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Abstract: In recent data-driven approaches to materials discov-
ery, scenarios where target quantities are expensive to compute
or measure are often overlooked. In such cases, it becomes
imperative to construct a training set that includes the most
diverse, representative, and informative samples. Here, a novel
regression tree-based active learning algorithm is employed for
such a purpose. It is applied to predict band gap and adsorption
properties of metal-organic frameworks (MOFs), a novel class
of materials that results from the virtually infinite combinations
of their building units. Simpler and low dimensional descriptors,
such as those based on stoichiometric and geometric properties,
are used to compute the feature space for this model owing to
their ability to better represent MOFs in the low data regime.
The partitions given by a regression tree constructed on the la-
beled part of the dataset are used to select new samples to be
added to the training set, thereby limiting its size while max-
imizing the prediction quality. Tests on the QMOF, hMOF,
and dMOF data sets, reveal that our method constructs small
training data sets to learn regression models that predict the
target properties more efficiently than existing active learning
approaches, and with lower variance. Specifically, our active
learning approach is highly beneficial when labels are unevenly
distributed in the descriptor space and when the label distribu-
tion is imbalanced, which is often the case for real world data.
The regions defined by the tree helps revealing patterns in the
data, thereby offering a unique tool to efficiently analyze com-
plex structure-property relationships in materials and accelerate
materials discovery.

Introduction
Metal-organic frameworks (MOFs),1,2 formed through co-
ordination bonds between metal ions and organic ligands,
are promising materials for efficient gas capture and sep-
aration,3,4 due to their ultrahigh porosity, chemical tun-
ability and large surface area.5,6 Recently, they have been
shown to be potential candidate materials also for energy
storage,7–9 water harvesting,10,11 catalysis,12,13 and sens-
ing,14 thus evoking an interest in the electronic properties of
MOFs.9,15–19 Remarkably, a large variety of properties20,21

are expected in MOFs as a consequence of these materials
resulting from the virtually infinite combinations of their
building units. As such, the identification and/or discovery
of novel MOFs with specific properties becomes challenging.

To assist in this endeavor, computational techniques such
as molecular simulations and density-functional theory22–28

were used to screen large MOF datasets. Alternatively, ma-
chine learning (ML) approaches were exploited to further

accelerate MOFs discovery.29–36 Based on a training sam-
ple, a descriptor-based ML model is learned, for e.g. kernel
ridge regression, random forests, or gradient boosting re-
gression trees,29,36–41 to predict properties such as electronic
and gas adsorption properties of unseen samples. Recently,
deep learning methods such as crystal graph convolutional
neural networks (CGCNN42,43) and transformer-based mod-
els35,44,45 were also investigated. Despite being powerful and
well-suited for large and complex data, deep-learning meth-
ods require a substantial amount of labeled data and com-
putational resources to train a complex model. They also re-
quire accurate hyperparameter optimizations and sometimes
pre-training,35,44,46 which is not feasible when few data are
labeled.

In this work, we adopt an opposite strategy to MOFs dis-
covery: we focus on situations where properties are expen-
sive to obtain and therefore large labeled datasets are not
available.47 This calls for a need to optimize the training set.
Active learning (AL) algorithms are a class of ML methods
that aim at constructing the most informative, diverse and
representative training set iteratively. They use the knowl-
edge of the samples labeled in each iteration and select high
quality samples, thus avoiding labeling redundant samples as
it may occur in random sampling. Many AL algorithms cur-
rently used are model-free, i.e. they select new samples based
solely on diversity48 and/or good representation49 of the in-
put space. Their main drawback is that the training sets
are not sufficiently diverse in the target space. Intuitively,
adding knowledge of the targets assists in understanding its
conditional distribution with the features, which ensures se-
lection of better samples. Model-based AL schemes,48,50,51

such as Query By Committee52 and active learning using
Gaussian processes,53–57 accomplish this by defining an ac-
quisition criterion based on the knowledge of the samples
already labeled. Gaussian processes for instance is a popu-
lar choice, due to its interpretabilty and ability to estimate
uncertainty in the predictions. While these methods usually
construct training sets better than model-free approaches,
they exhibit high computational complexity, require pre-
cise hyperparameter optimisation and are not transferable
to other ML models. Therefore, it becomes imperative to
head towards universal and transferable AL methods that
reduce labeling costs for any given input description, which
is the scope of this work.

We rely on a novel tree-based AL algorithm developed
by the present authors.58 This approach, named Regression
Tree-based Active Learning (RT-AL58), uses the knowledge
of the input and the output smartly to iteratively add the
most diverse, representative, and informative samples to the
training set. It has proven to be more efficient than other
existing AL approaches, and is transferable to different ML
models. We show that it efficiently predicts very different
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Figure 1. (a) Schematic representation of the workflow of active learning using RT-AL. New samples are added iteratively to the training
set using the leaves of the regression tree to form the most informative, diverse and representative set. A random forest is finally trained
on the optimal training set. The set of different descriptors studied in this work for the (b) QMOF and (c) hMOF/dMOF database.

properties of MOFs, such as the band gap and gas adsorp-
tion, for any given set of descriptors, and with very low
variance. We also show that RT-AL succeeds to construct
more informative training sets for MOFs compared to other
model-free and model-based AL approaches. Through the
regions defined by the regression tree, RT-AL is able to
identify meaningful patterns in the data. Finally, we show
that RT-AL is highly beneficial for label distributions that
are peaked or multimodal, which is usually the case for real
world data. A schematic representation of the workflow is
shown in Figure 1(a).

Besides the integrated approaches provided by deep learn-
ing, the description of MOFs is at the core of this AL tech-
nology. There is a continued need to explore efficient en-
coding strategies so as to maximize the predictive power
of descriptor-based ML approaches. Although many local
and global descriptors41 were used to represent MOFs previ-
ously, their performance in the low data regime has not been
tested. We investigate various structural, geometric and sto-
ichiometric descriptors of different dimensions for band gap
and gas adsorption properties. A summary of the descriptors
used in this work is presented in Figure 1(b) and (c). We
find that descriptors apt for large training set sizes are not
suitable when less labeled data is available. When data is
scarce, simpler and low dimensional stoichiometric descrip-
tors lead to better models for band gap prediction, and a
combination of geometric and stoichiometric features train
better models for gas adsorption.

Method

Tree-based active learning
Our recently proposed method based on regression trees
(RT-AL)58 is a novel model-based AL algorithm for re-

gression. Regression trees partition the input feature space
into a set of K hyper-rectangles, called regions and denoted
Rk =

∏p
ℓ=1[ak,ℓ, bk,ℓ] for 1 ≤ k ≤ K, and assign a common

weight γk ∈ R to each region k:

f(x; Θ) =

K∑
k=1

γk1{x∈Rk}.

The set of parameters Θ = ((Rk, γk)1≤k≤K) correspond to
the set of regions and the associated weights. They are es-
timated using a labeled set such that the weights minimize
the quadratic loss for fixed regions, leading to the empir-
ical mean of observations in each region. The regions are
constructed recursively by finding the feature and splitting
point to divide a current region into two in such a way that
the variance in the prediction is minimized. This can be rep-
resented as a tree, in which each node determines the feature
to split and its corresponding value, and the final prediction
is given by the leaves of the tree.

In our approach, the first few samples, ninit, are randomly
chosen from a full data set (where all samples are unlabeled)
and are labeled, forming the set Iinit. This is followed by
training a decision tree for regression (referred to as regres-
sion tree) with K leaves using the labeled set and is used to
predict the labels, (Ŷ Iinit

i )i/∈Iinit , for every unlabeled sample.
In the active part of the algorithm, the leaves of the tree are
used to add more samples to the training set. Conditionally
to the first labeled set, the number of samples to be labeled
from each leaf k, n∗

k, are distributed into the different leaves
as:

n∗
k = nact

√
πkσ̂2

k∑K
ℓ=1

√
πℓσ̂2

ℓ

; (1)

where nact are the total number of samples to be selected
by AL, σ̂2

k denotes the variance computed on the true labels
of the labeled samples in leaf k, and πk the probability that
an unlabeled sample xi belongs to leaf k, defined formally
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Figure 2. (a) Flowchart representing Regression Tree-based Active Learning (RT-AL), with the acquisition criterion described in detail.
(b) Comparison between the training sets (shown as black circles) constructed by Random Sampling (RS) (left) and RT-AL (right) from
a generated dataset with 2 features and 500 samples. The colors represent the true values of labels. The black lines correspond to the
different regions the regression tree partitions the feature-label space into. (c) Label distributions of the training set constructed by
RT-AL and RS, compared to the label distribution of the available training pool.

as follows: for 1 ≤ k ≤ K,

σ̂2
k =

∑
i∈Iinit:xi∈Rk

(Ŷ Iinit
i − Yi)

2

|i ∈ Iinit : xi ∈ Rk| − 1
, (2)

πk =
|i /∈ Iinit : xi ∈ Rk|

N
. (3)

In other words, the number of samples to be labeled from
each leaf depends on (i) the variance computed on the true
labels, and (ii) the proportion of unlabeled samples in the
leaf. Since the leaves of a decision tree correspond to homo-
geneous regions in the feature-target space, this acquisition
strategy can be seen as a trade-off to select samples diverse
in the target but representative of the feature space, thus
taking into account maximum possible information. This
is an essential point that is missed in most active learning
algorithms.

After computing n∗
k, the samples are selected from each

leaf using random sampling. Once the new samples are la-
beled, the tree can be retrained. This routine can then be re-
peated by adding few samples at each step, until the desired
size of the training set or a targeted accuracy is reached.
The algorithm is described as a flowchart in Figure 2 (a).
Figure 2 (b) illustrates the advantage of RT-AL over ran-
dom sampling on a generated data set of 2 input features
and 500 samples. The colors depict values of the target
quantity (labels). The data set is randomly divided into a
training pool and a held out test set in the ratio 8:2: 80%
being the pool from which the training set is to be chosen,
and the remaining 20% being the test set, used to determine
the model performance. The training set, shown as black
circles, selected from the training pool by random sampling
are not diverse or representative of the feature or the tar-
get space, which would lead to inefficient predictions when
large numbers of labels cannot be afforded (Figure 2 (b)
left). Our method, on the other hand, takes into account
the response through the regression tree, resulting in a di-

verse set of samples. This can be seen from the samples that
are now spread in the different regions, i.e. leaves, shown as
partitions in Figure 2 (b) (right). This is quantified in Fig-
ure 2 (c) that shows the label distribution of the full training
set and the ones selected by RS (left) and RT-AL (right).
While the samples selected by RS disregard regions of the
label space where samples are fewer, RT-AL samples evenly
from all regions, ensuring a good representation of the target
space. This leads to a better performance of RT-AL over RS
on the held-out test set (see Figure S1 for more details).

Data sets and technical details
Three publicly available MOF datasets are used in this
study, namely the Quantum MOF (QMOF43), the hypo-
thetical MOF (hMOF59) and the diverse MOF (dMOF60)
datasets. The version of the QMOF database used for this
work43 consists of 14,482 experimentally synthesized MOFs,
with optimised structures and electronic band gaps com-
puted at the PBE-D3(BJ) level using density functional the-
ory (DFT). The hMOF database consists of 137,652 hypo-
thetical MOFs, with data of CO2 and CH4 adsorption at
0.05, 0.5, and 2.5 bar pressure obtained using grand canoni-
cal Monte Carlo (GCMC) simulations. The dMOF database
consists of ≈ 20,000 hypothetical MOFs, with H2 adsorption
data at 100 bar and 77 K, also obtained using GCMC sim-
ulations. These databases are selected as they contain very
different properties of MOFs, such as gas adsorption, which
mostly depends on the structure and the pore geometry, and
band gap for which structure and chemistry are more rele-
vant.

Before selecting the MOFs to be added to the training set
for each of these 3 databases, the full data set is split in
the ratio 8:2 randomly, as described before. To construct
the training set using RT-AL, the first 20 MOFs are chosen
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randomly in the training set, and the initial regression tree
is trained using Scikit-learn.61 The depth of the tree is con-
trolled through the hyperparameter that sets the minimum
samples in a leaf. It is set to 5, as suggested in our pre-
vious work,58 keeping it high enough to avoid over-fitting
and to get meaningful variance among the labeled samples,
but sufficiently low for the tree to give accurate predictions
(hyperparameter optimisation is shown in Figure S2). This
is followed by iterative additions of MOFs to the training set
using RT-AL until approximately 10% of the total available
training pool is labeled. At each iteration, a random forest
(RF) of 50 regression trees (results with different number of
trees are shown in Figure S3) is trained using the training
set at the given iteration and its performance is measured by
making predictions on the held out test set and computing
the Mean Absolute Error (MAE) given by:

MAE =
1

T

T∑
i=1

|(f(xi)− yi)|, (4)

where T and yi are the size and true labels of the test set,
and f(xi) is the prediction for a test sample xi using the
RF. Note that RF is used as the final predictor, but other
ensemble tree-based methods like Gradient Boosting Regres-
sion Tree (GBRT) and XGBoost,62 as well as other ML ap-
proaches such as deep learning models can also be trained.58

Tree-based models are known to be highly accurate when
training data is scarce, which is why they are used here. RFs
were also trained on samples selected using random sampling
and other AL approaches described hereafter, to determine
the degree of improvement of our algorithm over them.

Descriptors
In order to find the best representation for band gaps and
gas adsorption in the low data regime, we set up various
descriptors, that are listed below. All features (except for
the geometric descriptors) are computed in this work, and
the technical details and parameters used to compute these
are reported in S3.

Stoichiometric-120 (ST-120): The stoichiometric de-
scriptors (ST-120),63 which consists of 103 features spec-
ifying elemental fractions, and 17 statistical attributes of
elemental properties were computed using Pymatgen and
Matminer.64 The attributes consist of averages and ranges
of atomic properties: mass, number, radii, electronegativ-
ity, group and period numbers, along with fractional and
average s, p, d, f electron information.

Smooth Overlap of Atomic Positions (SOAP):
SOAP65 encodes regions of atomic geometries by using a
local expansion of a Gaussian-smeared atomic density with
orthonormal functions based on spherical harmonics and ra-
dial basis functions. Although commonly used as a local rep-
resentation, it can be used as a global descriptor by comput-
ing a similarity kernel66 that estimates similarity between
pairs of local atomic environments among different struc-
tures. For the QMOF database, SOAP kernel is used be-
cause local SOAP features scale quickly with the number of
types of chemical species, which is large for QMOF dataset.
Since our focus is on the low data regime, high dimensional
features are not ideal. For the hMOF and dMOF databases,
local SOAP features are computed as the number of features
are only moderately high (2772 and 4284, respectively).

Atomic Property Weighted Radial Distribution

Figure 3. QMOF database: Mean absolute error (MAE) for
band gap prediction on the test set as a function of training set
size using a random forest. RFs are trained using descriptors ST-
120, RACs and AP-RDFs, while a KRR model is trained using
kernel SOAP. The sub-samples are selected using random sam-
pling and each point is an average over 40 runs with different
seeds for the train-test split.

Functions (AP-RDFs): AP-RDFs67 describe MOFs by
the weighted probability distribution of finding an atom pair
in a spherical volume of radius R inside the unit cell. The
atomic properties used to weigh the RDFs are atomic mass,
number, group number and period number, which form a
set of 164 features (see Figure S4 for more details).

Revised Auto-Correlations (RACs): RACs37 are
products and differences of heuristic atomic properties on
graphs. They have been shown to be valuable descriptors for
transition metal complexes37 as well as for MOFs.68 Metal-
centered, linker and functional-group descriptors are gen-
erated using molSimplify,69 weighted by atomic properties
that include atom identity, connectivity, Pauling electroneg-
ativity, covalent radii, nuclear charge and polarisability. Av-
eraging over all atoms in each MOF produces 156 features.

Geometric descriptors: A set geometric properties of
the MOFs is curated for the hMOF and dMOF database,
with features like Pore Limiting Diameter (PLD), Largest
Cavity Diameter (LCD), void fraction, gravimetric and vol-
umetric surface area etc (refer to Table S1 for the full list).
These features (referred to as Geom-5 for the hMOF, and
Geom-15 for the dMOF dataset) are cheap to compute and
are known to directly impact the adsorption properties of
transition metal complexes.29,39,70

Geometric + Stoichiometric (GS): GS is a combina-
tion of the non-zero features from ST-120 and the geometric
features described above. For the hMOF database, three sets
of GS descriptors are computed: Geom-5 combined with (i)
element fractions of carbon, nitrogen and oxygen (these el-
ements are present in most MOFs), named GS1; (ii) all the
non-zero element fractions, named GS2, and with (iii) all
non-zero features of ST-120 (both the element fractions and
the statistical attributes), named GS3.

Alternative active learning ap-
proaches
As introduced in the first section, active learning methods
can be grouped into model-free and model-based approaches.
Model-free methods select new samples based on feature-
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Figure 4. hMOF database: MAE for CO2 adsorption prediction at (a) 0.05, (b) 0.5 and (c) 2.5 bar on the test set as a function of
training set size using a random forest. RFs are trained using descriptors ST-120, SOAP, Geom-5, GS1, GS2 and GS3. The sub-samples
are selected using random sampling and each point is an average over 40 runs with different seeds for the train-test split. The horizontal
dotted line compares the labeling cost for different descriptors for a fixed accuracy. Percentage improvement of GS3 with respect to
Geom-5 are given and indicated by a red double-ended arrow for each gas pressure.

space diversity48 and representativity,49 while model-based
methods52,53 use an initial model trained on a small set
of labeled samples to increase the size of the training set.
We recall that RT-AL was shown to be the best performer
for all datasets studied in our previous work.58 To validate
the transferability of RT-AL to MOF databases, the perfor-
mance of RT-AL is compared here with AL methods that
were found to be the most competitive,58 and those that are
commonly used in materials informatics:

Greedy Sampling (GSx48): it is a model-free AL
method that selects the sample closest to the centroid of
the feature space as the first one in the training set, fol-
lowed by the one farthest from it, based on L2 distance of
the descriptor vector. The next samples to be labeled are
those farthest from all samples that have been previously
selected, to ensure diversity in the feature space.

Iterative Representativeness Diversity Maximiza-
tion (iRDM49): it is a model-free AL method that uses
k-means clustering to partition the feature space into a num-
ber of clusters equal to the number of samples to be labeled.
It subsequently selects the samples closest to the centroids
of these clusters as the starting points, and over the course
of the algorithm, combines it with the basic idea of feature
space diversity from GSx48 to update the centroids to sam-
ples which are representative and diverse.

Variance-based Query By Committee (QBC52): it
is a model-based AL method that selects the samples with
the highest variance among the predictions from a commit-
tee of models (models used here are decision trees). The
committee is constructed by bootstrapping on an initial set
of randomly labeled samples.

Gaussian Process Regression (GP53): it is a model-
based AL method that uses uncertainty (given by standard
deviation) or relative uncertainty (ratio of standard devi-
ation and the prediction) in the predictions given by GPs
trained on the labeled part of the dataset, and subsequently
adds the most uncertain sample to the training set.

The hyperparameters and more details on these methods
can be found in SI.

Results

Descriptors for low data regime
QMOF database

For the QMOF database, we compute the ST-120, RACs,
AP-RDFs and kernel SOAP descriptors, and RF models were
trained using the first three. For SOAP kernel, a Kernel
Ridge Regression (KRR) model performs better than RF
(see Figure S5), as the descriptor itself is based on a similar-
ity kernel. Samples were selected using random sampling.
Note that only 11,799 MOFs are featurizable using RACs
features. Yet, as the distribution of the target quantity re-
mains the same for both the full QMOF (14,482) and this
subset (see Figure S6), it is reasonable to compare the per-
formance of the model trained using RACs to the others
used in this work.

Figure 3 shows the MAE for band gap predictions on the
test set as a function of training set size for each descriptor,
averaged over 40 runs. For training set sizes up to 1,000,
ST-120 is the best descriptor. RACs, that also encode lo-
cal atomic properties of MOFs, perform only slightly worse
than ST-120. As already pointed out,43 the performance of
the model based on kernel SOAP is very poor in the low
data regime, but it learns much faster than those based on
ST-120 and RACs, making this descriptor informative when
large training data is available. This is due to the fact that
kernel SOAP is a complex and global descriptor, thus mostly
advantageous for large sets of labeled MOFs. ST-120, on
the other hand, is a simpler descriptor (fewer number of fea-
tures) and performs significantly better than kernel SOAP
for small training set sizes. Interestingly, AP-RDFs perform
the worst among this set of representations, for both low
data and the full training set, while the other descriptors
reach similar prediction accuracy at 1,000 samples.

hMOF database

For the hMOF database, we compute ST-120, Geom-5, local
SOAP, and the three sets of GS descriptors. Note that RACs
were not computed for this data set as they were found to
give models with low accuracy35 for the prediction of gas ad-
sorption. RF models were trained using RS to predict CO2
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Figure 5. (a) MAE for predicting band gaps on the test set as a function of training set size for ST-120 descriptor, using random
sampling with KRR (RS-KRR) and RF (RS-RF), and the active learning methods GSx, iRDM, QBC, GP and RT-AL with RF. Each
point is an average over 40 runs with different seeds for the train-test split. The horizontal dotted line is a guide to the eye to compare
the reduction in labeling cost for RT-AL over other sampling methods. (b) Dimensionality reduction of the training pool of the QMOF
data set performed using UMAP, with a distance matrix obtained from the ST-120 feature-set of MOFs in the data set with color code for
band gap. (c) Same as (b) with different colors representing the regions the regression tree partitions the descriptor space into (leaves).
60 samples selected by RT-AL are shown as black circles in (b) and (c).

and CH4 adsorption at 0.05, 0.5, and 2.5 bar for training set
sizes starting from as low as 20, until approximately 10%
of the available training pool (10,000 here). The training
curves for CO2 adsorption are shown in Figure 4 (for CH4

these are provided in S6.1). Contrary to the QMOF case,
RFs trained using ST-120 lead to high values of MAE, con-
sistent with previous studies.35 Purely geometric descriptors
(Geom-5) perform much better, which can be understood
from the fact that they represent a key factor driving the
adsorption process. For very low data, Geom-5 performs
the best, owing to its low dimensions. Adding the non-zero
features from ST-120 (GS descriptors) to it enhances the
prediction quality. As more training data becomes available,
the GS feature sets lead to better models. Local SOAP fea-
tures give high values of MAE for very small training set
sizes, as expected, due to its substantially larger dimension.
For larger training data, it outperforms Geom-5, but fails
to outdo GS2/GS3. This is likely due to the fact that the
fine local structural details here computed from local SOAP
features are not sufficient for predicting adsorption proper-
ties in the low data regime. Finally, the best descriptor for
predicting CO2 adsorption at both low and high pressures
is GS3.

It is interesting to analyze in detail the effect of the de-
scriptors for adsorption at different gas pressures. Specif-
ically, we compare the percentage of improvement in the
performance when using GS3 instead of Geom-5, at 10,000
training set size (see Figure 4). This improvement progres-
sively increases for increasing gas pressure, and ranges from
≈20% at 0.05 bar (Figure 4a) to ≈40% at 2.5 bar (Fig-
ure 4c). Because GS2 and GS3 give essentially the same
performance, we can say that the element fractions (which
are also present in GS1, but only partially) are the dominant
factor in the improvement over Geom-5. These elemental at-
tributes therefore provide a larger enhancement in the pre-
diction performance at high gas pressure where geometry is
assumed to be more relevant for adsorption. This is consis-
tent with (i) Geom-5 features yielding a progressively bet-
ter description than SOAP features for increasing pressure,
and (ii) the trend observed on comparing SOAP and GS3:
the detailed structural description provided by the former
is more relevant for adsorption at low gas pressure. These
results also indicate that the importance of stoichiometric

aspects can not be ruled out even at high pressure. A sim-
ilar analysis of the descriptors for predicting H2 adsorption
at 100 bar and 77 K in the dMOF database is shown in
Figure S16.

Active Learning
QMOF: Band gap prediction

The performance of our active learning method, RT-AL, is
assessed using the ST-120 descriptor. The MAE for band
gap predictions on the held out test set as a function of
training set size is reported in Figure 5 (a) for RT-AL and
the active learning approaches GSx, iRDM, QBC, and GP,
introduced previously. RT-AL is the best performer for all
training set sizes. Importantly, the model-based methods,
QBC and GPs, give a higher MAE than RT-AL. The dis-
continuity in the learning curve of GP at around 120 occurs
due to the limitation of Gaussian processes to train when the
feature size (120 in this case) is greater than the training set
size, requiring different parameter settings and optimisation.
GSx and iRDM perform rather poorly for low training set
sizes, confirming that feature space information alone is not
sufficient for informative sampling from the QMOF dataset.
For comparison, the performance of random sampling us-
ing Kernel Ridge Regression (RS-KRR) and Random Forest
(RS-RF) is also reported in Figure 5 (a) and shows a superior
performance of the latter.

This result shows that through the use of informative and
training sets, RT-AL samples better than other AL methods
and random sampling. For instance, to achieve the perfor-
mance level shown by the horizontal dotted line, we observe
that the most commonly used methods, GSx and Gaussian
processes require a much higher number of samples (700 and
400, respectively) to be labeled and included in the training
set, while our model requires only 200. This significant de-
crease is extremely important in situations where labeling
data is very expensive and saving on 200-500 labels (half to
two third of the budget) could mean reducing substantially
resources and time. Importantly, our method exhibits low
variance which is crucial in active learning settings. The
standard deviation of RT-AL for 100 training samples is
0.031 eV, while that for Gaussian process and QBC is 0.052
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Figure 6. Histograms depicting distributions of band gap of two subsets of the QMOF data set, (a) SZn,Cu,Ag,Cd and (b) SCu, showing
a more balanced nature for SZn,Cu,Ag,Cd and imbalanced for SCu. For these subsets, (c) and (d) show MAE for predicting band gaps on
the respective test set as a function of training set size for ST-120 descriptor using random sampling and RT-AL, with Random Forest
as the ML model. Each point is an average over 100 runs with different seeds for the train-test split. The horizontal dotted line is to
compare the reduction in labeling cost by using RT-AL instead of RS for a fixed accuracy.

and 0.041 eV, respectively.
To further understand the reason behind the good per-

formance of RT-AL, we compute an unsupervised structural
dimensionality reduction performed using the Uniform Man-
ifold Approximation and Projection (UMAP),71 with a dis-
tance matrix obtained from the ST-120 feature-set of the
QMOF training pool (80% of the data set). The result is re-
ported in Figure 5(b) and (c) and the colors on the UMAP
represent the values of band gaps and the leaves, respec-
tively. Although some clusters in the UMAP space are car-
ried forward to the target space, some others have a hint of
all colors, as shown in Figure 5 (b). This implies that the
data is not well clustered in the target space, and neither
evenly distributed. In these figures, we also show 60 sam-
ples selected using RT-AL as black circles. RT-AL uses both
the input and the target information through the structure
of the regression tree and thus it selects MOFs from every
region of the target space, and is eventually able to give bet-
ter predictions for all band gap values. Importantly, RT-AL
ensures to sample from all regions of the target space also
for very small training sets. In addition, Figure 5 (c) shows
that the samples selected by RT-AL are well distributed in
the feature space, as well as among the leaves. The tree
succeeds to find meaningful patterns in the data as shown
by how the leaves are distributed in the UMAP. We further
note that the leaves identify regions by grouping MOFs that
are similar according to both specific chemical features and
the target space, as illustrated in the tree structure reported
in Figure S9.

RT-AL for imbalanced datasets

As seen in the previous section, taking the information of the
labels into account is necessary, especially in the low data

regime. To further stress on its significance, subsets of the
QMOF database, which have different distributions of band
gap, are constructed. Three subsets are created, based on
the metal present in each structure: a subset of MOFs with
at least one of Zn, Cu, Ag or Cd present, another of MOFs
that contain Zn, and a third one that contains Cu. These
subsets have 8,491, 2,410 and 2,587 MOFs respectively, and
are hereafter referred to as SZn,Cu,Ag,Cd, SZn and SCu.

RF models are trained using ST-120 for each of these sub-
sets. Figure 6(a) and (b) show histograms that correspond
to distributions of band gaps for SZn,Cu,Ag,Cd and SCu (SZn

shown in Figure S10). Figure 6(c) shows the evolution of
the MAE for band gap predictions using RS and RT-AL.
RT-AL improves random sampling in both cases, but the
degree of improvement differs. For the set SZn,Cu,Ag,Cd, the
improvement of RT-AL is similar to that achieved on the
full data set. This is because the label distribution of this
subset and the full data set are very similar (see Figures S6
and S10). Because of the multimodal nature of the distri-
bution, the probability that RS selects samples from regions
with few data is low. RT-AL, on the other hand, does sam-
ple such regions through the structure of the regression tree.
This improvement is further enhanced for the SCu subset.
Here, the performance achieved by RS for 1,000 samples in
the training set is achieved with only 700 samples by RT-
AL. This is attributed to the sharp and therefore imbalanced
distribution of band gaps in this subset. RS picks up large
numbers of samples from this peak and fewer elsewhere. RT-
AL, on the contrary, samples from different regions of the
target space: as the band gap is more evenly distributed for
SZn,Cu,Ag,Cd, the improvement of RT-AL over RS is lower
here. This inference is of utmost importance as most real
world data sets are imbalanced.
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Figure 7. (a) hMOF: MAE for predicting CO2 adsorption on the test set as a function of training set size for GS3 descriptor, using
sampling methods RS, GSx, iRDM, QBC, GP and RT-AL, with random forest model. Each point is an average over 40 runs with
different seeds for the train-test split. (b) Dimensionality reduction performed using UMAP, with a distance matrix obtained from the
GS3 feature-set. Colors represent CO2 adsorption at 2.5 bar, and (c) the different regions defined by the leaves of the regression tree. (d)
dMOF: MAE for predicting H2 adsorption on the test set as a function of training set size for Geom-15 descriptor, using RS, GSx, iRDM,
QBC, GP and RT-AL with random forest model. Each point is an average over 40 runs with different seeds for the train-test split. (e)
Dimensionality reduction performed using UMAP, with a distance matrix obtained from the Geom-15 feature-set. Colors represent H2

adsorption at 100 bar, 77 K, and (f) the different regions defined by the leaves of the regression tree. 60 samples selected by RT-AL are
shown as black circles in (b), (c), (e) and (f).

hMOF and dMOF: Adsorption properties prediction

To further validate the method, its performance on the
hMOF and dMOF databases is compared with other AL
methods and random sampling. For the former, the target
quantities are CH4 and CO2 adsorption while the latter re-
ports H2 adsorption. Figure 7(a) shows the evolution of the
MAE for CO2 adsorption at 2.5 bar on the held out test set
of the hMOF database as a function of training set size, using
RT-AL, GSx, iRDM, QBC, GP and RS, with the GS3 de-
scriptor (see S6 for training curves all the descriptors, and for
CO2 and CH4 adsorption at different pressures). Figure 7(d)
shows training curves of the different sampling methods us-
ing the Geom-15 descriptor for predicting H2 adsorption in
the dMOF database.

First, we compare RT-AL with RS. While for hMOF, RT-
AL shows no improvement over RS, for dMOF, it substan-
tially outperforms it: the accuracy achieved by RS at 1,000
samples is achieved by RT-AL in only 600 samples. This
difference can be understood from the UMAP of the two
databases reported in Figure 7(b) and Figure 7(e) for hMOF
and dMOF, computed using the distance matrix of the GS3
and Geom-15 descriptors, respectively. For hMOF, the la-
bels are evenly spread out in the feature space, making it
easier for RS to pick samples from all regions, and finally re-
sulting in a similar performance using AL. In contrast, the
dMOF database is well structured in the descriptor space
(see Figure 7(d)), and the labels are unevenly distributed
throughout. RS is therefore unable to sample efficiently in
this case as small regions with uniform values of the target

may be missed, for example the tail of the UMAP which
corresponds to high values of H2 adsorption.

Regarding the performance of the other AL methods, GSx
(and QBC) performs poorly for both datasets, similar to
the QMOF case. iRDM, on the other hand, performs bet-
ter than RT-AL for very low data. This is possibly due to
the target distribution being more uniformly distributed in
hMOF and dMOF as compared to QMOF, as illustrated in
Figures S12 and S15, respectively, resulting in a higher ben-
efit of using representativity in feature space for low data.
Although RT-AL is designed to obtain a uniform target dis-
tribution in the training set, it also ensures diversity and
representativity through the structure of the tree, which is
why even though it starts from a random set of samples, it
learns faster (see Figure S18). Because the target distribu-
tion is not known a priori in active learning settings, there
is no guarantee that iRDM will perform well, while RT-AL
will always provide a meaningful sampling. Moreover, the
different regions defined by the leaves of the regression tree
in Figures 7 (c) and (f) show that RT-AL identifies interest-
ing patterns in the feature space that are related not only
to the adsorption properties, but also to specific geometric
features (see Figures S14 and S17 for more details).

Finally, iRDM is highly computationally expensive; for
instance it takes 4.63 seconds to label 100 MOFs from the
QMOF dataset using RT-AL, while for iRDM it takes 235.10
seconds (average over 5 runs in both cases). Table S3 reports
the average computational time for 5 runs for the different
AL methods for the QMOF dataset. To conclude, RT-AL is
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Figure 8. Relative improvement in the performance of RT-AL over other sampling methods for predicting (a) band gap (QMOF), (b)
CO2 adsorption at 2.5 bar (hMOF) and (c) H2 adsorption (dMOF) on the respective test sets for training set sizes 100 and 200. The
descriptors used are (a) ST-120, (b) GS3 and (c) Geom-15.

more general, computationally less expensive and constructs
more informative training sets than other active learning
methods.

Discussion and Conclusion
With the goal of improving the predicting performance when
less labeled data is available, the crucial choice of descriptors
well suited when training data is scarce is first addressed. It
is found that in the low data regime, simpler and low di-
mensional descriptors are more efficient, as opposed to re-
fined and higher dimensional ones, that are suitable for large
amounts of training data. When only up to 10% labeled data
is available, the stoichiometric descriptors perform the best
for predicting band gaps (QMOF database). For gas adsorp-
tion (hMOF database), this is the case when a combination
of purely geometric and stoichiometric descriptors are used.

Our novel regression tree-based active learning algorithm,
RT-AL, is then applied to QMOF, hMOF, and dMOF
databases, using these descriptors. It is shown that infor-
mative sampling is achieved using RT-AL especially in situ-
ations in which (i) the label distribution is imbalanced (mul-
timodal and/or peaked), and (ii) the labels are unevenly dis-
tributed in the descriptor space. By selecting new samples
from each leaf of the regression tree, built on the labeled part
of the dataset, the new samples contain information of both
the features and the labels. RT-AL significantly outperforms
other sampling methods for very different properties such as
band gaps and gas adsorption, on benchmark data sets of dif-
ferent sizes. It selects the most informative samples, forming
optimal training sets of smaller sizes, without compromising
on the prediction quality and helps identifying meaningful
patterns in the data.

In Figure 8, we show the relative improvement of RT-
AL over other sampling methods at 100 and 200 training
set sizes. Our method gives a large relative improvement
in most cases. There are a few cases in which the relative
improvement of RT-AL is negative, but the absolute value
is very low. To further quantify this, we report the MAE
values (averaged over 40 runs) for each dataset in Table S2,
and compare the statistical significance using t-test at level
0.05. Interestingly, even though iRDM gives a lower MAE
for dMOF at 100 labeled samples, the MAE from RT-AL is
statistically equivalent to it.

We also highlight the low variance of RT-AL, which is vi-
tal when doing active learning. Taking the QMOF database

as a test case, the reduction of labeling cost by using RT-AL
is shown to be higher when the label distribution is peaked
and less balanced. This is crucial as most real world data
is imbalanced. As one aims to be able to delve into the
unexplored regions as much as possible to discover new and
exceptional chemical and electronic properties of MOFs, uti-
lizing superior sampling methods becomes essential. The ef-
fect of the distribution of the labels in the descriptor space
is also investigated for the hMOF and dMOF datasets, with
the conclusion that active learning performs better for the
dMOF database, where labels are unevenly distributed in
the descriptor space.

Importantly, as opposed to deep learning approaches that
require substantial hyperparameter optimizations and fine
tuning, simpler and more interpretable models trained us-
ing RT-AL can achieve similar prediction accuracy, thus
highlighting the importance of smart sampling. Specifically,
the performance of our simple model (RF) trained on a
smart dataset constructed by RT-AL is very close to that
of a CGCNN reported by Rosen et al.43 in the low data
regime. For instance, at 200 samples, our approach yields
the same MAE of 0.57 eV as the CGCNN trained in ref.43 us-
ing the same number of samples. Further, tree-based meth-
ods have been shown to train models with accuracy close to
that of many deep learning models in the past, like graph
neural networks,72 with far less computational complexity
and more explainability. More generally, this promising ap-
proach opens the door to a deeper understanding of complex
structure-property relationships in materials.

Associated Content

Data availability statement
The python code to use regression tree-based active
learning algorithm for MOF datasets can be found on
GitHub: https://github.com/AshnaJose/Regression-Tree-
based-Active-Learning-for-MOFs. The repository includes
a comprehensive example on using RT-AL with the QMOF
dataset, although it can be used for any dataset, with any
descriptor. The different descriptors, mean absolute errors
(MAE) for random sampling, RT-AL and other active learn-
ing methods used for comparison in this work, along with
the MOFs selected in the training set by each method are
available on Zenodo (DOI:10.5281/zenodo.10511345).
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Supporting Information
The Supporting Information is available free of charge at:
Details and hyperparameters of descriptors, and other active
learning approaches. Distributions of the labels for the three
databases. Training curves of RT-AL compared to that of
RS for different descriptors for each dataset. Descriptor and
active learning analysis for CH4 adsorption in the hMOF
dataset.
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