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Abstract. This paper presents a proof of concept for a new analogue-

based framework for the detection and attribution of hurricane-related hazards.

This framework addresses two important limitations of existing analogue-based

methodologies: the lack of observed similar events, and the unsuitability of the distance

metrics for hurricanes. To do so, we use a track-based metric, and we make use of

synthetic tracks catalogues. We show that our method allows for selecting a sufficient

number of suitable analogues, and we apply it to nine hurricane cases. Our analysis

does not reveal any robust changes in wind hazards, translation speed, seasonality,

or frequency over recent decades, consistent with current literature. This framework

provides a reliable alternative to traditional analogue-based methods in the case of

hurricanes, complementing and potentially enhancing efforts in addressing extreme

weather event attribution.

1. Introduction

Extreme weather events’ increasing frequency and/or intensity are among the most

visible and impactful effects of climate change (1; 2). In this context, extreme event

attribution aims to assess the influence of human-induced climate change against natural

variability in the occurrence and intensity of specific extreme events (3).

Hurricanes (tropical cyclones in the North Atlantic Ocean) are the most devastating

extreme weather events, with the potential to cause significant social and economic
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impacts (4). In the context of climate change, we know that the proportion of major

hurricanes is likely to increase (1), but we do not know how the frequency of these events

will change (5; 6).

To this date, it remains difficult to detect and attribute changes in hurricane

climatology (7). In the Atlantic, a statistically significant trend is found in the

percentage of Category 4-5, but not in the mean intensity of hurricanes (8; 9).

While a slowing trend in hurricanes translation speed over the North American coast

has been noticed (10), multiple studies mentioned that this trend could be due to

related changes in satellite data and hurricane detection techniques (11; 12; 13; 14).

Regarding seasonality, an expansion of the Atlantic hurricane season has been found in

observations, in particular with more early-season hurricanes (15; 16).

There are only few studies attempting to attribute individual hurricanes, using

probabilistic attribution (17; 18), and storyline-based methods (19; 20; 21; 22; 23).

They all but one (19) focused on precipitation. In most cases, they found that climate

change was responsible for making precipitation more extreme. While this is in line

with the understanding of the thermodynamics of climate change, several studies find

increases that are beyond the sole Clausius-Clapeyron effect (17; 18; 21; 24). No robust

change was found for other characteristics than precipitation and storm surge.

Analogue-based attribution is a type of storyline attribution which has been used

extensively for the attribution of extreme events such as heat waves to anthropogenic

climate change (25; 26), but never to hurricanes. In analogues-based attribution,

we compare the hazards and impacts of events resulting from similar atmospheric

conditions. In most cases, such events are found in historical records, and a “factual”

period corresponding to the present climate with anthropogenic climate change is

compared to a “counterfactual” period corresponding to a past climate with less

anthropogenic climate change. A strength of this approach is that it uses existing data

rather than running event-specific simulations. This allows analogue-based methods to

be used in rapid attribution, which is currently done by the “ClimaMeter” consortium for

publishing routine press releases on impact extreme events through www.climameter.

org (see sec. 2.1, (27)). However, while analogues have been extensively used in the mid-

latitude by conditioning on the synoptic-scale flow as defined by sea-level pressure or

mid-tropospheric geopotential, whether they work in the tropics remains to be assessed.

In this paper, we assess the suitability of the analogues methodology for hurricane

hazard attribution, showing that with the current ClimaMeter framework, there is a

systematic lack of confidence in the detected changes because of the lack of analogues

(sec. 2). We then propose an alternative analogue-based framework that uses synthetic

track catalogues and a track-based distance metric (sec. 3). We apply this framework

to detect changes in hazards related to recent Atlantic hurricanes, focusing on changes

in the wind speed of hurricanes, as well as their probability of occurrence, translation

speed and seasonality (sec. 4).

For conciseness, our discussion mostly consists of the case of Hurricane Irma,

focusing on its first landfall on Barbuda on September 6, 2017. However, nine cases

www.climameter.org
www.climameter.org
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Figure 1. Hurricane cases in this study. Full tracks are shown in black with width

proportional to intensity. Tracks 24h before landfall are colored by Saffir-Simpson

Hurricane Scale (SSHS) category. Dark circles show the landfall points considered in

this study.

were analyzed, shown in figure 1, and figures for all cases analyzed can be found in the

supplementary material. Landfall coordinates and characteristics for all cases, as well

as the rationale for choice, are described in table A1.

2. ClimaMeter

2.1. Description

ClimaMeter offers a dynamic approach to perform a detection attribution analysis of

weather extremes within a climate context (27). Here, we analyse how tropical cyclones

have changed in the “factual” recent period (1987–2023) compared the “counter-factual”

previous past decades (1950–1986). To do so, we selected the 35 best analogues of MSLP

anomalies between August to November associated with the target cases in the ERA5

reanalysis (28). The anomalies are computed against the 1950-2023 climatology over a

10x10° box centered on the location of the storm’s minimum pressure. Then, we search

for significant differences between present and past analogues in terms of pressure and

wind speed (wspd).

Following (26), we define analogue quality Q as the average Euclidean distance

of a given event from its closest 35 analogues. If the target event’s Q belongs to

the distribution of its analogues’, then that event is not considered unprecedented,

and attribution can be performed. If not, the event is considered unprecedented and,

therefore, not attributable.

For more technical details regarding the methodology, please see (27). Note that the
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ClimaMeter framework provides more indicators than what is presented, but we focus

on pressure and wind speed because these are the outputs available for other models

used in this paper

ClimaMeter is the baseline for our study. We assess its suitability for hurricane-

related wind hazard attribution in the next subsection.

2.2. Analysis for Irma

In fig. 2 we show the results of this analysis for Hurricane Irma while it is over the

Caribbean on September 6, 2017.

Panels d and h show that Irma’s analogues have deeper (≈2 hPa) pressure minima

and are associated with more intense winds (≈10 km/h) in the factual period, compared

with the counter-factual period.

Panel i shows that the Irma’s Q value is well above the distribution of its analogues’.

This is true for both period, although less so in the factual period.

We also find that events similar to Irma have become less frequent in November,

while they previously mainly occurred in September and October (Fig. 2j).

2.3. Limitations of the current ClimaMeter approach

The main shortcoming of the above analysis is the low quality of the analogues, yielding

low confidence in the outcome of ClimaMeter. This is true for the nine studied hurricanes

cases here (see supplementary material), and this is a systematic outcome for hurricane

cases in the reports published in the ClimaMeter websiste.

Low quality means the selected analogues do not resemble the actual event. In fact,

about half of them do not correspond to recorded tropical cyclones. If we take Irma’s

analogues check whether they correspond to a tropical cyclone in IBTrACS, we find a

match for 10/35 counterfactual analogues and 28/35 factual analogues.

The low quality of the analogues stems from several factors:

(i) ERA5 does not faithfully represent the structure of tropical cyclones and largely

underestimates their intensity (29).

(ii) Even if most observed events can be found in ERA5 (30), hurricanes are rare events.

There are only 16.0 tropical storms of which 7.7 hurricanes on average every year in

the whole Atlantic basin (based on recorded storms in IBTrACS over the 1980-2021

period).

(iii) The SLP-based distance metric for cases like tropical cyclones, which can reach

very low-pressure values, will necessarily yield large distance values. In the case

of Irma, the pressure anomaly is up to -15 hPa, and the detected change is of the

order of 2 hPa, while the event’s distance to its analogues is about 60 hPa in both

periods. Moreover, this imposes collocation of events, which in our case might not

be so important.
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Figure 2. ERA5 Analogues Analysis for 6 September 2017 and the region defined by

[66.9W 56.9W 12.7E 22.7E] and the hurricane season ASON.

a-d: sea-level pressure (msl) anomaly during the event (a), averaged over the

counter-factual (b) and factual (c) analogues, and changes between factual and

counter-factual analogues (∆msl) (d). In (d) colour-filled areas indicate significant

anomalies with respect to the bootstrap procedure.

e-h: Same as a-d but for wind speed (wspd).

i: Distribution of counterfactual (blue) and factual (orange) analogue quality Q.

A blue dot marks values for the peak day of the extreme event. Horizontal bars

correspond to the mean (black) and median (red) of the distributions.

j: Distribution of analogues in each month.

In the following, we propose a new analogue-based framework that addresses these

three limitations: (i) we use observed hurricane tracks directly to overcome ERA5’s

limitations, (ii) we use synthetic tracks to expand the number of events, and (iii) we use

a track-based distance metric to address.

3. Alternative framework

Analogues-based detection and attribution methodologies rely on the choice of a

catalogue and a distance metric. Our suggestion is to use synthetic tracks as a catalogue

and a track-based distance metric. The specific catalogues used below are opportunistic,

and the metric is kept simple in order to provide a proof of concept.
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3.1. Track catalogues

The analogues method requires the definition of a catalogue of events, which is browsed

to find similar events. In our alternative framework, events are necessarily tropical

cyclones, which are found in different types of track catalogues, described below.

3.1.1. Observations Addressing limitation (i), instead of using reanalysis as a reference

for real-world hurricanes, we use observed hurricane best tracks. We retrieve them from

the National Hurricane Center’s best-track hurricane database (HURDAT, 31) through

the International Best Track Archive for Climate Stewardship (IBTrACS, 32; 33). In

the Atlantic, the record is generally considered reliable since 1950. However, there are

inhomogeneities between the pre- and post-satellite eras, as we will highlight below.

3.1.2. Synthetic Tracks In any case, the number of observed hurricanes remains small

(ii). Therefore, we use the synthetic track to expand the sample. Synthetic tracks are

model-produced realistic tracks. Synthetic tracks were already used in the attribution

of Harvey by (20), but in a probabilistic attribution framework.

Such tracks can be produced by statistical, statistical-dynamical or fully dynamical

models. Here, we use tracks from three models belonging to the two latter categories.

CHAZ The Columbia HAZard model, CHAZ, is an open-source statistical-dynamical

downscaling model (34). As such, CHAZ links physical relationships between large-scale

climate drivers and TC development. The model seeds weak disturbances at a rate

determined by the Tropical Cyclone Genesis Index (TCGI, 35; 36). These disturbances

are then pushed by the background steering flow, following a version of the Beta and

Advection Model developed by (37). The disturbances’ intensity is modelled using an

auto-regressive stochastic intensity model by (38; 39).

In this study, we use synthetic CHAZ TCs downscaled from the ERA5 reanalysis

(28), similar to the dataset used by (40). We generated 60 track ensembles for the period

of 1951-2019. While each synthetic TC track has 40 intensity ensembles, here we only

consider the first intensity ensemble member.

MIT Open Source Downscaling Model We also use tracks from the MIT-Open model

(41), which is an open-source derivative of the MIT (Massachusetts Institute of

Technology) TC downscaling model (42). The MIT-Open model is conceptually similar

to CHAZ, but they differ in storm formation and evolution calculation. On a high

level, MIT-Open randomly seeds weak proto-vortices. It then evolves these weak seeds

in space and time according to the large-scale environmental flow (as represented by

ERA5). Tropical cyclones move according to the beta-and-advection model (43), and

intensify/decay according to the FAST intensity model (44). For more details, the reader

is referred to (41).
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The MIT-Open dataset used hereafter was generated using ERA5 as input, like

CHAZ.

SEAS5-20C hindcasts Lastly, we use unseen TC tracks from seasonal hindcasts

covering the 20th century (20C) (45). Hindcasts are initialized forecast model runs

used to verify a prediction system’s performance against existing observations. For

these hindcasts, the European Center for Medium-Range Forecast’s (ECMWF) fifth-

generation seasonal forecast system (SEAS5) was used (46). The SEAS5-20C hindcasts

(47) was chosen due to its length, covering the whole 20th century. The hindcasts

consist of two-year forecasts with 10 ensemble members. Forecasts are initialized in May

and November each year between 1901 and 2010, with initial states from CERA-20C

(Coupled European ReAnalysis of the 20th century, 48). The atmospheric component

has a resolution of 50km (T199).

In the present work, we only consider the hurricane tracks simulated during the

months of June to November in the first year of the May initialized forecasts – hence

with a lead time of one month with respect to the Atlantic TC season. Not using the

first month of forecast allows us to make sure that the hurricanes we study were not in

the initialisation and are purely synthetic. This selection means we have 10 ensemble

members per hurricane season. The TCs were detected and tracked using the TRACK

algorithm (49).

3.1.3. Periods For IBTrACS, CHAZ and MIT-Open, the years 1950-1984 are chosen

for the counterfactual period, and 1985-2019 for the factual period, splitting in two the

common available period. For SEAS5-20C, we take advantage of the long span of the

dataset and use 1901-1955 as counterfactual and 1956-2010 as factual. Due to different

natural and forced variability over these periods, it means the same changes might not

be detected in the catalogues. However, since we do not attempt any actual attribution

here, we argue that using as much as the sample as possible is more important for our

methodological discussion.

3.2. Track-based distance metric for analogues selection

3.2.1. Motivation To overcome limitations in using SLP-based analogues (iii), we

suggest switching to an alternative track-based distance metric for analogue selection.

ClimaMeter identifies similar days based on sea-level pressure (SLP) patterns at the

time of hurricane landfall. This approach seeks to match depressions with atmospheric

conditions resembling those of the target hurricane. In the following, we propose to look

for tropical storms with trajectories similar to those of a given hurricane, similarly what

was done (50) for extra-tropical cyclones. This means that we are conditioning on the

type of event (tropical storms) and their approach towards the coast. We argue that

this object-oriented approach should yield greater confidence in the results. Potential

changes in analogue characteristics with time are more likely to be relevant for the
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target event if there is a physical consistency in the type of event analogues represent.

Moreover, we know that the direction of a hurricane at landfall is important for hazard

patterns, as the surface wind speed has an asymmetrical footprint (51; 52).

This track-based metric also has the advantage of being usable for datasets that

do not provide full physical fields but only track data – which is the case for all of the

catalogues above except SEAS5-20C. For data in the form of spatial, physical fields, it

means that tropical cyclones need to be tracked beforehand.

Also, in the standard ClimaMeter method, the 35 closest analogues are selected,

and the quality is checked posteriorly. Here, we reverse the paradigm: we impose a

level of quality and check posteriorly that we have enough analogues. The level of

quality is imposed by selecting analogues within a given distance dmax of the target

event. Previous studies on analogue-based attribution showed that approximately 30

analogues or more per period are desirable for a robust statistical analysis (26; 27).

3.2.2. Implementation In the following, all track data are interpolated to 1-hourly. We

define a cyclone C as an ensemble of points in time and space: C = (ci)i∈J1,NCK, where

NC is the number of hours for which the cyclone has been recorded.

Let H = (hi)i∈J1,NHK be the hurricane that we are targeting, with hl (l ∈ J1, NHK)
the landfall point. For each cyclone C in a track catalogue, we find cl the closest point

in space to hl (based on the haversine distance). We then define the distance d between

C and H as :

d(H,C) =
1

24

23∑
k=0

||hl−k, cl−k||,

where || · || is the haversine distance in space. This procedure is illustrated in fig. A1.

We define the analogues of H as all cyclones C such that 0 < d(H,C) < dmax,

where dmax is a maximum distance selected arbitrarily for each catalogue to optimize

the number and quality of analogues, specified in tab. 1. The first inequality prevents

us from including the target case in the analogues. The method is designed to select as

analogues cyclones with a close landfall location and a track that has a similar approach

to H. To illustrate this, figure 3 shows the selected analogues for three cases.

3.3. Validation

In this section, we demonstrate the ability of this new framework to select good-quality

analogues.

The number of analogues found in each catalogue and for each period is shown in

table 1. Comparing the number of analogues among the cases reflects how “unusual”

their trajectory was: hurricanes like Maria, Dean and Irma yield the highest number of

analogues for all catalogues because they had very typical westward trajectories in the

Caribbean. In contrast, Hurricane Matthew, which had a northward approach to Haiti,

has much fewer analogues in all catalogues.
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IBTrACS CHAZ MIT-Open SEAS5-20C

dmax (°GCD) 4° 0.75° 0.75° 1°
#TC/year 13 339 504 131

CF F CF F CF F CF F

IRMA 21* 68 87 89 249 231 162 198

DEAN 14* 67 96 110 223 201 87 89

MARIA 21* 64 50 50 216 168 60 57

KATRINA 19* 59 66 60 138 104 19* 37

IAN 17* 53 27* 50 109 106 18* 30

FLORENCE 26* 49 14* 13* 12* 13* 5* 10*

IKE 23* 44 67 69 109 107 29* 36

HARVEY 19* 37 44 57 65 98 43 43

MATTHEW 4* 26* 6* 13* 15* 26* 4* 8*

Table 1. Number of analogues selected for each case and each catalogue. Cases are

ordered by the number of analogues in IBTrACS for the factual period. Numbers below

30 are printed in italic with a star(GCD stands for Great Circle Distance)

Figure 3 shows the tracks of the analogues found in each catalogue for three selected

cases (figs. A2 & A3 shows them for all nine cases). Irma has the most analogues across

all catalogues. In fig. 3, we show that in all catalogues there are analogues with westward

trajectories similar to Irma’s observed track, but refining dmax allows for tightening them

around the observed track. In particular, we find analogues with landfall locations closer

to Irma’s observed landfall. Katrina has an intermediate number of analogues across all

catalogues. In the case of IBTrACS, there are 78 analogues with tracks spread across

the Gulf of Mexico; using STGs leads to a selection of analogues with tracks that are

closer to that of Katrina itself, with landfall within 300 km of Katrina’s landfall position.

Matthew has the fewest number of analogues across all catalogues due to its unusual

northward trajectory. In IBTrACS, 30 analogues were found, but the permissive dmax

allowed for track analogues following with different direction and that do not hit Haiti.

In CHAZ and SEAS5-20C, there are fewer analogues than in other cases, but they

do have similar trajectories as the observed track and do make landfall in Haiti. The

very large track sample size produced by the MIT-Open model yields 41 analogues,

highlighting the usefulness of a very high sample size for events with unusual tracks.

We see from this analysis that, in general, the larger the sample size in a catalogue,

the smaller the value of dmax that can be used, which is beneficial for analogue quality.

Here the 30 analogues threshold is attained for several cases, including Irma, so we

can move forward with our analysis of hazard changes.
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Figure 3. Analogues for hurricanes Irma (top), Katrina (middle) and Matthew

(bottom), in each catalogue (columns). Counter-factual analogues are in blue and

factual ones in orange. The black track is the observed hurricane track. The numbers

on the top-left of each panel are the number of analogues for each period. Tracks for

all analogues are shown in figures A2 & A3.

4. Changes in hurricane characteristics

Having demonstrated the suitability of our framework, we apply it to the detection of

potential changes in the characteristics of the tracks of Irma’s and eight other hurricane

analogues.

In fig. 4, we compare the characteristics of the analogues in the factual and counter-

factual periods for Irma, which has the most analogues across catalogues. The number

of Irma’s analogues in all catalogues but IBTrACS is well above 30. For IBTrACS, the

counter-factual only has 21 analogues, but we show it here nonetheless for completeness

because it is an observational reference, because it gives the opportunity for a discussion

on the homogeneity of the dataset, and because it illustrates well the advantage of using

synthetic tracks. Similar figures for all cases can be found in the supplementary material

and we provide a conclusion over all cases for each studied characteristic below.
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Figure 4. Characteristics of Irma’s analogues in each catalogue (columns). The

first line shows the number of analogues per year for each period, with the error bar

showing the standard error. The p-value is shown for a T-test for the mean, in bold

when statistically significant at the 5% level. The second line shows the empirical

cumulative distribution functions of maximum wind speed at the surface (for SEAS5-

20C at 850hPa). The third line shows the empirical cumulative distribution functions

of the translation speed during the 24 hours before landfall. The fourth line shows the

month of the formation of the analogues in both periods. For lines 2–4, the results of

a Cramer von Mises (CvM) test are shown, which determines whether the samples in

each period are drawn from different distributions, in bold when the p-value is <5%.

In the fourth line, the test was performed for the day-of-year.
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4.1. Number of analogues per period

First we analyze whether there is a significant change in the number of analogues between

the two periods, a statistically significant increase in the number of analogues would

indicate an increase in the likelihood of similar events – and vice-versa. In the case of

Irma, there is no statistically significant change in the number of analogues, except in

the case of IBTrACS (fig. 4, top row). It should be noted that a significant increase in

the number of IBTrACS analogues in the factual period is found for all cases analyzed.

This is more likely due to instrumentation-related inhomogeneities in the best-track

dataset (53) than an actual change in the likelihood of those events between the two

periods.

Two other statistically significant increases in the number of analogues are found

(tab A2): Hurricane Ian’s analogues in CHAZ and Hurricane Harvey’s analogues in

MIT-Open, and Hurricane Katrina’s analogues in SEAS5-20C. Note that the p-values

remain above 1%, and these changes are not robust across multiple catalogues, so we

conclude that they are more likely to be spurious.

4.2. Intensity

Next, we examine whether the intensity of the events has changed across the two periods.

Intensity, as measured by the analogue’s maximum wind speed, Irma’s analogues do not

have a statistically significant change in wind speed in any of the catalogues(fig. 4, second

row). A statistically significant decrease in wind speeds associated with Ike’s analogues

is found in IBTrACS but is likely spurious owing to the low number of analogues and

the well-known technological changes present in best-track datasets (53) (tab A3).

Intensity, as measured by minimum sea-level pressure, is available only for IBTrACS

and SEAS-20C. A statistically significant decrease is found in Katrina’s analogues’

minimum SLP in SEAS5-20C (tab A4). It means that Katrina’s analogues are more

intense in the factual period (first half of the 20th century for SEAS5-20C) compared

to the counterfactual (second half of the 20th century).

4.3. Translation speed

Translation speed is a crucial characteristic of hurricane tracks, as stalling hurricanes

are more likely to cause large accumulated precipitation values at a given location, such

as in the case of Hurricane Harvey.

In our analysis, no statistically significant change is found in translation speed for

Irma’s analogues in any catalogue (fig. 4, third row). Changes in translation speed

are detected for Ian’s analogues in IBTrACS and Florence’s analogues in SEAS5-20C

(tab A5).

This is particularly interesting as there is a controversy regarding changes in TC

translation speed. (10) found a detectable change in observed translation speed globally.

Still, this result could be dependent on the period used in the analysis (11; 12) and is
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not present in some model simulations in the historical period (13). (14) shows that the

climate change impact on TC translation speed may be regionally dependent. In the

present analysis, we find a statistically significant reduction in the translation speed of

Ian’s analogues in observations, which is not found using other catalogues nor for other

cases. This is interesting in the context where the case of Ian is reminiscent of Debby

this year (2024), which stalled, bringing important rainfall to Florida.

4.4. Seasonality

Changes in seasonality are investigated, as hurricane characteristics and potential

impacts depend on when they occur.

A significant change in seasonality is found for Irma’s analogues in CHAZ only

(fig. 4, fourth row) and Florence’s analogues in IBTrACS only (tab A6). For Irma,

factual analogues in CHAZ are generally found earlier in the season, with a maximum in

August, compared to the counterfactual when most analogues are found in September.

For Florence, factual analogues are found in IBTrACS slightly earlier in the factual

compared to the counterfactual, but in both cases, the maximum is in September.

Regarding all of the above statistically significant changes highlighted, we stress

that because they are not found across catalogues, we do not think this statistical

significance reflects an actual robust trend. We also performed sensitivity tests to the

values of dmax that show small but existent sensitivity of the results. For that reason,

we do not make any statement about a detected change in hurricane-related hazard in

this study.

5. Conclusion

In this study, we propose a new analogue-based framework that can be used as a

foundation for the detection and attribution of hurricane-related hazard changes. This

new framework identifies analogues as tropical cyclones with similar tracks. It makes

use of available synthetic track catalogues. Sampling among many more events allows

us to make statements with more confidence than in the current ClimaMeter framework

when dealing with tropical cyclones, as the quality of the analogues has improved. It is

also very quick to run for new cases. As such, it has the potential to be used even in a

rapid attribution context. Although our analysis does not include as many indicators as

ClimaMeter does, most importantly precipitation and variability, these could certainly

be added in the future.

A specific novelty of this work is also treating seasonal hindcasts as synthetic

track generators and comparing them to statistical-dynamical STGs. While statistical-

dynamical generators are fast to run, they rely on simplified assumptions, especially

regarding genesis, and only include a few TC-related hazards. Seasonal prediction

systems as dynamical STGs provide an alternative physically consistent framework

including both wind speed, SLP and rainfall. These models are very costly to run,
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but such simulations can be used for many purposes.

Relying on synthetic tracks can potentially introduce biases associated with the

models. However, the potential impacts of these biases are minimized by comparing

tracks from a single model. Provided the biases are consistent across periods, they

should not impact the differences. In some cases, however, the models’ deficiencies

might prevent the attribution, e.g. in the case that not enough analogues can be found

for a given model.

Applying this methodology to nine hurricane cases, we do not identify any robust

change in the wind hazards, probability of occurrence, translation speed or seasonality.

This aligns with the existing literature, where the only signal that is robustly identified

as having emerged regards precipitation (1; 7).

This work paves the way for further research in improving the detection and

attribution of tropical cyclones. This constitutes a proof of concept, and there is room

for improvement. For example, we deliberately chose a simple distance metric, but if one

is interested in using this method for attributing downstream impacts, conditioning on

intensity could be relevant, as was done in (54). Importantly, including precipitation in

our analysis would be informative, as this is the most impactful hazard, and it is expected

to increase. Moreover, this method could easily be extended to future projections after

carefully considering their reliability.
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Appendix A. Supplementary figures and tables

name year landfall date long. lat. SLP (hPa) wind (knots) SSHS cat.

KATRINA 2005 2005-08-29 11:00:00 -89.6 29.3 919.8 110.5 4

MATTHEW 2016 2016-10-04 11:00:00 -74.3 18.3 935.0 130.0 5

IRMA 2017 2017-09-06 06:00:00 -61.9 17.7 914.0 155.0 5

MARIA 2017 2017-09-20 10:00:00 -65.9 18.0 919.4 135.2 5

IAN 2022 2022-09-28 19:00:00 -82.2 26.7 940.8 130.4 5

FLORENCE 2018 2018-09-14 11:00:00 -77.8 34.2 955.8 80.2 2

HARVEY 2017 2017-08-26 03:00:00 -96.9 28.0 937.0 115.0 4

IKE 2008 2008-09-13 07:00:00 -94.7 29.3 950.0 95.0 3

DEAN 2007 2007-08-17 09:00:00 -60.8 14.3 971.0 85.0 2

Table A1. Landfall coordinates and characteristics of the nine hurricanes studied in

this article. These cases have been chosen to represent a diversity of landfall locations,

as well as hurricane trajectories. We have been careful to include a few non-major

hurricanes (cat. 1 or 2) (Florence and Dean) to determine if that would improve the

quality of the analogues.

IBTrACS CHAZ MIT SEAS5

KATRINA 6.8e-05* 6.2e-01 1.0e-01 2.6e-02*

MATTHEW 1.2e-04* 1.9e-01 2.3e-01 2.7e-01

IRMA 1.7e-05* 8.9e-01 5.4e-01 1.0e-01

MARIA 1.3e-05* 1.0e+00 5.2e-02 7.7e-01

IAN 1.4e-04* 2.3e-02* 8.8e-01 6.8e-02

FLORENCE 4.4e-03* 8.6e-01 8.6e-01 2.0e-01

HARVEY 3.6e-02* 2.9e-01 4.8e-02* 1.0e+00

IKE 3.7e-02* 8.8e-01 9.1e-01 3.7e-01

DEAN 8.7e-07* 3.7e-01 4.7e-01 8.9e-01

Table A2. p-values of the t-test for difference in means of sample number per period.

Values below 5% are bolded with a star.
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IBTrACS CHAZ MIT SEAS5

KATRINA 5.7e-01 6.8e-01 8.4e-02 3.7e-01

MATTHEW 6.8e-01 3.8e-01 5.0e-01 8.9e-02

IRMA 5.4e-01 9.3e-01 6.6e-01 4.1e-01

MARIA 3.4e-01 3.4e-01 9.4e-01 NaN

IAN 7.9e-01 1.9e-01 5.9e-01 4.6e-01

FLORENCE 2.9e-01 6.2e-02 5.9e-01 7.0e-01

HARVEY 8.8e-02 5.3e-01 3.7e-01 8.1e-01

IKE 4.2e-02* 8.1e-01 2.2e-01 1.8e-01

DEAN 4.4e-01 1.1e-01 5.3e-01 1.1e-01

Table A3. p-values of the Cramer-von-Mises for difference in distribution of wind in

each period. Values below 5% are bolded with a star.

IBTrACS SEAS5

KATRINA 7.0e-01 1.0e-02*

MATTHEW 4.2e-01 5.5e-01

IRMA 6.6e-01 4.2e-01

MARIA 2.6e-01 5.2e-01

IAN 9.6e-01 3.5e-01

FLORENCE 4.7e-01 5.2e-01

HARVEY 2.2e-01 9.4e-01

IKE 2.2e-01 8.0e-02

DEAN 6.7e-01 7.0e-01

Table A4. p-values of the Cramer-von-Mises for difference in distribution of minimum

SLP in each period. Values below 5% are bolded with a star.

IBTrACS CHAZ MIT SEAS5

KATRINA 4.3e-01 2.9e-01 7.5e-01 1.1e-01

MATTHEW 8.2e-01 2.2e-01 9.6e-01 3.5e-01

IRMA 6.9e-01 1.5e-01 7.5e-02 7.4e-01

MARIA 6.8e-01 7.1e-01 6.6e-02 2.9e-01

IAN 6.5e-03* 2.1e-01 4.7e-01 6.7e-01

FLORENCE 6.7e-01 9.8e-01 3.8e-01 7.7e-02

HARVEY 1.6e-01 8.3e-02 8.9e-01 2.0e-01

IKE 9.2e-02 5.5e-01 6.2e-01 3.6e-01

DEAN 8.0e-01 9.8e-01 2.7e-01 6.8e-01

Table A5. p-values of the Cramer-von-Mises for difference in distribution of

translation speed in each period. Values below 5% are bolded with a star.
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Figure A1. Illustration of the distance computation described in 3.2.2.
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Figure A2. Same as figure 3 but for all 9 cases (continued in fig A3).
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Figure A3. Same as figure 3 but for all 9 cases (continued from fig A2).
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IBTrACS CHAZ MIT SEAS5

KATRINA 5.5e-01 1.1e-01 3.7e-01 6.4e-01

MATTHEW 5.1e-02 4.8e-01 5.4e-01 9.8e-01

IRMA 8.6e-01 4.5e-02* 5.3e-01 6.3e-01

MARIA 2.7e-01 4.8e-01 7.6e-01 3.4e-01

IAN 9.4e-01 1.8e-01 5.7e-01 4.0e-01

FLORENCE 3.0e-02* 5.0e-01 5.9e-01 6.6e-01

HARVEY 7.9e-02 6.9e-01 2.7e-01 1.6e-01

IKE 2.1e-01 2.8e-01 9.7e-02 9.9e-01

DEAN 2.5e-01 9.5e-01 7.9e-01 3.6e-01

Table A6. p-values of the Cramer-von-Mises for difference in distribution of day-of-

year in each period. Values below 5% are bolded with a star.
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