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ABSTRACT

Scattering transforms are a new type of summary statistics recently developed for the study of highly non-Gaussian processes, which
have been shown to be very promising for astrophysical studies. In particular, they allow one to build generative models of complex
non-linear fields from a limited amount of data and have been used as the basis of new statistical component separation algorithms.
In the context of upcoming cosmological surveys, such as LiteBIRD for the cosmic microwave background polarisation or the Vera
C. Rubin Observatory and the Euclid space telescope for study of the large-scale structures of the Universe, extending these tools
to spherical data is necessary. In this work, we developed scattering transforms on the sphere and focused on the construction of
maximum-entropy generative models of several astrophysical fields. We constructed, from a single target field, generative models of
homogeneous astrophysical and cosmological fields, whose samples were quantitatively compared to the target fields using common
statistics (power spectrum, pixel probability density function, and Minkowski functionals). Our sampled fields agree well with the target
fields, both statistically and visually. We conclude, therefore, that these generative models open up a wide range of new applications
for future astrophysical and cosmological studies, particularly those for which very little simulated data is available.

Key words. methods: data analysis – methods: statistical – large-scale structure of Universe

1. Introduction

Scattering transforms are a recently developed class of summary
statistics for the study of non-Gaussian processes (Mallat 2012;
Bruna & Mallat 2013). These statistics, which are built from
successive wavelet convolutions and pointwise non-linearities
such as a modulus, are inspired by neural networks but do
not require any training steps. Introduced recently in astro-
physics (Allys et al. 2019, 2020), scattering transforms have
since demonstrated their ability to characterise highly non-
Gaussian processes, for instance for parameter estimation and
classification tasks in fields as varied as the interstellar medium
(Regaldo-Saint Blancard et al. 2020; Saydjari et al. 2021; Lei &
Clark 2023), the large-scale structures (LSSs) of the Universe
(Allys et al. 2020; Cheng et al. 2020; Cheng & Ménard 2021;
Valogiannis & Dvorkin 2022a,b), or the epoch of reionisation
(Greig et al. 2022; Hothi et al. 2024).

Another feature of scattering transforms is that they allow
one to build very efficient generative models of physical fields,
in a maximum entropy framework (Bruna & Mallat 2019).
This allows one to sample new approximate realisations of a
given process relying only on its scattering transform statistics,
which can be estimated from a small amount of data, sometime
even a single example image (Allys et al. 2020; Régaldo-Saint
Blancard et al. 2023; Price et al. 2023; Cheng et al. 2024b).
One application of such generative models is for training data
augmentation for machine learning applications. For instance,

⋆ Corresponding author; louise.mousset@phys.ens.fr

it has been shown in Jeffrey et al. (2022), with simulated data,
that such scattering transform models constructed from a sin-
gle polarised microwave dust foreground patch can be sufficient
to separate primordial B-modes in the cosmic microwave back-
ground (CMB) polarisation from this dust emission, even in an
artificially challenging mono-frequency approach. Moreover, the
framework on which these generative models have been con-
structed has led to the development of new statistical component
separation algorithms, which have for instance been success-
fully applied to astrophysical data (Regaldo-Saint Blancard et al.
2021; Delouis et al. 2022; Auclair et al. 2024) and seismic signals
(Siahkoohi et al. 2023a,b).

While these promising scattering transform generative mod-
els have mainly been developed for 2D planar data, the adapta-
tion of these tools to spherical data is necessary for cosmological
analysis, especially for the next generation of full sky surveys,
such as LiteBIRD, the Lite (Light) satellite for the studies
of B-mode polarisation and Inflation from cosmic background
Radiation Detection (LiteBIRD Collaboration 2023), the Euclid
space telescope (Laureijs et al. 2011) or the Vera C. Rubin Obser-
vatory (LSST Science Collaboration 2009). The adaptation of a
first generation of scattering transforms to spherical signals was
already introduced in McEwen et al. (2022) and has been used
as a form of dimensionality reduction for other machine learn-
ing purposes. In this paper, we extend state-of-the-art scattering
transforms (Morel et al. 2023; Cheng et al. 2024b) named the
scattering covariances (SCs) to spherical fields.

The extension of scattering transforms to spherical
data raises certain difficulties, namely, the definition of a
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directional spherical convolution with oriented filters such as
wavelets (McEwen et al. 2015b, 2018), and the transposition of
the planar translations, which appear in certain scattering trans-
form representations. As a first step, we restricted ourselves to
fields with statistically homogeneous fields with properties that
do not depend on the position on the sphere. The generalisation
beyond statistical homogeneity will be presented in a forthcom-
ing paper. This naturally led us to cosmological fields, such as
a weak lensing field from the LSSs of the Universe, and maps
of the thermal Sunyaev-Zeldovitch (tSZ) effect of the CMB.
We also consider a map of the Venus surface. In this paper, for
all these spherical data, scattering transform generative models
were constructed and validated from one single full-sky image.

In Sect. 2, we present the extension of the SC statistics to
spherical fields. Then, in Sect. 3 we present SC-based generative
models and discuss their numerical implementation. Finally, in
Sect. 4, we present the results obtained with these models for the
four non-Gaussian spherical fields studied. Our conclusions are
presented in Sect. 5.

2. Scattering covariance on the sphere

The SCs, or scattering spectra, were previously introduced in
Morel et al. (2023) for 1D data and in Cheng et al. (2024b) for
2D planar maps. In this paper, we extend these statistics to spher-
ical maps. This section introduces sampling schemes, directional
convolutions, and wavelet transforms on the sphere, after which
we define the SC statistics.

2.1. Sampling of spherical maps

A spherical field can be represented by its spherical harmonic
transform, which is the spherical equivalent of the Fourier trans-
form for planar maps. In the following, we worked with the
usual spherical coordinates ω = (θ, φ), with co-latitude θ and
longitude φ. With these coordinates, the spherical harmonic
coefficients Iℓm of a spherical field I(ω) defined over the sphere
S2 correspond to the projection onto the spherical harmonics
Yℓm(ω):

Iℓm =
∫
S2

I(ω)Y∗ℓm(ω)dΩ(ω), (1)

where dΩ(ω) = sin θdθdφ is the solid angle element. The field
can then be represented by its harmonic expansion, given by

I(ω) =
L−1∑
ℓ=0

ℓ∑
m=−ℓ

IℓmYℓm(ω). (2)

The ℓ index is called the multipole and is inversely proportional
to angular scales on the sky, while the order m at a given ℓ goes
from−ℓ to ℓ and captures the anisotropic component of I(ω). The
maximum value of ℓ considered, ℓmax = L − 1, determines the
smallest scale in the transform. For a real field, the coefficients
satisfy the relation

Iℓm = (−1)mI∗ℓ−m. (3)

The numerical computation of the forward and inverse spher-
ical harmonic transform depends on the sampling in pixel space
of the spherical map, for which different choices can be made.
For example, in cosmology, the community often adopts Healpix
sampling (Górski et al. 2005), in which all pixels have the same
area, which can be an advantage in practice. With this sampling,

the map resolution is given by the nside parameter, the number
of pixels being equal to 12 × nside2. However, with this sam-
pling, the spherical harmonic transform (as well as the Wigner
transform defined below) is not accurate and needs to be refined
iteratively. An alternative is instead to use an equiangular sam-
pling, such as that defined in McEwen & Wiaux (2011), for
which these transforms can be computed exactly (to machine
precision). With this sampling, abbreviated by MW, the angu-
lar dimensions of all pixels are the same, and maps are stored
as 2D arrays of shape (Nθ,Nφ) = (L, 2L − 1). In this paper, the
SC statistics computations support various sampling schemes,
including Healpix, MW, and others, while internal calculations
typically adopt sampling schemes, such as MW, that afford exact
spherical transforms for improved accuracy.

Another operation required, which is also sampling depen-
dent, is the average on the sphere, defined as:

⟨I(ω)⟩ =
1

4π

∫
S2

I(ω)dΩ(ω). (4)

In pixel space, this computation corresponds to

⟨I(ω)⟩ =
1

4π

∑
p

I(ωp)δΩp, (5)

where the sum is done over all pixels p, whose angular positions
are notedωp. For approximate quadrature, δΩp can simply repre-
sent solid angle at pixel p. Alternatively, some sampling schemes
exhibit exact quadrature (McEwen & Wiaux 2011), in which case
δΩp denotes quadrature weights. When Iℓm has been computed,
one directly has

⟨I(ω)⟩ =
1

2
√
π

I00. (6)

2.2. Wavelet transform on the sphere

The SC statistics are computed from wavelet transforms, which
are obtained by convolving an initial map with a set of wavelet
filters, where each filter extracts the local information at a partic-
ular scale and direction. Wavelet filters need to be localised both
in pixel and harmonic space. In this work, we followed McEwen
et al. (2015b, 2018) and defined the wavelets in harmonic space
in separated form as

Ψ
j
ℓm =

√
2ℓ + 1

8π2 κ
j
ℓ
ζℓm, (7)

in order to control their angular and directional localisation prop-
erties separately, respectively, by kernel κ j

ℓ
, with filter scale j, and

directional component ζℓm. For the explicit definition of these
two functions, one can refer to, for instance, McEwen et al.
(2015b). The wavelets were designed to satisfy excellent spatial
localisation and asymptotic non-correlation properties (McEwen
et al. 2018). Moreover, their directional structure in m was set to
zero for even/odd m to enforce odd/even symmetry in φ, resulting
in odd/even symmetry in φ for N − 1 odd/even (McEwen et al.
2018).

In Figure 1, the left panel shows the Ψℓm coefficients of one
filter at a specific scale j, and the right panel, a cut at m = 0 of
the full filter set. We note that with our convention, the j scales
are ordered with ℓmultipoles, meaning that when j increases, the
corresponding angular scale decreases (i.e. ℓ increases). Filters
are maximum at ℓ ≃ η j, with support within ℓ ∈ [η( j−1), η( j+1)],
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Fig. 1. Harmonic representation of the wavelet filters. Left: real part of
the Ψ j=4

ℓm filter. Right: cut at m = 0 of the full filter set for j spanning
from Jmin = 1 to Jmax = 8.

where η defines the wavelet dilation parameter. In this paper
we use dyadic scaling, corresponding to η = 2. In the follow-
ing, when performing a convolution with a filter set, the range of
scales probed by the wavelets is given by Jmin ≤ j ≤ Jmax where
Jmin ≥ 0 and Jmax = ceil

(
log (L−1)

log η

)
. The number of scales is given

by J = Jmax − Jmin + 1. The angular resolution of the wavelets is
parameterised by an integer N, allowing for the sample of 2N − 1
directions (see below)1.

Wavelet transforms were computed from convolutions
between the field under study and this set of wavelets. Vari-
ous convolutions on the sphere can be considered (Roddy &
McEwen 2021). In this work, we followed the standard direc-
tional convolution formalism presented in, for instance, McEwen
et al. (2015b). These convolutions produce a set of spherical
maps filtered at different scales (labelled by j) and orientations
(labelled by γ).

The directional convolution I ⋆Ψ j of a field I with a wavelet
Ψ j consists in applying a rotation by a set ρ = (α, β, γ) of Euler
angles of the waveletΨ j initially located at the north pole, before
computing an inner product between the wavelet and the field I:

(I ⋆ Ψ j)(ρ) =
∫
Ω

I(ω)[RρΨ j(ω)]∗dΩ, (8)

where Rρ is the rotation by Euler angles ρ, and ∗ stands for
complex conjugation. From (I ⋆ Ψ j)(ρ), we can identify (β, α)
with the spherical coordinates ω = (θ, φ) and γ to the orientation
that is probed in the convolution. In this way, we obtain oriented
wavelet coefficients, with the shorthand notation

(I ⋆ Ψ j,γ)(ω) ≡ (I ⋆ Ψ j)(α = φ, β = θ, γ). (9)

While (I ⋆ Ψ j,γ) is a convenient notation, which also matches
with previous work, we emphasise that there is no Ψ j,γ oriented
wavelet by itself.

In practice, the directional convolution can be computed
accurately and efficiently in Wigner space, which is the Fourier
space associated with 3D rotations described by Euler angles. In
this space, the directional convolution between a field I and a
wavelet Ψ j yields (McEwen et al. 2013, 2015b)

(I ⋆ Ψ j)ℓmn =
8π2

2ℓ + 1
IℓmΨ

j∗
ℓn, (10)

where Iℓm and Ψ j
ℓn are the spherical harmonic coefficients of I

and Ψ j, respectively, and (Ψ j ⋆ I)ℓmn are the Wigner coefficients

1 Although steerability could be exploited in future for further compu-
tational savings (McEwen et al. 2015b).
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Fig. 2. Spatial representation of the wavelet filters. The circles contain
orthographic projections of the directional spherical wavelets for two
scales and three angles, viewed looking down from the North pole. In
this case, we set N = 3 so that the angle γ takes 2N − 1 = 5 values
between 0 and 360 deg, but only three are shown here.

of the convolved field, that is, the Fourier representation of the
directional wavelet coefficients defined over Euler angles ρ =
(α, β, γ). To return to the spatial domain, we computed an inverse
Wigner transform, defined as

(I ⋆Ψ j,γ)(ω) ≡ (I ⋆Ψ j)(ρ) =
L∑
ℓ=0

2ℓ + 1
8π2

ℓ∑
m,n=−ℓ

(I ⋆Ψ j)ℓmnDℓ∗mn(ρ),

(11)

where Dℓmn(ρ) are the Wigner-D matrices (Varshalovich et al.
1988). Fast (inverse) Wigner transform algorithms can then be
leveraged for efficient computation (McEwen et al. 2015a; Price
& McEwen 2024). By computing the wavelet transform through
harmonic space as described, pixelisation artefacts are avoided.
Although the wavelets satisfy an admissibility condition such
that the field can be recovered exactly from its wavelet coeffi-
cients (McEwen et al. 2015b), we are only concerned with the
forward wavelet transform in this work. In the following, we also
grouped the scale and orientation under a single index λ = ( j, γ),
writing I ⋆ Ψλ for the wavelet transform of the field I at a given
oriented scale λ.

While computing convolutions through harmonic represen-
tations is highly accurate, it involves moderate computational
cost since generalised Fourier transforms on the sphere and
space of rotations must be computed (albeit using fast algo-
rithms). An alternative would be to compute the convolutions
in pixel space as done in Delouis et al. (2022). However this
can introduce pixelisation artefacts. A future avenue to con-
sider is hybrid discrete-continuous approaches, as they have been
shown to be highly computationally efficient while also avoiding
discretisation artefacts (Ocampo et al. 2023).

In order to optimise our numerical implementation, in par-
ticular the memory usage, all convolutions were computed in a
multi-scale framework, where the map resolution is tuned to the
scale at which the convolution is made. See Leistedt et al. (2013)
for more details.

Figure 2 illustrates orthographic projections of the direc-
tional spherical wavelets for two scales and three angles, viewed
looking down from the North pole.
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2.3. Scattering covariance coefficients

Scattering transforms cover several types of summary statistics
(see, e.g. Allys et al. (2019, 2020); Cheng et al. (2024b)). In
this work, we consider the SCs, or scattering spectra, previously
introduced in Morel et al. (2023) and Cheng et al. (2024b). We
chose the SCs because they only rely on convolutions and not on
translations as the wavelet phase harmonic statistics (Allys et al.
2020), which are difficult to univocally define on spherical maps.

The SC statistics characterise the power and sparsity at given
scales, as well as interaction between different scales. They are
built from successive applications of wavelet transforms and
modulus operators, followed by average and covariance compu-
tations (assuming that we work with homogeneous processes).
For a detailed introduction to these statistics, the reader is invited
to refer to Cheng et al. (2024b). We considered two coefficients
at a single scale j1 and a single angle γ1, that is, λ1 = ( j1, γ1):

S λ1
1 = ⟨|I ⋆ Ψ

λ1 |⟩, (12)

S λ1
2 = ⟨|I ⋆ Ψ

λ1 |2⟩, (13)

and two coefficients that characterise the couplings between two
and three oriented scales2:

S λ1,λ2
3 = Cov

[
I ⋆ Ψλ1 , |I ⋆ Ψλ2 | ⋆ Ψλ1

]
, (14)

S λ1,λ2,λ3
4 = Cov

[
|I ⋆ Ψλ3 | ⋆ Ψλ1 , |I ⋆ Ψλ2 | ⋆ Ψλ1

]
, (15)

where ⟨·⟩ corresponds to the mean over the sphere, defined in
Sect. 2.1, and where the covariances are defined as Cov[XY] =
⟨XY∗⟩ − ⟨X⟩⟨Y∗⟩ for two complex fields X and Y . Note that in
our case, the wavelet transforms are always zero mean, since
the wavelets are mean-free. Since taking the modulus of a field
mainly displaces its frequency support toward lower frequency
(Zhang & Mallat 2021; McEwen et al. 2022), it is sufficient to
consider terms for which j1 ≤ j2 ≤ j3. Moreover, we introduce
the additional parameter δ j, which corresponds to the maximum
distance between pairs of scales whose interactions are charac-
terised: that is, the calculation of S 3 and S 4 is restricted to pairs
of scales such that j2 − j1 ≤ δ j and j3 − j1 ≤ δ j.

The dimension of S 1 and S 2 coefficients is JΘ, with J the
number of scales and Θ = 2N − 1 the number of orientations.
Regarding S 3 and S 4, their dimensions are approximately J2Θ2

and J3Θ3 or Jδ jΘ
2 and Jδ jΘ

3 when considering a maximum
distance between scales δ j. The exact number of coefficients are
given in Table 1.

The power spectrum of the field is mainly characterised by
the S λ1

2 coefficients defined in Eq. (13). These terms correspond
to the average of the power spectrum over the ℓ-wavelet band-
passes (Cheng et al. 2024b). However, they only constrain the
power spectrum over a small number of bands and this is usu-
ally not precise enough for modelling purpose. Increasing the
number of scales j that we probe can be done by decreasing
the wavelet dilation parameter η. However, this leads to a large
increase of the total number of SC coefficients. For this reason,
we considered additional S λ1

2 coefficients, built with a second

2 Note than in Cheng et al. (2024b), the S λ1 ,λ2
3 are defined as

S λ1 ,λ2
3 = Cov

[
I ⋆ Ψλ1 , |I ⋆ Ψλ2 |

]
.

However, as only the ℓ harmonics appearing in both sides of the covari-
ance have a non-vanishing contribution, only harmonics captured by λ1
of the |Wλ2 I| term play a non-negligible role, and both formulations are
closely related.

Table 1. Main simulation parameters.

J Jmin N δ j Trans. No. of terms

LSS 7 2 3 5 log. 8283 (35, 450, 7750)
tSZ 6 3 3 5 log. 6173 (30, 350, 5750)
Venus 7 2 3 5 lin. 8283 (35, 450, 7750)
CMB 8 1 3 5 lin. 10 393 (40, 550, 9750)

Notes. For each field, we give the number J of scales that we probed,
the value of Jmin, the value of N, which corresponds to the angular
resolution of the wavelets, and the δ j parameter, which corresponds
to the maximum distance between pairs of scales whose interactions
are characterised. We also indicate whether we performed a logarithmic
(log.) or a linear (lin.) transformation on the target map, as discussed in
Sect. 4.1. The last column gives the total number of terms that compose
our summary statistics Φ(x), with, in parentheses, the detailed count for
S 1 (equal to S 2), S 3, and S 4.

filter set with η′ < η (η = 2 and η′ ≃ 1.58) and a single orienta-
tion N′ = 1 (isotropic filters). These coefficients are called S λ

′
1

2
and they allow us to constrain the power spectrum over thinner
ℓ-bins.

For physics fields the power spectra can typically be mod-
elled by a power law, at least over certain scales (Cheng et al.
2024b). This leads to SC coefficients, which can vary over sev-
eral orders of magnitude, since their amplitude is controlled by
the I ⋆ Ψλ terms, which filters the initial I field over the j fre-
quency band of the wavelet. This amplitude discrepancy can lead
to ill-conditioned optimisations. Following previous works (see,
for instance Cheng et al. 2024b), we avoided this issue by nor-
malising the SC statistics from the S 2 coefficients of a reference
field that we note S 2,ref . We thus define

S̄ λ1
1 =

S λ1
1√

S λ1
2,ref

, S̄ λ1
2 =

S λ1
2

S λ1
2,ref

, S̄ λ
′
1

2 =
S λ

′
1

2

S
λ′1
2,ref

, (16)

S̄ λ1,λ2
3 =

S λ1,λ2
3√

S λ1
2,refS

λ2
2,ref

, S̄ λ1,λ2,λ3
4 =

S λ1,λ2,λ3
4√

S λ2
2,refS

λ3
2,ref

. (17)

When constructing generative models below, we will take the
target field as the reference field, which will allows us to deal
with coefficients whose values will be at most of order unity.

3. Generative modelling

In this section, we describe how to build generative models from
the SC statistics of a given field. We also give some details on
the numerical implementation of the generative models and the
associated computational cost.

3.1. Maximum entropy generative model

We built generative models under SC constraints. These are max-
imum entropy micro-canonical models, which are approximately
sampled by gradient descent. We refer the readers to Bruna &
Mallat (2019) for more details.

These models were constructed from statistics Φ estimated
from a target field xt; in this paper, the target field is a single
full-sky map. The associated micro-canonical set Ωε of width ε
is

Ωε =
{
x : ||Φ(x) − Φ(xt)||2 < ε

}
, (18)
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where ||.|| is the Euclidean norm. The micro-canonical maximum
entropy model is the model of maximal entropy defined over Ωε,
which has a uniform distribution over this set.

In this paper, we approximated this sampling with a gradi-
ent descent approach, which consisted in transporting a higher
entropy white Gaussian distribution into a distribution supported
inΩε. In practice, each new sample was obtained by first drawing
a white noise realisation, and then performing a gradient descent
in pixel space, or in harmonic space, using a loss function

L(x) = ||Φ(x) − Φ(xt)||2. (19)

The typical width ε of the micro-canonical ensemble was then
fixed by the number of iterations used in the gradient descent.
The numerical details of this implementation are given in
Sect. 3.2.

In our case, the summary statistics Φ(x) that we consid-
ered are the mean over pixels ⟨x⟩, its variance Var(x), and the
normalised SC statistics, defined in Sect. 2.3. Thus, we have

Φ(x) =
{
⟨x⟩,Var(x), S̄ λ1

1 , S̄
λ1
2 , S̄

λ′1
2 , S̄

λ1,λ2
3 , S̄ λ1,λ2,λ3

4

}
. (20)

We note that the target statistics Φ(xt) were evaluated from a
single full-sky image, and that the SC generative models were
then built from this single set of constraints. In this respect,
our approach differs from machine learning-based approaches,
which generally require training on a large, and potentially very
expensive, dataset.

3.2. Details on the numerical implementation

In this work, we considered the SC defined on the sphere, con-
structed using spherical wavelet transforms which in turn depend
on efficient spherical harmonic and Wigner transforms (see
Sect. 2.2). As outlined in Sect. 3.1, new images were drawn from
a SC micro-canonical model by minimising the loss defined in
Eq. (19). A plethora of algorithms have been developed to solve
such optimisation problems; however, they typically require gra-
dient information, which in turn requires that each component of
the loss be differentiable. Consequently, we required the spher-
ical SC and thus the spherical wavelet, spherical harmonic, and
Wigner transforms all to be differentiable. Recently, open-source
JAX software that is differentiable and graphic processing unit
(GPU)-accelerated has been developed for all of these trans-
forms, including s2fft3 for spherical harmonic and Wigner
transforms (Price & McEwen 2024) and s2wav4 for spherical
wavelet transforms (Price et al. 2024). As part of the current
work, we have developed a new open-source software imple-
menting the spherical SC called s2scat5, which builds on top
of s2fft and s2wav.

For a given target field, we computed a generated field
by minimising the loss defined in Eq. (19) through a gradi-
ent descent in harmonic space with different initial conditions.
These initial conditions are Gaussian white noises sampled in
the spherical harmonic domain, that is, all of their Iℓm real and
imaginary parts were drawn from the same Gaussian distribution
such that the total variance of the target field was reproduced.
In this way, the starting angular power spectrum, as defined in
Eq. (21), was flat.

To avoid a repeated spherical harmonic transform as the first
step at each iteration in the computations, we chose to perform
3 https://github.com/astro-informatics/s2fft
4 https://github.com/astro-informatics/s2wav
5 https://github.com/astro-informatics/s2scat

the gradient descent in the spherical harmonic domain rather
than in pixel space. The variables we iterated on during the
loss minimisation were thus the Iℓm coefficients. Because the
maps are real and thanks to relation (3), we could iterate on the
Iℓm with m ≥ 0 only. The loss minimisation was done through
a gradient descent with the L-BFGS algorithm described in
Byrd et al. (1995), using the JAX auto-differentiable framework
(Bradbury et al. 2018) and the jaxopt package (Blondel et al.
2022). We stopped the optimisation after ∼400 iterations, which
in our experiment was the typical time for the loss function to
decrease by about four orders of magnitude and to reach a plateau
at values around 0.1 (meaning, since the loss was not normalised
by the number of coefficients, that coefficients are on average
constrained at sub-percent accuracy).

3.3. Computational cost

As outlined in Sect. 2, computation of the SC statistics requires
repeated spherical convolutions with subsequent non-linear acti-
vation functions, in this case modulus operators. Although
directional spherical convolutions can be naively computed in
pixel space with complexity O(L5) (McEwen et al. 2007), they
are more efficiently evaluated in harmonic space with complex-
ity O(NL3) (McEwen et al. 2007, 2013, 2015b). Furthermore,
excellent accuracy can be achieved by computing convolutions
in harmonic space since pixelisation artefacts are avoided.

We must repeatedly map to and from spherical harmonic
space within our generative model using s2fft (Price et al.
2023). Two operating modes are provided by s2scat: one com-
putes and caches the reduced Wigner d-functions, which are then
used at runtime (pre-compute mode); and the other computes
these functions on the fly through recursive algorithms (on-
the-fly mode). Conceptually, the pre-compute mode is fast but
requires O(L3) memory, whereas the on-the-fly mode is slower
but requires at most O(L2) memory. When running on GPUs for
harmonic bandlimits L ≤ 512, we recommend that one adopt
the pre-compute mode, deferring to the on-the-fly algorithms
at higher resolutions. Although with GPU memory increasing
rapidly with hardware developments, it is likely that the pre-
compute mode will be able to be run at higher bandlimits on
the latest and upcoming GPUs.

High-level benchmarking results are presented in Table 2.
In each case, we consider an azimuthal bandlimit of N = 3,
which corresponds to five directions on the sphere, and the full
set of anisotropic SC. Our benchmarking was performed on a
single NVIDIA A100 GPU with 40GB of on-board memory,
although in practice s2scat can be distributed across a large
number of GPUs. For completeness, we recorded the time for
both a forward and gradient evaluation, in addition to the time
required for just-in-time (JIT) compilation. One can also utilise
the jax.vmap API, which allows one to batch calls to the max-
imum entropy model presented in Sect. 3, resulting in more
optimal GPU utilisation. For example, suppose we sample from
our micro-canonical model with 100 iterations of a first-order
optimiser (e.g. ADAM; Kingma & Ba 2014). Generating a single
new image at L = 256 takes ∼4s, whereas a batched call to gen-
erate 20 such images takes ∼12s which is ∼0.5s per new sample.
Furthermore, the jax.pmap API allows one to batch calls across
GPU devices, therefore accelerating generation linearly with the
number of available GPUs.

4. Validation of the generative models
In this section, we constructed SC generative models from four
astrophysical fields showing different types of structures. We
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Table 2. Computational benchmarking.

Pre-compute mode

Bandlimit Forward Gradient JIT compilation

256 15 ms 30 ms 20 s
512 100 ms 200 ms 25 s

Recursive mode

Bandlimit Forward Gradient JIT compilation

256 120 ms 300 ms 90 s
1024 5 s 10 s 3 m
2048 20 s 50 s 6 m

Notes. Results of the SC transform provided by s2scat. These results
were recovered on a single NVIDIA A100 40GB GPU, although it
is possible to run across multiple GPUs. In our analysis we generate
spherical images through 400 iterations to be conservative. In practice,
however, we find that ∼100 iterations is typically sufficient, in which
case an image at L = 256 can be generated in ∼4s. Furthermore, batched
generation can dramatically decrease per sample compute time. For
example, 20 images at L = 256 can be generated in ∼12s, corresponding
to ∼0.5s per sample.

then compared the generated fields with the target one. We first
did a visual comparison of the maps to assess the quality of the
spatial texture reproduction. We then computed various statis-
tics in order to quantitatively evaluate our generative model. For
each type of data, we drew 50 samples of the micro-canonical
ensemble and computed the mean and the standard deviation
over those 50 realisations. For the LSS and the tSZ fields, while
the optimisation was performed on the logarithm of the maps, we
compared the statistics on the raw image, after taking the inverse
transform.

Before any comparison, all maps were filtered in harmonic
space, keeping only the Iℓm coefficients such that ℓmin ≤ ℓ ≤ L
with ℓmin = η

Jmin the central frequency of the wavelet associated
with Jmin. In this way, we considered only the scales that were
constrained during the optimisation. We note however that, if
necessary, it is possible to constrain in a similar scheme scales
up to ℓmin = 0.

We also propose a comparison with samples from a Gaus-
sian model built from the power spectrum of the target field. We
produced 50 Gaussian realisations using the synfast method
from the Healpix package (Górski et al. 2005), which can be
used to construct such a Gaussian model from the angular power
spectrum of a target field. This allowed us to quantify the contri-
bution of our models built from SC statistics compared to purely
Gaussian statistics.

In Appendix A, we directly compared the SC statistics of the
target and the generated fields. This was an additional check for
the quality of the generative model. Indeed, we expected them to
match as they are part of the coefficients constrained during the
optimisation.

4.1. Description of the set of maps

We first present the astrophysical and cosmological fields
from which we constructed SC generative models. They were
expected to have homogeneous statistical properties on the
sphere. This property is essential since this is assumed when
computing statistics through spatial averages. This requirement,

as well as a possible way to avoid this constraint, is discussed in
Sect. 4.4. The four different fields, denoted as follows, are:

– LSS, a LSS simulation of weak lensing, from the CosmoGrid
dataset (Kacprzak et al. 2023; Fluri et al. 2022);

– tSZ, a tSZ effect simulated map from Simons observatory
Galactic foreground simulations (Ade et al. 2019), which
were produced using the Sehgal et al. (2010) model with
modifications to better match the recent measurements;

– Venus, a map of the Venus planet from Science On a Sphere
database6;

– CMB, a CMB temperature map produced using the Python
Sky Model software (PySM) from Thorne et al. (2017).

We refer the readers to the references given above for more
details on these fields. As a Gaussian field, the CMB map is a
good null test for our method, as presented in Appendix B. The
other fields all originate from non-linear physical processes, and
thus have highly non-Gaussian structures, as can be seen in the
left column of Fig. 3. The diversity of these fields illustrates the
generality and the versatility of our method, which could be used
for various physical datasets.

While all of these simulated maps are available in Healpix
format, the computation of the SC was done directly from the
harmonic space. The conversion to this space was done using
L − 1 = ℓmax = 2nside, and thus acts as a low-pass filter oper-
ation. This implies that spatial frequencies at ℓ ≥ L are filtered
out in this operation. We note that calculating the SC and per-
forming the optimisation directly in spherical harmonic space
means that there is no particular constraint on the sampling
on the target map, even if the internal SC calculation steps are
based here on MW or alternative sampling schemes to improve
accuracy.

During the optimisation process, all maps were normalised
such that their mean is zero and their standard deviation is one.
In addition, the LSS and tSZ fields are highly non-Gaussian,
making them difficult to model directly even with SC statistics.
This is why we instead chose to model the logarithm of these
maps7. This logarithmic transform brings the distribution closer
to a Gaussian one, and reduces in particular the weight of the
high amplitude tail of the probability density function (PDF),
allowing for better SC generative models. At the end of the opti-
misation, however, we took the inverse transform for these maps,
and we assessed the quality of the generative model on the raw
images.

The generative models were run on MW maps with a resolu-
tion of L = 256, which corresponds to L(2L − 1) = 130 816 pix-
els. These real signals have L2 = 65 536 complex harmonic
coefficients. For the directional wavelets used to build the SC,
we considered a dyadic scaling η = 2 and N = 3. This led to
Jmax = 8 and 2N − 1 = 5 orientations. As shown in Table 1, the
value of Jmin was tuned to each field in order to take into account
the largest spatial scales that compose the maps. The number J
of scales that we probed is also given in the Table. The maximum
distance δ j between scales was fixed to five, which allows us to
divide the total number of SC coefficients by approximately two
without degrading the quality of the generative model. Concern-
ing the additional S λ

′

2 coefficients, we chose an axisymmetric
filter set with N′ = 1 and a scaling given by η′ ≃ 1.58. The exact
total number of terms making up the summary statistics Φ(x) is
given in Table 1.

6 https://sos.noaa.gov/sos/
7 For the LSS field, the exact logarithmic transform applied on I is
log(I + ε) where ε = 10−3 is a regularisation to deal with non-positive
fields.
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Fig. 3. Visual validation of the generative model. From top to bottom, we show the maps for the LSS, tSZ, and Venus fields. The left column is the
original target field. The central column shows one sample of the generated maps. The right column shows a Gaussian field with the same power
spectrum as the target. For LSS and tSZ, we plotted the logarithm of the fields in order to better see the texture details. The colour bars are identical
within each field.

4.2. Visual validation

As a first test, we can visually compare the target field and the
generated ones, as presented in Fig. 3 for the LSS, tSZ, and
Venus fields. They appear to be visually very similar to the
original maps, which clearly shows that the SC statistics cap-
ture an important part of the non-Gaussian texture of the field.
On the contrary, the structures are not reproduced in the Gaus-
sian realisations shown on the right column. For LSS and tSZ,
we plot the logarithm of the fields, which allows us to better see
the textures. In addition, in Fig. 4, we show a zoom on a smaller
region to better visualise the details in the spatial structures. In
Appendix C, we also show four realisations of the fields start-
ing from different initial conditions. This shows the ability of
our generative models to sample independent realisations while
capturing the overall texture of the fields.

4.3. Statistical validation with standard summary statistics

Following a similar approach to Cheng et al. (2024b) and Price
et al. (2023), we compared summary statistics between the target
field and the generated field. As previously, we show the mean
and the standard deviation computed over 50 realisations. The
summary statistics we chose to compare are:

– the PDF of the map;
– the angular power spectrum;
– the three Minkowski functionals.

The PDF of the maps and the three Minkowski functionals were
performed on Healpix maps. This was done by projecting the
output Iℓm from the loss minimisation onto the Healpix map

by an inverse spherical harmonic transform at the end of the
generative process.

4.3.1. Probability density function

The PDF for the LSS, tSZ, and Venus fields are shown in Fig. 5,
computed on the Healpix maps. On the first row, we show the
PDF with a linear y-axis scaling, while on the second row, we
show them with a logarithmic y-axis scaling in order to better
exhibit the tails of the distributions on several orders of mag-
nitude. The target fields are shown in blue and the generated
ones in red. In yellow, we also show the comparison with the
Gaussian realisations. By definition, the PDF of these realisa-
tions presents a Gaussian profile in linear scale and a parabolic
profile in logarithmic scale.

While the Venus field has a PDF that only slightly differs
from the Gaussian case, the two other fields clearly have non-
Gaussian features with large tails. The comparison of the target
and generated PDFs with the Gaussian PDF also allows us to
better see their non-symmetric shape, which is characteristic of
non-Gaussian features. As we can see, the PDFs for SC models
are well reproduced on at least three orders of magnitude. The
results obtained for the LSS fields, which are very good up to
five orders of magnitude, are especially striking. On the other
hand, the results for the tSZ field begin to push the expressive
limit of our generative models. For the Venus maps, we have
identified the abrupt jump in the histogram as a flaw in the data
used, which does not particularly illustrate a limitation of our
maximum entropy SC model.
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Fig. 4. Zoom-in on texture details. We show a zoom-in on a region for
the LSS (top), tSZ (middle), and Venus (bottom) fields. Similarly to the
previous figure, for LSS and tSZ, we plotted the logarithm of the fields
in order to better see the texture details. The colour bars are identical
within each field.

4.3.2. Angular power spectrum

We calculated the power spectrum in the usual way as

Cℓ =
1

2ℓ + 1

m=ℓ∑
m=−ℓ

|Iℓm|2 , (21)

where the normalisation factor 1/(2ℓ + 1) yields a flat power
spectrum in case of white Gaussian noise.

As discussed in Sect. 2.3, the power spectrum was con-
strained during the optimisation through the S 2 and the addi-
tional S ′2 coefficients. We note however that these coefficients
did not constrain the full power spectrum, as each term con-
strains only a weighted power spectrum over the frequency
support of the associated wavelet.

The third row of Fig. 5 shows the results for the generation of
the LSS, tSZ, and Venus fields, from left to right. Power spectra
are well reproduced over all scales, even when they vary over up
to four orders of magnitude. However, small oscillations around
the target can be seen in the generated power spectra. These are
residual features related to the frequency bands of the wavelets,
which illustrate the trade-off between the quality of reproduction
we want to achieve and the number of filters we use, that is to say,
the computational efficiency of our generative model.

We note that in this paper, we include 11 of these addi-
tional S ′2 coefficients. This number, and the precise shape of
the wavelets used, could however be tuned to better reproduce
the power spectrum of the target. However, care must be taken
not to over-constrain these terms, as all of the samples gener-
ated would then have a power spectrum very close to that of the

target, which does not necessarily correspond to a good genera-
tive model. The introduction of S ′2 terms is an improvement with
respect to previous work, since it allows us to have better power
spectrum constraints without significantly increasing the overall
number of SC statistics.

4.3.3. Minkowski functionals

Finally, we computed the Minkowski functionals on the Healpix
maps. These standard non-Gaussian statistics characterise the
topology of the level sets of the field. In two dimensions, there
are three Minkowski functionals, V0(u), V1(u), and V2(u), that
depend on a pixel value threshold u. We computed them using
Pynkowski software (Carones et al. 2024). We refer the reader
to this publication for the complete definition of those statistics.
The result is shown in Fig. 6 only for the LSS field, while the
others are shown in Appendix D. In yellow, as a comparison,
we show the case of the Gaussian realisations. For the gener-
ated fields and the Gaussian realisations, we plotted the mean
(solid) and the standard deviation (shadow envelope) computed
over 50 realisations. Thus, the SC models encompass very well
these non-Gaussian statistical features.

4.4. Limitations and discussions

This work is a first implementation of generative models from
state-of-the-art spherical SCs. As a first proof of concept, we
constructed and validated these models on various cosmological
fields, most of them simulated. However, building such models
from real data, or using these tools to perform statistical compo-
nent separation, may require some additional work to deal with
their own specificity. In this section, we comment on some of
these limitations and how to overcome them.

A first limitation of our current work is the fact that our
models assume the statistical homogeneity of the fields studied.
However, the ability to deal with non-homogeneous physical pro-
cesses is usually required when modelling astrophysical fields,
such as the Galactic emissions, whose properties typically vary
strongly with latitude on the sky. An efficient way to deal with
this issue is to rely on different masks in pixel space, for which
statistical properties can be constrained independently (Delouis
et al. 2022). However, this requires a trade-off between the size
and number of masks: using a larger number of masks gives a
better description of large-scale variations in statistical proper-
ties but increases the variance of the SC statistics estimates on
each mask due to the smaller number of pixels used, in addi-
tion to increasing the total number of SC coefficients and the
computational and memory cost.

A second limitation is the map resolution that we can
achieve. For now, the generation of a new map at L = 256 and
N = 3 takes ≤ 1s on a single GPU. This is thanks in part to a
large number of pre-computed matrices necessary for the Wigner
transform, which are stored in memory (several Gigabytes).
Specifically this memory is cubic with L, which is prohibitive
at high L. When increasing the resolution beyond L ∼ 1024, we
usually reach the GPU memory limit and the coefficients have
to be computed on the fly, although this of course depends on
available GPU specifications. Critically, the on-the-fly approach
dramatically reduces memory requirements so that generations
at high L are at least feasible but at the cost of a significantly
increased computation time. In future work, we will explore fur-
ther optimisations for high L. A key avenue we will explore is
the introduction of hybrid wavelet convolutions, which operate
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Fig. 5. Statistical validation. The PDF and angular power spectra for the LSS, tSZ, and Venus fields (left to right). The first row shows the PDF
with a linear y-axis scaling, while the second row shows the same PDF with a logarithmic y-axis. The third row shows the angular power spectra.
The target is shown in blue, the generated fields in red, and the Gaussian realisations in yellow. We plotted the mean (solid line) and the standard
deviation (shadow envelope) over 50 realisations.
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Fig. 6. Minkowski functionals. We plotted the three Minkowski func-
tionals V0, V1, and V2 for the LSS field. Blue is the target, red the
generated fields, and yellow the Gaussian fields. For the generated fields
and the Gaussian realisations, we plotted the mean (solid) and the stan-
dard deviation (shadow envelope) computed over 50 realisations.

efficiently in pixel and harmonic space at high and low resolu-
tions, respectively (see e.g. Delouis et al. 2022; Ocampo et al.
2023).

5. Conclusions

The main result of this paper is the extension of state-of-the-art
scattering transforms to spherical fields. We have worked with
the last generation of scattering transform statistics, named SCs
(Cheng et al. 2024b), which were previously introduced for 1D
and 2D planar fields. They have the advantage of relying only on
successive wavelet transforms and modulus, as well as on covari-
ances, and do not require any translations. We have also used
state-of-the-art directional wavelets on the sphere, computed in
spherical harmonic space (McEwen et al. 2015b). The numerical
implementation of this work, s2scat, is open-source and pub-
licly available. Furthermore, it is fully auto-differentiable, using
the JAX Python framework (Bradbury et al. 2018) and building
on the s2fft/ s2wav packages (Price & McEwen 2024; Price
et al. 2024).

These developments allow us to build generative models
of full sky spherical fields without the need for large training
datasets. In fact, our method holds in the limit case of a sin-
gle data realisation. The performance of those generative models
was validated quantitatively on different fields: a LSS weak lens-
ing field, maps of the tSZ effect and of the CMB, and a map
of the Venus surface, for which they performed extremely well.
The diversity in terms of structures between the maps shows the
impressive ability of SCs to comprehensively characterise very
different non-Gaussian textures.
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This work introduces a new powerful innovative approach
for spherical data, and it opens interesting perspectives for astro-
physical applications. In particular, we plan to use it for the
study and the modelling of CMB astrophysical foregrounds. The
first goal will be to have a tool to produce multiple realisa-
tions of the different astrophysical components, for example,
using the AGORA simulations (Omori 2024). Then, scattering
transforms could play a role in component separation, relying
on both recently developed scattering transform-based statistical
component separation approaches, as well as investigating how
classical component separation methods could benefit from scat-
tering transforms, using the non-Gaussianities as an additional
lever arm for disentangling different components.

Finally, we also point out that SC statistics provide highly
informative sets of statistics, which could be very useful in tasks
such as parameter inference, such as simulation-based inference
(SBI; Cranmer et al. 2020), from large cosmological surveys
(see, for instance Régaldo-Saint Blancard et al. 2024; Gatti et al.
2024; Cheng et al. 2024a). This could be all the more useful
as the compression factor they enable, compared with a direct
description in pixel space, becomes extremely large at high reso-
lution, due to logarithmic scale binning. This property could be
further enhanced by using compression schemes such as the one
presented in Cheng et al. (2024b), which can make SCs a very
informative and versatile compressed set of statistics.

Data availability

We make our code available to the community so that this
work can be easily reproduced and developed further; https:
//github.com/astro-informatics/s2scat
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Appendix A: SC statistics

In Figure A.1 we show the normalised SC coefficients S̄ 1, S̄ 2,
and S̄ 3 of the LSS field. We plot the coefficients of the target
field in blue, the generated ones in red, as well as the Gaussian
realisations in yellow. Coefficients are plot following the lexico-
graphic order. We chose not to show S̄ 4 for readability because
of the large number of coefficients.

Regarding the Gaussian realisations, shown in yellow, we
expect the S̄ 3 coefficients to be equal to zero up to the corre-
lations induced by the overlapping between wavelet bands. As
we can see, for S̄ 3, the mean is centred on zero.

By construction, S̄ 2 for the target field is equal to one. This
is because we have considered the S 2 coefficients of the target
as the reference to normalise all the coefficients, as described in
Sect. 2.3. In this way, all the normalised coefficients are of the
order of the unit. As we can see, SC statistics are well constrained
by the optimisation, the generated coefficients in red well overlap
the target coefficients in blue. S̄ 3 coefficients strongly differ from
the Gaussian field, showing clear non-Gaussian signatures.
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Fig. A.1. Normalised SC coefficients. We plot S̄ 1, S̄ 2, and S̄ 3 for the
logarithm of the LSS field. We show the coefficients from the target field
(blue), the generated fields (red), and the equivalent Gaussian realisa-
tions (yellow). The mean and the standard deviation over 50 realisations
are shown as a solid line with a shadow envelope.

Appendix B: CMB map as a null test

It is important to check that the generative model behaves as we
expect for a Gaussian field. This is an important validation for a
maximum entropy generative model. This is why we tested it on
the CMB map. The result is shown in Fig. B.1. The upper parts
shows the target map, a generated field and a Gaussian realisa-
tion. As expected, the three maps look similar. We also plot the
PDF and the power spectrum which match very well.

Appendix C: Multiple realisations

Figure C.1 shows multiple realisations obtained from the genera-
tive model, changing the initial Gaussian random noise. For each
field we show four maps out of the 50 that we computed. This is
to illustrate the visual similarity between the realisations.

Appendix D: Minkowski functionals for the three
others fields

Figure D.1 shows the Minkowski functionals for the tSZ, Venus,
and CMB maps.
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Fig. B.1. Generative model for a CMB map. The upper part shows (left to right): the target map, a generated field, and a Gaussian realisation. The
second row shows the PDF (linear and logarithmic scales) and the angular power spectrum.
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Fig. C.1. Multiple realisations. Four generative models of the LSS, tSZ, and Venus fields (from top to bottom), obtained by changing the initial
Gaussian random noise. In total, we ran 50 realisations for each field. The colour scales are identical within each field.
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Fig. D.1. Additional Minkowski functionals. The three Minkowski functionals V0, V1, and V2 for the tSZ (upper left), Venus (upper right), and CMB
(bottom) fields. Blue is the target, red the generated fields, and yellow the Gaussian fields. For the generated fields and the Gaussian realisations,
we plot the mean (solid) and the standard deviation (shadow envelope) computed over 50 realisations.
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