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Abstract: 

Aneurysmal subarachnoid hemorrhage (SAH) is a rare event affecting relatively young patients 

therefore leading to a high social impact. The management of SAH follows a biphasic course with 

early brain injuries in the first 72 hours followed by a phase at risk of secondary deterioration due to 

delayed cerebral ischemia (DCI) in 20 to 30% patients. Cerebral infarction from DCI is the most 

preventable cause of mortality and morbidity after SAH. DCI prevention, early detection and 

treatment is therefore advocated. Formerly limited to the occurrence of vasospasm, DCI is now 

associated with multiple pathophysiological processes involving for instance the macrocirculation, 

the microcirculation, neurovascular units, and inflammation. Therefore, the therapeutic targets and 

management strategies are also evolving and are not only focused on proximal vasospasm. In this 

review, we describe the current knowledge of DCI pathophysiology. We then discuss the diagnosis 

strategies that may guide physicians at the bedside with a multimodal approach in the unconscious 

patient. We will present the prevention strategies that have proven efficient as well as future targets 

and present the therapeutic approach that is currently being developed when a DCI occurs. 
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Abbreviations:  

aNIHSS: abbreviated national institute of health stroke scale 

BOX: Bilirubin oxidation products 

CBF: cerebral blood flow 

CT: computed tomography 

DAMPs: Damaging associated molecular patterns 

DCI: delayed cerebral ischemia 

EBI: early brain injuries 

EEG: electroencephalography 

mGCS: modified Glasgow coma scale 

NO: nitric oxide 

PbtO2: partial brain tissue oxygen pressure 

SAH: subarachnoid hemorrhage 

SD: spreading depolarization 

TCD: transcranial doppler 

TCCS: Transcranial Color-Coded real-time Sonography 

 

Introduction: 

Aneurysmal subarachnoid hemorrhage (SAH) due to the rupture of an intracranial aneurysm is a rare 

event affecting relatively young patients therefore leading to a high social impact [1]. SAH 28-day 



 

 

mortality is reported to range from 26% to 40% in Europe [2] and half of those who survive sustain 

irreversible brain damage [3]. The management of SAH follows a biphasic course with an early phase 

due to bleeding consequences, such as cerebral edema, intracerebral hemorrhage, mechanical 

stress, raised intracranial pressure or systemic complications as well as re-bleeding or aneurysm 

treatment complications. These first brain insults have been grouped together and termed early 

brain injuries (EBI) and are important determinants of poor outcome [4–6]. The second phase 

between day 3 and day 21 is at risk of secondary deterioration due to delayed cerebral ischemia (DCI) 

in 20 to 30% of patients, peaking in the second week after bleeding [7]. Cerebral infarction from DCI 

is the most preventable cause of mortality and morbidity after SAH [8]. Therefore, DCI prevention, 

early detection and treatment before irreversible damage occurrence is a key element in the 

management of patients following SAH [9]. 

Despite improvement in patient care and DCI prevention [3,10], SAH is fraught with significant 

morbidity. For decades cerebral vasospasm was thought to be the main process underlying DCI, 

however the current knowledge of its pathophysiology evidenced multiple processes, and elements 

that lead to new cerebral infarction are partially understood. This new approach also implies 

management strategies that are not centered solely on the diagnosis and treatment of proximal 

vasospasm and remains a matter of debate [8,9,11]. 

In this review, we will describe the current knowledge of DCI pathophysiology. We will then discuss 

the diagnosis strategies that may guide physicians at the bedside with a multimodal approach in the 

unconscious patient with an unreliable clinical examination. We will present the prevention 

strategies that have proven efficient as well as future targets and present the therapeutic approach 

that is currently being developed when a DCI occurs. 

 

Delayed cerebral ischemia pathophysiology (Fig. 1): 



 

 

Formerly limited to the occurrence of vasospasm, DCI is now associated with multiple 

pathophysiological processes involving for instance the macrocirculation, the microcirculation, 

neurovascular units, and inflammation. Cerebral vasospasm is defined as a focal or diffuse arterial 

narrowing seen on vascular imaging involving large intradural (i.e. pial) arteries located on the 

surface of the brain [12]. Cerebral vasospasm can be observed from several days following the initial 

bleeding and its occurrence peaks one week later [7,13]. At the early phase, the release of calcium 

triggers by the subarachnoid clot leads to sustained smooth muscle contraction. Later mechanisms 

are calcium independent and involve chemical and ultrastructural changes of the vascular wall layer 

[13]. The oxidation of oxyhemoglobin released from blood clot produces methemoglobin and 

superoxide anion radicals which trigger oxidative stress, inflammation and imbalance the vascular 

tone toward vasoconstriction. There will be an over-production of vasoconstriction factors such as 

endothelin-1 and a depletion of vasodilatory factors such as neuropeptide and nitric oxide (NO). NO 

is scavenged by oxyhemoglobin and there is a downregulator of endothelial NO synthase [14]. 

Endless inflammatory mechanisms activated after SAH may contribute to vascular remodeling, 

leading to narrowing of the arterial wall [13]. Angiographic vasospasm is very common, as it affects 

up to two-thirds of patients after SAH, but only one-third experience neurological decline [15] and 

proximal arterial spasm may be compensated by distal autoregulatory vasodilatation.  

After SAH, neurovascular coupling is disrupted and may even be inverted due to the lack of 

vasodilation agents as discussed above. Instead of vasodilatation in response to neuronal activation, 

a transient or sustained vasoconstriction can be observed that may result in ischemic damage [16]. 

The presence of a clot in the subarachnoid space may also trigger cortical spreading depolarizations 

(SD) that will propagate in the gray matter at rate of a few mm/min on the cortical surface associated 

with a depression of the background neuronal activity [17]. They result in a near complete 

breakdown of cell membrane potentials and required a huge amount of energy to recover [18]. They 

are mainly observed between day 5 and day 7 after bleeding; when NO is low, such as after an SAH, 



 

 

SD can induce an inverse vascular coupling also called spreading ischemia that can contribute to DCI 

[19] and may induce band-like cortical lesions that can develop independently of a cerebral 

vasospasm [20]. 

The initial bleeding triggers a strong inflammatory response, which correlates with both EBI and DCI. 

As blood enters the subarachnoid space, it releases molecules that promote an inflammatory 

response. Heme and other red blood cell degradation products (bilirubin oxidation products, BOX) 

can act as damage-associated molecular pattern (DAMPs) recognize by innate immune cells with 

pattern recognition receptors expressed mainly by microglial cells and infiltrating monocytes [16,21]; 

as the blood brain barrier breakdown during EBI allows peripheral immune cells (neutrophils, 

monocytes/macrophages, lymphocytes) to penetrate into the brain [15]. The activation of microglia 

and the intrathecal infiltration of neutrophils may help to clear these red blood cell degradation 

products that entered the subarachnoid space, but they can also cause neuronal apoptosis [22]. 

Pattern recognition receptors expression, such as the toll like receptor 4 or the receptor for 

advanced glycation end products which both bind heme and BOX, are related to vasospasm [22]. 

Moreover, the subsequent cytokine release (e.g. interleukin 6 and 1β, tumor necrosis factor, matrix 

metallopeptidase 9) lead to sterile inflammation and eventually to neuronal death, and have been 

associated with vasospasm and DCI [15]. 

The transient global cerebral ischemia that is the consequence of EBI causes a no-reflow 

phenomenon causing platelet aggregation in micro vessels thereby forming microthrombi [7]. The 

early constriction of the microvasculature with reduced flow also facilitates the formation of platelet 

aggregates. Moreover, ischemic endothelial injury resulting from the limited cerebral blood flow 

(CBF) exposes collagen, von Willebrand factor, and thrombin perpetuating platelet activation [15]. 

Activated platelets may participate in vascular constriction and wall remodeling through the release 

of thromboxane A2 or prostaglandin [23–25]. 



 

 

If cerebral autoregulation mechanisms are overwhelmed, a drop in perfusion pressure or increased 

metabolic needs result in insufficient blood and nutriment supply leading to cerebral ischemia [26]. 

This microvascular dysfunction may also be affected by the consequences of EBI that is responsible 

for transient global ischemia leading to neuronal death (cytotoxic edema) and endothelial damage 

with breakdown of the blood brain barrier (vasogenic edema) thereby affecting cerebral 

autoregulation [27]. The obstruction of cerebrospinal fluid flow, resulting in hydrocephalus and 

increased brain water content, and/or intraparenchymal hemorrhage contribute also to the rise in 

intracranial pressure thereby reducing CBF [16]. 

 

How to diagnose delayed cerebral ischemia 

DCI has multiple origins but is defined as the occurrence of a new focal neurological deficit or 

decrease of the level of consciousness lasting more than one hour, in the absence of another cause 

of neuro-worsening [12]. Frequent neurological assessment to detect a new deficit is therefore 

critical and can be monitored with the modified Glasgow Coma Scale (mGCS, i.e. using the worse 

instead of the best motor score) or the abbreviated National Institute of Health Stroke Scale which 

includes the elements that are the most related to neurological outcome (aNIHSS, i.e. rating seven 

items including the level of consciousness, left and right arm motor movement, left and right leg 

motor movement, speech fluency, and speech clarity) [28,29]. A two-point mGCS decrease or aNIHSS 

increase, and/or a new focal neurological deficit in patients with a reliable clinical examination must 

evoke a DCI in the absence of another diagnosis [30]. In the unconscious patient (because of EBI or 

due to ongoing sedation), the detection of DCI is more challenging before irreversible ischemic 

lesions are present. Daily wake-up trials in brain-injured sedated patients should be performed with 

extreme caution as it can raise intracranial pressure and reduce brain oxygenation [31]. Multimodal 

neuromonitoring is thus advocated looking for proximal vasospasm, cerebral energetic mismatch, or 

abnormal neurological activities (Fig. 2).  



 

 

Transcranial Doppler ultrasonography (TCD) is a non-invasive tool widely available at the bedside 

with a rapid learning curve [32]. TCD can detect large vessel narrowing with elevated velocities as 

long as the cerebral perfusion pressure is maintained. In addition, transcranial color-coded real-time 

sonography (TCCS) helps visualize the vessel of interest and select sites with high velocities [33]. A 

mean velocity in the middle cerebral artery > 120cm/s has 67% sensitivity and 99% specificity to 

diagnose vasospasm [34]. However, the diagnostic accuracy for anterior and posterior cerebral 

arteries is poorer with many false negative tests (40-80%) [34]. Blood flow velocities are also 

influenced by hemoglobin level, blood pressure and arterial CO2. The Lindegaard index (i.e. the ratio 

between mean velocities in the middle cerebral artery and the extracranial portion of the internal 

carotid) can distinguish between vasospasm and hyperemia, an index > 3 being in favor of a 

vasospasm [35]. Although TCD monitoring is recommended after SAH, it is not specific for DCI as it 

detects proximal vasospasm regardless of its consequences on downstream CBF and subsequent 

neurological deficit [36,37]. When the neurological examination is not reliable, DCI is tracked with 

indirect markers of cerebral energetic mismatch such as low partial brain tissue oxygen pressure 

(PbtO2) or low extracellular glucose. Several thresholds have been described to diagnose an energetic 

mismatch. For instance, a PbtO2 <20mmHg should raise an alert while a value below 10mmHg is 

considered critical [38]. A cerebral glucose concentration <0.7mmol/l and/or a lactate/pyruvate ratio 

>40 is also considered critical [39]. However, trend analyses may be even more relevant than single 

threshold values to guide intervention at the bedside [9]. Those markers are monitored with 

intracranial probes in the white matter (PbtO2 and/or cerebral microdialysis) and are therefore very 

dependent on the location of the probe in relation to the ischemic region. Even if the probe 

placement should match the territory most at risk of DCI it is not always accessible and delayed 

infarcts may be missed and detected on follow-up brain imaging [40]. 

Unlike regional intracranial monitoring, electroencephalography (EEG) is a non-invasive technique 

providing functional information from most superficial cortical area, with ischemia related changes 

occurring before the CBF decrease reaches irreversible ischemic values [41,42]. Several studies 



 

 

investigated EEG changes associated with DCI and evidenced that a prolonged decrease in the 

alpha/theta ratio (i.e. focal or global slowing of brain activity) and/or the appearance of lateralized 

periodic discharges are associated with DCI and may precede clinical deterioration [43,44]. However, 

EEG cannot detect other DCI mechanisms such as SD that requires cortical electrodes to evidence the 

slow potential changes that spread across the cortex {Dreier.2017yvl}. SD monitoring may in the near 

future be implemented in a multimodal monitoring approach as they are both a mechanism of DCI 

pathophysiology and a biomarker of new cortical injury even if the electrodes are distant from the 

injured area [19,45,46]. 

The most studied blood biomarker of new brain injury is the S100B protein, a calcium binding protein 

mainly expressed in astrocytes. The serum concentration of S100B at hospital admission is a good 

biomarker of the severity of EBI and decreases before the period at risk of DCI [47,48]. Later on the 

level of S100B within the first 5 to 7 days after bleeding is a good marker of long-term outcome as it 

may include both early and late brain injuries [48–51]. However, the diagnostic accuracy of S100B 

changes during the hospital stay to predict DCI or new cerebral infarction has yet to be evaluated. 

When DCI occurs or is suspected, cerebral and vascular imaging with perfusion data will look for a 

proximal vasospasm and guide therapeutic intervention that will be discussed in a following section 

(Fig. 2). The gold standard is digital subtraction angiography which can accurately diagnose proximal 

vasospasm as a narrowing of cerebral arteries [52,53]. However, it is an invasive technique not 

always accessible and which does not provide information about the consequences of the vasospasm 

on CBF. Conversely, computed tomography (CT) perfusion and angiography are noninvasive tools 

that can both identify vascular narrowing and CBF changes. It provides perfusion maps of CBF, 

cerebral blood volume, mean transit time and time to peak. The changes of CBF reach positive and 

negative predictive values above 90% to diagnose vasospasm confirmed with n angiography [53]. The 

development of cerebral magnetic resonance imaging (MRI) makes it a safe and accessible technique 

to detect brain lesions, and is a valuable alterative to perfusion CT. Furthermore, in addition to 



 

 

vascular and perfusion weighted images, it can also diagnose cortical ischemia that are not related to 

proximal vasospasm [54]. 

 

Prevention strategies 

Several vasodilatory agents have been tried to prevent the occurrence of vasospasm and/or DCI and 

improve patient outcome. The only treatment that is efficient to improve the long-term outcome and 

that is therefore recommended, is the calcium channel inhibitor nimodipine [3,55]. Daily oral 

nimodipine for 21 days improves long-term outcome; when the oral route is not available, the 

intravenous formulation may be used but its beneficial effect is more controversial probably because 

of underpowered trials [56]. Surprisingly nimodipine does not significantly reduce proximal 

vasospasm [57] but may act among other things by improving micro-vascularization. For instance, it 

experimentally partially restores neurovascular coupling during spreading depolarization [58]. Other 

nimodipine formulations are under investigation to increase its concentration in the cerebrospinal 

fluid with micro- or nanoparticles [59,60]. The NEWTON2 trial tested a single intraventricular 

administration of EG-1962 which delivers nimodipine microparticles in the subarachnoid space. It 

was prematurely halted because the primary endpoint (i.e. 6-month Glasgow outcome scale) was 

unlikely to be achieved but there was a significant reduction of vasospasm and a lower incidence of 

hypotension [60]. Conversely, the co-administration of magnesium with oral nimodipine, which is 

also a noncompetitive inhibitor of voltage gated calcium channel and the NMDA receptor, was not 

efficient [61].  

In Japan, where nimodipine is not available, cilostazol, a phosphodiesterase 3 inhibitor, has been 

tried as a vasodilator agent following SAH. The authors evidenced that cilostazol reduced vasospasm, 

DCI, cerebral ischemia and improved long-term outcome [62]. It also has a similar effect on spreading 

depolarization induced changes [63]. The effect of cilostazol in centers using daily nimodipine needs 

to be evaluated. The effect of milrinone administration, another phosphodiesterase 3 inhibitor, with 



 

 

nimodipine to prevent DCI is also currently under investigation in the OPTIMIL clinical trial 

(NCT04282629). 

The endotheline-1 receptor A inhibitor, clazosentan, has been tried in several clinical trials 

(CONSIOUS trials 1,2 and 3), however the results of the phase 3 randomized controlled trial were not 

conclusive. Only high doses of clazosentan were able to reduce DCI with frequent adverse events 

such as pulmonary edema and hypotension, without any effect on long-term outcome [30,64,65]. 

Subgroup analyses suggested that clazosentan may be more effective on the morbidity related to DCI 

in patients with limited EBI [64]. The effect of clazosentan in patients with limited EBI and a high risk 

of DCI defined as the presence of a thick and diffuse clot in the subarachnoid space, is under 

investigation in the REACT trial (NCT03585270). 

Statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase and block the formation of 

mevalonate, an important precursor for both cholesterol and other nonsterol products. This might 

underpin some of the known neuroprotective properties of statins such as the upregulation of 

endothelial nitric oxide synthetase, the inhibition of platelet activation and the reduction of neuro-

inflammation [66]. A recent meta-analysis of small sample size randomized controlled trials suggest 

that statin treatment reduces the occurrence of vasospasm and DCI [67]. Unfortunately, there was 

no effect on long-term prognosis, even in the large STAH trial [67,68]. The Rho-kinase pathway is also 

implicated in many mechanisms which play a role in DCI progression such as vasoconstriction, 

endothelial injury, platelet activation, inflammation, and oxidative stress. The Rho-kinase inhibitor 

fasudil was tested against nimodipine in an unblinded trial and seemed to be more efficient than 

nimodipine to reduce symptomatic vasospasm and to improve the outcome [69]. However, all 

patients had a surgical clipping unlike in other countries where coiling is usually preferred, and both 

treatments were administered intravenously although this formulation of nimodipine may not be as 

efficient as the oral one [56].  



 

 

The clearance of blood clots from the cerebrospinal fluid compartment is also critical in the 

development of DCI. A high cisternal clot clearance seems associated with a low probability of DCI 

[70]. Therefore, another approach to reduce the amount of blood and its degradation derivates 

consists of clot removal from the subarachnoid space using cisternal or ventricular catheters with 

fibrinolytic agents. Results of small studies are promising with a reduced risk of symptomatic 

vasospasms or DCI [71,72], and randomized studies such as the EARLYDRAIN trial (NCT01258257) 

[73] or the FIVHeMA trial (NCT03187405) [74] are currently investigating the impact of this strategy 

on clinical outcome and DCI. 

 

Therapeutic approach when delayed cerebral ischemia occurs 

There is no randomized trial to support a clear strategy when DCI occurs. The current evolution of 

DCI management developed in many centers is based on tiered approach with frequent re-

evaluations of clinical and/or multimodal monitoring data to escalade or de-escalade therapeutic 

interventions [9,55] (Fig. 2). The previous approach consisted of the so-called triple H therapy 

(hypertension, hypervolemia, hemodilution), with a risk of heart failure or cerebral edema [75–77]. 

Nowadays, the first tier when DCI occurs is a stepwise increase in arterial blood pressure also called 

induced, permissive or controlled hypertension [3,55]. The increase of systemic blood pressure with 

norepinephrine and correction of potent hypovolemia improves the perfusion deficit associated with 

DCI [78], and may improve clinical deterioration [46,75,79–82]. The randomized HIMALAIA study that 

intended to evaluate the effect of permissive hypertension on long-term outcome, was terminated 

due to low recruitment and did not evidence any difference in terms of outcome [46]. Goal-directed 

therapy with the use of fluid responsiveness indices is useful to avoid fluid overload, correct 

hypovolemia, and prevent DCI [83,84]. In unconscious patients with intracranial monitoring, the 

optimization of CBF relies on arterial and intracranial pressure changes and PbtO2 levels {Schmidt, 

Rass.2019r9g}. 



 

 

If DCI is due to a symptomatic vasospasm (i.e vasospasm with downstream perfusion deficit 

identified on a perfusion CT or MRI) and refractory to permissive hypertension, an endovascular 

intervention should be considered [3,55]. Endovascular treatment efficacy has been studied only in 

observational or retrospectives trials. Intra-arterial calcium channel antagonists (nimodipine, 

nicardipine or verapamil) or milrinone can be used to reverse the vasospasm but their effect might 

be short lasting [85,86]. To overcome this, transluminal balloon angioplasty can also be performed 

with a low rate of vasospasm recurrence and rare complication such as vascular rupture or occlusion 

[87]. New technical developments may reduce the risk of such procedure using a dual lumen balloon 

[88] or a solitary stent retriever [89]. Intravenous administration milrinone could also be used as a 

rescue therapy when the symptomatic vasospasm is not accessible to an endovascular procedure or 

combined with an endovascular treatment, with promising results to inverse angiographic vasospasm 

[86,90]. The MIVAR randomized, double blinded, placebo-controlled trial is currently investigating 

the effect of intravenous milrinone administration on long-term outcome when symptomatic 

vasospasm occurs (NCT04362527). 

When proximal vasospasm is not the primary mechanism of DCI, other therapeutic interventions 

should be considered. For instance, if repeated SDs occur despite optimal cerebral perfusion and 

oxygenation, some authors suggest using ketamine in addition to ongoing sedation. If SDs are still 

observed, a stepwise ketamine increase could be performed with a close monitoring of side effects 

such as hepatotoxicity [91–93]. However, the effect of such strategy remains to be evaluated [11]. A 

more liberal hemoglobin threshold for red blood cell transfusion in order to increase cerebral oxygen 

delivery is also suggested and currently under investigation in the TRAIN trial (NCT02968654). 

 

Conclusion: 

Our understanding of the pathophysiology of new cerebral injuries after an SAH has evolved from the 

initial discovery of arterial vasospasm to a more complex phenomenon that encompasses 



 

 

microcirculatory changes (i.e. proximal and distal arterial narrowing), microcirculation disturbance 

(i.e. impaired autoregulation, inverse vascular coupling and spreading ischemia), platelet activation 

and aggregation and neuro-inflammation. Therefore, the therapeutic targets and management 

strategies are also evolving and are not only focused on proximal vasospasm. Future strategies for 

DCI management may depend on the predominant mechanism in place and need to be evaluated in 

randomized clinical trials.  
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Figures: 

 

Figure 1. Pathophysiology of delayed cerebral ischemia. 

SAH: subarachnoid hemorrhage, IVH: intraventricular hemorrhage, ICH: intracerebral hemorrhage, 

IC: intracranial pressure, CBF: cerebral blood flow, BBB: blood brain barrier, NO: nitric oxyd, ET-1: 

endothelin-1 

  



 

 

 

 

Figure 2. Delayed cerebral ischemia management algorithm after subarachnoid hemorrhage. 

CT: computed tomography; MRI: magnetic resonance imaging; TCD: transcranial doppler; WFNS: 

world federation of neurosurgeon scale. 




