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The ultrafast dynamics of electrons and ions in thin metal films has been investigated using a
semi-classical model based on self-consistent Vlasov simulations. The Vlasov equation is solved using
a very accurate Eulerian scheme that preserves the fermionic character of the electron distribution
for all times. With this technique, the electronic transport and thermalization are studied on a time
scale of over 150 plasmon cycles. Our results demonstrate that heat transport occurs at a velocity
close to the Fermi velocity, in agreement with experimental measurements in thin gold films. We
also show that: (i) internal electron thermalization can be achieved without including any binary
electron-electron collisions and (ii) nonequilibrium electrons begin to interact with the lattice well
before the internal electron thermalization is completed. These effects are considerably enhanced
by the interaction of nonequilibrium electrons with the film surfaces.

Understanding the relaxation processes of an electron
gas confined in a nanosized structure is a matter of great
importance in materials science, both for fundamental
studies and technological applications. Although the
physical properties of the bulk matter are rather well
understood, the ion and electron dynamics in finite-size
nanoscale systems are believed to display novel and un-
expected features, due to the presence of interfaces. The
aim of this Letter is to provide a deeper insight into
the properties of electron thermalization and transport
in typical finite-size systems, such as thin metal films.

It is nowadays possible, by means of ultrafast spec-
troscopy techniques, to assess the femtosecond dynamics
of an electron gas confined in metallic thin films1–6 or
nanoparticles6–8, so that theoretical predictions can be
directly compared to experimental measurements. In a
typical femtosecond pump-probe experiment the follow-
ing schematic scenario is generally assumed: first, the
electrons absorb quasi-instantaneously the laser energy
via interband and/or intraband transitions. During this
process, the ionic background remains frozen and the
electron distribution is non-thermal. On a femtosecond
time scale, the injected energy is redistributed among
the electrons via electron-electron collisions, leading to
the so-called internal electron thermalization. Electron-
lattice (“external”) thermalization was generally sup-
posed to occur on longer time scales. However, the results
of Refs.5,9 on thin gold films have shown that nonequi-
librium electrons start interacting with the lattice earlier
than expected, so that a clear separation between in-
ternal and external relaxation is not entirely pertinent.
Other experiments have measured the properties of heat
transport in thin gold films1,2, showing that it is not a dif-
fusive process (Brownian motion), but rather a ballistic
one (motion at constant velocity). These works demon-
strated that heat transport occurs on a femtosecond time
scale and involves nonequilibrium electrons travelling at
a velocity close to the Fermi velocity of the metal. In
the present paper, we shall provide numerical evidence

in support of the above experimental findings.
In order to model and interpret experimental results

obtained with thin metallic films, ab-initio methods can
hardly be employed, as they involve prohibitive compu-
tational times. Several authors3,5,9 have resorted to phe-
nomenological Boltzmann-type equations that provide
the time evolution of the electron occupation number in
the bulk metal, but this approach neglects the effect of
spatial inhomogeneities and surfaces. A possible alter-
native relies on the use of microscopic kinetic methods,
originally developed in nuclear and plasma physics, and
applied more recently to metal clusters10. In these mod-
els, the valence electrons are assimilated to an inhomoge-
neous electron plasma. Here, we shall focus our attention
on alkali metals, and more specifically sodium films, for
which the influence of the core electrons can be neglected;
such systems can be realized experimentally11. The semi-
classical electron dynamics can be described in phase
space by the Vlasov equation, coupled self-consistently
to Poisson’s equation.

The numerical resolution of the Vlasov equation is usu-
ally performed by particle-in-cell (PIC) methods, which
approximate the distribution function by a finite number
of test particles10. However, the numerical noise inherent
to this method is too large to allow a precise description
of the distribution function in phase space. Further, due
to the finite number of particles used, PIC methods in-
evitably introduce some amount of random noise in the
Vlasov dynamics, which drives the system towards clas-
sical Maxwell-Boltzmann thermalization. Therefore, the
fermionic character of the electrons is not preserved dur-
ing time evolution12, which constitutes a major drawback
for any PIC method. The accuracy of PIC simulations
can be somewhat improved by using finite-size particles13
or by introducing ad-hoc collision operators14. Neverthe-
less, Maxwell-Boltzmann thermalization is still observed
after some time. In addition, these corrections make it
difficult to separate the mean-field Vlasov dynamics from
the effect of such ad-hoc terms.
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On the contrary, Eulerian codes15 rely on the solution
of the Vlasov equation on a regular mesh in the phase
space (x, v). They generally achieve finer resolution and
display better convergence and stability properties than
the corresponding PIC codes. As they are not based on
discrete particles, Eulerian codes do not introduce any
statistical noise liable to drive the electron gas towards
Boltzmann equilibrium. Here, we shall employ a recently
developed Eulerian scheme16, which is capable of preserv-
ing the fermionic character of the electron distribution
exactly and for all times. Thanks to this numerical tech-
nique, we have been able to obtain clean and meaningful
information on the electron and ion thermalization in a
thin metal film.

In the forthcoming simulations, time is normalized in
units of the inverse plasmon frequency ω−1

pe , velocity in
units of the Fermi speed vF , and length in units of LF =
vF /ωpe. For alkali metals we have LF = 0.59 (rs/a0)

1/2

Å, ω−1
pe = 1.33×10−2 (rs/a0)

3/2 fs, EF = 50.11 (rs/a0)
−2

eV and TF = 5.82 × 105 (rs/a0)
−2 K, where rs is the

Wigner-Seitz radius. For sodium, rs = 4a0 with a0 =
0.529 Å. The electron and ion plasmon period are, respec-
tively, 0.67 fs (≈ 6.28 ω−1

pe ) and 137.68 fs (≈ 1300 ω−1
pe ).

In the following, me and mi are the electron and ion mass
and e denotes the absolute electron charge.

We consider a system of electrons interacting via a
Coulomb potential and confined within a slab of thick-
ness L. The ion background is represented by a posi-
tive charge density with soft edges, ρi(x) ≡ eni(x) =
eni [1 + exp ((|x| − L/2)/σi)]

−1, where ni = 3/(4πr3
s) is

the ion density of the bulk metal and σi a diffuseness
parameter10. In this jellium model, the self-consistent
electrostatic potential depends only on the coordinate
normal to the surface (here noted x). Thus, the motion
of an electron parallel to the surface of the film is com-
pletely decoupled from the motion normal to the surface,
and a one-dimensional (1D) model can be adopted.

Initially, electrons and ions are assumed to be at ther-
mal equilibrium with the same temperature. The elec-
trons are treated by a semi-classical Thomas-Fermi ap-
proach, their energy distribution being a 3D Fermi-Dirac
function with temperature Te. The 1D distribution is
obtained by integrating over the velocity variables par-
allel to the surface. For an equilibrium at finite electron
temperature, the 1D Fermi-Dirac distribution reads as

fe(x, v, 0) =
3
4

ni

vF

Te

TF
ln

[
1 + exp

(
−ε(x, v)− µ

kBTe

)]
, (1)

where ε(x, v) = mev
2/2− eφ(x) is the single-particle en-

ergy and µ is the chemical potential. At Te = 0, the
above expression becomes linear in ε. The ions are classi-
cal and initially obey a Maxwell-Boltzmann distribution
with density ni(x) and temperature Ti.

The calculation of the ground state is thus reduced to
the resolution of Poisson’s equation

d2φ

dx2
=

e

ε0
[ne(x)− ni(x)] , (2)

with ne =
∫

fedv. The chemical potential µ is deter-
mined by requiring global charge neutrality:

∫
nedx =∫

nidx. We have not included any exchange-correlation
energy in the model, although this could be done rel-
atively easily within the local-density approximation18.
These effects are of minor importance and should not
change the conclusions of the present work. The above
nonlinear Poisson equation is solved with an iterative
method that yields the self-consistent potential φ(x) and
the corresponding electron distribution fe(x, v, 0).

We consider situations where no linear momentum is
transferred parallel to the plane of the surface (i.e. only
excitations with q‖ = 0 are taken into account). This
situation corresponds to the excitation of the slab with
optical pulses17 and also to the response to a uniform
electric field oriented normal to the surface. The disper-
sion relation of the slab collective modes is given by the
well-known expression18: ω±(q‖) = ωpe

√
(1∓ e−q‖L)/2 .

For q‖ = 0, only longitudinal modes (volume plasmon
with ω = ωpe) can be excited.

The evolution of the electron and ion distribution func-
tions fe and fi is governed by the Vlasov equations

∂fe,i

∂t
+ v

∂fe,i

∂x
− qe,i

me,i

∂φ

∂x

∂fe,i

∂v
= 0 (3)

where qe = −e, qi = +Ze (we consider only monovalent
metals, Z = 1). The ion and electron Vlasov equations
are coupled via the electrostatic potential, obtained self-
consistently at each instant from Poisson’s equation (2).

The stability properties of the numerical technique em-
ployed here have been tested by preparing the system
in its ground state and letting it evolve self-consistently
without any perturbation. By definition, the ground
state is a stationary solution of the Vlasov-Poisson sys-
tem and should remain stable under the time evolution.
However, PIC codes show a rather quick deterioration of
the Fermi-Dirac ground state, which relaxes to a Boltz-
mann distribution in a few (≈ 13) electron plasmon
cycles13,14. With our Eulerian code, no departure from
the Fermi-Dirac equilibrium can be detected for times
as long as ωpet = 1000, corresponding to more than 150
plasmon cycles. The initial and final energy distributions
(obtained by integrating fe over different energy surfaces)
are shown in Fig. 1 (thin solid lines) and are virtually
indistinguishable on the scale of the figure. The total
energy is conserved within an error of less than 0.05%.

We now turn to the case where a perturbation is im-
posed on the initial equilibrium in order to excite the
electron dynamics. All simulations were performed using
realistic parameters: an initial temperature Te = Ti =
0.008 TF ' 300 K, a diffuseness parameter σi = 0.3 LF

18,
and a slab of thickness L = 100 LF ' 118 Å17. In order
to assess the impact of the ion dynamics on the electron
thermalization, two sets of simulations were performed:
with fixed ions (mi → ∞) and with mobile sodium ions
(mi = 42228 me). The thin film is excited by imposing a
constant velocity shift δv to the initial electron distribu-
tion. In this way, an amount of energy E∗ = Lδv2/2 (in
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FIG. 1: Electron energy distribution at t = 0 (thin solid line)
and ωpet = 1000 (thick solid line) for fixed ions. The dashed
line is a Fermi-Dirac function with Te = 0.084 TF . The inset
shows a zoom around the Fermi surface.

FIG. 2: Time evolution of several energy quantities. Solid
lines: fixed ions; dot-dashed line: mobile ions.

normalized units) is injected into the system. We have
adjusted the value of δv = 0.08vF in order to have E∗ = 2
eV, which is typical for experiments using femtosecond
laser pulses1,2. The resulting energy distribution function
at ωpet = 1000 is displayed in Fig. 1 (thick solid line) for
the fixed-ions case. For the sake of comparison, a Fermi-
Dirac distribution with temperature T final

e = 0.084 TF is
also plotted on the same graph (dashed line). This final
temperature is obtained from the electron thermal en-
ergy (see next paragraph for its definition) corresponding
to the electron distribution at ωpet = 1000. Clearly, the
electron gas has evolved towards a new quasi-equilibrium
state characterized by a distribution function close to a
Fermi-Dirac function with a temperature higher than the
ground state.

In order to investigate the approach to such a quasi-
equilibrium state, the time evolution of some pertinent
energy quantities was analyzed. The total energy of the
electron gas is given by: Etot = Ekin +Epot. Further, the
kinetic energy can be split into three parts: (i) the kinetic
energy of the center of mass: Ecm = 1

2

∫ j2
e(x)

ne(x)dx (where
je =

∫
vfedv is the electron current); (ii) the Thomas-

Fermi energy (energy of the equivalent zero-temperature
state with same density): ETF = 1

10

∫
ne(x)5/3dx; and

(iii) the thermal energy: Eth = Ekin − Ecm − ETF. In
Fig. 2, the time evolution of Eth, Epot and Ecm is shown
for two runs with fixed (solid lines) and mobile (dashed
line) ions. For clarity, only Epot and Ecm corresponding
to the fixed-ion case are depicted on the figure, as they
are almost identical to those observed in the mobile-ion
simulation (apart from some weak damping).

Several phases can be identified in the time evolution.
An initial phase corresponds to the damped collective
oscillations of the electron gas occurring at the plasmon
frequency ωpe. These fast oscillations are observed in the
behavior of Epot and Ecm up to ωpet ' 200. At this
time, the center-of-mass energy is almost entirely con-
verted into thermal energy (kinetic energy around the
Fermi surface). The Thomas-Fermi energy (not shown
on the figure) remains almost unchanged during the en-
tire run. After saturation of the thermal energy at
ωpet ' 200, a slowly oscillating behavior appears, with
period ≈ 100ω−1

pe . This period is roughly equal to the
time of flight of out-of-equilibrium electrons travelling
through the slab at a velocity close to the Fermi velocity
of the metal. It corresponds to particles colliding with
either surface and being reflected back. Indeed, we have
verified that the oscillation period doubles when consid-
ering a film that is twice as thick as the present one.
The persistence of such oscillations indicates that the
thermalization process observed in Fig. 1 is not quite
complete by the end of the run. These results show that
electron-surface interactions play an important role in the
thermalization process. This is not unexpected, since the
thickness of the slab is smaller than the electron mean
free path, which for bulk sodium, is equal to 340 Å 19.

Similar oscillations were recently measured in transient
reflection experiments on thin gold films, and it was ob-
served that the oscillation period scales linearly with the
thickness of the film20. The explanation provided by the
authors (electrons bouncing back and forth against the
film surfaces at a speed close to vF ) is basically identical
to our interpretation of the present numerical results.

Further, comparing the evolution of Eth for the runs
with mobile and fixed ions, it appears that energy ex-
changes between the electrons and the lattice occur much
faster (ωpet = 150, corresponding to 16 fs) than in the
bulk metal, and well before complete internal electron
thermalization has occurred. However, these early en-
ergy exchanges are localized at the film surfaces (see Fig.
3): complete electron-ion thermalization over the entire
film will take much longer times.

The fine resolution of our Eulerian code allows us to
investigate in detail the microscopic electron and ion dy-
namics in the relevant phase space. The electron phase
space dynamics is shown in Fig. 3 (left frames), where
fe(x, v, t) is displayed for ωpet = 0, 50 and 100. It is clear
that the perturbation propagates coherently from sur-
face to surface with a speed v0 ' 0.85vF, slightly smaller
than the Fermi velocity. Coherent structures (vortices)
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FIG. 3: Electron (left) and ion (right) phase space portraits.
Note that the times are not the same for ions and electrons.

are indeed observed around the phase space region with
velocity v0. These structures correspond to nonequilib-
rium electrons being trapped in the propagating wave
and are known to appear in wave-particle interactions in
classical plasmas21. These results demonstrate beyond
any doubt that heat transport is ballistic and occurs at
a velocity close to vF , in agreement with experimental
measurements in thin gold films1,2. When the pertur-
bation reaches the opposite surface (ωpet ' 120), it is
reflected back and interacts with the rest of the nonequi-

librium electrons, thus inducing a loss of the coherence
(vortices are destroyed). After several collisions with the
surfaces, most of the nonequilibrum electrons are spread
in a region around the Fermi surface, leading to a high-
temperature quasi-equilibrium state with a Fermi-Dirac
energy distribution, as was shown in Fig. 1. Neverthe-
less, such mean-field thermalization is not quite com-
plete, as the final energy distribution is not exactly a
Fermi-Dirac one (Fig. 1) and some periodic oscillations
still persist (Fig. 2).

The related ion phase space dynamics is depicted in
Fig. 3 (right frames), where fi(x, v, t) is plotted for sev-
eral instants. We note that the electron-ion energy ex-
change is localized at the surfaces of the slab7, where the
ions are accelerated to velocities much larger than their
initial thermal speed

√
kBTi/mi ' 3 × 10−4 vF . The

energy necessary to accelerate the ions to such velocities
is mainly extracted from the electron kinetic energy, as
shown in Fig. 2, where Eth decreases significantly for the
simulation with mobile ions. We stress that the electron-
ion coupling observed here is due to the mean field alone
via Poisson’s equation.

In summary, the present results provide new insights
into the processes of electron thermalization in confined
metallic structures, with particular emphasis on the role
of surfaces. Thanks to accurate Vlasov simulations, we
have shown that electron thermalization can be achieved,
to a large extent, even in the absence of binary electron-
electron collisions. This mean-field quasi-thermalization
is due to nonequilibrium electrons bouncing back and
forth against the film surfaces at a speed close to the
Fermi velocity of the metal. Further, nonequilibrium
electrons begin to interact with the ion lattice well be-
fore internal electron thermalization is completed, so that
a significant fraction of the electron thermal energy is
transferred very early to the lattice.

We thank P. Bertrand, J.-Y. Bigot and F. Huot for
helpful discussions.
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