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Abstract
The Kantorovich distance is a widely used metric between probability distributions. The Kantorovich-
Rubinstein duality states that it can be defined in two equivalent ways: as a supremum, based on
non-expansive functions into [0, 1], and as an infimum, based on probabilistic couplings.

Orthogonally, there are categorical generalisations of both presentations proposed in the literature,
in the form of codensity liftings and what we refer to as coupling-based liftings. Both lift endofunctors
on the category Set of sets and functions to that of pseudometric spaces, and both are parameterised
by modalities from coalgebraic modal logic.

A generalisation of the Kantorovich-Rubinstein duality has been more nebulous—it is known
not to work in some cases. In this paper we propose a compositional approach for obtaining such
generalised dualities for a class of functors, which is closed under coproducts and products. Our
approach is based on an explicit construction of modalities and also applies to and extends known
cases such as that of the powerset functor.
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1 Introduction

The Kantorovich (or Wasserstein, or Monge-Kantorovich) distance [17] is a standard and
widely used metric between probability distributions, studied amongst others in transportation
theory [27]. In concurrency theory, the Kantorovich distance forms the basis of so-called
behavioural metrics, which are quantitative generalisations of bisimilarity. They allow a
more fine-grained and robust comparison of system behaviours than classical Boolean-valued
behavioural equivalences [8, 9, 26].

In its discrete version the Kantorovich distance takes as argument a (pseudo-)metric on a
set X, and lifts it to a (pseudo-)metric on the set of (finitely supported) distributions D(X).
The celebrated Kantorovich-Rubinstein duality [18] states that this distance can be computed
in two ways, yielding the same result: as an infimum indexed by probabilistic couplings, and
as a supremum indexed by non-expansive functions into the [0, 1] interval with the Euclidean
distance. This fundamental result is useful for analysis and computation of these distances
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(e.g., [1, 7, 15, 25, 27]). A detailed proof in a broader context than just finitely supported
distributions can be found in [27].

Orthogonally to this duality, in the last years there have been several proposals to generalise
the Kantorovich distance from distributions to general endofunctors on the category Set
of sets and functions. The problem then becomes to lift such functors to the category of
(pseudo-)metric spaces. This is particularly useful in the context of a coalgebraic presentation
of systems, where the type of the system at hand is parametric in the given Set endofunctor.
In particular, this allows a uniform presentation of various types of probabilistic systems,
but also, for instance, metrics on deterministic automata [6].

There are categorical generalisations of both presentations of the Kantorovich distance:
the coupling-based approach and the one based on non-expansive maps [2, 5, 6, 11]. The
latter has recently been established as an instance of the so-called codensity liftings1 [24].
Both approaches are parametric in (sets of) modalities or evaluation maps, that allow a
degree of freedom in the choice of liftings.

We aim to relate the two approaches, by studying generalisations of the Kantorovich-
Rubinstein duality to a wide class of functors beyond D. This problem was first proposed
and studied in [2], where it is shown to hold in some concrete cases but also to fail in other
basic instances, even for very elementary functors such as the diagonal functor ∆ mapping a
set X to X × X. In the latter article the authors restrict the study to liftings parametric
in exactly one modality they call an evaluation map, which is assumed to be the same for
both codensity and coupling-based liftings. We depart from this by allowing modalities
to differ on both sides. This approach can already be found in [10]. There, it is shown
that every coupling-based lifting can be presented as a codensity lifting; but the proof is
non-constructive and yields a large collection of modalities.

In the current paper, we approach the problem of generalised Kantorovich-Rubinstein
dualities from a concrete perspective, with an emphasis on compositionality aspects. Given
a modality as parameter for a coupling-based lifting, we aim to explicitly translate it to
modalities for a codensity lifting, in such a way that the two correspond. More explicitly, we
show that the class of such correspondences between coupling-based and codensity liftings
is closed under coproducts and products (and conversely, that every correspondence for a
coproduct of functors can be recovered from correspondences on its constituents). We also
investigate correspondences for the identity functor, where there is flexibility in the choice of
modalities; and for the powerset functor, extending earlier correspondence results [2, 12].

These correspondence results then allow us to define a concrete grammar of functors for
which we obtain a correspondence between coupling-based and codensity liftings. In fact, we
obtain several grammars based on different assumptions on the underlying poset of truth
values (assumed to be a quantale). Base cases include the constant functors, distribution
functor, powerset functor and the identity functor; recursive constructions the product and
coproduct. These results allow us to obtain or recover induced codensity and coupling-based
presentations for a range of examples of behavioural metrics, including metrics on streams,
labelled Markov chains, deterministic automata, and non-deterministic automata.

In the last part of the paper, we investigate the limitations of our approach through the
concrete example of conditional transition systems [4, 3]. In contrast to the earlier examples,
here, our grammar does give us a metric (and a correspondence result), but it is not the one

1 Kantorovich metric is used interchangeably in the literature to refer to both presentations. We therefore
avoid this terminology by consistently referring to the two presentations as coupling-based and codensity
liftings respectively.
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considered earlier in the literature. We prove that, in fact, the metric from the literature can
be expressed with a codensity lifting but not with a coupling-based lifting.

2 Codensity and coupling-based liftings: correspondences by example

In this section we motivate and describe the problem of correspondences between codensity
and coupling-based liftings at the general level of functors, and our approach in this paper, by
means of two examples: the Kantorovich-Rubinstein duality for distributions, and a similar
correspondence for the shortest-distinguishing-word-distance on deterministic automata [6].

Distributions. We start by recalling the classical Kantorovich distance, in the discrete case.
In this paper we focus on pseudometrics (defined like metrics except that different elements
can have distance 0) as is common in the use of these types of distances in concurrency
theory. For a pseudometric d : X × X → [0, 1], the Kantorovich distance is a pseudometric
on the set D(X) of distributions on X, defined, for µ, ν ∈ D(X) by:

D↓(d)(µ, ν) = inf
σ∈Ω(µ,ν)

∑
x,y∈X

d(x, y) · σ(x, y) (1)

where Ω(µ, ν) is the set of couplings between µ and ν, i.e., probability distributions on X ×X

whose marginals are µ and ν respectively. It can equivalently be computed as:

D↑(d)(µ, ν) = sup
f : X→[0,1] n.e.

∣∣∣∣∣∑
x∈X

f(x) · µ(x) −
∑
x∈X

f(x) · ν(x)

∣∣∣∣∣ (2)

where the supremum ranges over non-expansive functions f into [0, 1] equipped with the
Euclidean distance, i.e., such that |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ X. The equality
D↑(d) = D↓(d) is an instance (see [27, Particular case 5.16]) of a general result known as the
Kantorovich-Rubinstein duality (see [27, Theorem 5.10]).

A different example. The Kantorovich distance can be seen as a lifting of the distribution
functor on the category Set of sets and functions to the category PMet of pseudometric
spaces and non-expansive functions between them. We proceed with a quite different example
of a similar phenomenon: a lifting of a functor from Set to PMet≤1 the category of
pseudometric spaces bounded by 1 presented in two ways, as an infimum over a variant of
couplings and a supremum over non-expansive functions. This example describes a distance
between deterministic finite automata (DFA). Empty infima and suprema are defined w.r.t.
the interval [0, 1] where the pseudometrics take their values: sup ∅ = 0 and inf ∅ = 1.

2

We view DFA over an alphabet A as coalgebras for the functor F : Set → Set, F (X) =
2 × XA where 2 = {0, 1}. Coalgebras for this functor are of the form ⟨l, δ⟩ : X → 2 × XA,
where X is the set of states, the output function l : X → 2 describes which states are
accepting (l(x) = 1), and δ : X → XA is the transition function. As usual, a word ω ∈ A∗ is
accepted in a state x when, after reading ω starting on x we end up with an accepting state.

Given c ∈ [0, 1), the shortest-distinguishing-word-distance dsdw(x, y) between states x, y

is 0 if they recognise the same language and c|ω| for ω a shortest word that belongs exactly

2 The knowledge package is used throughout the paper. Most of the introduced vocabulary and notations
are clickable and the associated links brings the reader to their definitions.
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to one of the two languages recognised by x and y. As shown in [6], this distance can be
computed recursively as a fixpoint of the map Φ on pseudometrics X × X → [0, 1] given by

Φ(d)(x, y) =
{

1 if l(x) ̸= l(y)
c · maxa∈A{d(δ(x)(a), δ(y)(a))}

The shortest-distinguishing-word-distance can be obtained via a lifting F : PMet →
PMet of the Set functor F , mapping a pseudometric space (X, d) to a pseudometric space
(FX, Fd), that we will recall below. The operator Φ above factors through the pseudometric
Fd. Explicitly, it decomposes as Φ = Fd ◦ ⟨l, δ⟩.

In fact, just as in the Kantorovich-Rubinstein duality, the lifting F can be obtained in
two different ways. Given a pseudometric d : X × X → [0, 1] and (l1, δ1), (l2, δ2) ∈ 2 × XA, it
arises as a coupling-based lifting F

↓
d by:

F
↓(d)((l1, δ1), (l2, δ2)) = inf

(l,δ)∈F (X×X), F πi(l,δ)=(li,δi)

(
sup
a∈A

c · d(δ(a))
)

(3)

Here elements of 2 × (X × X)A are viewed as a variant of couplings.
Secondly we obtain F as a so-called codensity lifting by:

F
↑(d)((l1, δ1), (l2, δ2)) = sup

f : X→[0,1] n.e.
{|c · f(δ1(a)) − c · f(δ2(a))| | a ∈ A} ∪ {|l1 − l2|} (4)

where, as above, the supremum again ranges over non-expansive functions f . Just as for the
Kantorovich distance, we again obtain an equality of functors on PMet: F

↑ = F
↓.

Modalities as parameters. The abstract coupling-based and codensity liftings take as
input a single modality (coupling-based), or a set of modalities (codensity), known from
the semantics of coalgebraic modal logic. For the Kantorovich lifting, this modality is the
expected value function E : D([0, 1]) → [0, 1], which appears implicitly in both presentations.

In the case of deterministic automata, while a single modality suffices for the coupling-
based lifting, for the codensity lifting we actually use a set of modalities (one for each letter,
plus a modality for acceptance of states). This observation is important for the investigation
in this paper. Instead of aiming for a one-to-one matching of modalities, which we refer to as
a duality, we allow a coupling-based lifting specified by a single modality to be matched by a
codensity lifting specified by a set of modalities; we refer to this as a correspondence. This
allows us to cover examples such as DFA and way more, and circumvent the problem already
observed in [2]: even for the product functor with the modality max: [0, 1] × [0, 1] → [0, 1]
there is no duality. However, there is a correspondence, that is, multiple modalities are
needed for the codensity lifting to match the coupling-based one.

The idea of allowing multiple modalities for codensity liftings is not new and can be
found already at the origins of codensity liftings [19, 24, 21]. Here we show how it can be
used to generalise Kantorovich-Rubinstein dualities in a very concrete manner; the aim is to
define classes of functors and modalities for which we can explicitly describe correspondences
between associated coupling-based and codensity liftings.

Outline. We work at the general level of pseudometrics valued in a quantale; we recall the
definitions in Section 3. We then recall the abstract notions of coupling-based and codensity
liftings of functors along modalities, and formulate the problem of correspondences (Section 4).
In Section 5 we prove our main results on correspondences: we show that the class of functors
for which we have correspondences is closed under products and coproducts, and includes
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constant and identity functors, yielding a family of correspondences for simple polynomial
functors including DFA. In Section 6 we revisit the duality results for the finite powerset and
finite probability distribution functors. As a consequence we are able to study in Section 7 a
class of functors for which we have correspondences, generated by a grammar. The case of
conditional transition systems, for which we prove that there are no correspondences possible,
is treated in Section 8.

3 Preliminaries: quantales and pseudometrics

We use quantales to model a general notion of truth object, including both Booleans and
real number intervals. In this section we recall the necessary preliminaries on quantales, and
the associated general notion of pseudometrics valued in a quantale; instances include the
standard notion of pseudometrics on real numbers as well as equivalence relations.

▶ Definition 1. A quantale V is a complete lattice with an associative “and” operation
⊗ : V × V → V which is distributive over arbitrary joins. We only consider quantales that are
commutative, i.e., the operation ⊗ is commutative, unital, meaning ⊗ admits a unit element,
and affine, which means that the top element ⊤ is the unit of ⊗: x ⊗ ⊤ = x = ⊤ ⊗ x for all
x ∈ V.

Given a quantale V, there is an operation [−, −] : V × V → V that is characterised by
x ⊗ y ≤ z ⇔ x ≤ [y, z]. It is simply defined by [y, z] =

∨
{x ∈ V | x ⊗ y ≤ z}.

▶ Example 2. Any complete Boolean algebra is a quantale with ⊗ = ∧; in particular,
the usual Boolean algebra 2 = {⊥, ⊤} with ⊥ ≤ ⊤. In this case, [x, y] = ⊤ iff x ≤ y.
Any interval [0, M ] with M ∈ (0, ∞], given with reversed order and x⊗y = min(x+y, M)
the truncated sum is a quantale. Here the top element is given by ⊤ = 0, and the bottom
element by ⊥ = M . For this quantale, we have [x, y] = max{y − x, 0}. We write R for
the case that M = ∞, i.e., the non-negative real numbers extended with a top element.

We use quantales as an abstract notion of truth object; accordingly, we define a V-predicate
on a set X to be a map p : X → V. Of particular interest are V-pseudometrics. These are
predicates on X × X that are reflexive, symmetric and transitive in a suitable sense that can
be expressed at the general level of quantales.

▶ Definition 3. A V-pseudometric on a set X is a map d : X × X → V which is:
reflexive: d(x, x) = ⊤ for all x ∈ X,
symmetric: d(x, y) = d(y, x) for all x, y ∈ X,
transitive:

∨
z∈X d(x, z) ⊗ d(z, y) ≤ d(x, y) for all x, y ∈ X.

▶ Example 4. 2-pseudometrics are equivalence relations.
R-pseudometrics are the “usual” pseudometrics, that is, maps d : X × X → R such that
d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ R. To see why
we obtain the triangle inequality from transitivity, recall that the order on the quantale
is reversed w.r.t. the usual order on real numbers, and that ⊗ = +.

The order on a quantale V is extended pointwise to functions:

∀f, g : X → V, f ≤ g ⇔ (∀x ∈ X, f(x) ≤ g(x))

Given two V-pseudometrics dX and dY on sets X and Y respectively, a map f : X → Y

is a (V-pseudometric) morphism from dX to dY if dX ≤ dY ◦ (f × f). We write V-PMet for
the category whose objects are V-pseudometrics and arrows morphisms between them.
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▶ Remark 5. Because of the reversal of the order on R, morphisms of R-pseudometrics are
non-expansive maps. To avoid confusion with the quantale definition, we refrain from using
the word non-expansive altogether, and replace it by (V-pseudometric) morphism instead.

The following canonical V-pseudometric is essential for the notion of codensity lifting.

▶ Definition 6. The Euclidean pseudometric de : V × V → V is defined as follows:

de(x, y) = [x, y] ∧ [y, x]

▶ Example 7. For the quantale 2, the Euclidean pseudometric de : 2 × 2 → 2 sends equal
elements to ⊤ and different ones to ⊥.
For the quantale R, the Euclidean pseudometric de : R × R → R instantiates to the usual
Euclidean distance, i.e., de(x, y) = |y − x|.

4 Liftings, dualities, and correspondences

In this section we recall the definitions of coupling-based and codensity liftings from the
literature (Section 4.2) and define the problem of their correspondence. This is followed by a
few technical tools that we use in the proofs of correspondence (Section 4.3). We start with
the notion of (well-behaved) modality (Section 4.1), used in these liftings.

4.1 Well-behaved modalities
Given a Set endofunctor F , a modality for F is a function τ : FV → V. Modalities are
standard in the semantics of coalgebraic modal logic [23]. Note that here we assume V to be
a quantale, to have a suitable notion of pseudometrics.

In order for coupling-based liftings to be well-defined some particular conditions on the
functor and the associated modalities are needed. The underlying functor F is assumed to
preserve weak pullbacks. In this context, we say τ is well-behaved [2] when:

it is monotone, meaning that for all V-predicates p ≤ q we have τ ◦ F (p) ≤ τ ◦ F (q),
for all V-predicates p and q, τ ◦ F (p ⊗ q) ≥ (τ ◦ Fp) ⊗ (τ ◦ Fq),
with i : {⊤} ↪→ V the inclusion map, Fi(F{⊤}) = τ−1(⊤).

▶ Example 8. On the identity functor, with the quantale R, a modality is just a map
τ : V → V. It is well-behaved if and only if it is monotone, subadditive (i.e., τ(r + s) ≤
τ(r) + τ(s)), and satisfies τ(0) = 0.
For the finite powerset functor P mapping a set X to the set of its finite subsets P(X),
with the same quantale R, the maximum function is well-behaved.
For the finite distribution functor D mapping a set X to the set of its finitely supported
probability distributions D(X), with the quantale [0, 1], the map E : D([0, 1]) → [0, 1]
giving the expected value of a probability distribution is well-behaved.

In the rest of this paper we consider constant, identity, finite powerset, finite probability
distribution functors, and combine them using products and coproducts. All these functors
preserve weak pullbacks (see [14, Propositions 4.2.6 and 4.2.10] for example), ensuring we
can consider well-behaved modalities for them.

Well-behaved modalities can be constructed from existing ones. The case of composition
is a generalisation to quantales of a particular case of [2, Theorem 7.2].

▶ Proposition 9. Given three arbitrary well-behaved modalities τ , τ ′ : FV → V and τ Id : V →
V, the following modalities are again well-behaved: τ Id ◦ τ , τ ⊗ τ ′ and τ ∧ τ ′.
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4.2 Liftings and correspondences
Given a functor P : C → D, a lifting of a D-functor F : D → D from D to C is a functor
F : C → C such that P ◦ F = F ◦ P . Here we only consider the case when D = Set and
C = V-PMet, with P the forgetful functor sending a V-pseudometric of type X × X → V to
its underlying set X and acting as the identity on arrows. We define coupling-based liftings,
codensity liftings, and the associated notion of correspondence that we study here.

Given t1, t2 ∈ FX, a coupling of t1 and t2 is an element t ∈ F (X × X) such that
Fπi(t) = ti. The set of couplings of t1 and t2 is denoted by Ω(t1, t2). In particular, if
F = D is the distribution functor on Set, these are precisely probabilistic couplings: joint
distributions on X ×X whose marginals coincide with given distributions t1, t2. The following
lifting arises from [11]. See also [6]. It is not referred to in the literature as “coupling-based”;
we use this terminology to distinguish it from the codensity lifting.

▶ Definition 10. Let F : Set → Set be a functor which preserves weak pullbacks, and let τ

be a well-behaved modality for F . The coupling-based lifting of F to V-PMet is given by,
with d ∈ V-PMet and t1, t2 ∈ FX:

F ↓
τ (d)(t1, t2) =

∨
t∈Ω(t1,t2)

τ ◦ Fd(t)

▶ Example 11. In Section 2, we studied a coupling-based lifting for DFA, which yields
the shortest-distinguishing-word-distance. To see this as an instance of Definition 10, the
quantale is V = [0, 1] as introduced in Section 3, the functor F is the one mapping a set X

to 2 × XA. The well-behaved modality takes as argument an element (l, δ) ∈ 2 × VA and
returns

∧
a∈A c · δ(a) for some c ∈ [0, 1). The resulting lifting is precisely the one given in

Equation (3).

The codensity lifting is defined in a very general setting for monads in [19]. Here, we use
an instance, which appears in [24, 21] and, for a single modality, in [2].

▶ Definition 12. Let F : Set → Set, and let Γ be a family of modalities for F . The codensity
lifting of F along Γ to V-PMet is defined by, with d ∈ V-PMet and t1, t2 ∈ FX:

F ↑
Γ(d)(t1, t2) =

∧
τ∈Γ, f : d→de

de(τ ◦ Ff(t1), τ ◦ Ff(t2))

Note that the maps f : d → de in the definition of the codensity lifting are V-pseudometric
morphisms, so that, for instance, in R, they correspond to non-expansive maps (cf. Remark 5).

▶ Example 13. In the example of Section 2 the codensity lifting has one modality mapping
(l, δ) ∈ 2 × VA to l, as well as one modality τa for each letter a ∈ A given by τa(l, δ) = c · δ(a).
The resulting codensity lifting coincides with the lifting given in Equation (4).

Note that the coupling-based liftings are only allowed to have one modality, whereas the
codensity ones may have multiple modalities. Informally, one of the reasons coupling-based
liftings do not require multiple modalities can be seen by looking again at the functor for
DFA. Recall that it maps a set X to 2 × XA for 2 = {0, 1} and A an alphabet. Considering
couplings forces comparisons using d to be done separately on each letter. Codensity liftings
instead use one modality per letter to ensure a similar condition. On a higher level of
abstraction, the multiple modalities of codensity liftings relate to the expressivity of some
modal logics (see, e.g., [20]). On the other hand, the unique modality for coupling-based
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liftings has often been called an evaluation function (see [2]). Having only one way of
evaluating something seems natural in a given evaluation context.

In the rest of this paper we study possible equalities between the coupling-based and
codensity liftings. In general, we allow a well-behaved modality for the coupling-based
liftings to be matched by a set of (different) modalities for the codensity lifting. In case the
modalities are the same, we call this Kantorovich-Rubinstein duality.

▶ Definition 14. Let F : Set → Set be a weak-pullback preserving functor, τ : FV → V a
well-behaved modality, and Γ a set of modalities for F . A correspondence is a triple of the
form (F, τ , Γ) such that the associated coupling-based and codensity liftings coincide, as in:

F ↓
τ = F ↑

Γ

If Γ = {τ} then we refer to this as Kantorovich-Rubinstein duality, or simply duality.

Two correspondences (F, τ1, Γ1) and (F, τ2, Γ2) for the same functor are called equivalent
when they yield the same liftings:

F ↓
τ1

= F ↑
Γ1

= F ↑
Γ2

= F ↓
τ2

This is denoted by (F, τ1, Γ1) ∼ (F, τ2, Γ2).
When the associated liftings are not equal but one inequality holds nonetheless such as

F ↓
τ1

= F ↑
Γ1

≤ F ↑
Γ2

= F ↓
τ2

we write (F, τ1, Γ1) ≤ (F, τ2, Γ2).

4.3 Kantorovich-Rubinstein dualities and tools to get them
The focus of this paper is on general correspondences between coupling-based and codensity
liftings, but in some cases there is the stronger property of Kantorovich-Rubinstein duality,
meaning correspondences like (F, τ , {τ}). In the remainder of this section we consider a few
technical definitions and results that are useful in obtaining such duality results.

First, coupling-based liftings are always smaller than codensity liftings. This is a known
result; it is a direct consequence of codensity liftings being initial in a well-chosen category as
shown in [10]. It can also be found in [2, Theorem 5.27] in the particular case of the quantale
[0, M ] as presented in Section 3.

▶ Proposition 15. Given a Set endofunctor F and an associated well-behaved modality, we
have F ↓

τ ≤ F ↑
{τ}.

Hence to get a Kantorovich-Rubinstein duality, we only need the other inequality. Two
tools are introduced for that: optimal couplings to know the value of coupling-based liftings
and optimal functions to know that of codensity liftings.

Given a functor F : Set → Set, an associated modality τ , a V-pseudometric d : X×X → V ,
and t1, t2 ∈ FX, an optimal coupling is a coupling t ∈ F (X × X) of t1 and t2 such that

F ↓
τ d(t1, t2) = τ ◦ Fd(t)

When for all d, t1, and t2 either an optimal coupling exists or no couplings of t1 and t2 exist
we say that F has all optimal couplings. Optimal couplings are well-known in the context of
transport theory [27] and in existing proofs of duality for the finite powerset functor [12, 2].
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We note that, whenever all elements in a class of functors F have all optimal couplings, then
functors in the closure of F by coproducts and products do too.

An optimal function for a functor F , an associated modality τ , a V-pseudometric d : X ×
X → V, and t1, t2 ∈ FX is a morphism in V-PMet f : d → de such that:

F ↑
{τ}d(t1, t2) = de(τ ◦ Ff(t1), τ ◦ Ff(t2))

In the context of the general continuous Kantorovich-Rubinstein duality from optimal
transport theory such optimal functions do exist (see [27, proof of Theorem 5.10]) but are
not explicitly defined. As we will see they exist for all the functors we consider.

The following lemma is useful to design optimal functions. It is well-known in the context
of quantale-enriched categories. Instead of defining some pseudometric morphism f : d → de

on X as a whole, it can be defined on Y ⊆ X only, first as some morphism g : d ◦ i → de and
then extended using the lemma. This is useful when only parts of X are of interest, say some
subset of it for the powerset functor, or the support of some probability distribution for the
distribution functor. The extension of g to f from Y to X is done by giving the greatest
values to f on X\Y while ensuring it is a V-pseudometric morphism.

▶ Lemma 16. Let d : X × X → V be a V-pseudometric, and Y
i
⊆ X. For all V-pseudometric

morphisms g : d ◦ (i × i) → de there exists f : d → de s.t. g = f ◦ i and f is the least such
morphism.

5 Correspondences through coproducts and products

In this section we obtain new correspondences between coupling-based and codensity liftings,
for polynomial functors. More specifically, given a set of functors F and associated correspon-
dences (F, τF , ΓF ), these are extended to correspondences for the coproduct (Section 5.1) and
product (Section 5.2) of the underlying functors. In Section 5.3 we study correspondences for
constant and identity functors. Finally in Section 5.4 we combine these results to describe
several collections of functors for which we have correspondences. Throughout this section
we fix a quantale V.

5.1 Coproduct functors
We start by showing that correspondences are closed under coproducts. Given sets Si we
write κj for the jth coprojection κj : Sj →

∐
Si.

▶ Proposition 17. Given correspondences (Fi, τi : FiV → V, Γi) there is a correspondence(∐
Fi, [τi],

⋃
Γi

)
where Γi = {τ | τ ∈ Γi} ∪ {τ⊤,i};

the map [τi] :
∐

FiV → V is the cotupling of the individual modalities; for τ ∈ Γi,

τ(x) =
{

τ(y) when there exists y ∈ FiV and x = κiy

⊤ otherwise

and finally, τ⊤,i(x) =
{

⊤ when there exists y ∈ FiV and x = κiy

⊥ otherwise
.
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When there are no couplings for two given elements, as it happens for instance for elements
in different components of a coproduct, the coupling-based lifting always gives the value ⊥.
The modalities τ⊤,i are there to ensure that the codensity lifting also gives the value ⊥ in
this case. The other modalities are just the extensions of the modalities from the components
of the coproduct to the coproduct itself.

▶ Remark 18. Proposition 17 gives a correspondence but not a duality, in the sense of Defi-
nition 14, that is, the correspondence relates a single modality for the coupling-based lifting
to a set of modalities for the codensity lifting. This is the case even if the correspondences of
the component functors Fi are dualities.

As it turns out, the inverse process of going from a correspondence at the level of the
coproduct to correspondences for its components is also possible:

▶ Proposition 19. If there is a correspondence (
∐

Fi, τ , Γ), then there are correspondences
(Fi, τ ◦ κi, Γ ◦ κi) for each i.

Going back and forth between the components of a coproduct and the coproduct itself using
the results above gives back the same correspondences:

▶ Proposition 20. Whenever one of the correspondences on the left exists we also have the
corresponding equivalence:

(Fi, τi, Γi) ∼
(

Fi, [τj ] ◦ κi,
⋃

Γj ◦ κi

)
and(∐

Fi, τ , Γ
)

∼
(∐

Fi, [τ ◦ κi],
⋃

Γ ◦ κi

)
This shows that all correspondences on the coproduct arises as in Proposition 17.

5.2 Product functors
We turn to the construction of correspondences for products from ones on their components.
For this, we ask for some kind of distributivity condition on the quantale. In fact, the case
of products is more involved than that of coproducts. Each of the three propositions for
coproducts above has a version for products, but each gets their own specific restrictions in
the form of conditions on the quantale and modalities or even on the statement itself.

There are several possibilities depending on the number of couplings and on whether we
want finite or arbitrary products. Below, we say that a functor F has finite couplings if, for
any t1, t2 ∈ FX, the set Ω(t1, t2) ⊆ F (X × X) of couplings is finite.

▶ Proposition 21. Let (F, τF , ΓF ) and (G, τG, ΓG) be correspondences. If one of the following
conditions holds:
1. F and G have finite couplings and V is distributive, meaning for all x, y, z ∈ V, we have

that (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ z; or,
2. V is join-infinite distributive: for all x ∈ V and V ⊆ V, x ∧

∨
V =

∨
{x ∧ v | v ∈ V };

then we have a correspondence (F × G, (τF ◦ π1) ∧ (τG ◦ π2), (ΓF ◦ π1) ∪ (ΓG ◦ π2)).

Under stronger distributivity conditions, this can be extended to infinite products.

▶ Proposition 22. Let (Fi, τFi
, ΓFi

) be correspondences. If one of the following holds:
1. Fi has finite couplings and V is meet-infinite distributive, meaning that for all x ∈ V and

V ⊆ V, x ∨
∧

V =
∧

{x ∨ v | v ∈ V }; or,
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2. V is completely distributive, meaning that for all sets K ⊆ I × J such that K projects
onto I, and any subset {xij | (i, j) ∈ K} ⊆ V,

∧
i∈I

(∨
j∈K(i) xij

)
=
∨

f∈A

(∧
i∈I xif(i)

)
where A = {f : I → J | ∀i ∈ I, f(i) ∈ K(i)};

then we have a correspondence (
∏

Fi,
∧

(τFi
◦ πi),

⋃
(ΓFi

◦ πi)).

▶ Example 23. The quantales 2 and [0, M ] from Example 2 are both completely distributive.

Replacing the infinite distributivity conditions on the quantale by countably infinite
versions directly gives similar statements for countable products.

In order for the inverse process from products to components to be uniquely defined
we first need to ensure that the functor has been decomposed as much as possible using
coproducts following Propositions 17, 19, and 20. The following well-known lemma is useful
for this (see [22, Proposition 1.3.12]):

▶ Lemma 24. Let F : Set → Set be a functor. There is a family of functors {Fi}i∈F {⊤}
indexed by F{⊤} such that F ≃

∐
Fi, and if Fi =

∐
Gj then all Gj but one are the empty

functor sending any set to the empty set.

Having characterised how functors decompose along coproducts and how correspondences
work with regard to such decompositions, we can now assume functors not to be writable as
non-trivial coproducts meaning that if a functor can be written as a coproduct, all but one
of the components must be the empty functor. Furthermore we assume for convenience that
functors are not empty functors. Those two hypotheses can be formalised as follows: by the
previous lemma, functors send {⊤} and by extension any singleton to a singleton. Hence,
given τ well-behaved, with i : {⊤} ↪→ V, Fi(F{⊤}) = τ−1(⊤) must be a singleton.

▶ Proposition 25. Given a correspondence
(∏

i∈I Fi, τ , Γ
)
, we again have correspondences(

Fi, τ |i, Γ|i
)

where τ |i(x) = τ(⊤1, . . . , ⊤i−1, x, ⊤i+1, . . . , ⊤I), with (⊤j)j = τ−1(⊤) and
similarly for modalities in Γ|i.

In a similar fashion as for the coproduct, we would like that going back and forth between
products and their components, following Proposition 21 or 22 and Proposition 25, preserves
correspondences. We can only do that partially:

▶ Proposition 26. Whenever the correspondences on the left exist and we have the right
distributivity conditions from Proposition 21 or 22 for the correspondence on the right to
exist, we have the following equivalence and inequality:

(Fi, τi, Γi) ∼
(

Fi,
(∧

(τ j ◦ πj)
)

|i
,
(⋃

(Γj ◦ πj)
)

|i

)
(∏

Fi, τ , Γ
)

≤
(∏

Fi,
∧

(τ |i ◦ πi),
⋃

(Γ|i ◦ πi)
)

The inequality comes from the following aspect of the proof. When using the correspondences
on the components of a product of functors to retrieve a correspondence on the product itself,
a choice is made to build modalities for the product. The natural choice of using a meet
ensures the inequality while there is no obvious way to get an equivalence of correspondences.

5.3 Constant and identity functors
In this subsection we give correspondence results for constant functors, and for the identity
functor. For constant functors, the essence is given by the constant-to-1 functor.
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▶ Proposition 27. The triple (1, τ , Γ) with the functor 1 sending any set to a fixed singleton
is a correspondence if and only if Γ = {τ} and τ is the constant to ⊤ modality.

Proof. We write 1 = {∗}.
⇒: as modalities τ : {∗} → V are assumed well-behaved, given the inclusion i : {⊤} ↪→ V

we must have 1i[1{⊤}] = τ−1(⊤) which translates to τ−1(⊤) = {∗}.
⇐: both liftings lift all pseudometrics to the one constant to ⊤. ◀

Next, we extend this result to arbitrary constant functors. There is only one correspondence
result in this case.

▶ Corollary 28. For A a set, denoting by A the associated constant functor mapping all sets
to A, there is a correspondence (A, τ⊤, {τa | a ∈ A}) with τ⊤ the constant to ⊤ modality and

τa(b) =
{

⊤ when b = a

⊥ otherwise

Furthermore, any other correspondence (A, τ, Γ) is equivalent to (A, τ⊤, {τa | a ∈ A}).

Proof. This is a direct consequence of Propositions 17, 19, 20 and 27 viewing the functor
constant and equal to A as a coproduct:

A ≃
∐
a∈A

1 ◀

We give a general duality result for the identity functor Id acting as the identity on both
sets and functions, generalising [2, Example 5.29]. An instance of well-behaved modalities
for the identity functor was discussed in Example 8.

▶ Proposition 29. For any well-behaved modality τ : V → V for the identity functor, there is
a correspondence (Id, τ , {τ}).

Proof. By Proposition 15 we need only prove

Id↓
τ ≥ Id↑

τ

Let X be a set, d : X × X → V a V-pseudometric, and x, y ∈ X. There is exactly one
coupling of x with y given by (x, y). In particular it is optimal:

Id↓
τ d(x, y) = τ(d(x, y))

Furthermore,

Id↑
τ d(x, y) =

∧
f : d→de

de(τ ◦ f(x), τ ◦ f(y))

Using Lemma 16, we define f : d|{x} → de by f(x) = ⊤ and extend it to a morphism
f : d → de. This gives f(y) = d(x, y) so that de(τ ◦ f(x), τ ◦ f(y)) = τ(d(x, y)). Hence

Id↑
τ d(x, y) ≤ τ ◦ d(x, y) = Id↓

τ d(x, y)

ending the proof. Note that f is a fortiori an optimal function. ◀



S. Humeau, D. Petrisan, and J. Rot 13

5.4 Putting it together: correspondences for polynomial functors
Having seen correspondences for products, coproducts, the identity functor, and constant
functors, we combine these results to obtain a “grammar” of functors with correspondences.

We start without products. Using Propositions 17 and 29 as well as Corollary 28 gives
correspondences for functors in the following grammar of Set endofunctors:

F ::= A | Idτ |
∐

Fi

where τ indicates choices of well-behaved modalities in the case of the identity functor.
Furthermore by Propositions 20 and 29 and Corollary 28, any coupling-based lifting of a
functor in this grammar is equivalent to a correspondence given by our construction.

Observing that for a set A,
∐

a∈A F ≃ A × F , the grammar can equivalently be defined as

F ::= A | Idτ | A × F |
∐

Fi

where τ is a well-behaved modality for the identity functor. We can also note that these
functors are exactly those isomorphic to A + B × Id for some sets A and B.

▶ Example 30 (Discounting on streams). Consider the stream functor X 7→ A × X for some
alphabet A. The associated final coalgebra is the set of streams Aω. The results above tell
us that to get a correspondence we need one well-behaved modality τ : V → V per letter
a ∈ A for the codensity lifting, through the isomorphism A × Id ≃

∐
a∈A Id: we have a

way of computing distance between streams in a specific way for each letter in A. When
V = ([0, M ], ≥, +) for some real number M ∈ (0, ∞], choosing τa(x) = c · x, the constant
c is then a discount factor allowing one to give more value to the first letters of a stream.
We can choose a different constant ca for each letter a giving different values to different
letters. We can also go further: if we do not want a linear discount we can use arbitrary
well-behaved modalities for the identity functor. On the quantale ([0, M ], ≥, +), those are
exactly sub-additive monotone maps mapping 0 to 0.

We also get correspondences for the following grammar of simple polynomial functors:

F ::= A | Idτ | A × F |
∐

Fi |
∏

Fi

These functors all have finite couplings. Following Propositions 21 and 22 we can either
get finite or arbitrary products in the grammar above by assuming V to be distributive or
meet-infinite distributive respectively.

▶ Example 31. We retrieve the correspondence of Section 2 as the particular case of the
quantale ([0, M ], ≥, +), the functor 2×IdA, and indexed modalities τ for the identity functors
always mapping x ∈ [0, M ] to c · x for some c ∈ [0, 1). Replacing [0, M ] by the usual Boolean
quantale 2 = {⊤, ⊥} and indexed modalities by the identity functions gives a correspondence
equivalent to the usual relation lifting [14] associated to behavioural equivalence of DFA.

6 Dualities for the powerset and probability distribution functors

We give duality results for the powerset functor mapping a set X to the set of its subsets
PX, recovering a result from the literature [2, 12] reproduced here as Corollary 35, and
complementing it with a duality result where V is a total order (Corollary 34).
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▶ Remark 32. The non-empty powerset functor P≥1 mapping a set X to the set of its
non-empty subsets might have been chosen instead of P. Note that P = 1 + P≥1. Up-to
equivalence, as a consequence of Propositions 17, 19 and 27 a correspondence for P is exactly
given by one for P≥1 and conversely.

Given T1, T2 ∈ PX, t1 ∈ T1, and a V-pseudometric d : X × X → V, we write Mt1 for
the set of maximal elements of {d(t1, t2) | t2 ∈ T2}, and similarly for elements t2 ∈ T2.
Expressing a coupling-based lifting as a codensity one in a correspondence implies turning a
join in a meet. The following proposition gives a condition allowing one to do that in the
case of the powerset functor by making a modality absorb a meet.

▶ Proposition 33. Let τ : PV → V be a well-behaved modality. If for every V-pseudometric
d : X × X → V and sets T1, T2 ∈ PX the following equality holds

τ
{∨

Mt1 | t1 ∈ T1

}∧
τ
{∨

Mt2 | t2 ∈ T2

}
= τ

(( ⋃
t1∈T1

Mt1

)
∪

( ⋃
t2∈T2

Mt2

))

then there is a duality (P, τ , {τ}).

▶ Corollary 34. Let τ : PV → V be a well-behaved modality. If the order on V is total then
there is a duality (P, τ , {τ}).

▶ Corollary 35. We assume V to be completely distributive. We have duality for the coupling-
based and codensity liftings of the powerset functor, both along the meet modality which maps
a subset of V to the meet of its elements.

For the probability distribution functor we fix a constant M ∈ (0, ∞] and use the quantale
([0, M ], ≥, +). The following (Kantorovich-Rubinstein) duality result is well-known (see,
e.g., [27, Theorem 5.10] for a general proof in the continuous case and [16, Appendix A] for
the discrete finite case):

▶ Proposition 36. There is a duality (D,E, {E}) with D the finite probability distribution
functor and E giving the expectation of probability distributions.

We extend this result slightly to allow post-composition by well-behaved modalities:

▶ Proposition 37. Let τ : [0, M ] → [0, M ] be a well-behaved modality. If τ is additive, meaning
that for all x, y ∈ [0, M ], τ(x + y) = τ(x) + τ(y), then there is a duality (D, τ ◦ E, {τ ◦ E}).

7 Correspondences for grammars of functors

In this section we combine the results from the previous two sections, allowing the construction
of correspondences for certain classes of functors including powerset, distribution, identity
and constant functors, as well as products and coproducts thereof.

Whenever V is totally ordered and completely distributive, using results from Sections 5
and 6 we can construct correspondences for the following grammar of functors:

F ::= A | Idτ | Pτ |
∏

Fi |
∐

Fi

where the indices τ are well-behaved modalities for either the identity or powerset functors.
Noting that P

(∐
i∈I Fi

) ∼=
∏

i∈I P(Fi), this grammar can be reformulated as follows:

G ::= A | Idτ | A × G |
∐

G

F ::= A | Idτ | P ◦ G |
∏

Fi |
∐

Fi
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where the indices of the form τ indicate a choice of possible well-behaved modalities for the
identity functor when appearing in F and for the powerset functor when appearing in G.

▶ Example 38. In a similar fashion as in Example 31, considering the completely distributive
quantale ([0, M ], ≥, +), the functor 2×PA which is associated to non-deterministic automata,
and indexed modalities for the powerset functors to be all mapping finite subsets V ⊂ [0, M ]
to c · max(V ) for a fixed c ∈ [0, 1), we get a lifting associated to a shortest-distinguishing-
word-distance for non-deterministic systems as is detailed in Section 2 for DFA.

▶ Remark 39. This grammar with finite products only defines a fragment of finitary Kripke
polynomial functors as defined in [14] which correspond to replacing P(G) by P(F ), and
having only finite products but including arbitrary exponents.
▶ Remark 40. Using the identity modality for the identity functors and the meet modality
for the powerset functors, the modalities given by this construction for the coupling-based
liftings are exactly the canonical evaluation maps as defined in [6].

In the particular case of V = [0, M ] we can extend the above grammar with the finite
probability distribution functor and get correspondence results for the following:

F ::= A | Idτ | Pτ | Dτ |
∏

Fi |
∐

Fi

where the indices τ indicate choices of well-behaved modalities for either the identity, powerset,
or distribution functors, furthermore of a modality of the form τ ◦E for the latter as described
in Proposition 37.

Observe that D
(∐

i∈I Fi

) ∼= D(I) ×
∏

i∈I D(Fi) so that the grammar above can be
expressed as follows:

G ::= A | Idτ | A × G |
∐

G

F ::= A | Idτ | P ◦ G | D ◦ G |
∏

Fi |
∐

Fi

where the indices τ indicate choices of possible well-behaved modalities for the identity
functor in Idτ and for the powerset or distribution functors when appearing in G for P ◦ G

and D ◦ G respectively.

▶ Example 41. We fix M = 1 so that V = [0, 1]. Consider the functor D(1 + Id)A for a
set of labels A and 1 a singleton as in Proposition 27. It is associated to labelled Markov
processes. To get a correspondence we need one modality τa : D[0, 1] → [0, 1] per label a ∈ A.
By Proposition 37 we can take them all to be τa(µ) = c ·E(µ) with c ∈ [0, 1) a fixed constant.
The resulting correspondence is associated to the usual metrics for labelled Markov processes
as introduced in [8]. This is a direct consequence of [26, Proposition 29] which expresses the
associated lifting for one label in a “codensity-like” manner.

8 A counter-example: conditional transition systems

We now highlight an example where a correspondence can not be provided by our construction:
some codensity lifting may not be obtained as a coupling-based lifting.

A conditional transition system (CTS) over an alphabet A and a partially ordered set
of conditions (L, ≤) is a tuple (X, A, L, δ) where X is a set of states and the transition
map δ : X × A → ((L, ≤) → (P(X), ⊇)) associates to each pair (x, a) ∈ X × A a monotone
function δx,a from the poset of conditions to P(X). For the associated functor to live in
Set we restrict to the CTSs for which L is trivially ordered by ∀x, y ∈ L, x ≤ y. Hence
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any map δx,a : L → P(X) is monotone, and CTSs are exactly coalgebras for the functor
F = P(−)A×L (see [4]).

The associated bisimulations, not detailed here, are related to a lifting F : P(L)-PMet →
P(L)-PMet of F defined by

Fr(T1, T2) = {l ∈ L | ∀a ∈ A,∀(x, y) ∈ T1(l, a) × T2(l, a),
∃(x′, y′) ∈ T1(l, a) × T2(l, a),

(l ∈ r(x, y′)) and (l ∈ r(x′, y))}

on objects and Ff = Ff on maps.

▶ Proposition 42. For a ∈ A consider a modality τa : P(P(L))L×A → P(L), defined by :

∀f : L × A → P(P(L)), τa(f) = {l ∈ L | l ∈ ∩f(l, a)}

The codensity lifting defined by the family (τa)a∈A of modalities is equal to F .

▶ Proposition 43. If A is non-empty and |L| ≥ 2 then there is no well-behaved modality
τ : P(P(L))L×A → P(L) such that the resulting coupling-based lifting is equal to F .

Proof. Let a ∈ A be some letter and c1, c2 ∈ L be two distinct conditions. Consider
d : X × X → P(L) constant to ⊤, that is, L. It is obviously a P(L)-pseudometric. Finally
we consider T1, T2 ∈ P(X)L×A such that T1(c1, a) = ∅ and T1(c2, a) = X, and T2(c1, a) =
T2(c2, a) = X. Directly, because T1(c1, a) = ∅ but T2(c1, a) ̸= ∅ there are no couplings of T1
and T2, and for all well-behaved modalities, F ↓

τ d(T1, T2) = ∅. On the other hand,

∀(x, y) ∈ T1(c2, a)×T2(c2, a), ∃(x′, y′) ∈ T1(c2, a)×T2(c2, a), (l ∈ d(x, y′)) and (l ∈ d(x′, y))

Hence c2 ∈ Fd(T1, T2) ̸= ∅. ◀

Hence, conditional transition systems give a limitation to the correspondence results
provided above. Note however that the associated functor has a correspondence induced by
a grammar above. The reason it is not equivalent to the lifting F is that it considers the
set L × A as being a set of actions, while we want conditions in L to be independent of one
another and compared separately. Indeed, conditions are fixed throughout the execution of a
CTS whereas actions may change at each step.

9 Conclusions and future work

We have studied correspondences between coupling-based and codensity liftings, moving
from the classical Kantorovich-Rubinstein duality for distributions to different types of
endofunctors on Set. In particular, we have shown that such types of correspondences are
closed under coproducts and products and used that to provide explicit correspondences for
several grammars of functors, including polynomial functors with the possibility of extending
them using the powerset and the probability distribution functors. This instantiates to
usual liftings of functors associated to (non)deterministic finite automata, or labelled Markov
processes, both with discount.

In [10] the authors have shown that on an abstract level all coupling-based liftings are
in fact codensity liftings, implying that all coupling-based liftings have some associated
correspondences. Section 8 shows that the converse does not hold by providing an example of
lifting that arises as a codensity lifting but not as a coupling-based one. Our work proves that
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correspondences for coproducts of functors are characterised by ones for the components of the
coproducts, but gives no such result for products of functors. For example we could consider
the coupling-based lifting of the diagonal functor ∆: X 7→ X × X along the well-behaved
modality ⊗ : V × V → V. The question of whether it arises from coupling-based liftings of
the identity functors, and the problem of relating it to a codensity lifting in a correspondence
remain open. Note however that if coupling-based liftings require their modalities to be
well-behaved, codensity liftings, as defined in [10] need no such assumption and can be
defined along sets of any modalities. Hence it is possible that to see the coupling-based lifting
of ∆ along ⊗ as a codensity lifting it is needed to consider general modalities for the latter.

In Section 8 we have seen that a certain lifting for conditional transition systems can not
be obtained as a coupling-based lifting. This leads to the question of whether the definition
of coupling-based liftings could be extended somehow to encompass this example and obtain
a correspondence with the existing codensity lifting.
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A Proofs for Section 4 (Liftings, dualities, and correspondences)

▶ Proposition 9. Given three arbitrary well-behaved modalities τ , τ ′ : FV → V and τ Id : V →
V, the following modalities are again well-behaved: τ Id ◦ τ , τ ⊗ τ ′ and τ ∧ τ ′.

Proof. Let p, q be V-predicates such that p ≤ q:
Monotonicity: by hypothesis

τ Id ◦ Id(τ ◦ Fp) ≤ τ Id ◦ Id(τ ◦ Fq)

directly giving monotonicity for τ Id ◦ τ .
Monotonicity of τ op τ ′ for op ∈ {⊗,

∧
} is given by that of τ , τ ′, and op (in both its

arguments).
Second condition: as τ and τ Id are both well-behaved

(τ Id ◦ τ) ◦ F (p ⊗ q) = τ Id(τ ◦ F (p ⊗ q))
≥ τ Id((τ ◦ Fp) ⊗ (τ ◦ Fq))
= τ Id ◦ Id((τ ◦ Fp) ⊗ (τ ◦ Fq))
≥ (τ Id ◦ τ)Fp ⊗ (τ Id ◦ τ)Fq

By hypothesis both τ and τ ′ are monotone. As ⊗ is monotone in both its arguments:

(τ ◦ F (p ⊗ q)) ⊗ (τ ′ ◦ F (p ⊗ q)) ≥ ((τ ◦ Fp) ⊗ (τ ◦ Fq)) ⊗ ((τ ′ ◦ Fp) ⊗ (τ ′ ◦ Fq))

and the associativity and commutativity of ⊗ allow us to conclude.
Finally, for τ

∧
τ ′:

(τ
∧

τ ′) ◦ F (p ⊗ q) = (τ ◦ F (p ⊗ q))
∧

(τ ′ ◦ F (p ⊗ q))

≥ ((τ ◦ Fp) ⊗ (τ ◦ Fq))
∧

((τ ′ ◦ Fp) ⊗ (τ ′ ◦ Fq))

≥ ((τ ◦ Fp)
∧

τ ′ ◦ Fp) ⊗ ((τ ◦ Fq)
∧

τ ′ ◦ Fq)

where the last inequality is given by monoticity of ⊗.
Last condition:

(τ Id ◦ τ)−1(⊤) = τ−1(τ−1
Id (⊤))

= τ−1(⊤) (as τ Id is well-behaved)
= Fi(F{⊤}) (as τ is well-behaved)

For τ ⊗ τ ′, note that for all x, y, x = x ⊗ ⊤ ≥ x ⊗ y, so that x ⊗ y = ⊤ if and only
if x = ⊤ = y. The same holds replacing ⊗ by

∧
so that what we do here proves the

condition for τ
∧

τ ′ too. We get (τ ⊗ τ ′)−1(⊤) = (τ−1(⊤)) ∩ (τ ′−1(⊤)) = Fi(F{⊤}).
◀

▶ Proposition 15. Given a Set endofunctor F and an associated well-behaved modality, we
have F ↓

τ ≤ F ↑
{τ}.

Proof. We want to prove that given any V-pseudometric d : X × X → V and t1, t2 ∈ FX we
have ∨

t∈Ω(t1,t2)

τ ◦ Fd(t) ≤
∧

f : d→de

de(τ ◦ Ff(t1), τ ◦ Ff(t2))
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To do that we only need proving that for every f : d → de and t ∈ Ω(t1, t2) we have

τ ◦ Fd(t) ≤ de(τ ◦ Ff(t1), τ ◦ Ff(t2))

We have the following:

de(τ ◦ Ff(t1), τ ◦ Ff(t2)) = de(τ ◦ Ff(Fπ1(t)), τ ◦ Ff(Fπ2(t2)))
= de(τ ◦ F (f ◦ π1)(t), τ ◦ F (f ◦ π2)(t2))
= de(τ ◦ F (π1 ◦ (f × f))(t), τ ◦ F (π2 ◦ (f × f))(t2))
= de(τ ◦ Fπ1(F (f × f)(t)), τ ◦ Fπ2(F (f × f)(t2)))

For i, j ∈ {1, 2} and i ̸= j, by definition of de we have de ≤ [πi, πj ] and hence de ⊗πi ≤ πj .
Applying F and then τ , τ ◦ F (de ⊗ πi) ≤ τ ◦ F (πj). Because τ is well-behaved this gives
τ ◦ F (de ⊗ πi) ≥ τ ◦ F (de) ⊗ τ ◦ F (πi) so that τ ◦ F (de) ⊗ τ ◦ F (πi) ≤ τ ◦ F (πj) and then
[τ ◦ F (πi), τ ◦ F (πj)] ≥ τ ◦ F (de) and finally de((τ ◦ Fπ1)(t), (τ ◦ Fπ2)(t)) ≥ (τ ◦ F )de(t). ◀

▶ Lemma 16. Let d : X × X → V be a V-pseudometric, and Y
i
⊆ X. For all V-pseudometric

morphisms g : d ◦ (i × i) → de there exists f : d → de s.t. g = f ◦ i and f is the least such
morphism.

Proof. We define f : d → de by the following:

∀x ∈ X, f(x) =
∨

{g(u) ⊗ d(x, u) | u ∈ Y }

The remainder of the proof is routine. ◀

B Proofs for Section 5 (Correspondences through coproducts and
products)

▶ Proposition 17. Given correspondences (Fi, τi : FiV → V, Γi) there is a correspondence(∐
Fi, [τi],

⋃
Γi

)
where Γi = {τ | τ ∈ Γi} ∪ {τ⊤,i};

the map [τi] :
∐

FiV → V is the cotupling of the individual modalities; for τ ∈ Γi,

τ(x) =
{

τ(y) when there exists y ∈ FiV and x = κiy

⊤ otherwise

and finally, τ⊤,i(x) =
{

⊤ when there exists y ∈ FiV and x = κiy

⊥ otherwise
.

Proof. Throughout the proof we let F =
∐

Fi. Assume correspondences (Fi, τi, Γi). Let
d : X × X → V be a V-pseudometric and x, y ∈ (

∐
Fi) X such that x = κjx′ and y = κky′.

We prove the correspondence by case analysis on whether j = k or not.

If j ̸= k then there are no couplings of x with y, giving directly:(∐
Fi

)↓

[τi]
d(x, y) = ⊥
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Consider the codensity lifting of F = (
∐

Fi) along τ⊤,j only. For every f : d → de we get
Ffx = κj(Fjfx′) and Ffy = κk(Fkfx′). Thus, τ⊤,j(Ff(x)) = ⊤ while τ⊤,j(Ff(y)) = ⊥.
The quantale being unital ⊥ ⊗ ⊤ = ⊥ which implies [⊤, ⊥] = ⊥ and de(⊥, ⊤) = ⊥. This
gives de(τ⊤,j ◦ Ff(x), τ⊤,j ◦ Ff(y)) = ⊥. As codensity liftings are defined by meets,
F ↑⋃

Γi
d(x, y) = ⊥ and F ↑⋃

Γi
d(x, y) = F ↓

[τi]d(x, y).

Otherwise assume that j = k. Couplings z of x with y are exactly given by κjz′ for z′

couplings of x′ and y′.

F ↓
[τi]d(x, y) =

∨
z∈Ω(x,y)

[τi] ◦ Fd(z)

=
∨

z′∈Ω(x′,y′)

[τi] ◦ Fd(κjz′)

=
∨

z′∈Ω(x′,y′)

τj ◦ Fjd(z′)

= Fj
↓
τj

d(x′, y′)

= Fj
↑
Γj

d(x′, y′) (by hypothesis)

We now look at the value of the codensity lifting. Consider τ ∈
⋃

Γi.
Suppose τ = τ⊤,n for some n. Whether n = j or n ̸= j, for all f : d → de, τ ◦ Ff(x) =

τ ◦ Ff(y) are either both equal to ⊤ or both equal to ⊥ and

F ↑
{τ⊤,n}d(x, y) = ⊤

Now suppose τ = τ ′ for some τ ′ ∈ Γn. When n ̸= j we again obtain τ ◦ Ff(x) =
τ ◦ Ff(y) = ⊤ and

F ↑
{τ}d(x, y) = ⊤

Otherwise n = j. Given f : d → de, τ ◦ Ff(x) = τ ′ ◦ Fjf(x′) and τ ◦ Ff(y) = τ ′ ◦ Fjf(y′)
so that taking the meet of de(τ ◦ Ff(x), τ ◦ Ff(y)) over all morphisms f gives

F ↑
{τ}d(x, y) = Fj

↑
{τ ′}d(x′, y′)

Taking the meet over all such modalities gives

F ↑⋃
Γi

d(x, y) = Fj
↑
Γj

d(x′, y′)

◀

▶ Proposition 19. If there is a correspondence (
∐

Fi, τ , Γ), then there are correspondences
(Fi, τ ◦ κi, Γ ◦ κi) for each i.

Proof. Assume a correspondence (
∐

Fi, τ , Γ). Let d : X × X → V be a V-pseudometric and
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x, y ∈ FjX for some j:

Fj
↓
τ◦κj

d(x, y) =
∨

z∈Ω(x,y)

(τ ◦ κj) ◦ Fjd(z)

=
∨

z∈Ω(x,y)

τ ◦ Fd(κjz)

=
∨

z′∈Ω(κjx,κjy)

τ ◦ Fd(z′)

= F ↓
τ d(κjx, κjy)

= F ↑
Γd(κjx, κjy) (by hypothesis)

=
∧

τ ′∈Γ, f : d→de

de(τ ′ ◦ Ff(κjx), τ ′ ◦ Ff(κjy))

=
∧

τ ′∈Γ, f : d→de

de((τ ′ ◦ κj) ◦ Fjf(x), (τ ′ ◦ κj) ◦ Fjf(y))

=
∧

τ ′∈Γ◦κj , f : d→de

de(τ ′ ◦ Fjf(x), τ ′ ◦ Fjf(y))

proving (Fj , τ ◦ κj , Γ ◦ κj) is a correspondence. ◀

▶ Proposition 20. Whenever one of the correspondences on the left exists we also have the
corresponding equivalence:

(Fi, τi, Γi) ∼
(

Fi, [τj ] ◦ κi,
⋃

Γj ◦ κi

)
and(∐

Fi, τ , Γ
)

∼
(∐

Fi, [τ ◦ κi],
⋃

Γ ◦ κi

)
Proof. Note that for all i, [τj ] ◦ κi = τi and [τ ◦ κi] = τ so that for each possible equivalence
the coupling-based liftings on both side coincide, meaning overall that all liftings coincide. ◀

▶ Proposition 21. Let (F, τF , ΓF ) and (G, τG, ΓG) be correspondences. If one of the following
conditions holds:
1. F and G have finite couplings and V is distributive, meaning for all x, y, z ∈ V, we have

that (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ z; or,
2. V is join-infinite distributive: for all x ∈ V and V ⊆ V, x ∧

∨
V =

∨
{x ∧ v | v ∈ V };

then we have a correspondence (F × G, (τF ◦ π1) ∧ (τG ◦ π2), (ΓF ◦ π1) ∪ (ΓG ◦ π2)).

Proof. Let X be a set, d : X × X → V a V-pseudometric, and x, y ∈ (F × G)X. We note
x = (xF , xG) and y = (yF , yG).

Note that couplings of x with y are of the form z = (zF , zG) where zF (resp. zG) is a
coupling of xF with yF (resp. xG with yG).

We have:

(F × G)↓
τF ◦π1∧τG◦π2

d(x, y) =
∨

z∈Ω(x,y)

(τF ◦ π1 ∧ τG ◦ π2) ◦ (F × G)d(z)

=
∨

zB∈Ω(xB ,yB) for B∈{F,G}

(τF ◦ Fd(zF )) ∧ (τG ◦ Gd(zG))

=
∨

(f,g)∈CF ×CG

f ∧ g
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where CF = {τF ◦ Fd(zF ) | zF is a coupling of xF with yF } and similarly for CG.
Whether it be under Hypothesis 1. or 2., we get:∨
(f,g)∈CF ×CG

f ∧ g =
(∨

CF

)∧(∨
CG

)
=
(
F ↓

τF
d(xF , yF )

)∧(
G↓

τG
d(xG, yG)

)
=
(

F ↑
ΓF

d(xF , yF )
)∧(

G↑
ΓG

d(xG, yG)
)

(by hypothesis)

=
(

(F × G)↑
ΓF ◦π1

d(x, y)
)∧(

(F × G)↑
ΓG◦π2

d(x, y)
)

= (F × G)↑
ΓF ◦π1

⋃
ΓG◦π2

d(x, y)

◀

▶ Proposition 22. Let (Fi, τFi
, ΓFi

) be correspondences. If one of the following holds:
1. Fi has finite couplings and V is meet-infinite distributive, meaning that for all x ∈ V and

V ⊆ V, x ∨
∧

V =
∧

{x ∨ v | v ∈ V }; or,
2. V is completely distributive, meaning that for all sets K ⊆ I × J such that K projects

onto I, and any subset {xij | (i, j) ∈ K} ⊆ V,
∧

i∈I

(∨
j∈K(i) xij

)
=
∨

f∈A

(∧
i∈I xif(i)

)
where A = {f : I → J | ∀i ∈ I, f(i) ∈ K(i)};

then we have a correspondence (
∏

Fi,
∧

(τFi ◦ πi),
⋃

(ΓFi
◦ πi)).

Proof. This is the same proof as for Proposition 21 but with the right notion of distributivity
and an infinite number of functors instead of just two. ◀

▶ Lemma 24. Let F : Set → Set be a functor. There is a family of functors {Fi}i∈F {⊤}
indexed by F{⊤} such that F ≃

∐
Fi, and if Fi =

∐
Gj then all Gj but one are the empty

functor sending any set to the empty set.

Proof. As {⊤} is terminal in Set, for every set X there is a unique map inc : X → {⊤}.
Given i ∈ F{⊤} we define FiX = (F inc)−1(i) which is a subset of FX. On maps we define
Fif as the restriction of Ff to the sets induced by Fi. Clearly Fi maps identities to identities
and compositions to compositions, proving Fi is a functor.

Remains to prove that F ≃
∐

Fi. As F inc is a well-defined function, sets FiX form
a partition of FX. Given a map f : X → Y that we can now write Ff : ⊎ FiX → ⊎FiY .
we need only prove that Ff sends FiX to FiY . This is given by finality of {⊤}, giving
incX = f ◦ incY and then applying F and using its functoriality.

For the second part of the statement, we use a kind of converse: if a functor F can
be written as F ≃

∐
Fi and if F{⊤} is a singleton, then all but one of Fi{⊤} must be

empty. ◀

▶ Proposition 25. Given a correspondence
(∏

i∈I Fi, τ , Γ
)
, we again have correspondences(

Fi, τ |i, Γ|i
)

where τ |i(x) = τ(⊤1, . . . , ⊤i−1, x, ⊤i+1, . . . , ⊤I), with (⊤j)j = τ−1(⊤) and
similarly for modalities in Γ|i.

Proof. Unfold definitions for the wanted correspondences and apply the correspondence in
hypothesis. ◀

▶ Proposition 26. Whenever the correspondences on the left exist and we have the right
distributivity conditions from Proposition 21 or 22 for the correspondence on the right to
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exist, we have the following equivalence and inequality:

(Fi, τi, Γi) ∼
(

Fi,
(∧

(τ j ◦ πj)
)

|i
,
(⋃

(Γj ◦ πj)
)

|i

)
(∏

Fi, τ , Γ
)

≤
(∏

Fi,
∧

(τ |i ◦ πi),
⋃

(Γ|i ◦ πi)
)

Proof. For the first equivalence the third condition in the definition of well-behaved modalities
gives

(∧
(τFj ◦ πj)

)
|i = τi proving that the coupling-based liftings on both side coincide.

For the inequality we have the bijection : V ≃ V × {⊤} and inclusion i : V × {⊤} ∈≤ in
the following commutative diagram:

V V × {⊤}

V ≤ {⊤}

id×⊤

i
π2id π1

π1 π2

Applying a functor F to the diagram preserves injections, bijections, as well as identities
proving that we can choose v ∈ FV and find c ∈ F ≤ that projects on v on one side and on
the only element of F{⊤} on the other side, using Fπ1 and Fπ2 respectively. That shows, by
a characterisation of the monotonicity of τ using the standard canonical relation lifting of ≤
on V to a relation on

∏
FiV (see, e.g., [6, Section 5.1]) that (⊤i)i as defined in Proposition 25

is maximal, and that every ⊤i is maximal for the lifting to FiV . Using this, by monotonicity
of τ and definition of τ|i we get τ ≤ τ|i ◦ πi and then

τ ≤
∧

(τ|i ◦ πi)

giving the wanted inequality for the coupling-based liftings and by extension for the corre-
spondences in the statement. ◀

C Proofs for Section 6 (Dualities for the powerset and probability
distribution functors)

▶ Proposition 33. Let τ : PV → V be a well-behaved modality. If for every V-pseudometric
d : X × X → V and sets T1, T2 ∈ PX the following equality holds

τ
{∨

Mt1 | t1 ∈ T1

}∧
τ
{∨

Mt2 | t2 ∈ T2

}
= τ

(( ⋃
t1∈T1

Mt1

)
∪

( ⋃
t2∈T2

Mt2

))

then there is a duality (P, τ , {τ}).

Proof. Thanks to Proposition 15 we only need to prove that under the conditions of the
statement we have:

P↓
τ ≥ P↑

τ

Let X be a set, d : X × X → V a V-pseudometric, T1, T2 ∈ P(X).
Couplings T of T1 and T2 are exactly sets made of couplings of elements of T1 with

elements of T2 such that for all t ∈ T1 (resp. t ∈ T2) there is a coupling of t with some t′ ∈ T2
(resp. t′ ∈ T1) in T .

There are two possibilities; either there are no couplings of T1 with T2, either there is at
least one.
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When there are no couplings of T1 with T2, it can be for two reasons: either T1 or T2
is empty but not the other, or for some t ∈ T1 (or t ∈ T2), for all t′ ∈ T2 (resp. t′ ∈ T1)
there are no couplings of t with t′. This last case is not possible as (t, t′) is the one and only
coupling of t ∈ T1 with t′ ∈ T2.

When, for example, T1 is empty,

P↓
τ d(T1, T2) = ⊥

With f : d → de constant to ⊥, τ ◦ Pf(T1) = τ ◦ Pf(∅) = ⊤ (by the third condition of
well-behaved modality) and τ ◦ Pf(T2) = τ ◦ Pf({⊥}) = ⊥ (by monotonicity of τ) so that
de(τ ◦ Pf(T1), τ ◦ Pf(T2)) = ⊥. Thus we also get P↑

τ d(T1, T2) = ⊥.
We now assume that neither T1 nor T2 is empty. We have:

P↓
τ d(T1, T2) =

∨
T ∈Ω(T1,T2)

τ ◦ Pd(T )

Let us see what we can say of τ following it being monotone: for every pair of predicates
p, q : X → V, whenever p ≤ q we have τ ◦ Pp ≤ τ ◦ Pq. This is equivalent to stating that
whenever A, B ⊆ V are such that every maximal element of A is below some maximal element
of B and every minimal element of B is above some minimal element of A then we have
τ(A) ≤ τ(B). Hence τ only depend on the maximal and minimal elements of its arguments.

As a consequence of the conditions in the statement we will see that the following coupling
is optimal:

T =
( ⋃

t1∈T1

{(t1, t2) | d(t1, t2) is maximal}
)⋃( ⋃

t1∈T1

{(t1, t2) | d(t1, t2) is maximal}
)

We have

τ ◦ Pd(T ) = τ

(( ⋃
t1∈T1

Mt1

)
∪

( ⋃
t2∈T2

Mt2

))
≤ P↓

τ d(T1, T2) (5)

We prove that the codensity lifting reaches this value, which will prove the wanted inequality,
by considering the right map f : d → de.

Consider f : d → de defined by ⊤ on T2 and extended on T1 using Lemma 16: f(x) =∨
t2∈T2

d(x, t2).
We get the following:

de(τ ◦ Pf(T1), τ ◦ Pf(T2)) = de

(
τ

{ ∨
t2∈T2

d(t1, t2) | t1 ∈ T1

}
, τ {⊤}

)

= τ

{ ∨
t2∈T2

d(t1, t2) | t1 ∈ T1

}
= τ

{∨
Mt1 | t1 ∈ T1

}
By symmetry we get

P↑
τ d(T1, T2) ≤ τ

{∨
Mt1 | t1 ∈ T1

}∧
τ
{∨

Mt2 | t2 ∈ T2

}
Combining the hypothesis and Equation 5 gives the final result. ◀
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▶ Corollary 34. Let τ : PV → V be a well-behaved modality. If the order on V is total then
there is a duality (P, τ , {τ}).

Proof. In this case each set Mt is reduced to a singleton and maximal elements in the three
sets

(⋃
t1∈T1

Mt1

)
∪
(⋃

t2∈T2
Mt2

)
, {
∨

Mt1 | t1 ∈ T1}, and {
∨

Mt2 | t2 ∈ T2} are actually
maximum that are all maxti∈Ti d(t1, t2).

The minimum that appears in
(⋃

t1∈T1
Mt1

)
∪
(⋃

t2∈T2
Mt2

)
must appear in one of the

other two sets and as τ being monotone implies that it depends only on maximal and minimal
elements (see the proof of Proposition 33) we get the necessary equality

τ
{∨

Mt1 | t1 ∈ T1

}∧
τ
{∨

Mt2 | t2 ∈ T2

}
= τ

(( ⋃
t1∈T1

Mt1

)
∪

( ⋃
t2∈T2

Mt2

))

to apply Proposition 33. ◀

▶ Corollary 35. We assume V to be completely distributive. We have duality for the coupling-
based and codensity liftings of the powerset functor, both along the meet modality which maps
a subset of V to the meet of its elements.

Proof. Being completely distributive with the meet modality directly give the condition of
Proposition 33. ◀

▶ Proposition 37. Let τ : [0, M ] → [0, M ] be a well-behaved modality. If τ is additive, meaning
that for all x, y ∈ [0, M ], τ(x + y) = τ(x) + τ(y), then there is a duality (D, τ ◦ E, {τ ◦ E}).

Proof. It is known that infima and suprema in the duality of Proposition 36 are actually
minima and maxima: there are both optimal couplings for the coupling-based lifting and
optimal functions for the codensity lifting of (D,E, {E}). Hence the duality can be written:
for all probability distributions P1, P2 on sets X:

EP d = |EP1f − EP2f |

for some optimal coupling P of P1 and P2 and some optimal non-expansive function f : d →
|_ − _|. Post-composing by τ obviously gives the expected result. ◀

D Proofs for Section 8 (A counter-example: conditional transition
systems)

▶ Proposition 42. For a ∈ A consider a modality τa : P(P(L))L×A → P(L), defined by :

∀f : L × A → P(P(L)), τa(f) = {l ∈ L | l ∈ ∩f(l, a)}

The codensity lifting defined by the family (τa)a∈A of modalities is equal to F .

Proof. Take d : X × X → P(L) and T1, T2 ∈ P(X)L×A. We want to prove the following:

Fd(T1, T2) = F ↑
{τa}d(T1, T2)

Explicitly we want

{l ∈ L | ∀a ∈ A, ∀x, y ∈ T1(l, a) × T2(l, a),
∃x′, y′ ∈ T1(l, a) × T2(l, a),

(l ∈ d(x, y′)) and (l ∈ d(x′, y))}
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to be exactly the same as∧
a∈A, f : d→de

de(τa ◦ Ff(T1), τa ◦ Ff(T2))

Suppose that for l ∈ L there exists a ∈ A and f : r → de such that l /∈ de(τa ◦ Ff(T1), τa ◦
Ff(T2)). By definition of de, we have de(X, Y ) = (X ∩ Y ) ∪ (L\(X ∪ Y )). Up-to to a
permutation of T1 and T2 this gives l ∈ τa ◦ Ff(T1) and l /∈ τa ◦ Ff(T2):{

l ∈ τa ◦ Ff(T1)
l /∈ τa ◦ Ff(T2)

⇔

{
l ∈ {c ∈ L | c ∈ ∩Ff [T1(c, a)]}
l /∈ {c ∈ L | c ∈ ∩Ff [T2(c, a)]}

⇔

{
l ∈ ∩Ff [T1(l, a)]
l /∈ ∩Ff [T2(l, a)]

⇔

{
∀x ∈ T1(l, a), l ∈ f(x)
∃y ∈ T2(l, a), l /∈ f(y)

⇔∃y ∈ T2(l, a), ∀x ∈ T1(l, a), l /∈ de(fx, fy)

As f is a morphism of pseudometrics, d ≤ de ◦ (f × f) and we get that l /∈ d(x, y) for all
x ∈ T1(l, a) and some y ∈ T2(l, a).

Conversely suppose that there exists y ∈ T2(l, a) such that for all x ∈ T1(l, a) we have
l /∈ d(x, y). Consider f : d → de defined by ⊤ on every elements of T1(l, a) and extended
using Lemma 16. We know that l ∈ f(x) for all x ∈ T1(l, a). Using the definition of f given
by Lemma 16 we know that

f(y) =
⋃

{d(x, y) | x ∈ T1(l, a)}

Because for all x ∈ T1(l, a), l /∈ d(x, y) we get that l /∈ f(y). Thus we retrieve the condition
at the end of the sequence of equivalences above and we know that l /∈ F ↑

{τa}d(T1, T2).
We have proven the following: l /∈ F ↑

{τa}d(T1, T2) if and only if there exits a ∈ A,
f : d → de, and y ∈ Ti(l, a) such that for all x ∈ Tj(l, a) l /∈ r(x, y) (where i ̸= j are in
{1, 2}).

This is exactly the condition for l /∈ Fr(T1, T2) so that F ↑
{τa}r(T1, T2) = Fr(T1, T2) ending

the proof. ◀
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