the second term Rn
2,r(j, j0) in the last part of this section. We shall decompose the proof

into several steps, which corresponds to different regimes for ω, which we recall is defined as

ω :=
j0 − n |αr|

n
∈ (−|αr|, 1− |αr|) , when 1 ≤ j0 ≤ n .

More precisely, we define the following three regimes:

(I) |ω| ≤ n−2/3|αr|, (II) n−2/3|αr| ≤ ω ≤ 1− |αr|, (III) − |αr| ≤ ω ≤ −n−2/3|αr| .

Case (I) – Uniform bound. For |ω| ≤ n−2/3|αr|, we provide a uniform bound for Rn
r (j, j0) using

classical results from oscillatory integrals (see Proposition A.1 in Appendix A for similar arguments).

Lemma 4.4. There exist constants C, c > 0 such that for all n ≥ 1, 1 ≤ j0 ≤ n with |j − j0| ≤ n one has∣∣Rn
1,r(j, j0)

∣∣ ≤ C

n7/12
e−c |j|,

for |ω| ≤ n−2/3|αr|.

Proof. Let us first observe that for |ω| ≤ n−2/3|αr|, there holds:∣∣∣∣ j0
n |αr|

− 1

∣∣∣∣ ≤ n−2/3 ,

so for n ≥ 2, we get a uniform bound from below j0/n ≥ c > 0. The case n = 1 should be dealt with
separately but it is far easier since we have j0 = 1 and j ∈ {0, 1, 2} so we only deal with finitely many
integrals then. We shall therefore assume n ≥ 2 from now on and use that the quantity ζ defined in (4.24)
is uniformly bounded from below by a positive constant.

We take Γin as the union of the following paths:

Γin = Γ− ∪ Γ+ ∪ Γ0,
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where Γ0 = {i θ | |θ| ≤ ε} and Γ± are horizontal paths joining −η ± i ε to ±i ε. Upon writing as usual
now

n τ − j0 φr(τ) + j0 τ
5Ψr(τ) =

n

|αr|

(
−ωτ +

ζ

3
τ3 − ζ

4
τ4 +

j0
n
|αr|τ5Ψr(τ)

)
,

we have already proved that for each τ ∈ Γ±, there holds:

Re

(
−ωτ +

ζ

3
τ3 − ζ

4
τ4 +

j0
n
|αr|τ5Ψr(τ)

)
≤ −ζ

8
ε8,

thanks to the smallness condition (4.12) on ε. As a consequence, we get∣∣∣∣ 1

2πi

∫
Γ±

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
τ Φr,j(τ)dτ

∣∣∣∣ ≤ C e−c |j|−c j0 .

But since |ω| ≤ n−2/3|αr|, we readily get e−j0 ≤ Ce−c n, from which we deduce that∣∣∣∣ 1

2πi

∫
Γ±

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
τ Φr,j(τ)dτ

∣∣∣∣ ≤ C
e−c |j|

n7/12
.

Along the remaining integral on the vertical segment Γ0, we have

1

2πi

∫
Γ0

exp (n τ − j0 φr(τ) + j0 τ
5Ψr(τ)

)
τ Φr,j(τ)dτ

=
1

2π

∫ ε

−ε
exp

(
n

|αr|

[
−ωi θ − ζ

3
i θ3 − ζ

4
θ4 +

j0
n
|αr|i θ5Ψr(i θ)

])
θΦr,j(i θ) dθ .

We introduce two functions (that depend on (j, j0, n)):

h(θ) := exp

(
−ni

(
ω

|αr|
θ +

ζ

3|αr|
θ3
))

, g(θ) := exp

(
−n

ζ

4|αr|
θ4 + ni

2ζα2
r

1− α2
r

θ5Ψr(iθ)

)
θΦr,j(i θ).

Using [24, Lemma 3.1], we have the estimate∣∣∣∣∫ ε

−ε
h(θ) g(θ) dθ

∣∣∣∣ ≤
(

sup
x∈[−ε,ε]

∣∣∣∣∫ x

−ε
h(θ)dθ

∣∣∣∣
) (

∥g∥L∞([−ε,ε]) + ∥g′∥L1([−ε,ε])

)
. (4.28)

By an application of the van der Corput Lemma, there exists a constant C > 0, independent of ω and n,
such that4

∀x ∈ [−ε, ε],

∣∣∣∣∫ x

−ε
h(θ)dθ

∣∣∣∣ ≤ C

n1/3
.

Furthermore, with our choice (4.11) of ε > 0, we have

∀θ ∈ [−ε, ε], |g(θ)| ≤ C |θ| e−n ζ
8|αr |

θ4
e−c |j| .

Differentiating the expression for g(θ), we also get the bound

∀θ ∈ [−ε, ε],
∣∣g′(θ)∣∣ ≤ C

(
1 + n|θ|4

)
e
−n ζ

8|αr |
θ4
e−c |j|,

4This holds because the parameter ζ is uniformly bounded from below in the considered regime.
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such that we get that

∥g′∥L1([−ε,ε]) ≤
C

n1/4
e−c |j|,

since ζ is uniformly positive in the considered regime. Using estimate (4.28), we arrive at the final bound∣∣Rn
1,r(j, j0)

∣∣ ≤ C

n1/3+1/4
e−c |j|,

for some constants C, c > 0 independent of n, j0 and j. This concludes the proof of the lemma.

Case (II) – Fast decaying tail. We now turn our attention to the second regime (II) where n−2/3|αr| <
ω ≤ 1− |αr| implying that necessarily j0 − n |αr| > 0 where we expect to observe a fast decaying bound
for Rn

1,r(j, j0).

Lemma 4.5. There exist constants C, c > 0 such that for all n ≥ 1, 1 ≤ j0 ≤ n with |j − j0| ≤ n one has

∣∣Rn
1,r(j, j0)

∣∣ ≤ C
e−c |j|

n2/3

(
j0 − n |αr|

n1/3

)−1/2

exp

(
−c

(
j0 − n |αr|

n1/3

)3/2
)
,

as long as n−2/3|αr| ≤ ω ≤ 1− |αr|.

Proof. We first note that when ω > 0, one has 1−α2
r

2|αr| < ζ ≤ 1−α2
r

2α2
r

so ζ is uniformly positive. With the

constant C0 > 0 in (4.10) (associated to ε0 given by Proposition 3.3), we choose ωε ∈ (0, 1 − |αr|) small
enough such that the following inequalities are satisfied

ωε ≤
1− α2

r

2|αr|
ϵ2,

√
ωε ≤

1

8|αr|C0

(
1− α2

r

2|αr|

)3/2

,
√
ωε ≤

1

3

(
1− α2

r

2|αr|

)1/2

. (4.29)

Next, we fix n−2/3|αr| ≤ ω ≤ ωε. We introduce a family of parametrized curves (see5 Figure 4.3 for an
illustration) indexed by ω as follows

Γ− := {t− i ε | t ∈ [−η, 0]} , Γ+ := {−t+ i ε | t ∈ [0, η]} , Γω :=

{√
ω

ζ
+ i θ | θ ∈ [−ε, ε]

}
,

together with

Γω
> :=

{
t− i ε | t ∈

[
0,

√
ω

ζ

]}
, Γω

< :=

{√
ω

ζ
− t+ i ε | t ∈

[
0,

√
ω

ζ

]}
.

Along Γ±, we have already proved that∣∣∣∣ 1

2πi

∫
Γ±

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
τ Φr,j(τ) dτ

∣∣∣∣ ≤ C e−c |j|−c j0 .

Next, we remark that since 0 < ω ≤ 1− |αr| we deduce that

−1 ≤ − 1√
1− |αr|

(
j0 − n |αr|

n

)1/2

,

5The reader may compare our choice with the one made in [9] that corresponds to the parametrization of the Green’s
function for the Cauchy problem. See also Appendix A. The difference here is that we rather parametrize all curves in terms
of the time frequency rather than with respect to the space frequency.
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Bε(0)

Γ−

Γ+ Γω
<

Γω
>

Γω

−η
× ×0

√
ω
ζ

×

−i ε•

i ε
••

•

•

•

× ×
−ε

ε

Figure 4.3: In blue: the contour Γin and its decomposition into five parts (Γ−, Γ
ω
>, Γω, Γ

ω
< and Γ+) in the regime

where n−2/3|αr| ≤ ω ≤ 1− |αr|. The black bullets represent the end points of the contours.

and thus

−j0 = −n |αr| − (j0 − n |αr|) ≤ −n |αr| −
1√

1− |αr|

(
j0 − n |αr|

n1/3

)3/2

.

As a consequence, we have obtained∣∣∣∣ 1

2πi

∫
Γ±

exp
(
n τ − j0 φr(τ) + j0 τ

5Ψr(τ)
)
τ Φr,j(τ) dτ

∣∣∣∣ ≤ C e−c n−c |j| exp

(
−c

(
j0 − n |αr|

n1/3

)3/2
)

,

which can be subsumed into our desired bound.
Next, we handle the contributions along Γω

> and Γω
<. For example, in the former case, upon denoting

Λr(τ) := n τ − j0φr(τ) + j0 τ
5Ψr(τ), we have that for each τ = t− iϵ ∈ Γω

> with t ∈
[
0,
√

ω
ζ

]
,

Re (Λr (t− i ε)) ≤ n

|αr|

[
−ωt+

ζ

3

(
t3 − 3ε2t

)
− ζ

4

(
t4 + ε4 − 6ε2t2

)
+ |αr|C0(t

5 + ε5)

]
≤ n

|αr|

[
−t

(
2

3
ω + ζε2

(
1− 3

2

√
ω

ζ

))
− t4

(
ζ

4
− |αr|C0t

)
− ε4

(
ζ

4
− |αr|C0ε

)]
≤ n

|αr|

[
−t

(
2

3
ω +

ζ

2
ε2
)
− ζ

8
ε4
]
,

since from (4.11) one has 8|αr|C0ε < ζ and from (4.29) one has
√
ω <

√
ζ/3 and 8|αr|C0

√
ω ≤ ζ3/2.

Hence,∣∣∣∣∣ 1

2πi

∫
Γω
>

exp
(
n τ − j0φr(τ) + j0 τ

5Ψr(τ)
)
τΦr,j(τ)dτ

∣∣∣∣∣ ≤ Ce
−n ζε4

8|αr |
−c |j|

∫ √
ω
ζ

0
e
−nt ζ

2|αr |
ε2
dt

≤ Ce−nc−c |j| exp

(
−c

(
j0 − n |αr|

n1/3

)3/2
)
.
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We finally turn our attention to the last integral along Γω. We note that in that case, for each θ ∈ [−ε, ε],
one has

Re

(
Λr

(√
ω

ζ
+ iθ

))
≤ n

|αr|

(
− 2

3
√
ζ
ω3/2 − ω2

ζ2

(
ζ

4
− |αr|C0

√
ω

ζ

)
−
√
ω

(√
ζ − 3

2

√
ω

)
θ2
)

− n

|αr|

(
ζ

4
− |αr|C0ε

)
θ4

≤ n

|αr|

(
− 2

3
√
ζ
ω3/2 − 3

√
ζ

4

√
ωθ2

)
,

thanks to our assumption (4.29). As a consequence, we get∣∣∣∣ 1

2πi

∫
Γω

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣ ≤ Ce
− 2n

3|αr |
√
ζ
ω3/2−c |j|

∫ ε

−ε

(√
ω + |θ|

)
e
− 3

√
ζ

4|αr |
n
√
ωθ2

dθ

≤ Ce
− 2n

3|αr |
√
ζ
ω3/2−c |j|

(
ω1/4

n1/2
+

1

nω1/2

)

≤ C
e−c |j|

n2/3

(
|1− j0| − n |αr|

n1/3

)−1/2

exp

(
−c

(
j0 − n |αr|

n1/3

)3/2
)
.

We now move to the case where ωε ≤ ω ≤ 1− |αr|. We follow the same strategy and use the contours
Γ±, Γωε and Γωε

≶ independently of ω. We readily notice that with our careful choice of ωε all the previous
computations remain valid and thus we also have in that case

∣∣Rn
1,r(j, j0)

∣∣ ≤ ∣∣∣∣ 1

2πi

∫
Γ±

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣+
∣∣∣∣∣ 1

2πi

∫
Γωε
> ∪Γωε

<

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣∣
+

∣∣∣∣∣ 1

2πi

∫
Γωε

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣∣
≤ C

[
e−c j0−c |j| + e−cn−c |j| + e

− n
|αr |

(
ω−ωε

ζ

)√
ωε
ζ
−c |j|

(
ω
1/4
ε

n1/2
+

1

nω
1/2
ε

)]

≤ C
e−c |j|

n2/3

(
j0 − n |αr|

n1/3

)−1/2

exp

(
−c

(
j0 − n |αr|

n1/3

)3/2
)
,

since ωε ≤ ω ≤ 1− |αr|. This concludes the proof of the lemma.

Case (III) – Oscillatory tail. We finally move to the last regime (III) where −|αr| < ω ≤ −n−2/3|αr|.
The analysis is further split into two parts.

Lemma 4.6. There exist constants ω∗ > 0 and C, c > 0 such that for each 1 ≤ j0 ≤ n and |j − j0| ≤ n,
on has ∣∣Rn

1,r(j, j0)
∣∣ ≤ C

e−c |j|

n5/8

(
1

n1/8

(
|j0 − n |αr||

n1/2

)−1/2

+

(
|j0 − n |αr||

n1/2

)1/4
)

e
−c

(
|j0−n |αr ||

n1/2

)2

,

as long as −ω∗ < ω ≤ −n−2/3|αr|.
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Proof. We let ω∗ ∈ (0, |αr|/3) be fixed as follows:

ω∗ ≤
1− α2

r

3|αr|
(
−1 +

√
1 + 4ε

)2
, |αr|C0

√
ω∗ ≤

1

8

(
1− α2

r

3|αr|

)3/2

,
√
ω∗ ≤

1

3

(
1− α2

r

3|αr|

)1/2

. (4.30)

As a consequence, for each |ω| ∈ [n−2/3|αr|, ω∗], one has

1− α2
r

3|αr|
=

2|αr|
3

1− α2
r

2α2
r

< (|αr| − ω∗)
1− α2

r

2α2
r

≤ j0
n

1− α2
r

2α2
r

= ζ.

Defining:

χω :=
|ω|
2ζ

+

√
|ω|
ζ

> 0,

the above conditions imply in particular that

χω ≤ ε

4
, |αr|C0

√
|ω|
ζ

≤ ζ

8
,

√
|ω|
ζ

≤ 1

3
, with |ω| ∈ [n−2/3, ω∗].

We then introduce the following contours which are illustrated in Figure 4.4 (compare again with the
choice made in [9] that is entirely similar):

• two horizontal contours Γ± defined as

Γ− = {t− i ε | t ∈ [−η, 0]} , Γ+ = {−t+ i ε | t ∈ [0, η]} ;

• two horizontal contours Γω
≶ defined as

Γω
> =

{
t− i ε | t ∈

[
0,

√
|ω|
ζ

]}
, Γω

< =

{√
|ω|
ζ

− t+ i ε | t ∈

[
0,

√
|ω|
ζ

]}
;

• two vertical contours Γv
± defined as

Γv
− =

{√
|ω|
ζ

+ i θ | θ ∈

[
−ε,−χω −

√
|ω|
ζ

]}
, Γv

+ =

{√
|ω|
ζ

+ i θ | θ ∈

[
χω +

√
|ω|
ζ
, ε

]}
;

• two oblique contours Γo
±

Γo
− =

{
−|ω|
2ζ

− i

√
|ω|
ζ

+ te3iπ/4 | t ∈

[
−
√
2χω,

√
2

√
|ω|
ζ

]}
,

Γo
+ =

{
−|ω|
2ζ

+ i

√
|ω|
ζ

+ teiπ/4 | t ∈

[
−
√
2

√
|ω|
ζ
,
√
2χω

]}
.
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Bε(0)
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•
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Γ−

Γ+ Γω
<

Γω
>

Γv
−

Γv
+

Γo
−

Γo
+

−η 0

√
|ω|
ζ

−χω
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•

•

Figure 4.4: In blue: the contour Γin within Bε(0) and its decomposition into eight parts (Γ−, Γ
ω
>, Γ

v
−, Γ

0
−, Γ

0
+, Γ

+
v ,

Γω
< and Γ+) in the regime where −ω∗ < ω ≤ −n−2/3|αr|. The two red dots correspond to the approximate saddles

of the phase |ω|τ + ζ
3τ

3 − ζ
4τ

4 in the complex plane and the black bullets represent the end points of the contours.

Using Cauchy’s formula, we write

Rn
r (j, j0) =

1

2πi

∫
Γ−∪Γ+

eΛr(τ)τΦr,j(τ)dτ +
1

2πi

∫
Γω
>∪Γω

<

eΛr(τ)τΦr,j(τ)dτ,

+
1

2πi

∫
Γv
−∪Γv

+

eΛr(τ)τΦr,j(τ)dτ +
1

2πi

∫
Γo
−∪Γo

+

eΛr(τ)τΦr,j(τ)dτ.

As in the preceding case, we have that the uniform bound∣∣∣∣ 1

2πi

∫
Γ−∪Γ+

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣ ≤ C e−c j0−c |j|,

and remark that since |ω| ∈ [n−2/3|αr|, ω∗], an exponential bound in j0 leads to an exponential bound in
both j0 and n.

Bounds along Γω
≶. For each τ = t− i ε ∈ Γω

> with t ∈
[
0,
√

|ω|
ζ

]
,

Re (Λr (t− i ε)) ≤ n

|αr|

[
|ω|t+ ζ

3

(
t3 − 3ε2t

)
− ζ

4

(
t4 + ε4 − 6ε2t2

)
+ |αr|C0(t

5 + ε5)

]
≤ n

|αr|

[
t

(
4

3
|ω| − ζε2

(
1− 3

2

√
|ω|
ζ

))
− t4

(
ζ

4
− |αr|C0t

)
− ε4

(
ζ

4
− |αr|C0ε

)]

≤ n

|αr|

[
t

(
4

3
|ω| − ζ

2
ε2
)
− ζ

8
ε4
]
≤ − n

|αr|

[
t
ζ

6
ε2 +

ζ

8
ε4
]
.
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Thus, we obtain∣∣∣∣∣ 1

2πi

∫
Γω
>

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣∣ ≤ Ce
−n ζε4

8|αr |
−c |j|

∫ √
|ω|
ζ

0
e
−n ζ

6|αr |
t
dt ≤ Ce−c n−c |j| .

By symmetry, a similar estimate holds along Γω
<. As for the bounds along Γ±, we remark that since

|ω| ∈ [n−2/3|αr|, ω∗], an exponential bound in n leads to an exponential bound in both j0 and n.

Bounds along Γv
±. For each θ ∈

[
−ε,−χω −

√
|ω|
ζ

]
, we have that

Re

(
Λr

(√
|ω|
ζ

+ iθ

))
≤ n

|αr|

(
4

3
√
ζ
|ω|3/2 −

√
|ω|
(√

ζ − 3

2

√
|ω|
)
θ2 −

(
ζ

4
− |αr|C0

)
θ4
)

− n

|αr|
|ω|2

ζ2

(
ζ

4
− |αr|C0

√
|ω|
ζ

)
.

Thanks to our careful choice for ε and ω∗, we get that

Re

(
Λr

(√
|ω|
ζ

+ iθ

))
≤ n

|αr|

(
4

3
√
ζ
|ω|3/2 −

√
ζ

2

√
|ω|θ2

)
− n|ω|2

8|αr|ζ
, θ ∈

[
−ε,−χω −

√
|ω|
ζ

]
.

As a consequence, we obtain∣∣∣∣∣ 1

2πi

∫
Γv
−

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣∣ ≤ C e
4

3
√
ζ|αr |

n|ω|3/2− n|ω|2
8|αr |ζ

−c |j|
∫ −χω−

√
|ω|
ζ

−ε
(
√
|ω|+ |θ|)e−

√
ζ

2|αr |

√
|ω|nθ2

dθ .

The last integral on the right-hand side should be estimated carefully since there is an exponentially
growing factor in front of the integral. We use Lemma A.2 in Appendix A and obtain the bound:

∫ −χω−
√

|ω|
ζ

−ε
e
−

√
ζ

2|αr |

√
|ω|nθ2

dθ ≤
∫ +∞

2
√

|ω|
ζ

e
−

√
ζ

2|αr |

√
|ω|nθ2

dθ ≤ C

n |ω|
e
− 2√

ζ|αr |
n|ω|3/2

,

and the analogous bound:

∫ −χω−
√

|ω|
ζ

−ε
|θ| e−

√
ζ

2|αr |

√
|ω|nθ2

dθ ≤
∫ +∞

2
√

|ω|
ζ

θ e
−

√
ζ

2|αr |

√
|ω|nθ2

dθ ≤ C

n
√
|ω|

e
− 2√

ζ|αr |
n|ω|3/2

,

This leads to the final estimate:∣∣∣∣∣ 1

2πi

∫
Γv
−

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣∣ ≤ C
e
− 2

3
√
ζ|αr |

n|ω|3/2− n|ω|2
8|αr |ζ

−c |j|

n
√
|ω|

,

since we have |ω| ≤ ω∗. A similar estimate holds along Γv
+.
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Bounds along Γo
±. We finally handle the contributions along the oblique contours Γo

±. We focus
first on Γo

−. For each τ ∈ Γo
−, we have the parametrization

τ(t) = −|ω|
2ζ

− i

√
|ω|
ζ

+ te3iπ/4, t ∈

[
−
√
2χω,

√
2

√
|ω|
ζ

]
,

and we compute that

|ω|τ(t) + ζ

3
τ(t)3 − ζ

4
τ(t)4 =

4∑
k=0

pk(|ω|)tk,

where each pk depends on |ω| only and is a complex valued function whose expansions as |ω| → 0 is given
by

Re(p0(|ω|)) = − 1

4ζ
|ω|2 +O(|ω|3), Im(p0(|ω|)) = − 2

3
√
ζ
|ω|3/2 +O(|ω|5/2), p1(|ω|) = O(|ω|2),

Re(p2(|ω|)) = −
√
ζ|ω|+O(|ω|3/2), Im(p2(|ω|)) = O(|ω|),

p3(|ω|) =
ζ

3
eiπ/4 +O(|ω|1/2), p4(|ω|) =

ζ

4
.

As a consequence, we get that for each t ∈
[
−
√
2χω,

√
2
√

|ω|
ζ

]
4∑

k=1

Re(pk(|ω|))tk = −
√
ζ|ω|t2 + ζ

3
√
2
t3 +Re(p1(|ω|))︸ ︷︷ ︸

O(|ω|2)

t+
(
Re(p2(|ω|)) +

√
ζ|ω|

)
︸ ︷︷ ︸

O(|ω|3/2)

t2

+

(
Re(p3(|ω|))−

ζ

3
√
2

)
︸ ︷︷ ︸

O(|ω|1/2)

t3 +
ζ

4
t4,

together with

Re(p0(|ω|)) +
j0
n
|αr|Re

(
τ(t)5Ψr(τ(t))

)
≤ − 1

4ζ
|ω|2 +

(
Re(p0(|ω|)) +

1

4ζ
|ω|2

)
︸ ︷︷ ︸

O(|ω|3)

+|αr|C0|τ(t)|5.

Upon decreasing further ω∗ if necessary, we get the existence of a constant c > 0 independent of |ω| and
n, such that

4∑
k=1

Re(pk(|ω|))tk ≤ −c|αr|
√

|ω|t2, Re(p0(|ω|)) +
j0
n
|αr|Re

(
τ(t)5Ψr(τ(t))

)
≤ −c|αr||ω|2 ,

for all t ∈
[
−
√
2χω,

√
2
√

|ω|
ζ

]
. As a consequence, we have

∣∣∣∣∣ 1

2πi

∫
Γo
−

eΛr(τ)τΦr,j(τ)dτ

∣∣∣∣∣ ≤ C
√
|ω|e−c n|ω|2−c |j|

∫ √
2
√

|ω|
ζ

−
√
2χω

e−c n
√

|ω|t2dt.
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Next, we remark that ∫ √
2
√

|ω|
ζ

−
√
2χω

e−c n
√

|ω|t2dt ≤ C

n1/2|ω|1/4
, n−2/3|αr| ≤ |ω| ≤ ω∗,

such that ∣∣∣∣∣ 1

2πi

∫
Γo
−

eΛr(τ)τ5Φr,j(τ)dτ

∣∣∣∣∣ ≤ C
|ω|1/4

n1/2
e−c n|ω|2−c |j|, n−2/3|αr| ≤ |ω| ≤ ω∗.

And a similar estimate holds along Γo
+.

Conclusion. In summary, combining all the bounds for the eight segments and retaining only the
“worst” contributions, we have obtained the estimate

∣∣Rn
1,r(j, j0)

∣∣ ≤ C

(
1

n
√
|ω|

+
|ω|1/4

n1/2

)
e−cn|ω|2−c |j|, n−2/3|αr| ≤ |ω| ≤ ω∗.

We may rewrite the above estimate as

∣∣Rn
1,r(j, j0)

∣∣ ≤ C
e−c |j|

n5/8

(
1

n1/8

(
|j0 − n |αr||

n1/2

)−1/2

+

(
|j0 − n |αr||

n1/2

)1/4
)
e
−c

(
|j0−n |αr ||

n1/2

)2

,

valid in the range n−2/3|αr| ≤ |ω| ≤ ω∗.

We should now deal with the final regime ω ≤ −ω∗, with ω∗ > 0 being given by Lemma 4.6.

Lemma 4.7. Let ω∗ > 0 be given by Lemma 4.6. Then there exist constants C, c > 0 such that for each
1 ≤ j0 ≤ n and |j − j0| ≤ n, there holds:∣∣Rn

1,r(j, j0)
∣∣ ≤ Ce−cn−c j0−c |j|,

as long as −|αr| < ω ≤ −ω∗.

Proof. We simply take the vertical contour Γin = Γ−η, and recall that, thanks to conditions (4.11) and
(4.12) on ε, we have

Re (Λr(−η + i θ)) ≤ −|αr|
4

η, θ ∈ [−ε, ε] .

We readily obtain the desired bound since −|αr| < ω ≤ −ω∗.

Combining Lemma 4.4, Lemma 4.5, Lemma 4.6 and Lemma 4.7, we have proved Proposition 4.1 for
Rn

1,r(j, j0). Indeed, in the range n−2/3|αr| ≤ |ω| ≤ ω∗, we can further bound

1

n1/8

(
|j0 − n |αr||

n1/2

)−1/2

≤ n1/12−1/8 ≤ 1,

and (
|j0 − n |αr||

n1/2

)1/4

e
−c

(
|j0−n |αr ||

n1/2

)2

≤ C̃ e
−c̃

(
|j0−n |αr ||

n1/2

)2

,

with a smaller constant c̃ > 0 and a suitable constant C̃.
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Regarding the second remainder term Rn
2,r(j, j0), we first observe that for each τ ∈ Bε(0) one has

exp
(
j0 τ

5Ψr(τ)
)
− 1− j0τ

5Ψr(0)

τ
=

exp
(
j0 τ

5Ψr(τ)
)
− 1− j0τ

5Ψr(τ)

τ
+ j0τ

4 (Ψr(τ)−Ψr(0)) ,

such that ∣∣∣∣∣exp
(
j0 τ

5Ψr(τ)
)
− 1− j0τ

5Ψr(0)

τ

∣∣∣∣∣ ≤ C
[(
j0|τ |4

)
+ j0|τ |4

]
|τ | .

All the previous lemmas can be easily adapted to obtain similar estimates for Rn
2,r(j, j0) as the ones we

derived for Rn
1,r(j, j0). For example, regarding the uniform bound in Lemma 4.4, the map g(θ) now reads

g(θ) := e−n ζ
4
θ4

(
exp

(
j0iθ

5Ψr(iθ)
)
− 1− j0iθ

5Ψr(0)

θ

)
, θ ∈ [−ε, ε],

and we note that ∣∣g′(θ)∣∣ ≤ C
(
1 + n θ4 + (n θ4)2

)
e−cnθ4 ,

since 1 ≤ j0 ≤ n, and we observe that ∥g′∥L1([−ε,ε]) ≤ Cn−1/4. As a consequence, we naturally retrieve
the estimate of Lemma 4.4 for Rn

2,r(j, j0). We let the other cases to the interested reader.

4.3.4 Final decomposition of the temporal Green’s function. Proof of Theorem 4.1

Let us recall that, for j0 ≥ 1, we have first decomposed (see (4.9)):

G n(j, j0) = G
n
r (j − j0)1j≥1 + G̃ n(j, j0) ,

and the reduced Green’s function G̃ n(j, j0) has been decomposed into:

G̃ n(j, j0) =
1

2πi

∫
Γout

en τ G̃j0
j (eτ ) eτ dτ +

1

2πi

∫
Γin

en τ G̃j0
j (eτ ) eτ dτ ,

with suitable contours Γout and Γin. The part on Γout satisfies the exponential bound (4.14) and the part
on Γin has been further decomposed in (4.20).

Coming back to our decomposition (4.20) of part of the (reduced) temporal Green’s function G̃ n(j, j0),
and recalling the initial decomposition (4.9), we can gather Lemma 4.2 (together with the exponential
decay of Hj), Lemma 4.3 and Proposition 4.1 to obtain for j ∈ Z and 1 ≤ j0 ≤ n:

|G n(j, j0)−Hj Ar(−j0 + n |αr|, n)| ≤ |G n
r (j − j0)|1j≥1 + |G̃ n(j, j0)−Hj Ar(−j0 + n |αr|, n)|

≤ CMr (c, j − j0 + n |αr|, n) 1j≥1

+ C e−c |j|Mr (c,−j0 + n |αr|, n) + C e−c n e−c |j| e−c |j0| ,

where we have used Corollary A.1 in Appendix A to derive the bound of the free Green’s function G r

(and the definition (4.6b) of the function Mr). This shows the validity of the bound (4.8) in Theorem 4.1
for the case 1 ≤ j0 ≤ n.
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Let us finally consider the regime 1 ≤ n ≤ j0 − 1 and show that the estimate (4.8) in Theorem 4.1 is
still valid. We apply Lemma 4.1 and obtain:

|G n(j, j0)−Hj Ar(−j0 + n |αr|, n)| =
∣∣∣G n

r (j − j0)−Hj Ar(−j0 + n |αr|, n)
∣∣∣

≤
∣∣∣G n

r (j − j0)
∣∣∣+ |Hj | |Ar(−j0 + n |αr|, n)|

≤ CMr(c, j − j0 + n |αr|, n) + C e−c |j| |Ar(−j0 + n |αr|, n)| ,

where we have again used Corollary A.1 in Appendix A to derive the bound of the free Green’s function
G r. It only remains to show that the final term on the right-hand side is exponentially small with respect
to both j0 and n and the proof will be complete. We apply Corollary A.6 in Appendix A to estimate the
term with the function Ar on the right-hand side in the considered regime 1 ≤ n ≤ j0 − 1. We get:

|Ar(−j0 + n |αr|, n)| ≤ C exp

(
−c

|j0 − n |αr||4/3

n1/3

)
≤ C e−c j0 ,

where the final estimate comes from the fact that we now consider the regime 1 ≤ n ≤ j0 − 1. Since now
j0 dominates n, we get the exponential estimate:

|Ar(−j0 + n |αr|, n)| ≤ C e−c n e−c j0 ,

and we have thus proved the validity of the bound (4.8) in Theorem 4.1 for the case 1 ≤ n ≤ j0 − 1.
The proof of Theorem 4.1 is entirely similar in the case j0 ≤ 0 except that all involved functions

are now associated with the left state uℓ of the shock rather than with ur. We leave the details to the
interested reader.

4.4 Derivative of the temporal Green’s functions

As it will be made clear in the last chapter of this article, it will also be necessary to obtain large time
decaying bounds for the family of operators (L n(Id− S))n∈N where S : ℓq(Z;R) → ℓq(Z;R) is the shift
operator defined as (Sh)j := hj+1 for all j ∈ Z for any sequence h = (hj)j∈Z ∈ ℓq(Z;R). By definition of
the operator L n, for any h ∈ ℓq(Z;R), we have the decomposition

∀ (n, j) ∈ N× Z , (L n(Id− S)h)j =
∑
j0∈Z

(G n(j, j0)− G n(j, j0 − 1))hj0 .

This motivates the definition of the following quantity

∀ (n, j, j0) ∈ N× Z× Z , Dn(j, j0) := G n(j, j0)− G n(j, j0 − 1). (4.31)

The above quantity is thus a discrete spatial derivative of G n(j, j0) with respect to its second argument,
and we shall refer to it simply as the derivative of the temporal Green’s function. We will now follow
the same strategy as presented in the previous sections of this chapter. That is, we shall decompose the
derivative of the temporal Green’s function into several contributions and derive bounds for each such
contributions which are meant to be sufficiently sharp in order to obtain large time decaying bounds for
the family of operators (L n(Id− S))n∈N.
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Before stating our main result, we recall that the temporal Green’s function satisfies G n(j, j0) = 0
whenever |j− j0| > n, since the Lax-Wendroff scheme has a finite stencil. As an elementary consequence,
we have that for all n ∈ N and (j, j0) ∈ Z2:

j − j0 > n or j − j0 < −n− 1 ⇒ Dn(j, j0) = 0.

As a consequence, throughout this section, we shall only consider (n, j, j0) ∈ N × Z × Z that satisfies
−n− 1 ≤ j − j0 ≤ n. Furthermore, a direct application of Lemma 4.1 gives the following result.

Lemma 4.8. Let j0 ∈ Z and n ∈ N. If j0 ≥ 2 and n ≤ j0 − 2, then there holds:

∀ j ∈ Z , Dn(j, j0) = G
n
r (j − j0) − G

n
r (j − j0 + 1) .

If j0 ≤ 0 and n ≤ |j0|, then there holds:

∀ j ∈ Z , Dn(j, j0) = G
n
ℓ (j − j0)− G

n
ℓ (j − j0 + 1) .

Finally, we introduce two functions Kℓ and Kr on R+∗ × R× R+∗ as follows:

Kℓ(c, x, y) :=



1

y7/12
exp

(
− c |x|3/2/y1/2

)
, if x ≥ 0,

1

y7/12
, if −y1/3 ≤ x ≤ 0,

1

y5/8
exp

(
− c x2/y

)
, if x ≤ −y1/3,

(4.32a)

Kr(c, x, y) :=



1

y7/12
exp

(
− c |x|3/2/y1/2

)
, if x ≤ 0,

1

y7/12
, if 0 ≤ x ≤ y1/3,

1

y5/8
exp

(
− c x2/y

)
, if y1/3 ≤ x,

(4.32b)

for all (c, x, y) ∈ R+∗ × R× R+∗. Once again, we crucially note that both Kℓ and Kr are non-increasing
with respect to their first argument.

We can now state our main result regarding the derivative of the Green’s function.

Theorem 4.2 (Pointwise bounds on the derivative of the Green’s function). Let the weak solution (2.2)
satisfy the Rankine-Hugoniot condition (2.3) and the entropy inequalities (2.4). Let the parameter λ satisfy
the CFL condition (2.12) and let Assumption 1 be satisfied. Then there exist some positive constants C
and c such that for each n ≥ 1 and (j, j0) ∈ Z2 with −n− 1 ≤ j − j0 ≤ n, the derivative Dn(j, j0) of the
Green’s function enjoys the following pointwise bounds:

• for any j0 ≤ 0:

|Dn(j, j0)| ≤ CKℓ(c, j0 − j + nαℓ, n)1j≤0 + C e−c |j|Mℓ (c, j0 + αℓn, n) + C e−cn−c|j−j0| ; (4.33)
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• and for any j0 ≥ 1:

|Dn(j, j0)| ≤ CKr(c, j−j0+n |αr|, n)1j≥1+C e−c |j|Mr (c,−j0 + |αr|n, n)+C e−cn−c|j−j0| . (4.34)

Proof. Throughout the proof we assume that n ≥ 1 and (j, j0) ∈ Z2 with −n − 1 ≤ j − j0 ≤ n and we
only consider j0 ≥ 1 since the analysis for j0 ≤ 0 follows similar lines.

We first focus on the regime 2 ≤ j0 ≤ n+ 1. Using the expression for G n(j, j0), we may instead write

Dn(j, j0) = 1j≥1

G
n
r (j − j0)− G

n
r (j − j0 + 1)︸ ︷︷ ︸

:=K n
r (j−j0)

+
1

2πi

∫
Γ
en τ

[
G̃j0
j (eτ )− G̃j0−1

j (eτ )
]
eτdτ︸ ︷︷ ︸

:=D̃n(j,j0)

. (4.35)

We first handle the second term D̃n(j, j0). We let ε ∈ (0, ε∗) be fixed as in previous section, that is
satisfying conditions (4.11)-(4.12)-(4.13), and 0 < η < min(ηε, ε

5). From Proposition 3.3, since the map
τ 7→ G̃j0

j (eτ ) − G̃j0−1
j (eτ ) has a holomorphic extension to Bε0(0), we can decompose the contour Γ into

Γout = {−η + iθ | ε ≤ θ ≤ π} and Γin, where Γin can be any path joining −η−i ε to −η+i ε which remains
in Bε(0) (see Figure 4.1). As a consequence, we have∣∣∣∣ 1

2πi

∫
Γout

en τ
[
G̃j0
j (eτ )− G̃j0−1

j (eτ )
]
eτdτ

∣∣∣∣ ≤ Ce−ηne−c |j|−c|j0|,

together with

1

2πi

∫
Γin

en τ
[
G̃j0
j (eτ )− G̃j0−1

j (eτ )
]
eτdτ =

Hj

αr
× 1

2πi

∫
Γin

en τ− j0 φr(τ)+ j0 τ5 Ψr(τ)dτ

+
1

2πi

∫
Γin

en τ− j0 φr(τ)+ j0 τ5 Ψr(τ)τ Θr,j(τ)dτ ,

where the sequence (Hj)j∈Z is defined in (3.22) and the sequence (Θr,j)j∈Z of bounded of holomorphic

functions is given by Proposition 3.3. The first integral is similar to G̃ n
2,r(j, j0) (with definition (4.15))

and enjoys a similar bound, while the second integral is similar to R̃n
1,r(j, j0) (with definition (4.16)) and

enjoys a similar bound. As a consequence, for 2 ≤ j0 ≤ n+ 1, we have the estimate∣∣∣D̃n(j, j0)
∣∣∣ ≤ C e−c |j|Mr (c,−j0 + |αr|n, n) + C e−cn−c j0−c |j| , (4.36)

for some C > 0 and c > 0 which are independent of n, j and j0.
Let us focus now on the first term K n

r (j − j0) of (4.35) which can also be written as

K n
r (j − j0) =

1

2πi

∫
Γ
en τ

[
Gr,j−j0(e

τ )− Gr,j−j0+1(e
τ )
]
eτdτ.

From the expression (3.27) of Proposition 3.2 of the free spatial Green’s function there exists κO > 0
depending on the set O defined in Chapter 3, such that for j0 ≤ j one has∣∣[Gr,j−j0(e

τ )− Gr,j−j0+1(e
τ )
]
eτ
∣∣ ≤ C e−c|j−j0|,

for all τ ∈ C with Re(τ) ≥ −κO . As a consequence, upon taking Γ = {−η + iθ | − π ≤ θ ≤ π} with
0 < η < κO , we readily get in that case that

|K n
r (j − j0)| ≤ C e−ηn−c|j−j0|.
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On the other hand, for 1 ≤ j ≤ j0 ≤ n+ 1, one has from the expression (3.27) that for all τ ∈ Bε0(0)[
Gr,j−j0(e

τ )− Gr,j−j0+1(e
τ )
]
eτ = τΞr(τ) exp

(
(j − j0)φr(τ)− (j − j0)τ

5Ψr(τ)
)
,

for some bounded holomorphic function Ξr, with the same ε0 as the one given by Proposition 3.3. We
can then once again let ε ∈ (0, ε∗) be fixed as in the previous section and set 0 < η < min(ηε, ε

5). Using
Corollary 3.3, we also have ∣∣[Gr,j−j0(e

τ )− Gr,j−j0+1(e
τ )
]
eτ
∣∣ ≤ C e−c|j−j0|,

for all τ = −η + iθ with ε ≤ θ ≤ π. As a consequence, with our now usual notation:

Γout = {−η + iθ | ε ≤ θ ≤ π} ,

we get ∣∣∣∣ 1

2πi

∫
Γout

en τ
[
Gr,j−j0(e

τ )− Gr,j−j0+1(e
τ )
]
eτ
∣∣∣∣dτ ≤ C e−ηn−c|j−j0|.

On the other hand, if Γin denotes any path joining −η − i ε to −η + i ε which remains in Bε(0), one has

1

2πi

∫
Γin

en τ
[
Gr,j−j0(e

τ )− Gr,j−j0−1(e
τ )
]
eτdτ =

1

2πi

∫
Γin

en τ+(j−j0)φr(τ)−(j−j0)τ5Ψr(τ)τΞr(τ)dτ.

Then applying Lemma 4.4, Lemma 4.5, Lemma 4.6 and Lemma 4.7 with Φr,j replaced by Ξr(τ) and −j0
by j − j0, we readily obtain that∣∣∣∣ 1

2πi

∫
Γin

en τ
[
Gr,j−j0(e

τ )− Gr,j−j0+1(e
τ )
]
eτdτ

∣∣∣∣ ≤ CKr(c, j − j0 + n |αr|, n) ,

where the definition of Kr is given in (4.32b). Combining the above bound with the estimate (4.36) proves
the bound (4.34) of Dn(j, j0) in the range 2 ≤ j0 ≤ n+ 1.

For j0 ≥ 2 and n ≤ j0 − 2, we use Lemma 4.8 which gives that

∀ j ∈ Z , Dn(j, j0) = G
n
r (j − j0) − G

n
r (j − j0 + 1) .

We can then proceed along similar lines as above, and get that

|Dn(j, j0)| ≤ CKr(c, j − j0 + n |αr|, n) + C e−ηn−c|j−j0| .

Let us now turn to the case j0 = 1. Using the expressions of G n(j, 1) and G n(j, 0), we have

Dn(j, 1) = 1j≥1G
n
r (j − 1)− 1j≤0 G

n
ℓ (j) +

1

2πi

∫
Γ
en τ

[
G̃1
j (e

τ )− G̃0
j (e

τ )
]
eτdτ︸ ︷︷ ︸

:=D̃n(j,1)

.

First, inspecting the contribution stemming from D̃n(j, 1) and decomposing Γ with Γout and Γin, we
observe that from (3.32) of Proposition 3.3, we have:∣∣∣∣ 1

2πi

∫
Γout

en τ
[
G̃1
j (e

τ )− G̃0
j (e

τ )
]
eτdτ

∣∣∣∣ ≤ Ce−ηne−c |j|,
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together with

1

2πi

∫
Γin

en τ
[
G̃1
j (e

τ )− G̃0
j (e

τ )
]
eτdτ =

(
Hj

αr
+ γrj − γℓj

)
× 1

2πi

∫
Γin

en τdτ +
1

2πi

∫
Γin

en ττ Θ1,j(τ)dτ .

As a consequence, upon taking Γin = {−η + iθ | |θ| ≤ ε}, we get∣∣∣D̃n(j, 1)
∣∣∣ ≤ Ce−cn−c |j|.

Upon noticing that Mr (c,−1 + |αr|n, n) = O (e−c n), estimate (4.36) also holds true for j0 = 1. Coming
back to the first two terms in the expression of Dn(j, 1), we simply note, using Corollary A.1, that

∀j ≥ 1 ,
∣∣∣G n

r (j − 1)
∣∣∣ ≤ Ce−c n, and ∀j ≤ 0 ,

∣∣∣G n
ℓ (j)

∣∣∣ ≤ Ce−c n.

But since one has −n ≤ j ≤ n + 1, the above exponential bound in n leads to an exponential bound in
both j and n: ∣∣∣1j≥1G

n
r (j − 1)− 1j≤0 G

n
ℓ (j)

∣∣∣ ≤ C e−cn−c |j|.

To conclude, we note that Kr(c, j − 1 + n |αr|, n) = O
(
e−cn−c |j|) which implies that estimate (4.34) also

holds true for j0 = 1.

4.5 Linear estimates

In this final section, we derive large time decaying bounds for the semigroup (L n)n∈N and the family of
operators (L n(Id−S))n∈N acting on algebraically weighted spaces which are crucial for our forthcoming
nonlinear stability analysis.

We first recall some notation for the polynomially weighted spaces of sequences. Given a real number
γ ≥ 0 and q ∈ [1,+∞], if we define the weight sequence ωγ := (1 + |j|γ)j∈Z, we recall our definition of
algebraically weighted ℓq spaces:

ℓqγ(Z;R) = {h ∈ ℓq(Z;R) | ωγh ∈ ℓq(Z;R)} ,

where ωγh stands for the sequence ((1 + |j|γ)hj)j∈Z. For any sequence h ∈ ℓqγ(Z;R), the norm of h is
defined as ∥h∥ℓqγ := ∥ωγh∥ℓq .

The main result of this Chapter reads as follows (the reader will observe that this statement is a
refinement of Theorem 2.4 that was made more simple for the reader’s convenience).

Theorem 4.3. Let the weak solution (2.2) satisfy the Rankine-Hugoniot relation (2.3) and the entropy
inequalities (2.4). Let the parameter λ satisfy the CFL condition (2.12) and let Assumption 1 be satisfied.
For any γ2 ≥ γ1 ≥ 0, there exists CL (γ1, γ2) > 0 such that we have the following estimates on the
semigroup (L n)n∈N:

∀n ∈ N , ∥L n h∥ℓ1γ1 ≤ CL (γ1, γ2)

(1 + n)γ2−γ1−1/8
∥h∥ℓ1γ2 , for h ∈ ℓ1γ2(Z;R) with

∑
j∈Z

hj = 0 ,

(4.37a)

∀n ∈ N , ∥L n h∥ℓ∞γ1 ≤ CL (γ1, γ2)

(1 + n)γ2−γ1+min(1/3,γ1)
∥h∥ℓ1γ2 , for h ∈ ℓ1γ2(Z;R) with

∑
j∈Z

hj = 0 ,

(4.37b)
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and the following estimates on the family of operators (L n(Id− S))n∈N:

∀n ∈ N , ∥L n(Id− S)h∥ℓ1γ1 ≤ CL (γ1, γ2)

(1 + n)γ2−γ1+1/8
∥h∥ℓ1γ2 , for h ∈ ℓ1γ2(Z;R) , (4.38a)

∀n ∈ N , ∥L n(Id− S)h∥ℓ∞γ1 ≤ CL (γ1, γ2)

(1 + n)γ2−γ1+1/3+min(1/4,γ1)
∥h∥ℓ1γ2 , for h ∈ ℓ1γ2(Z;R) , (4.38b)

∀n ∈ N , ∥L n(Id− S)h∥ℓ∞γ1 ≤ CL (γ1, γ2)

(1 + n)γ2−γ1+min(1/8,γ1−1/8)
∥h∥ℓ∞γ2 , for h ∈ ℓ∞γ2(Z;R) . (4.38c)

4.5.1 Proof of the estimates (4.37a) and (4.37b) on the semigroup (L n)n∈N

Before proceeding with the proof of the estimates (4.37a) and (4.37b) on the semigroup (L n)n∈N of
Theorem 4.3, let us comment on the strategy that we shall follow. For γ ≥ 0 and h ∈ ℓqγ(Z;R) we recall
that the action of the semigroup L n on h is given for each n ∈ N by

∀j ∈ Z , (L nh)j =
∑
j0∈Z

G n(j, j0)hj0 ,

where G n(·, j0) is the temporal Green’s function solution of (4.1). The bounds (4.37a)-(4.37b) are trivial
for n = 0 since we have γ1 ≤ γ2 and therefore ∥h∥ℓ1γ1 ≤ ∥h∥ℓ1γ2 so we assume from now on n ∈ N∗.

Motivated by the estimates obtained on the temporal Green’s function in Theorem 4.1 (for n ∈ N∗), we
introduce a family of operators (L n

act)n∈N∗ acting on a given sequence h ∈ ℓqγ(Z;R) as follows:

∀(n, j) ∈ N∗ × Z , (L n
act h)j := Hj

∑
j0≥1

1|j−j0|≤nAr(−j0 + n |αr|, n)hj0

+Hj

∑
j0≤0

1|j−j0|≤nAℓ(j0 + nαℓ, n)hj0 .

It is important to observe that L n
act does not stand for the n-th power of L 1

act, while L n is the n-th
power of L . However, we hope that this will not create any confusion for the reader and we keep the
notation as such to bear in mind that all operators are considered at the discrete time n.

We recall that the Green’s function satisfies G n(j, j0) = 0 for |j−j0| > n. With the previous definition
for L n

act, for all (n, j) ∈ N∗ × Z, one can therefore decompose

(L nh)j = (L n
acth)j +

∑
j0≥1

(
G n(j, j0)− 1|j−j0|≤nHj Ar(−j0 + n |αr|, n)

)
hj0

+
∑
j0≤0

(
G n(j, j0)− 1|j−j0|≤nHj Aℓ(j0 + nαℓ, n)

)
hj0 . (4.39)

We now introduce some notation. For (n, j) ∈ N∗ × Z and h ∈ ℓ1γ2(Z;R), we define:

Sr,1(n, j,h) := 1j≥1

∑
j0≥1

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 | ,

Sℓ,1(n, j,h) := 1j≤0

∑
j0≤0

1|j−j0|≤nMℓ (c, j0 − j + nαℓ, n) |hj0 | ,
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and

Sr,2(n, j,h) := e−c |j|
∑
j0≥1

Mr (c,−j0 + n |αr|, n) |hj0 | ,

Sℓ,2(n, j,h) := e−c |j|
∑
j0≤0

Mℓ (c, j0 + nαℓ, n) |hj0 | ,

where we recall that the functions Mℓ and Mr are defined in (4.6). We also define:

Sexp(n, j,h) := e−c n−c |j|
∑
j0∈Z

e−c |j0| |hj0 | .

Using the estimates derived in Theorem 4.1 and applying the triangle inequality, we remark that for
some suitable positive constants C and c that do not depend on n, j nor h, we have∣∣∣∣∣∣
∑
j0≥1

(
G n(j, j0)− 1|j−j0|≤nHj Ar(−j0 + n |αr|, n)

)
hj0

∣∣∣∣∣∣
≤ CSr,1(n, j,h) + CSr,2(n, j,h) + CSexp(n, j,h) ,

together with∣∣∣∣∣∣
∑
j0≤0

(
G n(j, j0)− 1|j−j0|≤nHj Aℓ(j0 + nαℓ, n)

)
hj0

∣∣∣∣∣∣
≤ CSℓ,1(n, j,h) + CSℓ,2(n, j,h) + CSexp(n, j,h) .

Combining those two inequalities with the triangle inequality in (4.39), we have for all (n, j) ∈ N∗ × Z:∣∣∣(L nh)j

∣∣∣ ≤ ∣∣∣(L n
acth)j

∣∣∣ + C
(
Sr,1(n, j,h) +Sℓ,1(n, j,h) +Sr,2(n, j,h) +Sℓ,2(n, j,h) +Sexp(n, j,h)

)
.

(4.40)
In order to prove the estimates (4.37a) and (4.37b), one simply needs to prove estimates for each of the
terms appearing in the right-hand side of the above inequality. From now on, we shall proceed term by
term.

We start by estimating (Sr,1(n, j,h))j∈Z and (Sℓ,1(n, j,h))j∈Z.

Lemma 4.9. For any γ2 ≥ γ1 ≥ 0, there exists C > 0, such that for all n ≥ 1 and h ∈ ℓ1γ2(Z;R), one
has: ∥∥∥(Sr,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Sℓ,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

≤ C

nγ2−γ1−1/8
∥h∥ℓ1γ2 ,∥∥∥(Sr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Sℓ,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

≤ C

nγ2−γ1+1/3
∥h∥ℓ1γ2 .

Proof. We only prove the estimates for (Sr,1(n, j,h))j∈Z, the other case is handled similarly. For h ∈
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ℓ1γ2(Z;R) and n ∈ N∗, we have that

∥∥∥(Sr,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

=
∑
j∈Z

(1 + |j|γ1)1j≥1

∑
j0≥1

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


=
∑
j≥1

(1 + |j|γ1)

 j∑
j0=1

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


︸ ︷︷ ︸

=:I n
1

+
∑
j≥1

(1 + |j|γ1)

 ∑
j0≥j+1

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


︸ ︷︷ ︸

=:I n
2

.

From the definition (4.6b) of Mr, we note that for 1 ≤ j0 ≤ j with |j − j0| ≤ n, one has

Mr (c, j − j0 + n |αr|, n) ≤ Ce−c n .

Furthermore, Peetre’s inequality implies that for |j − j0| ≤ n, there holds:

(1 + |j|γ1) ≤ C (1 + |j0|γ1) (1 + nγ1) .

We thus obtain the following estimate for the first contribution I n
1 :

I n
1 ≤ C (1 + nγ1) e−c n

∑
j≥1

j∑
j0=1

1|j−j0|≤n (1 + |j0|)γ1 |hj0 |

= C (1 + nγ1) e−c n
∑
j0≥1

∑
j≥j0

1|j−j0|≤n

 (1 + |j0|γ1) |hj0 |

≤ C n (1 + nγ1) e−c n ∥h∥ℓ1γ1 ≤ C e−c n ∥h∥ℓ1γ2 .

On the other hand, for the second contribution I n
2 , we decompose the sum into two parts:

I n
2 =

∑
j≥1

(1 + |j|γ1)

 ∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


+
∑
j≥1

(1 + |j|γ1)

 ∑
j0≥j+1

1
j0≥n |αr |

2

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |

 .

In both sums, since we have 1 ≤ j ≤ j0, we can always use the inequality:

(1 + |j|γ1) ≤ (1 + |j0|γ1) .

Furthermore, we notice once again that for j ≥ 1 and j0 ≥ j + 1 with 1 ≤ j0 < n |αr|
2 , one has an

exponential bound:
Mr (c, j − j0 + n |αr|, n) ≤ C e−c n .
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As a consequence, one gets

∑
j≥1

(1 + |j|γ1)

 ∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


≤ C e−c n

∑
j≥1

∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤n (1 + |j0|γ1) |hj0 |

≤ C e−c n
∑
j0∈Z

 j0∑
j=1

1|j−j0|≤n

 (1 + |j0|γ1) |hj0 | ≤ C n e−c n ∥h∥ℓ1γ1 ≤ C e−c n ∥h∥ℓ1γ2 .

For the remaining contribution, we have

∑
j≥1

(1 + |j|γ1)

 ∑
j0≥j+1

1
j0≥n |αr |

2

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


≤
∑
j0≥1

1
j0≥n |αr |

2

 j0∑
j=1

Mr (c, j − j0 + n |αr|, n)

 (1 + |j0|γ1) |hj0 |

≤ C ∥Mr (c, ·+ n |αr|, n) ∥ℓ1(Z)
∑
j0≥1

1
j0≥n |αr |

2

(1 + |j0|γ2)
(1 + |j0|γ2−γ1)

|hj0 |

≤ C

nγ2−γ1
∥Mr (c, ·+ n |αr|, n) ∥ℓ1(Z) ∥h∥ℓ1γ2 .

In order to conclude, we just use the following estimate that can be obtained from the definition (4.6b)
and a mere comparison between a series and an integral:

∀n ∈ N∗ ,
∥∥∥(Mr (c, j + n |αr|, n))j∈Z

∥∥∥
ℓ1(Z)

≤ C n1/8 , (4.41)

where, of course, all constants are uniform with respect to n ∈ N∗. The proof of the ℓ1γ1 estimate for
Sr,1(n, ·,h) is now complete.

We now turn our attention to the second estimate in ℓ∞γ1 . By definition of the norm in ℓ∞γ1 , we have

∥∥∥(Sr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

= sup
j∈Z

(1 + |j|γ1)1j≥1

∑
j0≥1

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


≤ sup

j≥1
(1 + |j|γ1)

 j∑
j0=1

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


+ sup

j≥1
(1 + |j|γ1)

 ∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


+ sup

j≥1
(1 + |j|γ1)

 ∑
j0≥j+1

1
j0≥n |αr |

2

1|j−j0|≤nMr (c, j − j0 + n |αr|, n) |hj0 |


=: J n

1 + J n
2 + J n

3 .
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Performing similar computations and estimates as above, one gets first:

J n
1 + J n

2 ≤ C e−c n ∥h∥ℓ1γ2 ,

which is an even better estimate than the one we are aiming at. On the other hand, we have

J n
3 ≤ C ∥Mr (c, ·+ n |αr|, n) ∥ℓ∞(Z)

∑
j0≥n |αr |

2

(1 + |j0|γ1) |hj0 |

≤ C

nγ2−γ1
∥Mr (c, ·+ n |αr|, n) ∥ℓ∞(Z) ∥h∥ℓ1γ2 ,

and it simply remains to use the property:∥∥∥(Mr (c, j + n |αr|, n))j∈Z
∥∥∥
ℓ∞(Z)

≤ 1

n1/3
, (4.42)

that can be easily deduced from the definition (4.6b). This concludes the proof of Lemma 4.9.

Next, we estimate (Sr,2(n, j,h))j∈Z and (Sℓ,2(n, j,h))j∈Z.

Lemma 4.10. For any γ2 ≥ γ1 ≥ 0, there exists a constant C > 0 such that for all n ≥ 1 and
h ∈ ℓ1γ2(Z;R), one has:∥∥∥(Sr,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Sℓ,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

≤ C

nγ2+1/3
∥h∥ℓ1γ2 ,

and therefore: ∥∥∥(Sr,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Sℓ,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

≤ C

nγ2+1/3
∥h∥ℓ1γ2 .

Proof. For h ∈ ℓ1γ2(Z;R), we have that

∥∥∥(Sr,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

=

∑
j∈Z

(1 + |j|γ1) e−c |j|

 ∑
j0≥1

Mr (c,−j0 + n |αr|, n) |hj0 |


≤ C

n |αr |
2∑

j0=1

Mr (c,−j0 + n |αr|, n) |hj0 | + C
∑

j0≥n |αr |
2

Mr (c,−j0 + n |αr|, n) |hj0 | .

We then either use the exponential bound given by the definition (4.6b) or the global bound (4.42), which
yields:

∥Sr,2(n, ·,h)∥ℓ1γ1
≤ C e−c n ∥h∥ℓ1 +

C

n1/3

∑
j0≥n |αr |

2

(1 + |j0|γ2)
nγ2

|hj0 | ≤
C

nγ2+1/3
∥h∥ℓ1γ2 .

The ℓ∞γ1 estimate is straightforward by just observing that the ℓ∞γ1 norm is always smaller than the ℓ1γ1
norm. The proof of Lemma 4.10 is thus complete.

We now handle the most delicate estimates on the family of operators (L n
act)n∈N∗ .
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Lemma 4.11. For any γ2 ≥ γ1 ≥ 0, there exists a constant C > 0 such that the family of operators
(L n

act)n∈N∗ satisfies the following estimate:

∀n ∈ N∗ , ∥L n
act h∥ℓ1γ1 ≤ C

nγ2
∥h∥ℓ1γ2 , for any h ∈ ℓ1γ2(Z;R) with

∑
j∈Z

hj = 0 ,

and therefore:

∀n ∈ N∗ , ∥L n
act h∥ℓ∞γ1 ≤ C

nγ2
∥h∥ℓ1γ2 , for any h ∈ ℓ1γ2(Z;R) with

∑
j∈Z

hj = 0 .

Proof. We consider first h ∈ ℓ1γ2(Z;R) without making any assumption on its mass. The first step of the
proof consists in writing:∑

j0≥1

1|j−j0|≤nAr(−j0 + n |αr|, n)hj0 +
∑
j0≤0

1|j−j0|≤nAℓ(j0 + nαℓ, n)hj0

=
∑
j0≥1

Ar(−j0 + n |αr|, n)hj0 +
∑
j0≤0

Aℓ(j0 + nαℓ, n)hj0 (4.43)

−
∑
j0≥1

1|j−j0|>nAr(−j0 + n |αr|, n)hj0 −
∑
j0≤0

1|j−j0|>nAℓ(j0 + nαℓ, n)hj0 ,

where the two infinite sums on the right-hand side converge since Ar(−j0+n |αr|, n) is uniformly bounded
(see Corollary A.6 in Appendix A) and h is integrable. Since |αr| ∈ (0, 1), we can take β ∈ (|αr|, 1). As
a consequence, we can use the exponential decay of (Hj)j∈Z and further decompose:∣∣∣∣∣∣Hj

∑
j0≥1

1|j−j0|>nAr(−j0 + n |αr|, n)hj0

∣∣∣∣∣∣ ≤ C
∑
j0≥1

1|j−j0|>n |Ar(−j0 + n |αr|, n)| |hj0 | e−c |j|

= C

nβ∑
j0=1

1|j−j0|>n |Ar(−j0 + n |αr|, n)| |hj0 | e−c |j|

+ C
∑

j0>nβ

1|j−j0|>n |Ar(−j0 + n |αr|, n)| |hj0 | e−c |j| .

In the first sum, since n < |j − j0| and 1 ≤ j0 ≤ nβ, we get that (1− β)n < |j|, and thus

nβ∑
j0=1

1|j−j0|>n |Ar(−j0 + n |αr|, n)| |hj0 | e−c |j| ≤
nβ∑

j0=1

1|j−j0|>n |Ar(−j0 + n |αr|, n)| |hj0 | e−
c
2
|j|e−

c(1−β)
2

n

≤ C n e−
c
2
(1−β)n e−

c
2
|j| ∥h∥ℓ∞(Z) ,

where we have used the property from Corollary A.6 that the quantity |Ar(−j0 + n |αr|, n)| is uniformly
bounded and we have also used the fact that the sum with respect to j0 gathers at most n terms (since
β ≥ 1). We now consider the sum with respect to j0 > nβ. Still using Corollary A.6 in Appendix A, but
this time for j0 > nβ with β ∈ (|αr|, 1), we have that

|Ar(−j0 + n |αr|, n)| ≤ C exp

(
−c

|j0 − n |αr||4/3

n1/3

)
,
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and thus ∑
j0>nβ

|Ar(−j0 + n |αr|, n)| ≤ C e−c n .

As a consequence, we have∑
j0>nβ

1|j−j0|>n |Ar(−j0 + n |αr|, n)| |hj0 | e−c |j| ≤ C e−c n−c |j| ∥h∥ℓ∞(Z) .

Summing up, we have proved the following estimate

∑
j∈Z

(1 + |j|)γ1

∣∣∣∣∣∣Hj

∑
j0≥1

1|j−j0|>nAr(−j0 + n |αr|, n)hj0

∣∣∣∣∣∣ ≤ C e−c n ∥h∥ℓ∞(Z) ≤ C e−c n ∥h∥ℓ1γ2 ,

and similarly, we also have

∑
j∈Z

(1 + |j|)γ1

∣∣∣∣∣∣Hj

∑
j0≤0

1|j−j0|>nAℓ(j0 + nαℓ, n)hj0

∣∣∣∣∣∣ ≤ C e−c n ∥h∥ℓ1γ2 .

We now go back to the decomposition (4.43) and consider the two series in the right-hand side. We
assume from now on that the sequence h has zero mass, that is:∑

j0∈Z
hj0 = 0 .

We can therefore write:∑
j0≥1

Ar(−j0 + n |αr|, n)hj0 +
∑
j0≤0

Aℓ(j0 + nαℓ, n)hj0

=
∑
j0≥1

(Ar(−j0 + n |αr|, n)− 1) hj0 +
∑
j0≤0

(Aℓ(j0 + nαℓ, n)− 1) hj0 ,

and we shall study each sum separately. For the first contribution, we further split the sum into two
parts:

∑
j0≥1

(Ar(−j0 + n |αr|, n)− 1) hj0 =

n |αr |
2∑

j0=1

(Ar(−j0 + n |αr|, n)− 1) hj0

+
∑

j0>
n |αr |

2

(Ar(−j0 + n |αr|, n)− 1) hj0 .

Once again, we will rely on Corollary A.6 in Appendix A. On the one hand, we use the fact for 1 ≤ j0 ≤
n |αr|

2 , one has an exponential bound:

|Ar(−j0 + n |αr|, n)− 1| ≤ C e−c n ,
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and on the other hand, that the factor Ar(−j0 + n |αr|, n) is uniformly bounded with respect to j0 ∈ Z
and n ∈ N∗. As a consequence, we get∣∣∣∣∣∣
∑
j0≥1

(Ar(−j0 + n |αr|, n)− 1) hj0

∣∣∣∣∣∣ ≤ C e−c n ∥h∥ℓ1 + C
∑

j0>
n |αr |

2

|hj0 |

≤ C e−c n ∥h∥ℓ1 + C
∑

j0>
n |αr |

2

1 + |j0|γ2
1 + |(n |αr|/2)|γ2

|hj0 | ≤
C

nγ2
∥h∥ℓ1γ2 .

And similarly, we also have ∣∣∣∣∣∣
∑
j0≤0

(Aℓ(j0 + nαℓ, n)− 1)hj0

∣∣∣∣∣∣ ≤ C

nγ2
∥h∥ℓ1γ2 .

Summing up, we have obtained

∑
j∈Z

(1 + |j|)γ1

∣∣∣∣∣∣Hj

∑
j0≥1

Ar(−j0 + n |αr|, n)hj0 +
∑
j0≤0

Aℓ(j0 + nαℓ, n)hj0

∣∣∣∣∣∣ ≤ C

nγ2
∥h∥ℓ1γ2 .

Going back to the decomposition (4.43), this concludes the proof of Lemma 4.11.

The very last contribution to handle is the one coming from the exponential terms (Sexp(n, j,h))j∈Z,
and we have the following result whose proof is trivial.

Lemma 4.12. For any γ2 ≥ γ1 ≥ 0, there exists a constant C > 0 such that for all n ≥ 1 and
h ∈ ℓ1γ2(Z;R), one has

∥(Sexp(n, j,h))j∈Z∥ℓ1γ1
≤ C e−c n ∥h∥ℓ1γ2 ,

and therefore:
∥(Sexp(n, j,h))j∈Z∥ℓ∞γ1

≤ C e−c n ∥h∥ℓ1γ2 .

Going back to the inequality (4.40), the proof of the estimates (4.37a) and (4.37b) on the semigroup
(L n)n∈N of Theorem 4.3 is then a direct consequence of Lemma 4.9, Lemma 4.10, Lemma 4.11 and
Lemma 4.12. Indeed, for proving (4.37a), we consider h ∈ ℓ1γ2(Z;R) with mass zero and combine those
four preliminary results to obtain:

∥L n h∥ℓ1γ1 ≤ C

(
1

nγ2
+

1

nγ2−γ1−1/8
+

1

nγ2+1/3
+ e−c n

)
∥h∥ℓ1γ2 ≤ C

nγ2−γ1−1/8
∥h∥ℓ1γ2 ,

and the proof of (4.37b) is entirely similar.

4.5.2 Proof of the estimates (4.38a), (4.38b) and (4.38c) on the family (L n(Id− S))n∈N

The starting point of the proof of the estimates (4.38a), (4.38b) and (4.38c) of Theorem 4.3 follows similar
lines as in the previous subsection for proving (4.37a) and (4.37b) on the semigroup (L n)n∈N. For γ ≥ 0

87



and h ∈ ℓqγ(Z;R) (q = 1 or q = +∞) we recall that the action of the family of operators (L n(Id−S))n∈N
on h is given for each n ∈ N by:

∀ (n, j) ∈ N× Z , (L n(Id− S)h)j =
∑
j0∈Z

(G n(j, j0)− G n(j, j0 − 1))hj0 =
∑
j0∈Z

Dn(j, j0)hj0 ,

by definition (4.31) of Dn(j, j0). Restricting to n ≥ 1 (the case n = 0 is trivial) and using the estimates
obtained on the derivative of the temporal Green’s function in Theorem 4.2, we obtain that∣∣∣(L n(Id− S)h)j

∣∣∣ ≤ C
∑
j0≥1

1|j−j0|≤n+1

[
1j≥1Kr(c, j − j0 + n |αr|, n) + e−c |j|Mr(c,−j0 + |αr|n, n)

]
|hj0 |

+ C
∑
j0≤0

1|j−j0|≤n+1

[
1j≤0Kℓ(c, j0 − j + nαℓ, n) + e−c |j|Mℓ(c, j0 + nαℓ, n)

]
|hj0 |

+ C e−c n
∑
j0∈Z

1|j−j0|≤n+1 e
−c |j−j0| |hj0 | .

This motivates the definition of the following quantities for (n, j) ∈ N∗ × Z:

Dr,1(n, j,h) := 1j≥1

∑
j0≥1

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n) |hj0 | ,

Dℓ,1(n, j,h) := 1j≤0

∑
j0≤0

1|j−j0|≤n+1Kℓ(c, j0 − j + nαℓ, n) |hj0 | ,

and

Dr,2(n, j,h) := e−c |j|
∑
j0≥1

Mr(c,−j0 + n |αr|, n) |hj0 | ,

Dℓ,2(n, j,h) := e−c |j|
∑
j0≤0

Mℓ(c, j0 + nαℓ, n) |hj0 | ,

together with:

Dexp(n, j,h) := e−c n
∑
j0∈Z

1|j−j0|≤n+1 e
−c|j−j0| |hj0 | .

With these notations at hand, we readily obtain that for all (n, j) ∈ N∗ × Z, we have:∣∣∣(L n(Id− S)h)j

∣∣∣ ≤ C (Dr,1(n, j,h) +Dℓ,1(n, j,h) +Dr,2(n, j,h) +Dℓ,2(n, j,h) +Dexp(n, j,h)) .

We will mainly focus our efforts on the terms Dr,1(n, j,h), Dℓ,1(n, j,h) and Dexp(n, j,h). Indeed, we note
that Dr,2(n, j,h) and Dℓ,2(n, j,h) are identical to Sr,2(n, j,h) and Sℓ,2(n, j,h) in the previous subsection
and thus enjoy the same estimates as the ones derived in Lemma 4.10. We shall need however an additional
estimate to the one proved in Lemma 4.10 but the proof of it will be very similar to what has already
been done. Let us start indeed with the estimates for Dr,2(n, j,h) and Dℓ,2(n, j,h).

Lemma 4.13. For any γ2 ≥ γ1 ≥ 0, there exists a constant C > 0 such that for all n ≥ 1 and
h ∈ ℓ1γ2(Z;R), one has∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Dℓ,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

≤ C

nγ2+1/3
∥h∥ℓ1γ2 ,∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

≤ C

nγ2+1/3
∥h∥ℓ1γ2
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and for h ∈ ℓ∞γ2(Z;R), one has∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

≤ C

nγ2−1/8
∥h∥ℓ∞γ2 .

Proof. The first two estimates in Lemma 4.13 have already been proved in Lemma 4.10 so we switch
directly to the last estimate where the novelty is that now the sequence h is assumed to belong to the
larger space ℓ∞γ2(Z;R). We thus consider n ∈ N∗ and h ∈ ℓ∞γ2(Z;R). From the definition of Dr,2(n, j,h),
we have

∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

=

(
sup
j∈Z

(1 + |j|γ1) e−c |j|

) ∑
j0≥1

Mr(c,−j0 + n |αr|, n) |hj0 |


≤C

n |αr |
2∑

j0=1

Mr(c,−j0 + n |αr|, n) |hj0 |+ C
∑

j0≥n |αr |
2

Mr(c,−j0 + n |αr|, n) |hj0 |

≤C ∥h∥ℓ∞

n |αr |
2∑

j0=1

Mr(c,−j0 + n |αr|, n) + C
∑

j0≥n |αr |
2

Mr(c,−j0 + n |αr|, n) |hj0 | .

By summing the definition (4.6b) and comparing the corresponding series with an integral, we get the
exponential estimate:

n |αr |
2∑

j0=1

Mr(c,−j0 + n |αr|, n) ≤ C e−c n .

For the second sum, we have:∑
j0≥n |αr |

2

Mr(c,−j0 + n |αr|, n) |hj0 ≤C
∑

j0≥n |αr |
2

Mr(c,−j0 + n |αr|, n)
(1 + |j0|γ2)

nγ2
|hj0 |

+
C

nγ2
∥h∥ℓ∞γ2

∑
j0∈Z

Mr(c,−j0 + n |αr|, n) ,

and we simply use (4.41) to conclude.

Now, we handle the contributions from Dr,1(n, j,h) and Dℓ,1(n, j,h).

Lemma 4.14. For any γ2 ≥ γ1 ≥ 0, there exists C > 0, such that for all n ≥ 1, one has∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Dℓ,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

≤ C

nγ2−γ1+1/8
∥h∥ℓ1γ2 , for h ∈ ℓ1γ2 ,∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

≤ C

nγ2−γ1+7/12
∥h∥ℓ1γ2 , for h ∈ ℓ1γ2 ,∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

≤ C

nγ2−γ1+1/8
∥h∥ℓ∞γ2 , for h ∈ ℓ∞γ2 .
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Proof. For h ∈ ℓ1γ2 , we have that∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

=
∑
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥1

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

=
∑
j∈Z

(1 + |j|)γ11j≥1

j∑
j0=1

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

+
∑
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

+
∑
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥j+1

1
j0≥n |αr |

2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |.

Now from the definition (4.32b) of Kr, we infer the following facts

• for 1 ≤ j0 ≤ j with |j − j0| ≤ n+ 1, one has Kr(c, j − j0 + n |αr|, n) ≤ C e−c n,

• for j ≥ 1 and j0 ≥ j + 1 with 1 ≤ j0 <
n |αr|

2 , one has Kr(c, j − j0 + n |αr|, n) ≤ C e−c n.

As a consequence, one readily derives, as in the previous cases, that∑
j∈Z

(1 + |j|)γ11j≥1

j∑
j0=1

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

+
∑
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

≤ Ce−c n∥h∥ℓ1γ2 .

For the last contribution, inverting the sums gives∑
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥j+1

1
j0≥n |αr |

2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

≤ C
∥∥∥(Kr(j + n |αr|, n))j∈Z

∥∥∥
ℓ1(Z)

∑
j0≥1

1
j0≥n |αr |

2

(1 + |j0|)γ1 |hj0 | ≤
C

nγ2−γ1+1/8
∥h∥ℓ1γ2 ,

since
∥∥∥(Kr(j + n |αr|, n))j∈Z

∥∥∥
ℓ1(Z)

≤ C/n1/8.

Finally, the proof of the second estimate is similar to the one for the estimate of (Sr,1(n, j,h))j∈Z and

(Sℓ,1(n, j,h))j∈Z in Lemma 4.9, this time using that
∥∥∥(Kr(j + n |αr|, n))j∈Z

∥∥∥
ℓ∞(Z)

≤ C/n7/12.

For the last estimate, we first note that, for h ∈ ℓ∞γ2 , we have that∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

= sup
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥1

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

= sup
j∈Z

(1 + |j|)γ11j≥1

j∑
j0=1

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

+ sup
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

+ sup
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥j+1

1
j0≥n |αr |

2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |.
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The first two terms contribute to

sup
j∈Z

(1 + |j|)γ11j≥1

j∑
j0=1

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

+ sup
j∈Z

(1 + |j|)γ11j≥1

∑
j0≥j+1

1
j0<

n |αr |
2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

≤ Ce−c n∥h∥ℓ∞γ2 ,

while for the third term, we note that for each j ≥ 1

(1 + |j|)γ1
∑

j0≥j+1

1
j0≥n |αr |

2

1|j−j0|≤n+1Kr(c, j − j0 + n |αr|, n)|hj0 |

≤ C
∑
j0≥1

1
j0≥n |αr |

2

|K n
r (c, j − j0)|

(1 + |j0|)γ2
(1 + |j0|)γ2−γ1

|hj0 |

≤ C

nγ2−γ1+1/8
∥h∥ℓ∞γ2 ,

since ∥ (Kr(j + n |αr|, n))j∈Z ∥ℓ1(Z) ≤ C/n1/8.

The very last contribution to handle is the one coming from the exponential terms (Dexp(n, j,h))j∈Z.
And we have the following result whose proof is trivial and let to the interested reader.

Lemma 4.15. For any γ2 ≥ γ1 ≥ 0, there exists a constant C > 0 such that for all n ≥ 1, one has:

∥(Dexp(n, j,h))j∈Z∥ℓ1γ1
≤ C e−c n ∥h∥ℓ1γ2 , for any h ∈ ℓ1γ2(Z;R) ,

∥(Dexp(n, j,h))j∈Z∥ℓ∞γ1
≤ C e−c n ∥h∥ℓ∞γ2 , for any h ∈ ℓ∞γ2(Z;R) .

We can now conclude the proof of Theorem 4.3. For the first estimate (4.38a), we use the estimates
provided by Lemma 4.14, Lemma 4.13 and Lemma 4.15. We thus have

∥L n(Id− S)h∥ℓ1γ1 ≤ C

(∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Dℓ,1(n, j,h))j∈Z

∥∥∥
ℓ1γ1

)
+ C

(∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Dℓ,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Dexp(n, j,h))j∈Z

∥∥∥
ℓ1γ1

)
≤ C

(
1

nγ2−γ1+1/8
+

1

nγ2+1/3
+ e−c n

)
∥h∥ℓ1γ2 ≤ C

nγ2−γ1+1/8
∥h∥ℓ1γ2 .
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For the second estimate (4.38b), we have

∥L n(Id− S)h∥ℓ∞γ1 ≤ C

(∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

)
+ C

(∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dexp(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

)
≤ C

(∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

)
+ C

(∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Dℓ,2(n, j,h))j∈Z

∥∥∥
ℓ1γ1

+
∥∥∥(Dexp(n, j,h))j∈Z

∥∥∥
ℓ1γ1

)
≤ C

(
1

nγ2−γ1+7/12
+

1

nγ2+1/3
+ e−c n

)
∥h∥ℓ1γ2 ≤ C

nγ2−γ1+1/3+min(1/4,γ1)
∥h∥ℓ1γ2 .

Finally, for the third estimate (4.38c), we use once more the estimates provided by Lemma 4.14, Lemma
4.13 and Lemma 4.15 to get:

∥L n(Id− S)h∥ℓ∞γ1 ≤ C

(∥∥∥(Dr,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,1(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

)
+ C

(∥∥∥(Dr,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dℓ,2(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

+
∥∥∥(Dexp(n, j,h))j∈Z

∥∥∥
ℓ∞γ1

)
≤ C

(
1

nγ2−γ1+1/8
+

1

nγ2−1/8
+ e−c n

)
∥h∥ℓ∞γ2 ≤ C

nγ2−γ1+min(1/8,γ1−1/8)
∥h∥ℓ∞γ2 .

This completes the proof of Theorem 4.3.
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Chapter 5

Nonlinear orbital stability

In this last chapter, we finally prove the nonlinear orbital stability of the family of stationary discrete
profiles

{
vθ, θ ∈ (−θ, θ)

}
given by Theorem 2.1 in some well-chosen algebraically weighted ℓp spaces. More

precisely, given an initial sequence h = (hj)j∈Z in ℓ1(Z;R) satisfying the mass condition∑
j∈Z

hj = θ , θ ∈ (−θ, θ),

we let un = (unj )j∈Z,n∈N denote the corresponding solution to the Lax-Wendroff scheme (2.5)-(2.6) start-

ing from the initial condition u0 = u + h, where we recall that u = v0 is the element of the family{
vθ, θ ∈ (−θ, θ)

}
given by the explicit expression (2.7). By mass conservation, we automatically have:

∀n ∈ N ,
∑
j∈Z

unj − uj =
∑
j∈Z

u0j − uj =
∑
j∈Z

hj = θ .

As a consequence, for each n ∈ N, it is natural to define the perturbation pn = (pnj )j∈Z as

pn := un − vθ ,

where in particular the mass conservation property of un implies that for any n ∈ N, the sequence pn has
zero mass:

∀n ∈ N ,
∑
j∈Z

pnj = 0 .

From the recurrence formula (2.5) for un = vθ+pn, we deduce that the sequence pn satisfies the following
equation:

∀n ∈ N , pn+1 = Lθ pn + (Id− S)N θ(pn) , (5.1)

where the bounded linear operator Lθ : ℓq(Z;C) 7→ ℓq(Z;C) is defined as the linearization of the Lax-
Wendroff scheme around the stationary discrete shock profile vθ, that is:

∀ j ∈ Z ,
(
Lθ p

)
j
:= pj − λ

[
∂uFλ(v

θ
j , v

θ
j+1) pj + ∂vFλ(v

θ
j , v

θ
j+1) pj+1

]
+ λ

[
∂uFλ(v

θ
j−1, v

θ
j ) pj−1 + ∂vFλ(v

θ
j−1, v

θ
j ) pj

]
,

(5.2)

93



and the nonlinear operator N θ is defined by:

∀ j ∈ Z ,
(
N θ(p)

)
j
:=λFλ(v

θ
j−1 + pj−1, v

θ
j + pj)− λFλ(v

θ
j−1, v

θ
j )

− λ
[
∂uFλ(v

θ
j−1, v

θ
j ) pj−1 + ∂vFλ(v

θ
j−1, v

θ
j ) pj

]
.

(5.3)

We also recall that S is the shift operator defined as (Sp)j := pj+1 for all j ∈ Z. Actually, we shall
rewrite the recurrence relation in time (5.1) more conveniently as

∀n ∈ N , pn+1 = L pn +
(
Lθ − L

)
pn + (Id− S)N θ(pn) ,

where the operator L = L0, given by (2.11), is the linearization of (2.5)-(2.6) around the discrete shock
profile u = v0 given by (2.7). Finally, an application of Duhamel’s formula gives the final expression for
the perturbation pn at any time n ∈ N:

∀n ∈ N , pn = L n p0 +
n−1∑
m=0

L n−1−m
(
Lθ − L

)
pm +

n−1∑
m=0

L n−1−m (Id− S) N θ(pm) . (5.4)

As already emphasized in Chapter 2, our nonlinear orbital stability result (that is, Theorem 2.5) holds
true in algebraically weighted spaces. Recalling our definition from the previous chapter, for γ ∈ R+, we
define the weight ωγ = (1 + |j|γ)j∈Z. Then, for p ∈ [1,+∞], we introduce the weighted space:

ℓpγ(Z;R) = {h ∈ ℓp(Z;R) | ωγh ∈ ℓp(Z;R)} ,

with ωγh = ((1 + |j|γ)hj)j∈Z and for h ∈ ℓpγ , we denote ∥h∥ℓpγ = ∥ωγh∥ℓp the norm of h in the space ℓpγ .
Our strategy will be to bound each term appearing in the right-hand side of (5.4) using the semi-group
estimates obtained for (L n)n∈N and (L n(Id− S))n∈N in Theorem 4.3. This is exactly the same strategy
as in [7] except that the exponents in Theorem 4.3 are different so the whole process should be carried
out in order to determine the correct constraints for β and σ in Theorem 2.5.

We shall need three technical lemmas which we now state. The first lemma provides semi-group
estimates for the family of operators (L n

(
Lθ − L

)
)n∈N.

Lemma 5.1. For any (ν1, ν2) ∈ [0,+∞)2, there exists a constant CL(ν1, ν2) > 0 such that for all sequence
p ∈ ℓ∞(Z;R) one has

(
Lθ − L

)
p ∈ ∩γ≥0ℓ

1
γ and:

∀n ∈ N ,
∥∥∥L n

(
Lθ − L

)
p
∥∥∥
ℓ1ν1

≤ CL(ν1, ν2)

(n+ 1)ν2
|θ| ∥p∥ℓ∞ ,

for all θ ∈ (−θ, θ).

The proof of the above lemma can be found in [7, Proposition 2], and it uses crucially the exponential
localisation of the family of discrete shock profiles vθ as stated in Theorem 2.1 and the key remark that
for a bounded sequence p ∈ ℓ∞(Z;R) one has∑

j∈Z

((
Lθ − L

)
p
)
j
= 0,

such that one can rely on estimate (4.37a) of Theorem 4.3 with (γ1, γ2) =
(
ν1, ν1 + ν2 +

1
8

)
.

The second lemma establishes algebraically weighted bounds for the nonlinear operator N θ, and a
proof is given in [7, Lemma 3.1].
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Lemma 5.2. Let
(
N θ

)
θ∈(−θ,θ)

be the family of nonlinear operators defined by (5.3). Let γ1 ≥ 0 and

ρ > 0 be given. There exists a constant CN (γ1, ρ) > 0 such that the following holds.

(i) If p ∈ ℓ1γ1(Z;R) with ∥p∥ℓ∞ ≤ ρ, then for all θ ∈ (−θ, θ), one has N θ(p) ∈ ℓ12γ1(Z;R) and

∀ θ ∈ (−θ, θ) ,
∥∥∥N θ(p)

∥∥∥
ℓ12γ1

≤ CN (γ1, ρ) ∥p∥ℓ1γ1 ∥p∥ℓ∞γ1 .

(ii) If p ∈ ℓ∞γ1(Z;R) with ∥p∥ℓ∞ ≤ ρ, then for all θ ∈ (−θ, θ) one has N θ(p) ∈ ℓ∞2γ1(Z;R) and

∀ θ ∈ (−θ, θ) ,
∥∥∥N θ(p)

∥∥∥
ℓ∞2γ1

≤ CN (γ1, ρ) ∥p∥2ℓ∞γ1 .

Finally, we shall also need the following estimates whose proof can be found in [7, Lemma 3.2]. These
are discrete versions of [31, Lemma 2.3]. Here and in all this Chapter, we let ⌊x⌋ denote the integer part
of a real number x.

Lemma 5.3. Let a, b and c be positive real numbers. Then there exists a constant C(a, b, c) > 0 such
that

∀n ∈ N ,

⌊n+1
2 ⌋∑

m=0

1

(1 +m− n)a
1

(1 +m)b
≤ C(a, b, c)

(2 + n)c
,

whenever 0 < a− c if b = 1, or 1− b ≤ a− c if b ∈ [0, 1) or 0 ≤ a− c if b > 1, together with

∀n ∈ N ,

n∑
m=⌊n+1

2 ⌋+1

1

(1 +m− n)a
1

(1 +m)b
≤ C(a, b, c)

(2 + n)c
,

whenever 0 < b− c if a = 1, or 1− a ≤ b− c if a ∈ [0, 1) or 0 ≤ b− c if a > 1.

5.1 Fixing the constants

The first step towards the proof of Theorem 2.5 is to fix the two constants C0 > 0 and ϵ > 0 that appear
in its statement. As a consequence, once for all we fix σ + β ≥ 5

12 together with 0 ≤ σ < β + 1
8 , and we

set γ := σ + β + 1
8 . We also fix a positive constant1 ϱ > 0.

Next, using Theorem 2.1(iii), we get the existence of a constant Cm(γ) > 0 such that

∀ θ ∈ (−θ, θ) , ∥vθ − u∥ℓ1γ ≤ Cm(γ) |θ| .

We shall denote by CL (β, γ) > 0 the constant from Theorem 4.3 with (γ1, γ2) = (β, γ). We can thus set

C0 := (1 + CL (β, γ)) (1 + Cm(γ)) . (5.5)

For any real number x, we use the standard notation x+ := max(x, 0). With the above parameter σ, we
introduce the number:

ν2 :=
7

12
+

(
σ − 7

12

)
+

. (5.6)

1In case the flux f of the conservation law or the numerical flux Fλ would be defined on an open set and not on the
whole space (R or R2), this parameter ϱ would help controlling the ℓ∞ norm of the numerical solution so that the numerical
solution would be defined for all times.
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Next, we introduce the following two constants

C1 := 2C0CL(β, ν2)C

(
ν2, σ +

11

24
, σ

)
+ 2C2

0 CL (β, 2β)CN (β, ϱ)C

(
β +

1

8
, 2σ +

11

24
, σ

)
,

C2 := 2C0CL

(
β, σ +

25

24

)
C

(
σ +

25

24
, σ +

11

24
, σ +

11

24

)
+ C2

0 CL (β, 2β)CN (β, ϱ)C

(
β +

7

12
, 2σ +

11

24
, σ +

11

24

)
+ C2

0 CL (β, 2β)CN (β, ϱ)C

(
β +

1

8
, 2σ +

11

12
, σ +

11

24

)
,

where the constants CL(β, ν2) and CL
(
β, σ + 25

24

)
are given by Lemma 5.1 with (ν1, ν2) = (β, ν2) and

(ν1, ν2) =
(
β, σ + 25

24

)
, CL (β, 2β) is given by Theorem 4.3 with (γ1, γ2) = (β, 2β), CN (β, ϱ) is given by

Lemma 5.2 with (γ1, ρ) = (β, ϱ), and the four constantsC
(
β + 1

8 , 2σ + 11
24 , σ

)
,C

(
σ +

25

24
, σ + 11

24 , σ + 11
24

)
,

C
(
β + 7

12 , 2σ + 11
24 , σ + 11

24

)
and C

(
β + 1

8 , 2σ + 11
12 , σ + 11

24

)
are given by Lemma 5.3 with either one of the

triplets:(
β +

1

8
, 2σ +

11

24
, σ

)
,

(
σ +

25

24
, σ +

11

24
, σ +

11

24

)
,

(
β +

7

12
, 2σ +

11

24
, σ +

11

24

)
,

(
β +

1

8
, 2σ +

11

12
, σ +

11

24

)
.

At last, we choose ϵ > 0 small enough such that

0 < ϵ < min

(
θ,

ϱ

C0
,
1 + Cm(γ)

C1
,
1 + Cm(γ)

C2

)
. (5.7)

5.2 Proof of Theorem 2.5

We now complete the proof of Theorem 2.5. We consider an initial perturbation h ∈ ℓ1γ(Z;R), with γ
previously defined, and we assume that h is small enough so that

∥h∥ℓ1γ < ϵ .

We then define the excess mass:
θ :=

∑
j∈Z

hj .

We readily remark that necessarily

|θ| =

∣∣∣∣∣∣
∑
j∈Z

hj

∣∣∣∣∣∣ ≤ ∥h∥ℓ1 ≤ ∥h∥ℓ1γ < ϵ < θ ,

the last inequality coming from our choice (5.7) for ϵ. We can therefore use below the discrete shock
profile vθ associated with the excess mass θ. We define the initial condition u0 := u + h and since the
numerical flux Fλ ∈ C∞(R2;R) is globally defined, we directly obtain the existence of (un)n∈N solution of
(2.5)-(2.6) starting from this u0. There is no need here to control the ℓ∞ norm of the numerical solution
at each time step in order to remain within the set where the numerical flux is defined. However, the ℓ∞
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control will be crucial in order to obtain uniform bounds for the quadratic remainder term N θ. Thus,
we can introduce the sequence of perturbations (pn)n∈N defined as

pn := un − vθ ,

which is given by (5.4), that is

∀n ∈ N , pn = L n p0 +

n−1∑
m=0

L n−1−m
(
Lθ − L

)
pm +

n−1∑
m=0

L n−1−m (Id− S) N θ(pm) .

We shall now prove by induction that for all n ∈ N one has pn ∈ ℓ1β(Z;R) together with the bounds:

∀m = 0, . . . , n , ∥pm∥ℓ1β ≤ C0

(1 +m)σ
∥h∥ℓ1γ , ∥pm∥ℓ∞β ≤ C0

(1 +m)σ+
11
24

∥h∥ℓ1γ , and ∥pm∥ℓ∞ ≤ ϱ .

(5.8)

5.2.1 Initialization step

At n = 0, we have by definition that

p0 = u0 − vθ = u− vθ + h .

As a consequence, using 0 ≤ β ≤ γ and obvious inequalities between norms, we have the estimates:

∥p0∥ℓ∞ ≤ ∥p0∥ℓ∞β ≤ ∥p0∥ℓ1β ≤ ∥p0∥ℓ1γ ≤
∥∥∥u− vθ

∥∥∥
ℓ1γ

+ ∥h∥ℓ1γ ≤ (1 + Cm(γ))∥h∥ℓ1γ ≤ C0∥h∥ℓ1γ ≤ C0ϵ ≤ ϱ .

(5.9)
This means that the induction assumption (5.8) is satisfied for n = 0 (the above chain of inequalities
encompasses the three estimates of (5.8)). We finally also recall that p0 has zero mass:∑

j∈Z
p0j = 0 ,

and this property will be automatically propagated at later times since we consider a conservative scheme.

5.2.2 Induction step

We assume that (5.8) is satisfied up to some integer n ∈ N and we now show that it propagates to the
integer n+ 1. Using Duhamel’s formula at n+ 1, we have the following expression for pn+1:

pn+1 = L n+1 p0 +
n∑

m=0

L n−m
(
Lθ − L

)
pm +

n∑
m=0

L n−m (Id− S)N θ(pm) .

We shall now bound each term separately.
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The ℓ1β estimate. Since the initial perturbation p0 ∈ ℓ1γ is of zero mass, we directly have by Theorem 4.3:

∥∥L n+1 p0
∥∥
ℓ1β

≤ CL (β, γ)

(2 + n)σ
∥p0∥ℓ1γ ≤ CL (β, γ)(1 + Cm(γ))

(2 + n)σ
∥h∥ℓ1γ , (5.10)

where we have used the following consequence of (5.9):

∥p0∥ℓ1γ ≤ (1 + Cm(γ)) ∥h∥ℓ1γ .

Regarding the second term, we use Lemma 5.1 with ν1 = β and ν2 defined in (5.6), the inequality
|θ| < ϵ and the induction assumption (5.8) to obtain:∥∥∥L n−m

(
Lθ − L

)
pm
∥∥∥
ℓ1β

≤ CL(β, ν2)

(n−m+ 1)ν2
|θ| ∥pm∥ℓ∞

≤ CL(β, ν2)

(n−m+ 1)ν2
|θ| ∥pm∥ℓ∞β

≤ ϵC0CL(β, ν2)

(n−m+ 1)ν2 (1 +m)σ+
11
24

∥h∥ℓ1γ .

Finally, using Lemma 5.3 with a = ν2, b = σ + 11
24 and c = σ (the reader can easily verify that we are

always in a position to apply the two inequalities provided by Lemma 5.3 with our choice (5.6) of ν2), we
directly obtain that∥∥∥∥∥

n∑
m=0

L n−m
(
Lθ − L

)
pm

∥∥∥∥∥
ℓ1β

≤
n∑

m=0

ϵC0CL(β, ν2)

(n−m+ 1)ν2 (1 +m)σ
∥h∥ℓ1γ

≤
2 ϵC0CL(β, ν2)C

(
ν2, σ +

11

24
, σ

)
(2 + n)σ

∥h∥ℓ1γ . (5.11)

For the third term that incorporates the nonlinear contributions, we shall use the estimate (4.38a) of
Theorem 4.3 and Lemma 5.2 to derive that∥∥∥∥∥

n∑
m=0

L n−m (Id− S)N θ(pm)

∥∥∥∥∥
ℓ1β

≤
n∑

m=0

CL (β, 2β)

(1 + n−m)β+
1
8

∥∥∥N θ(pm)
∥∥∥
ℓ12β

≤
n∑

m=0

CL (β, 2β)CN (β, ϱ)

(1 + n−m)β+
1
8

∥pm∥ℓ1β ∥pm∥ℓ∞β

≤
n∑

m=0

C2
0 CL (β, 2β)CN (β, ϱ)

(1 + n−m)β+
1
8 (1 +m)2σ+

11
24

∥h∥2ℓ1γ

≤
2 ϵC2

0 CL (β, 2β)CN (β, ϱ)C
(
β + 1

8 , 2σ + 11
24 , σ

)
(2 + n)σ

∥h∥ℓ1γ .

For the last inequality, we have applied Lemma 5.3 with a = β + 1
8 , b = 2σ + 11

24 and c = σ. We can
readily verify that

0 < β+
1

8
−σ = a−c , 0 < σ+

11

24
= b−c , and b−c+a−1 = β+σ+

1

8
+

11

24
−1 = σ+β− 5

12
≥ 0 ,
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thanks to our assumptions on β + σ ≥ 5
12 and 0 ≤ σ < β + 1

8 .
As a consequence (recalling the definition of the constant C1), we have obtained that

∥pn+1∥ℓ1β ≤ 1

(2 + n)σ

(
CL (β, γ) (1 + Cm(γ)) + ϵC1

)
∥h∥ℓ1γ ≤ C0

(2 + n)σ
∥h∥ℓ1γ ,

thanks to our choice of C0 and the restrictions on ϵ.

The ℓ∞β estimate. Using once more that the initial perturbation p0 ∈ ℓ1γ is of zero mass, we directly
find, using the semi-group estimate of (L n)n∈N in ℓ∞β that

∥∥L n+1 p0
∥∥
ℓ∞β

≤ CL (β, γ)

(2 + n)σ+
11
24

∥p0∥ℓ1γ ≤ CL (β, γ) (1 + Cm(γ))

(2 + n)σ+
11
24

∥h∥ℓ1γ ,

where we have used one more time the following consequence of (5.9):

∥p0∥ℓ1γ ≤ (1 + Cm(γ)) ∥h∥ℓ1γ .

Regarding the second term, we use Lemma 5.1 with ν1 = β and ν2 = σ + 25
24 to obtain∥∥∥L n−m

(
Lθ − L

)
pm
∥∥∥
ℓ∞β

≤
∥∥∥L n−m

(
Lθ − L

)
pm
∥∥∥
ℓ1β

≤
CL
(
β, σ + 25

24

)
(n−m+ 1)σ+

25
24

|θ| ∥pm∥ℓ∞

≤
ϵC0CL

(
β, σ + 25

24

)
(n−m+ 1)σ+

25
24 (1 +m)σ+

11
24

∥h∥ℓ1γ .

Next, using Lemma 5.3 with a = σ + 25
24 > 1 and b = c = σ + 11

24 , noticing that c < a, we directly obtain
that ∥∥∥∥∥

n∑
m=0

L n−m
(
Lθ − L

)
pm

∥∥∥∥∥
ℓ∞β

≤
n∑

m=0

ϵC0CL
(
β, σ + 25

24

)
(n−m+ 1)σ+

25
24 (1 +m)σ+

11
24

∥h∥ℓ1γ

≤
2 ϵC0CL

(
β, σ + 25

24

)
C
(
σ + 25

24 , σ + 11
24 , σ + 11

24

)
(2 + n)σ+

11
24

∥h∥ℓ1γ .

For the third term, we shall use the estimate (4.38b) of Theorem 4.3 and Lemma 5.2 to derive that∥∥∥∥∥∥∥
⌊n+1

2 ⌋∑
m=0

L n−m (Id− S)N θ(pm)

∥∥∥∥∥∥∥
ℓ∞β

≤
⌊n+1

2 ⌋∑
m=0

CL (β, 2β)

(1 + n−m)β+
1
3
+min( 1

4
,β)

∥∥∥N θ(pm)
∥∥∥
ℓ12β

≤
⌊n+1

2 ⌋∑
m=0

CL (β, 2β)CN (β, ϱ)

(1 + n−m)β+
7
12

∥pm∥ℓ1β ∥p
m∥ℓ∞β

≤
⌊n+1

2 ⌋∑
m=0

C2
0 CL (β, 2β)CN (β, ϱ)

(1 + n−m)β+
7
12 (1 +m)2σ+

11
24

∥h∥2ℓ1γ

≤
ϵC2

0 CL (β, 2β)CN (β, ϱ)C
(
β + 7

12 , 2σ + 11
24 , σ + 11

24

)
(2 + n)σ+

11
24

∥h∥ℓ1γ .
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For the last inequality, we have used the first inequality of Lemma 5.3 with a = β + 7
12 , b = 2σ + 11

24 and
σ + 11

24 , noticing that

a− c = β +
1

8
− σ > 0, and a− c+ b− 1 = σ + β − 5

12
≥ 0,

since 0 ≤ σ < β + 1
8 and β + σ ≥ 5

12 .
For the remaining part of the sum, we use estimate (4.38c) of Theorem 4.3 and Lemma 5.2 to obtain∥∥∥∥∥∥∥

n∑
m=⌊n+1

2 ⌋+1

L n−m (Id− S)N θ(pm)

∥∥∥∥∥∥∥
ℓ∞β

≤
n∑

m=⌊n+1
2 ⌋+1

CL (β, 2β)

(1 + n−m)β+min( 1
8
,β− 1

8)

∥∥∥N θ(pm)
∥∥∥
ℓ∞2β

≤
n∑

m=⌊n+1
2 ⌋+1

CL (β, 2β)CN (β, ϱ)

(1 + n−m)β+
1
8

∥pm∥2ℓ∞β

≤
n∑

m=⌊n+1
2 ⌋+1

CL (β, 2β)CN (β, ϱ)C2
0

(1 + n−m)β+
1
8 (1 +m)2σ+

11
12

∥h∥2ℓ1γ

≤
ϵC2

0 CL (β, 2β)CN (β, ϱ)C
(
β + 1

8 , 2σ + 11
12 , σ + 11

24

)
(2 + n)σ+

11
24

∥h∥ℓ1γ .

For the last inequality, we have used the second inequality of Lemma 5.3 with a = β+ 1
8 , b = 2σ+ 11

12 and
σ + 11

24 , noticing that

b− c > 0, and a− c+ b− 1 = σ + β − 5

12
≥ 0.

As a consequence (recalling our definition for the constant C2), we have obtained that

∥pn+1∥ℓ∞β ≤ 1

(2 + n)σ+
11
24

(
CL (β, γ) (1 + Cm(γ)) + ϵC2

)
∥h∥ℓ1γ ≤ C0

(2 + n)σ+
11
24

∥h∥ℓ1γ .

From there, we also deduce that

∥pn+1∥ℓ∞ ≤ ∥pn+1∥ℓ∞β ≤ C0 ϵ ≤ ϱ .

This concludes the proof of Theorem 2.5.
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Appendix A

The exact and approximate Green’s
functions for the Cauchy problem

In this appendix, we study the Lax-Wendroff scheme when applied to the linear transport equation:

∂tv + a ∂xv = 0 ,

with a ̸= 0 and the equation is considered on the whole real line R. As we have already seen earlier in
this article, in the linear case, the Lax-Wendroff scheme can be recast under the form:

∀n ∈ N , vn+1 = L vn , (A.1)

where for any integer n ∈ N, vn denotes the sequence (vnj )j∈Z, and L is the discrete convolution operator
defined on any real or complex valued sequence v = (vj)j∈Z by:

∀ j ∈ Z , (L v)j := vj −
α

2
(vj+1 − vj−1) +

α2

2
(vj+1 − 2vj + vj−1) ,

where, as in the core of this article, α is a short notation for λ a, λ > 0 denoting the fixed ratio ∆t/∆x
between the time and space steps. The constant α thus has the sign of the transport velocity a. In what
follows, we shall apply the results below to either α = αℓ ∈ (0, 1) or α = αr ∈ (−1, 0), so that the above
operator L corresponds to either one of the operators Lℓ or Lr defined in (3.25).

In this appendix, we recall or prove several bounds on the exact and approximate Green’s functions
for the Lax-Wendroff scheme. The approximate Green’s function is defined below in (A.8) and is meant
to reproduce the leading qualitative and quantitative features of the exact Green’s function of (A.1). The
study of the Green’s function of (A.1) was the purpose of the article [9] by one of the authors. We shall
recall below the main conclusions of [9] since they are useful for our purpose here. Unsurprisingly, many
arguments below for studying the approximate Green’s function follow what has been already done in
[9] but there are also several new regimes that need to be considered and that did not appear in [9].
The bounds that we prove below (see in particular Theorem A.3) are used in this article to study the
so-called activation function A in our decomposition of the Green’s function for the linearized operator
L in (2.11) (see Theorem 4.1) and various bounds for some remainder terms. This appendix can also be
seen as a main building block for a complete justification of the local limit theorem for finite difference
approximations of the transport equation that exhibit dispersion and dissipation (we refer to [23] and
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[24, 25] for a presentation and some recent advances on the local limit theorem and its connection to
probability theory). The local limit theorem in the non-dispersive (or rather parabolic) case is justified in
[11] and the complete justification of the local limit theorem in the dispersive case is a work in progress.
We refer to [24] for a justification of the leading order term in the local limit theorem for sequences that
exhibit dispersion and dissipation as we consider here.

A.1 The exact and approximate Green’s functions. Main results

As we have recalled above, the Lax-Wendroff scheme for the transport equation on the whole real line
reads:

vn+1
j = vnj − α

2
(vnj+1 − vnj+1) +

α2

2
(vnj+1 − 2 vnj + vnj+1) , (A.2)

with α := λ a. The exact Green’s function for (A.2) corresponds to the initial condition defined by:

∀ j ∈ Z , G
0
j :=

{
1 , if j = 0,

0 , otherwise,

which leads to the solution (G
n
j )(j,n)∈Z×N for (A.2). This sequence (G

n
j )(j,n)∈Z×N is studied in [9], see also

[16, 17]. Its main features are recalled below.
We restrict from now on to the case α ∈ (−1, 1) \ {0} in order to stick to the two particular situations

we are interested in, that is, either α = αℓ ∈ (0, 1) or α = αr ∈ (−1, 0). We compute the so-called
amplification factor for (A.2) and obtain (see for instance [9]):

∀ θ ∈ R , F̂LW(θ) = 1 − 2α2 sin2
θ

2
+ iα sin θ .

As already reported in [9], the expansion of the amplification factor F̂LW near the frequency 0 reads:

F̂LW(θ) = exp

(
iα θ − i

α (1− α2)

6
θ 3 − α2 (1− α2)

8
θ 4 + O(θ 5)

)
, (A.3)

and we have furthermore the dissipation property:

∀ θ ∈ [−π, π] \ {0} , |F̂LW(θ)| < 1 .

Since F̂LW is a trigonometric polynomial, it extends as a holomorphic function with respect to θ on the
whole complex plane C. For later use, we introduce the coefficients:

c3 :=
α (1− α2)

6
̸= 0 , c4 :=

α2 (1− α2)

8
> 0 , (A.4)

in such a way that (A.3) equivalently reads:

F̂LW(θ) = exp
(
iα θ − i c3 θ

3 − c4 θ
4 + O(θ5)

)
,

as θ tends to 0. The main result proved in [9] can be formulated as follows. It uses the notation c3 and
c4 for the coefficients in (A.4) that arise in the Taylor’s expansion of the amplification factor F̂LW at 0.
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Theorem A.1. Assume that the constant c3 in (A.4) is positive, that is α ∈ (0, 1). Then there exist two
constants C > 0 and c > 0 such that the Green’s function (G

n
j )(j,n)∈Z×N for (A.2) satisfies the uniform

bounds:

∀n ∈ N∗ , ∀ j ∈ Z ,
∣∣G n

j

∣∣ ≤ C

n 1/3
exp

(
− c

(
j − αn

n 1/3

)3/2
)

, if j − αn ≥ 0 , (A.5)

and:

∀n ∈ N∗ , ∀ j ∈ Z ,∣∣G n
j − 2Re gnj

∣∣ ≤ C

n 1/3
exp

(
− c

(
|j − αn|

n 1/3

)3/2
)

+
C

n 1/2
exp

(
− c

(j − αn)2

n

)
,

if j − αn < 0 , (A.6)

where gnj is defined for n ∈ N∗ and j ∈ Z as:

∀ (n, j) ∈ N∗ × Z , gnj :=
1

2π
exp

(
− c4 (j − αn)2

9 c23 n

)
exp

(
i
2 |j − αn|3/2

3
√
3 |c3|n

− i
π

4

)

×
∫ √

2 |j−αn|
3 |c3|n

−
√

2 |j−αn|
3 |c3|n

e−
√

3 |c3| |j−αn|nu2
ec3 n e−iπ/4 u3

du . (A.7)

If c3 is negative, the bounds depending on the sign of j − αn should be switched.

In order to be absolutely complete, it is important to note that Theorem A.1 above is not exactly
the statement that is proved in [9]. This is because, in the interval between the completion of [9] and
the present work, an error was found in [9], which made us modify the statement and the proof of the
main result in [9]. The new statement, that is correct, and whose corollaries follow exactly as in [9], is
Theorem A.1 above. The error occurred in the proof of the estimate (A.6) and in the definition (A.7)
of the approximation gnj that incorporates the damped oscillations of the Green’s function. Rather than
reproducing the whole proof of Theorem A.1 (only a tiny part of the proof needs to be corrected), we shall
rather give the proof of Theorem A.3 below for the approximate Green’s function since the analysis of
the approximate Green’s function needs to incorporate new regimes that were not considered in [9]. The
proof of the above estimate (A.6) corresponds to the bound (A.12) below for the approximate Green’s
function. The reader will most certainly experiment no difficulty to adapt the arguments below to derive
the statement in (A.6), (A.7).

Let us recall an immediate consequence of Theorem A.1, see [9] for an even more precise statement.

Corollary A.1. Let the constant c3 in (A.4) be positive, that is, α ∈ (0, 1). Then there exist two constants
C > 0 and c > 0 such that the Green’s function (G

n
j )(j,n)∈Z×N for (A.2) satisfies:

∀n ∈ N∗ ,
∣∣G n

j

∣∣ ≤ C



1

n1/3
exp

(
− c |j − αn|3/2/n1/2

)
, if j − αn ≥ 0,

1

n1/3
, if −n1/3 ≤ j − αn ≤ 0,

1

|j − αn|1/4 n1/4
exp

(
− c |j − αn|2/n

)
, if j − αn ≤ −n1/3,
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together with the ℓ1 estimate:

∀n ∈ N ,
∑
j∈Z

∣∣G n
j

∣∣ ≤ C (1 + n)1/8 .

If c3 is negative, that is, α ∈ (−1, 0), the pointwise estimates for the Green’s function (G
n
j )(j,n)∈Z×N

read:

∀n ∈ N∗ ,
∣∣G n

j

∣∣ ≤ C



1

n1/3
exp

(
− c |j − αn|3/2/n1/2

)
, if j − αn ≤ 0,

1

n1/3
, if 0 ≤ j − αn ≤ n1/3,

1

|j − αn|1/4 n1/4
exp

(
− c |j − αn|2/n

)
, if j − αn ≥ n1/3,

and the ℓ1 estimate is unchanged.

The analysis in Chapter 4 will use a very slight variation on Theorem A.1 which we state here for
convenience. Actually, the statement in Theorem A.2 below is the core of the proof of Theorem A.1 in
[9] even though this result was not stated in such generality in [9]. Once again, the proof of Theorem A.2
below follows from the exact same arguments as those we develop below in the proofs of Theorem A.3
and Theorem A.4. The absorption of the remainder term θ5Ψ(θ) in the integral is made by choosing δ
small enough, just like we did in the proof of Proposition 4.1 in Chapter 4. We therefore feel free to skip
the proof of Theorem A.2.

Theorem A.2. Let c̃3 and c̃4 be two positive real numbers. Let Ψ denote a holomorphic function on some
neighborhood of 0 in C. Let C be a positive real number. Then there exists some positive real number
δ0 > 0 such that the following property holds: for any δ ∈ (0, δ0], there exist two constants C > 0 and
c > 0 such that there holds:

∀ (x, y) ∈ R× [C−1,+∞) ,

∣∣∣∣∫ δ

−δ
eix θ+i c̃3 y θ3−c̃4 y θ4+y θ5 Ψ(θ) dθ

∣∣∣∣

≤ C



1

y1/3
exp

(
− c |x|3/2/y1/2

)
, if 0 ≤ x ≤ C y,

1

y1/3
, if −y1/3 ≤ x ≤ 0,

1

|x|1/4 y1/4
exp

(
− c |x|2/y

)
, if −C y ≤ x ≤ −y1/3.
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If now c̃3 is negative (c̃4 being kept positive), the result still holds but with estimates that now read:

∀ (x, y) ∈ R× [C−1,+∞) ,

∣∣∣∣∫ δ

−δ
eix θ+i c̃3 y θ3−c̃4 y θ4+y θ5 Ψ(θ) dθ

∣∣∣∣

≤ C



1

y1/3
exp

(
− c |x|3/2/y1/2

)
, if −C y ≤ x ≤ 0,

1

y1/3
, if 0 ≤ x ≤ y1/3,

1

|x|1/4 y1/4
exp

(
− c |x|2/y

)
, if y1/3 ≤ x ≤ C y.

We now turn to the approximate Green’s function for (A.2). Recalling that we have the following
formula for the exact Green’s function:

∀ (n, j) ∈ N× Z , G
n
j =

1

2π

∫ π

−π
e−i j θ F̂LW(θ)n dθ =

1

2π

∫ π

−π
ei j θ F̂LW(−θ)n dθ ,

the expansion (A.3) and the dissipation property suggests the introduction of the approximate Green’s
function Gn

j defined by:

∀ (n, j) ∈ N∗ × Z , Gn
j :=

1

2π

∫
R
ei (j−αn) θ ei c3 n θ3 e−c4 n θ4 dθ . (A.8)

The relevance of Gn
j for analyzing the behavior of the exact Green’s function for (A.2) is illustrated by

numerous simulations in [3]. A rigorous justification (by means of sharp analytical bounds) of these
numerical observations is, to some extent, the purpose of the so-called local limit theorem and is the
content of a future work by the authors. We show below that the bounds for Gn

j are “consistent” with

those given in Theorem A.1 for the exact Green’s function G
n
j . Let us quickly observe that the above

definition (A.8) only makes sense for n ∈ N∗ so that the integral is absolutely convergent. We have
replaced the compact integration interval [−π, π] by the whole real line R for convenience since high
frequencies will not modify much the behavior of Gn

j .
For technical reasons that will be made more clear below, it is useful to “extend” the approximate

Green’s function to a continuous setting and we therefore introduce the function of two variables G that
is defined by:

∀ (x, y) ∈ R× R+∗ , G(x, y) :=
1

2π

∫
R
eix θ ei c3 y θ

3
e−c4 y θ4 dθ . (A.9)

From the definition (A.8), we directly get the relation Gn
j = G(j−αn, n) so that any detailed information

or bounds on G will give us information or bounds on Gn
j .

We thus consider from now on the function G defined in (A.9). Our main result, that is Theorem A.3
below, makes use of an auxiliary function that, to some extent, captures the oscillating behavior of the
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function G on the side where x has the opposite sign of c3. This auxiliary function g is defined as follows:

∀ (x, y) ∈ R× R+∗ , g(x, y) :=
1

2π
exp

(
− c4 x

2

9 c23 y

)
exp

(
i

2 |x|3/2

3
√

3 |c3| y
− i

π

4

)

×
∫ √

2 |x|
3 |c3| y

−
√

2 |x|
3 |c3| y

e−
√

3 |c3| |x| y t2 ec3 y e
−iπ/4 t3 dt . (A.10)

Comparing with (A.7), we see that (A.7) corresponds to x = j − αn and y = n in (A.10). This explains
why the proof of the above estimate (A.6) is entirely similar to the proof of (A.12) below. Our main
result is then the following.

Theorem A.3. Let us assume that the coefficient c3 in (A.4) is positive, that is α ∈ (0, 1). Let ymin > 0
and let c > 0 be given. Then there exist some constants1 C > 0 and c > 0 such that, for any (x, y) ∈
R× [ymin,+∞), there holds:

|G(x, y)| ≤



C

y1/4
exp(−c x4/3/y1/3) , if x ≥ c y,

C

y1/3
exp(−c x3/2/y1/2) , if 0 ≤ x ≤ c y,

C

y1/3
, if −y1/3 ≤ x ≤ 0,

C

y1/4
exp(−c |x|4/3/y1/3) , if x ≤ −c y,

(A.11)

and:

|G(x, y) − 2Re g(x, y)| ≤ C

y1/3
exp

(
−c

|x|3/2

y1/2

)
+

C

y1/2
exp

(
−c

x2

y

)
, (A.12)

if −c y ≤ x ≤ −y1/3.
In particular, there exist another constant C̃ ≥ C and another constant c̃ ∈ (0, c] such that for any

(x, y) ∈ R× [ymin,+∞), there holds:∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤
{
C̃ exp(−c̃ |x|4/3/y1/3) , if x ≤ −c y,

C̃ , if −c y ≤ x ≤ c y.
(A.13)

and: ∣∣∣∣1− ∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C̃ exp(−c̃ x4/3/y1/3) , if x ≥ c y. (A.14)

Let us note that the case where c3 is negative (that is, where α is negative) simply corresponds to
changing the sign of x since the definition (A.9) gives:

G(−x, y) :=
1

2π

∫
R
eix θ ei (−c3) y θ3 e−c4 y θ4 dθ .

We shall thus feel free to use without proof the analog of Theorem A.3 in the case where α is negative.
(This is precisely what we shall do in Chapter 4 where one of the relevant values for α is αr ∈ (−1, 0).)

1These constants depend only on ymin, c, c3 and c4, or equivalently on ymin, c and α.
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As follows from [29], see also [16, 17], it is already known that the Green’s function (G
n
j )(j,n)∈Z×N of

the Lax-Wendroff scheme (A.2) is not uniformly bounded in ℓ1(Z) (where “uniformly” refers to uniformity
with respect to n ∈ N). This is a characteristic feature of numerical schemes that exhibit dispersion. Since
the function G is meant to reproduce the leading behavior of the Green’s function, there is no hope to
show that G(·, y) belongs to L1

x uniformly with respect to y > 0 (or, say, y ≥ ymin > 0 in order to get
rid of potential trouble when y becomes arbitrarily small). However, a crucial point in our analysis of
the linearized operator L around our reference discrete shock profile is to obtain a uniform bound for
the activation function A. As we shall see later on, this activation function corresponds to the primitive
function of G with respect to its first variable. Deriving a bound for this primitive function can not
follow from the triangle inequality. We thus need to capture the leading oscillating behavior of G in order
to show that its primitive (with respect to its first variable) is uniformly bounded with respect to both
variables. This is the meaning of the estimates (A.13) and (A.14) and this is where the estimate (A.12)
is crucial.

The proof of Theorem A.3 is split in several paragraphs in order to emphasize the distinctions between
the fast decaying side of the Green’s function and its oscillating side (as for the Airy function). Most
of what follows is an adaptation of the results in [9] even though several regimes did not appear in [9]
because the exact Green’s function was considered there and this one has compact support for any n.
Furthermore, it appears that an error occurred in [9] when introducing the analog of the above function
g and in proving and error bound between the Green’s function and its (presumably) leading behavior.
This appendix is therefore the opportunity to correct this error and to generalize some of the results in
[9] to a continuous setting. In the final paragraph of this appendix, we connect the result of Theorem
A.3 with the analysis of the activation function Ar (or Aℓ), see Corollary A.6, and we explain why the
bounds in Theorem A.3 give exactly all that is needed in the analysis of Sections 4.3 and 4.5.

A.2 The uniform bound

It is sometimes useful to consider y > 0 in (A.9) and later restrict to y ≥ ymin as in Theorem A.3. This
is mostly what we shall do in what follows, where the final restriction y ≥ ymin will be used to derive
bounds as claimed in Theorem A.3. We first derive a uniform bound for G(x, y) with respect to x ∈ R.

Proposition A.1. Let the function G be defined in (A.9) with a nonzero constant c3. Then there exists
a constant C > 0 such that for any y > 0, there holds:

sup
x∈R

|G(x, y)| ≤ C

y1/3
.

Proof. The proof of Proposition A.1 is a mere adaptation of the proof of [9, Proposition 2.3]. We recall
the details for the sake of completeness. From [24, Lemma 3.1] and the so-called van der Corput Lemma,
we have: ∣∣∣∣ ∫ b

a
e i f(θ) g(θ) dθ

∣∣∣∣ ≤ C0(
minθ∈[a,b] | f (3)(θ) |

) 1/3

(
∥ g ∥L∞([a,b]) + ∥ g′ ∥L1([a,b])

)
, (A.15)

as long as f is real valued and the minimum of |f (3)| on the interval [a, b] is positive. The crucial
observation here is that the constant C0 in (A.15) does not depend on a nor b (nor f and g, of course).
The function g could be complex valued.
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We apply the above inequality to f(θ) := x θ + c3 y θ
3 and g(θ) := exp(−c4 y θ

4), so that both norms
∥ g ∥L∞([a,b]) and ∥ g′ ∥L1([a,b]) can be bounded uniformly with respect to a, b and y. We thus obtain the
bound: ∣∣∣∣∫ b

a
eix θ ei c3 y θ

3
e−c4 y θ4 dθ

∣∣∣∣ ≤ C

y1/3
,

and it remains to pass to the limit in both a and b to conclude, the constant C being independent of the
interval [a, b].

A.3 The fast decaying side

We assume from now on that the coefficient c3 in (A.4) is positive, the case where this coefficient is
negative being obtained by switching the sign of x. Now that the sign of c3 is fixed, we first deal with the
case x ≥ 0.

Proposition A.2. Let the function G be defined in (A.9) and let the constant c3 be positive. Then there
exist some constants c♯ > 0, C > 0 and c > 0 such that for any (x, y) ∈ R× R+∗, there holds:

|G(x, y)| ≤


C

y1/4 max(1, x1/4)
exp

(
− c

x3/2

y1/2

)
, if 0 ≤ x ≤ c♯ y,

C

y1/2
exp

(
− c

x4/3

y1/3

)
, if x ≥ c♯ y.

Proof. Integrating the holomorphic function:

z ∈ C 7−→ eix z ei c3 y z
3
e−c4 y z4

over a large rectangle and passing to the limit, we easily see that the real line R over which we integrated
it to obtain the defining equation (A.9) can be switched to any line iµ + R with µ ∈ R. In other words,
the Cauchy formula yields:

∀µ ∈ R , ∀ (x, y) ∈ R× R+∗ , G(x, y) =
1

2π

∫
R
eix (iµ+θ) ei c3 y (iµ+θ)3 e−c4 y (iµ+θ)4 dθ . (A.16)

Expanding all quantities within the integral and applying the triangle inequality, we obtain the bound:

∀µ ∈ R , ∀ (x, y) ∈ R×R+∗ , |G(x, y)| ≤ e−xµ+c3 y µ3−c4 y µ4

2π

∫
R
e−3 y µ (c3−2 c4 µ) θ2 e−c4 y θ4 dθ . (A.17)

This bound is rather crude but it allows to deal with many regimes in (x, y) by optimizing with respect
to the free parameter µ ∈ R.

Let us now consider x ≥ 0 and let us choose µ = µ0 := (x/(3 c3 y))
1/2 ≥ 0. We use the bound (A.17)

and use the obvious inequality exp(−c4 y µ
4
0) ≤ 1 to obtain:

|G(x, y)| ≤ 1

2π
exp

(
− 2x3/2

3
√
3 c3 y1/2

) ∫
R
e−3 y µ0 (c3−2 c4 µ0) θ2 e−c4 y θ4 dθ .
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We define once and for all the positive constant c♯ := 3 c33/(16 c
2
4). If we consider the regime 0 ≤ x ≤ c♯ y,

then we have 2 c4 µ0 ≤ c3/2, so that we get:

|G(x, y)| ≤ 1

2π
exp

(
− 2x3/2

3
√
3 c3 y1/2

) ∫
R
e−(3/2) c3 y µ0 θ2 e−c4 y θ4 dθ .

Since x is nonnegative (and therefore µ0 is nonnegative too), we can either use one exponential term or
the other within the integral to derive a bound for this integral. In the case x = 0, only the exponential
term exp(−c4 y θ

4) makes the integral converge. Recalling the value µ0 = (x/(3 c3 y))
1/2, we thus get:∫

R
e−(3/2) c3 y µ0 θ2 e−c4 y θ4 dθ ≤ C

y1/4 max(1, x1/4)
,

with a constant C that is independent of y and x ∈ [0, c♯ y]. This yields our first bound (see the statement
of Proposition A.2):

∀x ∈ [0, c♯ y] , |G(x, y)| ≤ C

y1/4 max(1, x1/4)
exp

(
−c

x3/2

y1/2

)
. (A.18)

We assume from now on x ≥ c♯ y > 0 with the above (already fixed) positive constant c♯ = 3 c33/(16 c
2
4).

We go back to (A.17) and restrict from now on to positive values of the parameter µ. We use Young’s
inequality:

6 c4 y µ
2 θ2 ≤ c4 y θ

4 + 9 c4 y µ
4 ,

to derive the bound:

∀µ > 0 , |G(x, y)| ≤ C
√
y µ

exp
(
− xµ+ c3 y µ

3 + 8 c4 y µ
4
)
, (A.19)

where the constant C is independent of x, y and µ. Our final choice for µ will depend on x and y so it is
crucial to get constants that do not depend on µ all along.

The function :
f : µ ∈ R+ 7−→ −xµ+ c3 y µ

3 + 8 c4 y µ
4 , (A.20)

is smooth and strictly convex. Since f(0) = 0, f ′(0) < 0 and f tends to +∞ at +∞, it appears that f
attains its unique global minimum on R+ at some µ > 0 that is characterized by f ′(µ) = 0. Multiplying
the relation f ′(µ) = 0 by µ, we obtain:

f(µ) = −2 c3 y µ
3 − 24 c4 y µ

4 ≤ −24 c4 y µ
4 .

Since we have x/y ≥ c♯, it is not hard to show that we can choose some small positive constant c♮ > 0,
whose choice only depends on c3, c4 c♯, and such that:

f ′

(
c♮

x1/3

y1/3

)
< 0 .

From the strict convexity of f , this means that we have µ ≥ c♮ (x/y)
1/3 for some constant c♮ that only

depends on c3 and c4 (we recall that c♯ only depends on c3 and c4).
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Going back to (A.19) and using µ ≥ c♮ (x/y)
1/3, we thus obtain the bound:

|G(x, y)| ≤ C
√
y µ

exp
(
f(µ)

)
≤ C

√
y µ

exp
(
− 24 c4 y µ

4
)
≤ C

y1/3 x1/6
exp

(
−c

x4/3

y1/3

)
.

We simplify a little bit more this last bound by using again the inequality x ≥ c♯ y and this yields the
estimate that we announced in Proposition A.2, namely:

|G(x, y)| ≤ C

y1/2
exp

(
−c

x4/3

y1/3

)
.

The proof of Proposition A.2 is now complete.

Let us observe that in Proposition A.2, the parameter y can take arbitrarily small positive values. We
now restrict to y ≥ ymin > 0 in order to prove the result of Theorem A.3. This will be done in two steps.

Corollary A.2. Let the function G be defined in (A.9) and let c3 be positive. Let ymin > 0 be given.
Then there exist some constants c♯ > 0, C > 0 and c > 0 such that for any (x, y) ∈ R× [ymin,+∞), there
holds:

|G(x, y)| ≤


C

y1/3
exp

(
−c

x3/2

y1/2

)
, if 0 ≤ x ≤ c♯ y,

C

y1/4
exp

(
−c

x4/3

y1/3

)
, if x ≥ c♯ y.

Proof. We fix the constant c♯ > 0 as the one given in Proposition A.2. Let us first assume x ≥ c♯ y so
that Proposition A.2 gives:

|G(x, y)| ≤ C

y1/2
exp

(
−c

x4/3

y1/3

)
.

We then use the bound y1/2 ≥ y
1/4
min y

1/4 to conclude. We can now assume 0 ≤ x ≤ c♯ y so that Proposition
A.2 gives:

|G(x, y)| ≤ C

y1/4 max(1, x1/4)
exp

(
−c

x3/2

y1/2

)
.

In particular, we have max(1, x1/4) ≥ x1/4 so if x ≥ y1/3 > 0, we get:

|G(x, y)| ≤ C

y1/4 x1/4
exp

(
−c

x3/2

y1/2

)
≤ C

y1/3
exp

(
−c

x3/2

y1/2

)
. (A.21)

It remains to examine the case 0 ≤ x ≤ min(y1/3, c♯ y). Proposition A.1 gives the bound:

|G(x, y)| ≤ C

y1/3
≤ C ec

y1/3
exp

(
−c

x3/2

y1/2

)
,

with the same constant c > 0 as in (A.21). This gives the expected bound for |G(x, y)| in the regime
0 ≤ x ≤ c♯ y. The proof of Corollary A.2 is complete.
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It appears that allowing us to choose the value of the constant c♯ that separates the two regimes in
Corollary A.2 will be convenient in the analysis (while in Corollary A.2 the constant c♯ is given and is
therefore not free to be fixed). We thus prove the following result which is a slight adaptation of Corollary
A.2.

Corollary A.3. Let the function G be defined in (A.9) and let c3 be positive. Let ymin > 0 be given.
Then for any constant c > 0, there exist some constants C > 0 and c > 0 such that for any (x, y) ∈
R× [ymin,+∞), there holds:

|G(x, y)| ≤


C

y1/3
exp

(
−c

x3/2

y1/2

)
, if 0 ≤ x ≤ c y,

C

y1/4
exp

(
−c

x4/3

y1/3

)
, if x ≥ c y.

Proof. We let c > 0 be given and assume that there holds c ≥ c♯ where c♯ is given in Corollary A.2. (The
case c ≤ c♯ is dealt with similarly as below.) Assuming first x ≥ c y, we have x ≥ c♯ y and we can therefore
use Corollary A.2 and obtain the desired bound for |G(x, y)|. Corollary A.2 also gives the desired bound
in the regime 0 ≤ x ≤ c♯ y and it therefore only remains to consider the regime c♯ y ≤ x ≤ c y. From
Corollary A.2, we already have the bound:

|G(x, y)| ≤ C1

y1/4
exp

(
−c1

x4/3

y1/3

)
,

for some constants C1 and c1 that are independent of x and y. Since we have c♯ y ≤ x, we can first use a
slight part of the exponential term to improve the power of the algebraic factor:

|G(x, y)| ≤ C1

y1/4
exp(−c1 c

4/3
♯ y) ≤ C2

y1/3
exp

−
c1 c

4/3
♯

2
y

 ,

and we now wish to show that the right-hand side of the latter inequality is less than:

C

y1/3
exp

(
−c

x3/2

y1/2

)

for some appropriate constants C and c (recalling that x belongs to the interval [c♯ y, c y]). We fix

c2 := c1 c
4/3
♯ /(2 c3/2) so that we have (we use x ≤ c y):

exp

−
c1 c

4/3
♯

2
y

 ≤ exp

(
−c2

x3/2

y1/2

)
,

and we therefore obtain:

|G(x, y)| ≤ C2

y1/3
exp

(
−c2

x3/2

y1/2

)
,

as expected. The proof of Corollary A.3 is complete.
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A.4 The oscillating side

We still assume that the coefficient c3 in (A.4) is positive but we now consider the case where x is negative.
This corresponds to the oscillating side of the Green’s function. The analysis is split in four regimes. The
case |x| ≤ y1/3 is dealt with straightforwardly with the uniform bound of Proposition A.1. The second
(and most difficult) regime corresponds to x ≤ −y1/3 and |x|/y is sufficiently small. The third regime
corresponds to the case where |x|/y is sufficiently large and the fourth and last regime corresponds to
the case where |x| and y are of comparable sizes. In the end, we collect all bounds and prove the result
announced in Theorem A.3. We start with the most difficult case for which |x|/y is small.

Proposition A.3. Let the function G be defined in (A.9) and let c3 be positive. Let the function g
be defined in (A.10). Then there exist some constants c♭ > 0, C > 0 and c > 0 such that for any
(x, y) ∈ R× R+∗, there holds:

|G(x, y) − 2Re g(x, y)| ≤ C

y1/3 min(1, y1/3)
exp

(
−c

|x|3/2

y1/2

)
+

C

y1/2
exp

(
−c

x2

y

)
,

if −c♭ y ≤ x ≤ −y1/3.

Proof. We always consider x < 0 and introduce the notation ω := |x|/y. We follow the analysis in [9]
with slight modifications since this is precisely at this stage that [9] has some incorrect argument. Rather
than integrating the function:

z ∈ C 7−→ eix z ei c3 y z
3
e−c4 y z4

on a horizontal line, we apply once again the Cauchy formula and use the contour depicted in Figure A.1,
that is:

• A horizontal half-line from −∞+ i
√

ω/(3 c3) to −2
√
ω/(3 c3)− (2 c4/(9 c

2
3))ω + i

√
ω/(3 c3),

• A segment (with slope −π/4) from the point −2
√

ω/(3 c3)−(2 c4/(9 c
2
3))ω+ i

√
ω/(3 c3) to the point

−i(
√
ω/(3 c3) + (2 c4/(9 c

2
3))ω),

• A segment (with slope π/4) from the point −i(
√

ω/(3 c3)+(2 c4/(9 c
2
3))ω) to the point 2

√
ω/(3 c3)+

(2 c4/(9 c
2
3))ω + i

√
ω/(3 c3),

• A horizontal half-line from 2
√

ω/(3 c3) + (2 c4/(9 c
2
3))ω + i

√
ω/(3 c3) to +∞+ i

√
ω/(3 c3).

The corresponding contributions ε1(x, y), H♭(x, y), H♯(x, y) and ε2(x, y) are reported in Figure A.1 and
their exact expressions are given below.

In this way, we obtain the decomposition:

G(x, y) = ε1(x, y) + ε2(x, y) + H♭(x, y) + H♯(x, y) , (A.22)

where the four contributions ε1(x, y), ε2(x, y), H♭(x, y) and H♯(x, y) have the following expressions:

ε1(x, y) =
e−xµ+c3 y µ3−c4 y µ4

2π

∫ −Ξ(ω)

−∞
eix θ+i c3 y θ3−i 3 c3 y µ2 θ+i 4 c4 y µ3 θ−i 4 c4 y µ θ3

× e−3 c3 y µ θ2+6 c4 y µ2 θ2 e−c4 y θ4 dθ ,
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ε1(x, y) ε2(x, y)

−i

(√
ω

3 c3
+

2 c4
9 c23

ω

)0

• •

•

• •

H♭(x, y) H♯(x, y)

Figure A.1: The integration contour in the case x ≤ −y1/3 and |x|/y small. The two red bullets represent the
approximate saddle points of the phase −iω z + i c3 z

3 − c4 z
4 and the black bullets represent the end points of the

contours along which we compute the contributions ε1(x, y), ε2(x, y), H♭(x, y), H♯(x, y).

where the upper bound Ξ(ω) and the parameter µ in the expression of ε1(x, y) are defined as:

Ξ(ω) := 2

√
ω

3 c3
+

2 c4
9 c23

ω , µ :=

√
ω

3 c3
. (A.23)

The contribution ε2(x, y) has the following expression (with the same definition for Ξ(ω) and µ):

ε2(x, y) =
e−xµ+c3 y µ3−c4 y µ4

2π

∫ +∞

Ξ(ω)
eix θ+i c3 y θ3−i 3 c3 y µ2 θ+i 4 c4 y µ3 θ−i 4 c4 y µ θ3

× e−3 c3 y µ θ2+6 c4 y µ2 θ2 e−c4 y θ4 dθ = ε1(x, y) . (A.24)

The contribution H♭(x, y) is given by:

H♭(x, y) =
e−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
e−iω yΘ(t)+i c3 yΘ(t)3−c4 yΘ(t)4 dt , (A.25)

with:

∀ t ∈

[
−
√

2ω

3 c3
− 2

√
2 c4

9 c23
ω,

√
2ω

3 c3

]
, Θ(t) := −

√
ω

3 c3
− 2 c4

9 c23
ω + t e−iπ/4 , (A.26)

which corresponds to the parametrization of the first slanted segment in Figure A.1 (the one with slope
−π/4). The parametrization of the second segment is entirely similar and we obtain the expression:

H♯(x, y) = H♭(x, y) .

Let us start with the estimate of ε2(x, y) whose expression is given in (A.24). By using the expression
for the parameter µ and recalling that we have x = −ω y, we get:

ε2(x, y) =
1

2π
exp

(
4ω3/2 y

3
√
3 c3

− c4
9 c23

ω2 y

) ∫ +∞

Ξ(ω)
ei ··· × e

−
√
3 c3 ω y θ2+

2 c4
c3

ω y θ2
e−c4 y θ4 dθ ,
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where the three dots within the integral stand for a real quantity whose precise expression is useless since
we are going to use the triangle inequality so that the modulus of this exponential term will be bounded
by 1. Indeed, applying the triangle inequality yields the bound:

|ε2(x, y)| ≤
1

2π
exp

(
4ω3/2 y

3
√
3 c3

− c4
9 c23

ω2 y

) ∫ +∞

Ξ(ω)
e
−
√
3 c3 ω y θ2+

2 c4
c3

ω y θ2
e−c4 y θ4 dθ

≤ 1

2π
exp

(
4ω3/2 y

3
√
3 c3

) ∫ +∞

Ξ(ω)
e
−
√
3 c3 ω y θ2+

2 c4
c3

ω y θ2
e−c4 y θ4 dθ .

We first restrict ω = |x|/y by imposing:

ω ≤ 3 c33
16 c24

, (A.27)

so that we have:
2 c4
c3

ω ≤ 1

2

√
3 c3 ω .

We thus get:

|ε2(x, y)| ≤
1

2π
exp

(
4ω3/2 y

3
√
3 c3

) ∫ +∞

Ξ(ω)
e−

√
3 c3 ω

2
y θ2 e−c4 y θ4 dθ

≤ 1

2π
exp

(
4ω3/2 y

3
√
3 c3

) ∫ +∞

Ξ(ω)
e−

√
3 c3 ω

2
y θ2 dθ

≤ 1

2π
exp

(
4ω3/2 y

3
√
3 c3

) ∫ +∞

2
√

ω
3 c3

e−
√

3 c3 ω

2
y θ2 dθ ,

where the final inequality comes from the definition of Ξ(ω). We then use the inequality:

∀ a > 0 , ∀X > 0 ,

∫ +∞

X
e−a θ2 dθ ≤ 1

2 aX
e−aX2

,

to obtain (for a suitable constant C):

|ε2(x, y)| ≤
C

ω y
exp

(
4ω3/2 y

3
√
3 c3

)
exp

(
−2ω3/2 y√

3 c3

)
=

C

ω y
exp

(
−2ω3/2 y

3
√
3 c3

)
,

and this gives, going back to x and y, the estimate:

|ε2(x, y)| ≤
C

|x|
exp

(
−c

|x|3/2

y1/2

)
.

Restricting to the regime x ≤ −y1/3, we obtain the final estimate:

|ε2(x, y)| ≤
C

y1/3
exp

(
−c

|x|3/2

y1/2

)
, (A.28)
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as long as we have x ≤ −y1/3 and |x|/y ≤ 3 c33/(16 c
2
4). Of course a similar estimate holds for ε1(x, y)

since it is the complex conjugate of ε2(x, y).

We now turn to the contribution H♭(x, y) in (A.25). With the definition (A.26) for Θ(t), we expand:

−iω yΘ(t) + i c3 yΘ(t)3 − c4 yΘ(t)4 = y

4∑
k=0

pk(ω) t
k ,

where the quantities p0(ω), . . . , p4(ω) have the following behavior2 as ω > 0 tends to zero:

Re p0(ω) = − c4
9 c23

ω2 + O(ω3) , (A.29a)

Im p0(ω) =
2

3
√
3 c3

ω3/2 + O(ω5/2) , (A.29b)

p1(ω) = O(ω2) , (A.29c)

Re p2(ω) = −
√
3 c3 ω + O(ω3/2) , (A.29d)

Im p2(ω) = O(ω) , (A.29e)

p3(ω) = c3 e
− iπ/4 + O(ω 1/2) , (A.29f)

p4(ω) = c4 . (A.29g)

We thus have:

H♭(x, y) =
ep0(ω) y−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

( 4∑
k=1

pk(ω) y t
k
)
dt .

We now use the inequality:
∀ z ∈ C , |ez − 1| ≤ |z| e|z| , (A.30)

with the specific value:

z := y
{
p1(ω) t + (p2(ω) +

√
3 c3 ω) t

2 + (p3(ω)− c3 e
− iπ/4) t3 + p4(ω) t

4
}
.

On the considered integration interval for t, we thus have (see (A.29c), (A.29d), (A.29e), (A.29f), (A.29g)):

|z| ≤ C y
(
ω5/2 + ω t2

)
,

with a constant C that is independent of y, ω and t (for the relevant values of t). This gives the estimate:∣∣∣∣∣∣H♭(x, y) − ep0(ω) y−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣
≤ C y eRe p0(ω) y+C ω5/2 y

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω

(
ω5/2 + ω t2

)
e
−
√
3 c3 ω y t2+

c3√
2
y t3+C ω y t2

dt .

2Here we see that our choice of contour only uses approximate saddle points because p1(ω) is not zero. This does not
matter so much since p1(ω) will be small enough to produce error terms that can be controlled in our analysis.
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We first use (A.29a) to estimate the real part of p0(ω) and choose ω small enough so that we have:

Re p0(ω) + C ω5/2 ≤ −c ω2 ,

for a suitable constant c > 0 that does not depend on ω. We thus get the estimate:∣∣∣∣∣∣H♭(x, y) − ep0(ω) y−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣
≤ C y e−c ω2 y

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω

(
ω5/2 + ω t2

)
e
−
√
3 c3 ω y t2+

c3√
2
y t3+C ω y t2

dt .

As in [9], let us now observe that when t is nonpositive in the integral, we have c3 t
3 ≤ 0 (recall that c3

is positive), and when t is positive, on the considered integration interval, we have:

c3√
2
t3 ≤

√
c3 ω

3
t2 .

If ω is chosen sufficiently small (and this choice is, of course, independent of y), we thus get:

e
−
√
3 c3 ω y t2+

c3√
2
y t3+C ω y t2 ≤ e−c

√
ω y t2 ,

for the relevant values of t. This gives the estimate:∣∣∣∣∣∣H♭(x, y) − ep0(ω) y−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣
≤ C y e−c ω2 y

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω

(
ω5/2 + ω t2

)
e−c

√
ω y t2 dt .

Integrating now with respect to t (over R rather than over the above compact interval), we thus have:∣∣∣∣∣∣H♭(x, y) − ep0(ω) y−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣
≤ C y1/2 ω9/4 e−c ω2 y +

C
√
y
ω1/4 e−c ω2 y ≤ C

√
y
(1 + ω2 y) e−c ω2 y .

Up to diminishing the constant c > 0 and increasing the constant C, we thus get the final estimate (recall
ω = |x|/y):∣∣∣∣∣∣H♭(x, y) − ep0(ω) y−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣
≤ C

y1/2
exp

(
−c

x2

y

)
. (A.31)
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We now use the inequality (A.30) one more time with the value:

z := y
{
p0(ω) +

c4
9 c23

ω2 − i
2

3
√
3 c3

ω3/2
}
,

which gives (use (A.29a) and (A.29b)):∣∣∣∣ep0(ω) y − e
− c4

9 c23
ω2 y

e
i 2

3
√

3 c3
ω3/2 y

∣∣∣∣ ≤ C ω5/2 y eC ω5/2 y .

We can then follow the same kind of estimate as just above and derive the estimate (combining with
(A.31)):∣∣∣∣∣∣∣H♭(x, y) − e

− c4 x2

9 c23 y e
i

2 |x|3/2

3
√

3 c3 y1/2
−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣∣
≤ C

y1/2
exp

(
−c

x2

y

)
, (A.32)

provided that ω is sufficiently small.
If we compare with the definition (A.10) of g, we see that we have almost made the quantity g(x, y)

appear, except for the fact that the integration interval is not exactly the good one since it is not
symmetric. This final estimate is not more difficult than the previous ones. Namely, we easily estimate:∣∣∣∣∣∣∣

e
− c4 x2

9 c23 y e
i

2 |x|3/2

3
√

3 c3 y1/2
−iπ/4

2π

∫ −
√

2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣∣
≤ C e−c ω2 y

∫ −
√

2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 +

c3√
2
y t3
)
dt .

Since t is negative on the considered interval, we have:∣∣∣∣∣∣∣
e
− c4 x2

9 c23 y e
i

2 |x|3/2

3
√

3 c3 y1/2
−iπ/4

2π

∫ −
√

2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣∣
≤ C e−c ω2 y

∫ −
√

2ω
3 c3

−
√

2ω
3 c3

− 2
√

2 c4
9 c23

ω
exp

(
−
√
3 c3 ω y t2

)
dt ,

and we can then bound the final integral by the maximum of the integrated function times the length of
the interval. This gives the estimate:∣∣∣∣∣∣∣

e
− c4 x2

9 c23 y e
i

2 |x|3/2

3
√

3 c3 y1/2
−iπ/4

2π

∫ −
√

2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣∣
≤ C ω e−c ω2 y e−c ω3/2 y ≤ C

ω1/2 y
(ω3/2 y) e−c ω3/2 y .
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We can then again decrease the constant c and increase C to get:∣∣∣∣∣∣∣
e
− c4 x2

9 c23 y e
i

2 |x|3/2

3
√

3 c3 y1/2
−iπ/4

2π

∫ −
√

2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣∣
≤ C

ω1/2 y
e−c ω3/2 y .

Since we restrict to the case |x| ≥ y1/3, we have ω1/2 ≥ y−1/3 and this gives:∣∣∣∣∣∣∣
e
− c4 x2

9 c23 y e
i

2 |x|3/2

3
√

3 c3 y1/2
−iπ/4

2π

∫ −
√

2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
−
√
3 c3 ω y t2 + i c3 e

− iπ/4 y t3
)
dt

∣∣∣∣∣∣∣
≤ C

y2/3
exp

(
−c

|x|3/2

y1/2

)
. (A.33)

We now combine (A.32) and (A.33) and recall the definition (A.10) to get:

|H♭(x, y) − g(x, y)| ≤ C

y2/3
exp

(
−c

|x|3/2

y1/2

)
+

C

y1/2
exp

(
−c

x2

y

)
.

Taking twice the real part and recalling that the remaining contribution H♯(x, y) is the complex conjugate
of H♭(x, y), we get:

|H♭(x, y) + H♯(x, y) − 2Re g(x, y)| ≤ C

y2/3
exp

(
−c

|x|3/2

y1/2

)
+

C

y1/2
exp

(
−c

x2

y

)
.

It remains3 to combine this estimate with (A.28) and the corresponding one for ε1(x, y) to obtain the
estimate of Proposition A.3 (recall the decomposition (A.22)). We have not kept track all along of the
smallness requirement on ω = |x|/y but the final estimate holds as long as ω is small enough, and this
smallness condition is independent of y, which corresponds to the statement of Proposition A.3 for the
condition on x: x ≥ −c♭ y for some c♭ > 0.

We now deal with the regime where x is negative and |x|/y is large enough. As in Proposition A.2, this
is a regime that had not been considered in [9].

Proposition A.4. Let the function G be defined in (A.9) and let c3 be positive. Let c♭ > 0 be the constant
given in Proposition A.3. Then there exist some constants C♭ > c♭, C > 0 and c > 0 such that for any
(x, y) ∈ R× R+∗ with x ≤ −C♭ y, there holds:

|G(x, y)| ≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
.

3The error in [9] occurred here since the author had tried to get rid of the term t3 in the integral by applying similar
arguments but an error occurred when estimating the corresponding integrals. Hence the final expressions for the analog of
the function g and the error bound are not correct.
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Proof. We go back to the bound (A.17) and only consider from now on negative values for both x and µ.
We use Young’s inequality:

6 c4 y µ
2 θ2 ≤ c4

2
y θ4 + 18 c4 y µ

4 ,

as well as the obvious inequality exp(c3 y µ
3) ≤ 1 to obtain:

∀µ ≤ 0 , |G(x, y)| ≤ e−xµ+17 c4 y µ4

2π

∫
R
e3 c3 y |µ| θ

2
e−

c4
2

y θ4 dθ .

We choose the specific value µ = µ0 := −(|x|/(68 c4 y))1/3 < 0 so as to minimize the exponential factor
before the integral. We thus get a bound4:

|G(x, y)| ≤ C exp

(
−c

|x|4/3

y1/3

) ∫ +∞

0
e3 c3 y |µ0| θ2 e−

c4
2

y θ4 dθ .

The integral is estimated by cutting at θ0 > 0 such that 3 c3 |µ0| = (c4/4) θ
2
0, so that we have:∫ +∞

θ0

e3 c3 y |µ0| θ2 e−
c4
2

y θ4 dθ =

∫ +∞

θ0

e
c4
4

y θ20 θ2 e−
c4
2

y θ4 dθ ≤
∫ +∞

θ0

e−
c4
4

y θ4 dθ ≤ C

y1/4
,

and we also have:∫ θ0

0
e3 c3 y |µ0| θ2 e−

c4
2

y θ4 dθ ≤
∫ θ0

0
e3 c3 y |µ0| θ2 dθ ≤ θ0 e

3 c3 y |µ0| θ20 ≤ C |µ0|1/2 eC y µ2
0 .

Going back to the definition of µ0 in terms of x and y, we thus get the estimate:

|G(x, y)| ≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
+ C

(
|x|
y

)1/6

exp(C y1/3 |x|2/3) exp

(
−c

|x|4/3

y1/3

)
,

where all constants C and c are independent of x < 0 and y > 0. It is now not difficult to show that
if the constant C♭ is chosen large enough and is we restrict to the regime x ≤ −C♭ y, then the decaying
exponential term exp(−c |x|4/3/y1/3) can absorb the large term exp(C y1/3 |x|2/3). There is of course no
loss of generality in assuming that C♭ is chosen larger than the constant c♭ given in Proposition A.3. Now
that C♭ is fixed and that we restrict to the regime x ≤ −C♭ y, we get the estimate:

|G(x, y)| ≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
+

C

y1/8

(
|x|
y1/4

)1/6

exp

(
−c

|x|4/3

y1/3

)

≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
+

C

y1/8
exp

(
−c

|x|4/3

y1/3

)
,

with (new) constants C and c that are still independent of y > 0 and x ≤ −C♭ y. We can still spare half
of the last decaying exponential term on the right-hand side to gain a decaying factor exp(−c y) and then
use a crude bound:

1

y1/8
exp(−c y) ≤ C

y1/4
,

4The integral is reduced to the domain R+ by an obvious change of variable, which only modifies the constant in the
inequality by a factor 2.
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so that, eventually, we get the claimed bound:

|G(x, y)| ≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
,

for x ≤ −C♭ y. The proof of Proposition A.4 is complete.

We now turn to the final, intermediate regime where x is negative and |x| and y are comparable.

Proposition A.5. Let the function G be defined in (A.9) and let c3 be positive. Let the constant c♭ be
the one given by Proposition A.3 and let the constant C♭ be the one given by Proposition A.4. Then there
exist some constants C > 0 and c > 0 such that for any (x, y) ∈ R× R+∗ with −C♭ y ≤ x ≤ −c♭ y, there
holds:

|G(x, y)| ≤ C

min(1, y1/4)
exp(−c y) .

Proof. We go back to the definition (A.9) for G(x, y) but we now deform the integration axis R as depicted
on Figure A.2. Namely, we introduce some parameter δ > 0 to be fixed later on and first consider the
contribution:

ε(x, y) :=
1

2π

∫ −δ

−∞
eix θ ei c3 y θ

3
e−c4 y θ4 dθ +

1

2π

∫ +∞

δ
eix θ ei c3 y θ

3
e−c4 y θ4 dθ . (A.34)

The integral H1(x, y) corresponds to the integral along the segment from −δ to −i δ, namely:

H1(x, y) :=
δ (1− i)

2π

∫ 1

0
eix (−δ (1−t)− i δ t) ei c3 y (−δ (1−t)− i δ t)3 e− c4 y (−δ (1−t)− i δ t)4 dt , (A.35)

while H2(x, y) corresponds to the integral along the segment from −i δ to δ, namely:

H2(x, y) :=
δ (1 + i)

2π

∫ 1

0
eix (δ t− i δ (1−t)) ei c3 y (δ t− i δ (1−t))3 e− c4 y (δ t− i δ (1−t))4 dt . (A.36)

−δ δ

−i δH1(x, y) H2(x, y)

0

C

•

• •

Figure A.2: The integration contour in the case −C♭ y ≤ x ≤ −c♭ y.

Cauchy’s formula allows us to decompose G(x, y) as:

G(x, y) = H1(x, y) + H2(x, y) + ε(x, y) ,

and we now estimate each contribution in G(x, y) one by one. We first estimate the integral H1(x, y)
defined in (A.35) and explain how the parameter δ > 0 is fixed. We restrict from on to the regime
−C♭ y ≤ x ≤ −c♭ y where the constant c♭, resp. C♭, is given by Proposition A.3, resp. Proposition A.4.

120



This implies in particular that x is negative. We expand the polynomial quantities within the exponential
terms in (A.35) and use the triangle inequality to obtain:

|H1(x, y)| ≤ C δ

∫ 1

0
exp

(
− |x| δ t − c3 y δ

3 t3 + 3 c3 y δ
3 (1− t)2 t

)
× exp

(
− c4 y δ

4 (1− t)4 + 6 c4 y δ
4 (1− t)2 t2 − c4 y δ

4 t4
)
dt .

Estimating exponentials of negative terms by 1, we have:

|H1(x, y)| ≤ C δ

∫ 1

0
exp

(
− |x| δ t + 3 c3 δ

3 y t + 6 c4 δ
4 y t2 − c4 δ

4 y (1− t)4
)
dt .

We fix the constant δ > 0 by imposing:

3 c3 δ
2 ≤ c♭

3
, and 6 c4 δ

3 ≤ c♭
3
. (A.37)

Since δ is fixed and only depends on already fixed parameters, we allow constants below to depend on δ.
We use the restrictions (A.37) in the previous estimate for H1(x, y) and use furthermore the inequality
|x| ≥ c♭ y to obtain:

|H1(x, y)| ≤ C

∫ 1

0
exp

(
− y

(c♭
3
δ t + c4 δ

4 (1− t)4
))

dt .

We now observe that (A.37) implies that the function:

t ∈ [0, 1] 7−→ c♭
3
δ t + c4 δ

4 (1− t)4 ,

is increasing. We thus have the exponentially decaying bound:

|H1(x, y)| ≤ C exp(− c4 δ
4 y) = C exp(− c y) .

By a simple change of variable t → 1 − t, we easily find that the integral H2(x, y) in (A.36) equals the
complex conjuugate of H1(x, y) so the previous estimate for H1(x, y) also applies to H2(x, y).

We end the argument with the last remaining term ε(x, y) defined in (A.34). We recall that δ > 0 has
been fixed in the analysis of the contributions H1(x, y) and H2(x, y). By applying the triangle inequality,
we have:

|ε(x, y)| ≤ 1

2π

∫ −δ

−∞
e−c4 y θ4 dθ +

1

2π

∫ +∞

δ
e−c4 y θ4 dθ =

1

π

∫ +∞

δ
e−c4 y θ4 dθ .

We thus get the estimate:

|ε(x, y)| ≤ e−
c4
2

δ4 y

π

∫ +∞

δ
e−

c4
2

y θ4 dθ ≤ C

y1/4
exp(− c y) .

Going back to the decomposition of G(x, y), we collect the estimates of H1(x, y), H2(x, y) and ε(x, y) to
get:

|G(x, y)| ≤ C exp(− c y) +
C

y1/4
exp(− c y) .

The conclusion of Proposition A.5 follows.
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We first collect the results of Proposition A.4 and Proposition A.5 to obtain the following unified estimate,
the proof of which is left to the interested reader. The constant c♭ in Corollary A.4 below is, of course,
the same as the one given by Proposition A.3.

Corollary A.4. Let the function G be defined in (A.9) and let c3 be positive. Let ymin > 0 be given.
Then there exist some constants c♭ > 0, C > 0 and c > 0 such that for any (x, y) ∈ R× [ymin,+∞), there
holds:

|G(x, y)| ≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
,

as long as x satisfies x ≤ −c♭ y.

The final Corollary is precisely what we are aiming at, namely at estimates that are analogous to those of
Proposition A.3 and Corollary A.4 but with now a transition at −c y with an arbitrary constant c. The
result is the following.

Corollary A.5. Let the function G be defined in (A.9) and let c3 be positive. Let the function g be
defined in (A.10). Let also ymin > 0 be given. Then for any constant c > 0, there exist constants C > 0
and c > 0 such that for any (x, y) ∈ R× [ymin,+∞), there holds:

|G(x, y) − 2Re g(x, y)| ≤ C

y1/3
exp

(
−c

|x|3/2

y1/2

)
+

C

y1/2
exp

(
−c

x2

y

)
, (A.38)

if −c y ≤ x ≤ −y1/3, and there holds:

|G(x, y)| ≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
, (A.39)

if x ≤ −c y.

Proof. The argument is mostly similar to that we used in the proof of Corollary A.3 except that we now
need to control also g(x, y) in the region where |x| and y are comparable. Let us for instance deal with the
case c ≥ c♭ where c♭ > 0 is the constant given in Proposition A.3. If x ≤ −c y, we have x ≤ −c♭ y and the
desired estimate (A.39) for |G(x, y)| is given by Corollary A.4. Moreover, if x satisfies −c♭ y ≤ x ≤ −y1/3,
the estimate (A.38) is given by Proposition A.3 and by using y ≥ ymin > 0 in order to estimate from
below the quantity min(1, y1/3).

It thus remains to control the left hand side of (A.38) in the case where x is negative and |x|/y ∈ [c♭, c],
which we assume from now on. We have:

|G(x, y) − 2Re g(x, y)| ≤ |G(x, y)| + 2 |g(x, y)|

≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
+ 2 |g(x, y)| ,

where the second inequality follows from Corollary A.4 since we have x ≤ −c♭ y. The quantity g(x, y) is
estimated directly from the definition (A.10). Applying the triangle inequality, we have:

|g(x, y)| ≤ C exp

(
−c

x2

y

) ∫ √
2 |x|
3 c3 y

−
√

2 |x|
3 c3 y

e
−
√

3 c3 |x| y t2+ c3√
2
y t3

dt ,
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and we have already seen that on the considered integration interval, there holds:

e
−
√

3 c3 |x| y t2+ c3√
2
y t3 ≤ e− c

√
|x| y t2

for some appropriate numerical constant c > 0. Since we consider the regime |x|/y ∈ [c♭, c], we thus have:

|g(x, y)| ≤ C exp

(
−c

x2

y

) ∫
R
e− c ymin t2 dt ≤ C exp (−c y) ,

which yields:
|G(x, y) − 2Re g(x, y)| ≤ C exp (−c y) .

As we have already seen several times before, there is no difficulty at this stage to derive the estimate
(A.38) for the regime |x|/y ∈ [c♭, c] and y ≥ ymin. This completes the proof of Corollary A.5.

A.5 Proof of Theorem A.3

The combination of Proposition A.1, Corollary A.3 and Corollary A.5 already gives the estimates (A.11)
and (A.12) of the function G as given in Theorem A.3. It therefore only remains to prove the estimates
(A.13) and (A.14) for the primitive function of G with respect to its first variable. We still assume c3 > 0
and start with the first estimate in (A.13). We consider a fixed positive constant c and let x ≤ − c y. We
then use the estimate in the fourth case of (A.11) to get:∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ ∫ x

−∞
|G(ξ, y)| dξ ≤ C

y1/4

∫ x

−∞
exp

(
−c

|ξ|4/3

y1/3

)
dξ .

We then perform a change of variable to obtain:∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C

∫ x/y1/4

−∞
exp(−c |η|4/3) dη = C

∫ x/y1/4

−∞

(4/3) c |η|1/3

(4/3) c |η|1/3
exp(−c |η|4/3) dη .

Since we assume x ≤ − c y, we have |η|1/3 ≥ c1/3 y1/4 in the last integral on the right-hand side, and this
gives: ∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C

y1/4

∫ x/y1/4

−∞
(4/3) c |η|1/3 exp(−c |η|4/3) dη .

We thus end up with the estimate:∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C

y1/4
exp

(
−c

|x|4/3

y1/3

)
≤ C exp

(
−c

|x|4/3

y1/3

)
,

for x ≤ − c y and y ≥ ymin, an estimate from which the first half of (A.13) follows directly. Note in
particular that we have the uniform estimate:∣∣∣∣∫ − c y

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C , (A.40)

for any y ≥ ymin.
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From the definition (A.9), we know that for any y > 0, G(·, y) is the inverse Fourier transform of the
Schwartz class function:

θ ∈ R 7−→ ei c3 y θ
3
e−c4 y θ4 .

In particular, this means that the (partial) Fourier transform of G with respect to its first variable is
given by:

Fx(G)(θ, y) = ei c3 y θ
3
e−c4 y θ4 .

Evaluating at θ = 0, we get the relation: ∫
R
G(x, y) dx = 1 ,

so that proving the bound (A.14) amounts to showing the bound:∣∣∣∣∫ +∞

x
G(ξ, y) dξ

∣∣∣∣ ≤ C̃ exp(−c̃ y) , if x ≥ c y.

The proof of this bound follows from the exact same argument as above except that we now use the first
case in (A.11).

The last part of the proof of Theorem A.3 aims at showing the second half of (A.13), that is, at
proving a uniform bound for the primitive function of G in the case |x| ≤ c y. Let us first assume x ≥ 0
and thus x ∈ [0, c y]. We have already seen the relation:∫ x

−∞
G(ξ, y) dξ = 1−

∫ c y

x
G(ξ, y) dξ −

∫ +∞

c y
G(ξ, y) dξ ,

and we thus already have from the arguments above (namely, the case x ≥ c y):∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C +

∫ c y

x
|G(ξ, y)|dξ .

The final integral on the right-hand side is estimated by using the second case in (A.11), which gives the
uniform control (after an obvious change of variable in ξ):∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C .

We can actually push a little further this argument and obtain from (A.11) a uniform bound for:∫ x

−∞
G(ξ, y) dξ

as long as x belongs to the interval [−y1/3, c y] and not only when x belongs to [0, c y] (use now the
third case in (A.11)). It thus remains to examine the case x ∈ [−c y,−y1/3] for which we need to take
into account the oscillating behavior of the Green’s function. This is the only regime where applying
the triangle inequality to estimate the primitive function does not (and can not !) work. Let therefore
x ∈ [−c y,−y1/3]. We decompose:∫ x

−∞
G(ξ, y) dξ =

∫ −c y

−∞
G(ξ, y) dξ +

∫ x

−c y

(
G(ξ, y)− 2Re g(ξ, y)

)
dξ

+ 2Re

∫ x

−c y
g(ξ, y) dξ .
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The first term on the right-hand side has already been estimated, see (A.40), and the second term on the
right-hand side is estimated by using the bound5 (A.12). At this stage, we already have an estimate that
reads: ∣∣∣∣∫ x

−∞
G(ξ, y) dξ

∣∣∣∣ ≤ C + 2

∣∣∣∣∫ x

−c y
g(ξ, y) dξ

∣∣∣∣ , (A.41)

and the remaining point of the proof is to derive a uniform estimate for the primitive function of the
explicit function g whose expression is given in (A.10). The proof relies on integration by parts, as
detailed below.

We first introduce the notation:

β0 :=
c4
9 c23

> 0 , β1 :=
2

3
√
3 c3

> 0 ,

so that, after performing a change of variable in the integral of (A.10), we obtain the expression:

g(x, y) :=
3β1 e

−iπ/4

2
√
2π

|x|1/2

y1/2
exp

(
−β0

x2

y

)
exp

(
iβ1

|x|3/2

y1/2

)∫ 1

−1
e
− 3β1

|x|3/2

y1/2
u2

e
β1 (1−i)

|x|3/2

y1/2
u3

du .

(A.42)
Let us define a function H on R+ as follows (the constant β1 > 0 being fixed as above):

∀w ≥ 0 , H(w) := exp (iβ1w)

∫ 1

−1
e− 3β1 wu2

eβ1 (1−i)wu3
du . (A.43)

With the help of (A.43), we can rewrite (A.42) and obtain the relation:

∀ (x, y) ∈ R× R+∗ , y1/2 g(y1/2 x, y) :=
β1 e

−iπ/4

√
2π

e−β0 x2

(
3

2
y1/4 |x|1/2

)
H(y1/4 |x|3/2) . (A.44)

where the factor (3/2) y1/4 |x|1/2 equals, up to a sign, the derivative of the function (x 7→ y1/4 |x|3/2). We
are thus in a very favorable position for applying integration by parts. Before going further, we prove the
following Lemma.

Lemma A.1. Let the function H be defined on R+ by (A.43). Then there exists a constant C > 0 that
only depends on β1 and such that:

∀w ≥ 0 ,

∣∣∣∣∫ w

0
H(w′) dw′

∣∣∣∣ ≤ C .

Proof. We consider w ≥ 0. By applying the Fubini Theorem, we get the relation:∫ w

0
H(w′) dw′ =

∫ 1

−1

∫ w

0
exp

(
β1w

′ (− 3u2 + u3 + i (1− u3)
))

dw′ du ,

and it turns out that the continuous function:

u ∈ [−1, 1] 7−→ −3u2 + u3 + i (1− u3) ,

5The whole point of (A.12) was precisely to extract from G its leading oscillating behavior so that the difference between
G and this “leading order term” would actually become uniformly integrable.
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does not vanish. Its modulus is thus uniformly bounded from below. We get:∫ w

0
H(w′) dw′ =

∫ 1

−1

exp
(
β1w

(
− 3u2 + u3 + i (1− u3)

))
− 1

β1
(
− 3u2 + u3 + i (1− u3)

) du ,

and the triangle inequality (as well as a lower bound for the modulus of the denominator) yields:∣∣∣∣∫ w

0
H(w′) dw′

∣∣∣∣ ≤ C

∫ 1

−1
exp

(
β1w (−3u2 + u3)

)
+ 1du .

We have −3u2 + u3 ≤ 0 for u ∈ [−1, 1] and w ≥ 0 so the uniform bound of Lemma A.1 follows.

We now go back to our main problem, which is to prove a bound for the primitive function of g, see
(A.41). We use the expression (A.44) and obtain:∫ x

−c y
g(ξ, y) dξ =

∫ x/y1/2

−c y1/2
y1/2 g(y1/2w, y) dw

=
β1 e

−iπ/4

√
2π

∫ c y1/2

|x|/y1/2
e−β0 w2

(
3

2
y1/4w1/2H(y1/4w3/2)

)
dw

=
β1 e

−iπ/4

√
2π

∫ c y1/2

|x|/y1/2
e−β0 w2 d

dw

(∫ y1/4 w3/2

0
H(w′) dw′

)
dw .

It then only remains to integrate by parts the final integral and to apply Lemma A.1 in order to derive
the uniform bound: ∣∣∣∣∫ x

−c y
g(ξ, y) dξ

∣∣∣∣ ≤ C .

This final argument is a prototype application of Abel’s transform (in the continuous setting). This
completes the proof of Theorem A.3.

A.6 Consequences

This final paragraph is devoted to applying Theorem A.3 in order to derive suitable bounds for the
activation function A and other quantities that arise in our decomposition of the Green’s function of the
operator L in (2.11). We therefore now go back to the framework of stationary discrete shock profiles
and use the index r, resp. ℓ, to refer to the right, resp. left, state of the discrete shock (2.2). The analysis
of Section 4.3 uses the following quantities defined for any j0 ∈ N∗ and n ∈ N∗:

An
r (j0) :=

1

2 iπ

∫
η+iR

en τ−j0 φr(τ) dτ

τ
,

where η is any positive number (the Cauchy formula shows that the definition is independent of η) and:

Bn
r (j0) :=

1

2 iπ

∫
iR

en τ−j0 φr(τ) dτ .

In both definitions of An
r (j0) and Bn

r (j0), the function φr is defined by:

∀ τ ∈ C , φr(τ) := − 1

αr
τ +

1− α2
r

6α3
r

τ3 − 1− α2
r

8α3
r

τ4 .
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At last, we recall that αr belongs to the interval (−1, 0), see (2.12). This is a consequence of Lax shock
inequalities and the choice of the CFL parameter.

By using the parametrization τ = i |αr| θ in the definition of Bn
r (j0), we obtain the expression:

Bn
r (j0) :=

|αr|
2π

∫
R
e−i (j0+nαr) θ e−i j0

1−α2
r

6
θ3 ej0 αr

1−α2
r

8
θ4 dθ ,

and the integral is convergent since j0 is positive and αr belongs to the interval (−1, 0). Going back to
the definitions (A.4) (with the choice α = αr ∈ (−1, 0)) and (A.9), we have thus obtained the relation:

∀ j0 ∈ N∗ , ∀n ∈ N∗ , Bn
r (j0) := |αr|Gr

(
−j0 + n |αr|,

j0
|αr|

)
, (A.45)

which is the reason why Theorem A.3 will give us exactly what we need for proving the bounds we need
in our analysis. The index r in Gr refers to the fact that we have made the choice α = αr when defining
the constants c3 and c4 in (A.4).

Let us now turn to the activation function An
r (j0). Choosing the parametrization τ = |αr| (η+ i θ) for

any η > 0, we get:

An
r (j0) :=

1

2π

∫
R
e−(j0+nαr) (η+i θ) ej0

1−α2
r

6
(η+i θ)3 ej0 αr

1−α2
r

8
(η+i θ)4 dθ

η + i θ
.

With the choice α = αr and the definition (A.4) for the coefficients c3 and c4, we can introduce the
function Ar defined by:

∀ (x, y) ∈ R× R+∗ , Ar(x, y) :=
1

2π

∫
R
ex (η+i θ) e−c3 y (η+i θ)3 e−c4 y (η+i θ)4 dθ

η + i θ
, (A.46)

where the definition is independent of the choice of η > 0 because of Cauchy’s formula. With this notation,
we have expressed the activation function An

r (j0) as:

An
r (j0) = Ar

(
−j0 + n |αr|,

j0
|αr|

)
. (A.47)

It remains to connect the function Ar with the primitive function of Gr with respect to its first variable.
From the dominated convergence theorem, we have that Ar is differentiable with respect to its first
variable and (passing to the limit η → 0 in the expression of the partial derivative):

∂Ar

∂x
(x, y) = Gr(x, y) .

Moreover, the factor exp(x η) can be extracted from the integral and we thus have:

lim
x→−∞

Ar(x, y) = 0 ,

from which we get the general expression6:

Ar(x, y) =

∫ x

−∞
Gr(ξ, y) dξ .

6The integral is convergent because of the bounds that we proved in Theorem A.3.
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Going back to (A.47), this means that we have expressed the activation function An
r (j0) as follows:

∀ j0 ∈ N∗ , ∀n ∈ N∗ , An
r (j0) =

∫ −j0+n |αr|

−∞
Gr

(
ξ,

j0
|αr|

)
dξ . (A.48)

Theorem A.3 can be recast into the following compact form that will be helpful in the analysis of Chapter
4.

Corollary A.6. Let the function Ar be defined in (A.46) with constants c3 and c4 as in (A.4) with the
choice α = αr ∈ (−1, 0). Then for any constant c > 0, there exist two positive constants C and c such
that for any n ∈ N∗ and any j0 ∈ N∗, there holds:

|Ar(−j0 + n |αr|, n)| ≤

C exp

(
−c

|j0 − n |αr||4/3

n1/3

)
, if −j0 + n |αr| ≤ −cn,

C , if −cn ≤ −j0 + n |αr| ≤ cn.

and:

|1−Ar(−j0 + n |αr|, n)| ≤ C exp

(
−c

|j0 − n |αr||4/3

n1/3

)
, if −j0 + n |αr| ≥ cn.

In particular, there holds :
sup

j0∈Z , n∈N∗
|Ar(−j0 + n |αr|, n)| < +∞ .

A.7 Higher order estimates

Another crucial estimate that was needed in the analysis of Section 4.3 (see the proof of Lemma 4.2) aims
at controlling the difference:

Ar

(
−j0 + n |αr|,

j0
|αr|

)
− Ar (−j0 + n |αr|, n) ,

with the function Ar defined in (A.46) and j0, n ∈ N∗. Unsurprisingly, the most direct way to estimate
this difference is to apply the mean value theorem, which gives rise to the partial derivative of Ar with
respect to its second variable. This leads us to introduce the family of correctors:

∀ p ∈ N∗ , ∀ (x, y) ∈ R× R+∗ , Gp(x, y) :=
1

2π

∫
R
(i θ)p eix θ ei c3 y θ

3
e−c4 y θ4 dθ . (A.49)

The case p = 0 corresponds to the definition (A.9) of G and the relevance of the functions Gp for
controlling the above difference between the two values of Ar will be the purpose of Corollary A.7 below.
We aim here at generalizing Theorem A.3 and at obtaining sharp bounds on Gp for any p ∈ N∗. Our
result is the following.

Theorem A.4. Let us assume that the coefficient c3 in (A.4) is positive, that is α ∈ (0, 1). Let p ∈ N∗.
Let ymin > 0 and let c > 0 be given. Then there exist some constants C > 0 and c > 0 such that, for any
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(x, y) ∈ R× [ymin,+∞), there holds:

|Gp(x, y)| ≤



C

y(p+1)/4
exp(−c x4/3/y1/3) , if x ≥ c y,

C

y1/3+p/4
exp(−c x3/2/y1/2) , if 0 ≤ x ≤ c y,

C

y1/3+p/4
, if −y1/3 ≤ x ≤ 0,

C

|x|1/4 y(p+1)/4
exp(−c x2/y) , if −c y ≤ x ≤ −y1/3,

C

y(p+1)/4
exp(−c |x|4/3/y1/3) , if x ≤ −c y.

(A.50)

If c3 is negative, the same estimate holds for Gp with x being switched to −x.

Applying Theorem A.4 gives us the desired estimate for the difference between the two evaluations of Ar,
namely we have the following Corollary.

Corollary A.7. Let the function Ar be defined in (A.46). There exist two positive constants C and c
such that for any n ∈ N∗ and any j0 ∈ N∗ that satisfies j0 ∈ [n |αr|/2, n], there holds:∣∣∣∣Ar

(
−j0 + n |αr|,

j0
|αr|

)
− Ar (−j0 + n |αr|, n)

∣∣∣∣

≤ C



1

n1/3
exp

(
− c |j0 − n |αr||3/2/n1/2

)
, if j0 ≥ n |αr|,

1

n1/3
, if 0 ≤ n |αr| − j0 ≤ n1/3,

1

|j0 − n |αr||1/4 n1/4
exp

(
− c |j0 − n |αr||2/n

)
, if n |αr| − j0 ≥ n1/3.

Proof of Theorem A.4. A very large part of the proof of Theorem A.4 follows that of Theorem A.3. We
therefore feel free to refer to the various steps of the proof of Theorem A.3 (that corresponds to the case
p = 0) and to shorten many details.

• Step 1: the uniform estimate. We follow the same argument as in the proof of Proposition A.1 but,
keeping similar notation, we now use the choice f(θ) := x θ + c3 y θ

3 and g(θ) := (i θ)p exp(−c4 y θ
4), so

that we have the estimates:

∥ g ∥L∞([a,b]) ≤ C

yp/4
, ∥ g′ ∥L1([a,b]) ≤ C

yp/4
,

for any y > 0, uniformly with respect to the interval [a, b]. By applying the same arguments as in the
proof of Proposition A.1, we get the uniform estimate:

∀ y > 0 , sup
x∈R

|Gp(x, y)| ≤
C

y1/3+p/4
, (A.51)

with a constant C that only depends on p.
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• Step 2: the fast decaying side. Part I. Changing the integration line R to iµ + R for any µ ∈ R
thanks to the Cauchy formula, we then apply the triangle inequality and get a similar bound as the one
we had obtained in (A.17), namely:

∀µ ∈ R , ∀ (x, y) ∈ R× R+∗ ,

|Gp(x, y)| ≤ Cp e
−xµ+c3 y µ3−c4 y µ4

∫
R
(|µ|p + |θ|p) e−3 y µ (c3−2 c4 µ) θ2 e−c4 y θ4 dθ , (A.52)

where the constant Cp only depends on p ∈ N∗ that is a given fixed integer. The important property is
that Cp does not depend on x, y nor µ.

Let us assume that c3 is positive. We first consider the regime where x is positive and such that
the positive parameter µ0 defined by µ0 := (x/(3 c3 y))

1/2 satisfies 2 c4 µ0 ≤ c3/2, which corresponds to
the constraint 0 < x ≤ c♯ y for some well-defined positive constant c♯ (the same one as in the proof of
Proposition A.2). Choosing the parameter µ0 in (A.52), we follow the same arguments as in the proof of
Proposition A.2 and get the bound (compare with (A.18)):

|Gp(x, y)| ≤ C exp

(
−c

x3/2

y1/2

) ∫
R

(
xp/2

yp/2
+ |θ|p

)
e−c x1/2 y1/2 θ2 dθ ,

for suitable constants C and c. Integrating with respect to θ, we thus get the bound:

|Gp(x, y)| ≤ C

{
1

y1/4+p/3 max(1, x1/4)
+

1

y(p+1)/4 max(1, x(p+1)/4)

}
exp

(
−c

x3/2

y1/2

)
, (A.53)

which holds for any y > 0 and x ∈ (0, c♯ y]. We now argue similarly as in the proof of Corollary A.2. We
consider y ≥ ymin > 0 and x ∈ [0, c♯ y]. For x ≤ y1/(3(1+p)), we use the uniform bound (A.51) and for
x ∈ [y1/(3(1+p)), c♯ y], we use (A.53). This combination of (A.51) and (A.53) gives the unified estimate:

∀ y ≥ ymin , ∀x ∈ [0, c♯ y] |Gp(x, y)| ≤
C

y1/3+p/4
exp

(
−c

x3/2

y1/2

)
, (A.54)

where C and c are appropriate constants that do not depend on y and x.

• Step 3: the fast decaying side. Part II. The constant c♯ has been fixed and we consider the regime
y > 0, x ≥ c♯ y. We argue as in the proof of Proposition A.2 and first use Young’s inequality to obtain:

∀µ > 0 , |Gp(x, y)| ≤ C

{
µp−1/2

y1/2
+

1

(µ y)(p+1)/2

}
exp (f(µ)) , (A.55)

where f is the convex function defined in (A.20) whose minimum over R+ is attained at some µ > 0. We

have already shown the lower bound µ ≥ c♭ (x/y)
1/3 in the proof of Proposition A.2 and the equality:

3 c3 y µ
2︸ ︷︷ ︸

≥0

+32 c4 y µ
3 = x ,
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directly gives the upper bound µ ≤ C♭ (x/y)
1/3 for yet another constant C♭. Choosing the optimal

parameter µ in (A.55) and following arguments as in the proof of Proposition A.2 for the upper estimate
of f(µ), we end up with the estimate:

|Gp(x, y)| ≤ C

{
1

yp/4+9/24
+

1

y(p+1)/2

}
exp

(
−c

x4/3

y1/3

)
,

for x ≥ c♯ y. Using now y ≥ ymin, we end up with the estimate:

∀ y ≥ ymin ,∀x ≥ c♯ y |Gp(x, y)| ≤
C

y(p+1)/4
exp

(
−c

x4/3

y1/3

)
, (A.56)

for suitable constants C and c.
It remains to argue as in Corollaries A.2 and A.3 to pass from a given constant c♯ to an arbitrary

given constant c > 0 given a priori. At his stage, we have already shown the validity of the first three
estimates in (A.50).

• Step 4: the oscillating side. Part I. We still assume that c3 is positive and now assume that x is
negative. We follow the proof of Proposition A.3 and consider the same contour deformation as the one
depicted in Figure A.1. This gives rise to a decomposition:

Gp(x, y) = ε1(x, y) + ε2(x, y) + H♭(x, y) + H♯(x, y) ,

that is entirely similar to the one in (A.22) except that the four integrals now incorporate the contribution
of the polynomial factor (i θ)p. For instance, we have (keeping the notation ω := |x|/y):

ε2(x, y) =
1

2π
exp

(
4ω3/2 y

3
√
3 c3

− c4
9 c23

ω2 y

) ∫ +∞

Ξ(ω)

(
i θ −

√
ω

3 c3

)p

ei ··· e
−
√
3 c3 ω y θ2+

2 c4
c3

ω y θ2
e−c4 y θ4 dθ ,

where, again, the three dots within the integral stand for a real quantity whose precise expression is
useless, and Ξ(ω) stands for the quantity defined in (A.23). Applying the triangle inequality yields the
bound:

|ε2(x, y)| ≤ C exp

(
4ω3/2 y

3
√
3 c3

) ∫ +∞

Ξ(ω)

(
θp + ωp/2

)
e
−
√
3 c3 ω y θ2+

2 c4
c3

ω y θ2
e−c4 y θ4 dθ ,

where the constant C does not depend on ω and y. We restrict again ω = |x|/y by imposing the condition
(A.27) so that we have:

2 c4
c3

ω ≤ 1

2

√
3 c3 ω .

This restriction corresponds to an inequality ω ≤ ω0 for some well-chosen constant ω0 > 0. This yields
the estimate:

|ε2(x, y)| ≤ C exp

(
4ω3/2 y

3
√
3 c3

) ∫ +∞

2
√

ω
3 c3

(
θp + ωp/2

)
e−

√
3 c3 ω

2
y θ2 dθ . (A.57)

We now use the following Lemma which follows from integration by parts and an induction argument
(the proof is left to the reader).
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Lemma A.2. Let the sequence (Qk)k∈N of real polynomials be defined by:

Q0(Y ) :=
1

2
,

∀ k ∈ N , Qk+1(Y ) :=
1

2
Y k+1 + (k + 1)Qk(Y ) .

Then for any integer ν ∈ N and for any real numbers a > 0 and X > 0, there holds:∫ +∞

X
θν e− a θ2 dθ ≤

{
a−(ν+1)/2Q(ν−1)/2(aX

2) e− aX2
, if ν is odd,

a−ν/2−1X−1Qν/2(aX
2) e− aX2

, if ν is even.

Let us assume for a moment that p is odd. Applying Lemma A.2 in (A.57), we obtain the estimate:

|ε2(x, y)| ≤ C exp

(
−2ω3/2 y

3
√
3 c3

) (
Q(ω3/2 y)

ω(p+1)/4 y(p+1)/2
+

ωp/2

ω y

)
,

where Q is a real polynomial with nonnegative coefficients. Since the exponential term can absorb any
polynomial expression of the same argument, we end up with the estimate:

|ε2(x, y)| ≤ C exp
(
−c ω3/2 y

) ( 1

ω(p+1)/4 y(p+1)/2
+

ωp/2

ω y

)
, (A.58)

if p is odd. If p is even, applying Lemma A.2 in (A.57) yields the final estimate:

|ε2(x, y)| ≤ C exp
(
−c ω3/2 y

) ( 1

ωp/4+1 yp/2+1
+

ωp/2

ω y

)
. (A.59)

Of course, there is a similar estimate for the contribution ε1(x, y) that is the complex conjugate of ε2(x, y).
Let us now turn to the contribution H♭(x, y) that corresponds to the inclined segment on the left in

Figure A.1. Keeping the notation of the proof of Proposition A.3, we have:

H♭(x, y) =
ep0(ω) y−iπ/4

2π

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω

(
iΘ(t)

)p
exp

(
y

4∑
k=1

pk(ω) t
k
)
dt ,

where (t 7→ Θ(t)) parametrizes the segment so that we have a uniform estimate:

|Θ(t)| ≤ C
√
ω ,

for ω ≤ ω0.
Instead of trying to isolate the leading contribution in H♭(x, y) as we did in the proof of Proposition

A.3, we rather apply the triangle inequality and use the behavior (A.29) of p0, . . . , p4 when ω is small.
Starting from:

|H♭(x, y)| ≤ C ωp/2 e(Re p0(ω)) y

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
y

4∑
k=1

(Re pk(ω)) t
k
)
dt ,
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we use (A.29c) to first absorb the term (Re p1(ω)) t = O(ω5/2) (uniformly with respect to t) by half
of Re p0(ω). We can then absorb (Re p3(ω)) t

3 on the considered interval by part of (Re p2(ω)) t
2 (this

argument was also used in the proof of Proposition A.3). The final term (Re p4(ω)) t
4 is O(ω t2) so it can

also be absorbed by half of what is left from (Re p2(ω)) t
2 (up to choosing ω small enough). In the end

we get an estimate (with uniform constants C and c):

|H♭(x, y)| ≤ C ωp/2 e−c ω2 y

∫ √
2ω
3 c3

−
√

2ω
3 c3

− 2
√
2 c4

9 c23
ω
exp

(
− c ω1/2 y t2

)
dt .

Estimating crudely the integral over the segment by the integral of the same function over R, we end up
with:

|H♭(x, y)| ≤ C
ωp/2−1/4

y1/2
e−c ω2 y ,

and the same estimate holds for H♯(x, y) that is the complex conjugate of H♭(x, y).
Let us assume that p is odd. Combining the latter estimate with (A.58), we get:

|Gp(x, y)| ≤ C
ωp/2−1/4

y1/2
e−c ω2 y + C e−c ω3/2 y

(
1

ω(p+1)/4 y(p+1)/2
+

ωp/2

ω y

)
.

Since ω has been chosen smaller than some constant ω0, there is no loss of generality in assuming ω0 ≤ 1
and we therefore have:

e−c ω3/2 y ≤ e−c ω2 y .

We recall the definition ω = |x|/y and rewrite the latter estimate in terms of x and y to obtain:

|Gp(x, y)| ≤ C exp

(
−c

x2

y

) {(
|x|
√
y

)p/2 1

|x|1/4 y(p+1)/4
+

1

|x|(p+1)/4 y(p+1)/4
+

(
|x|
√
y

)p/2 1

|x| yp/4

}
.

We can absorb all polynomial expressions of |x|/√y by the Gaussian function and we also use the in-
equalities:

|x| ≥ |x|1/4 y1/4 , |x|p/4 ≥ y
p/12
min > 0 ,

that hold for |x| ≥ y1/3 and y ≥ ymin. Eventually, we have shown that there exists some small constant
c♭ > 0 and some constants C and c such that there holds:

∀ y ≥ ymin , ∀x ∈ [−c♭ y,−y1/3] , |Gp(x, y)| ≤
C

|x|1/4 y(p+1)/4
exp

(
−c

x2

y

)
. (A.60)

The same kind of arguments lead to the estimate (A.60) in the case where p is even (starting now from
(A.59)).

• Step 5: the oscillating side. Part II. There is no real difficulty in adapting the proof of Proposition
A.4 to this slightly more general framework that incorporates the factor (i θ)p in the definition (A.49) of
Gp. By following the same arguments as in the proof of Proposition A.4 and absorbing polynomial terms
by exponentially decaying ones, we can show that there exists a constant C♭ > c♭ and some

∀ y ≥ ymin , ∀x ≤ −C♭ y , |Gp(x, y)| ≤
C

y(p+1)/4
exp

(
−c

|x|4/3

y1/3

)
. (A.61)
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• Step 6: the oscillating side. Part III. It remains to deals with the case x ∈ [−C♭ y,−c♭ y] and this
is done by merely adapting Proposition A.5. We choose again the contour depicted in Figure A.2 so that
along the two inclined segments, the complex number θ is O(δ) and the parameter δ is chosen such that
it satisfies (A.37). This choice, that is uniform with respect to x and y in the considered regime, allows
us to absorb the term (i θ)p into a constant along the two inclined segments. For the integrals along the
two horizontal half-lines, the polynomial factor (i θ)p simply gives an algebraic factor that is harmless
when compared with the exponentially decaying term exp(−c y). Overall, we leave as an exercise to the
interested reader to prove that for suitable constants C and c, there holds:

∀ y ≥ ymin , ∀x ∈ [−C♭ y,−c♭ y] , |Gp(x, y)| ≤
C

y(p+1)/4
exp(−c y) . (A.62)

We can then use the above estimates (A.60), (A.61), (A.62) and adapt the arguments of Corollaries A.2
and A.3 to show that for any given constant c > 0, there exist constants C and c such that the estimates
corresponding to the last two cases of (A.50) are valid. This completes the proof of Theorem A.3.

Proof of Corollary A.7. From the definition (A.46) of Ar and the definition (A.49) of the correctors Gp,
we have7:

∂Ar

∂y
(x, y) = − c3G2(x, y) − c4G3(x, y) .

We now consider n ∈ N∗ and j0 ∈ N∗ such that j0 belongs to the segment [n |αr|/2, n]. We observe that
the segment [j0/|αr|, n] is included in [n/2, n/|αr|] so the mean value theorem gives the bound:∣∣∣∣Ar

(
−j0 + n |αr|,

j0
|αr|

)
− Ar (−j0 + n |αr|, n)

∣∣∣∣
≤ C |n |αr| − j0| sup

y∈[n/2,n/|αr|]
|G2(−j0 + n |αr|, y)| + C |n |αr| − j0| sup

y∈[n/2,n/|αr|]
|G3(−j0 + n |αr|, y)| .

(A.63)

Corollary A.7 then follows by applying Theorem A.4, keeping in mind that αr is negative (so the relevant
constant c3 is negative) and that the relevant values of x and y satisfy here |x|/y ≤ c for some constant
c that only depends on αr (this is because of the bounds on j0 in terms of n). Actually, the most critical
case arises in the right-hand side of (A.63) with the term:

|n |αr| − j0| sup
y∈[n/2,n/|αr|]

|G2(−j0 + n |αr|, y)| ,

in the regime n |αr| − j0 ≥ n1/3. We then use Theorem A.4 for p = 2 and obtain a bound of the form:

C |n |αr| − j0|
1

|n |αr| − j0|1/4 n3/4
exp

(
−c

|n |αr| − j0|2

n

)
,

so the Gaussian term can absorb the polynomial expression |n |αr| − j0|/
√
n and this gives a bound:

C

|n |αr| − j0|1/4 n1/4
exp

(
−c

|n |αr| − j0|2

n

)
,

just like we had in Corollary A.1 for the free Green’s function. In all other regimes, the situation is more
favorable and there are extra positive powers of n that can even be omitted in the end.

7We first differentiate the definition (A.46) with respect to y and then apply once again the Cauchy formula to let the
abscissa η tend to zero.
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