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Abstract: Coastal environments, which are crucial for economic and strategic reasons, heavily rely on
accurate bathymetry for safe navigation and resource monitoring. Recent advancements in through-
water photogrammetry have shown promise in mapping shallow waters efficiently. However, robust
uncertainty modeling methods for these techniques, especially in challenging coastal environments, are
lacking. This study introduces a novel likelihood-based approach for through-water photogrammetry,
focusing on uncertainties associated with camera pose—a key factor affecting depth mapping accuracy.
Our methodology incorporates probabilistic modeling and stereo-photogrammetric triangulation to
provide realistic estimates of uncertainty in Water Column Depth (WCD) and Water–Air Interface
(WAI) height. Using simulated scenarios for both drone and airborne surveys, we demonstrate
that viewing geometry and camera pose quality significantly influence resulting uncertainties, often
overshadowing the impact of depth itself. Our results reveal the superior performance of the
likelihood ratio statistic in scenarios involving high attitude noise, high flight altitude, and complex
viewing geometries. Notably, drone-based applications show particular promise, achieving decimeter-
level WCD precision and WAI height estimations comparable to high-quality GNSS measurements
when using large samples. These findings highlight the potential of drone-based surveys in producing
more accurate bathymetric charts for shallow coastal waters. This research contributes to the
refinement of uncertainty quantification in bathymetric charting and sets a foundation for future
advancements in through-water surveying methodologies.

Keywords: bathymetric charting; coastal areas; through-water photogrammetry; likelihood-based
inference; water column depth (WCD); water–air interface (WAI) height; uncertainty modeling;
stereo-triangulation

1. Introduction

The coastal environment is of major interest to a broad spectrum of institutional
structures as well as scientific communities and industrial entities. This is largely due to the
economic and social stakes (e.g., harbor, urban areas), strategic issues, and the commercial
activities (ex.aquaculture) concentrated in these areas [1,2]. Bathymetry is vital for coastal
engineering studies, as it provides information on the morphology of the seabed. Indeed,
bathymetry-derived products are crucial for most maritime applications: navigation safety
(navigation chart compilation), harbor development (pre/post-dredging surveys), and
monitoring of aquatic resources. On the technological side, various innovationshave
emerged in the last decades, leading to the development of sensors dedicated to bathymetric
mapping [3]. Innovations in bathymetry include optical alternatives for shallower waters,
as traditional acoustic solutions are less efficient and require greater investments.

Technological innovations over the last few decades have led to the development
of various cameras dedicated to bathymetric mapping. A significant amount of research
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involving spectral imagery (hyperspectral and multispectral) has demonstrated the ability
to retrieve water biophysical properties such as chlorophyll-A concentration, suspended
particulate matter, and benthic habitats, in addition to the WCD. There are two major
approaches for retrieving WCD from spectral imagery: radiometric and geometric.
Radiometric approaches require spectral measurements as input for providing an estimation
of WCD at a pixel level [4–7]. They have been mostly applied to satellite imagery, where
they contributed to the establishment of Satellite-Derived Bathymetry (SDB). On the other
hand, geometric approaches allow users to obtain 3D reconstructions from images by
triangulating a set of pixels that are located on more than one image (homologous feature
points). Recent studies have demonstrated the potential of various photogrammetric (i.e.,
geometric) techniques for mapping shallow water depths from satellite imagery [8–10] and
airborne imagery [11,12]. Ref. [10] reported similar accuracy to established SDB methods
and argues that through water photogrammetry is a useful option in circumstances where
radiometric methods are not applicable due to heterogeneous environments, inaccurate
atmospheric correction, or unavailable in situ depth measurements.

As the navigation safety of vessels relies on WCD accuracy, it is of utmost importance
to quantify the uncertainty associated with the derived product. Studies on bathymetry
estimation using geometric approaches tend to focus on the estimation accuracy rather than
the assessment of uncertainty, despite the fact that there are many sources of uncertainty.
Extending the principles involved in land photogrammetry to through-water
photogrammetry presents the challenge imposed by integrating the refraction into the
collinearity equations. Furthermore, it relies on the assumption of negligible local errors
that is suitable for applying uncertainty propagation, as recommended in [13]. As a result,
there is a knowledge gap in the literature in terms of methods for estimating the uncertainty
of WCD calculated using geometric approaches in shallow coastal areas.

In this work, we introduce a novel methodology for assessing WCD uncertainty
computed using stereo-photogrammetric airborne imagery. Our approach differs
significantly from collinearity-based triangulation methods, particularly in its suitability
for coastal area surveys. Coastal environments present unique challenges, including
limited access, dynamic landscapes, safety concerns, and environmental sensitivities, which
complicate the establishment of Ground Control Points (GCP). These points are crucial for
aligning imagery and refining the exterior orientation parameters. In coastal areas where
GCP are scarce, relying on direct georeferencing with onboard Inertial Navigation Systems
INS may offer limited accuracy compared to GCP-assisted land photogrammetry. This
reduces its ability to correct exterior orientation parameters, potentially compromising
the precision of the WCD estimate. Our methodology, therefore, focuses on determining
the true object coordinates based on the observed camera pose, assuming that the interior
orientation parameters are fixed and well-characterized. Additionally, the likelihood-
based framework broadens the scope of traditional variance–covariance approaches by
offering a more extensive uncertainty analysis, especially in complex scenarios such as
small sample sizes where traditional approaches might underperform. Moreover, the use
of controlled simulations instead of real datasets allows for a more objective assessment of
our methodology’s robustness under various conditions, ensuring its validity and practical
applicability in real-world scenarios.

The remaining structure of this paper is organized as follows: The next section
provides an overview of existing approaches for uncertainty characterization in stereo-
photogrammetry and highlights their limitations in airborne marine applications. Section 3
discusses the probabilistic framework employed for evaluating stereo-triangulated WCD
uncertainties. Section 4 presents the experimental results and discusses the performance of
our proposed methodology under the simulated scenarios. For clarity, Table 1 provides a
comprehensive list of the parameters and symbols used throughout this paper. Finally, the
conclusion summarizes the key findings, underscores the contributions and the potential
of our likelihood-based triangulation approach, and discusses future research directions in
this rapidly evolving field.
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Table 1. Parameter symbols and descriptions.

Symbol Description

θ Parameter underlying the data (multidimensional)
θ̃ True value of the parameter θ
ψ Parameter of interest (scalar)
ω Nuisance vector parameter (multidimensional)
y Observed data (multidimensional)

ℓ(θ; y) Likelihood function
ℓ(θ; y) Log-likelihood function
ℓp(θ; y) Profile log-likelihood function
ℓθθ [(θ; y)] Second derivative of the log likelihood with respect to θ

θ̂(y) Maximum likelihood estimate of θ given y
jp(ψ; y) Partial observed Fisher information
to(ψ; y) Wald statistic (observed)
r(ψ; y) Signed root likelihood ratio statistic
α, 1 − α Significance level, confidence level (CL)

vs Interior orientation vector
v f Feature vector
x f Feature point position
xi Incidence point position
vi Line-of-sight vector
qi Line-of-sight quaternion
h Water–air interface height parameter
n Refractive index ratio

ξi,ξr Incidence angle and refracted angle
ξb Backward refraction angle
vb Backward line-of-sight vector

h −
[

x f

]
z

Water Column Depth (WCD)

nz Nadir vector
xs Parameter of camera position vector
xs Measured camera position vector
Σs Variance–covariance matrix of camera position
q Measured line-of-sight quaternion
M Bingham orientation parameter
C Bingham concentration parameter

2. Related Works

This section synthesizes current methodologies for geometric WCD inference with
a focus on uncertainty evaluation in through-water photogrammetry—an emergent field
with a lack in comprehensive studies on uncertainty despite its importance alongside
empirical validations.

Rational Polynomial Coefficients (RPC) are typically used in satellite pushbroom datasets
for triangulating feature points and deriving bathymetric estimations in shallow waters [8,10].
Dolloff et al. have demonstrated the use of the variance–covariance framework to derive
triangulation uncertainties using RPC data in land contexts [14,15]. However, in through-water
contexts, the uncertainty inherent in RPC-based methods presents significant challenges. In
principle, data on RPC uncertainty are essential to apply the variance–covariance framework
for deriving triangulation uncertainties. In practice, most procedures for quantifying RPC
uncertainties rely on GCP field measurements, which are challenging to obtain in coastal
areas [16]. Furthermore, the need for refraction correction when using RPC-based triangulation
introduces additional complexities. Although it is conceptually possible to implement the
variance–covariance framework on top of RPC-based triangulation including refraction
adjustments, this process adds a layer of complication to the uncertainty analysis in these
settings. This lack of direct applicability complicates the uncertainty analysis for through-
water photogrammetry, emphasizing the need for tailored methodologies that can accurately
incorporate these refraction adjustments.
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Structure from Motion (SfM) and Multi-View Stereo (MVS) methods, while well-
established in land photogrammetry, have been adapted for through-water use to account
for the unique challenges posed by the aquatic environment [17–19]. In the terrestrial
context, these methods essentially employ the variance–covariance propagation with the
associated LS estimator to derive uncertainties [20]. However, when adapted to aquatic
contexts, these methods deploy adaptations of the collinearity equations to accommodate the
refraction effect. These required adaptations often involve adjustments either in the image
space [12,21] or the object space [11,22], aiming to estimate refraction effects accurately.
Such adjustments are crucial because adapting the variance–covariance approaches to
these modified settings is not straightforward. Although no studies were found detailing
a direct application of variance–covariance to these adaptations, the required iterative
processes go beyond classical least squares methods, complicating the evaluation of the
uncertainties. Furthermore, implicitly compensating for refraction in these approaches
renders the physical interpretability of the results more challenging, as the refraction
effect is not explicitly accounted for. In addition to the assumption of a flat water surface,
these methods are conceived for scenarios where the camera is vertically oriented to
the surface [23,24]. This suggests their sub-optimality when drone imagery, usually
characterized by low stability, is being used to create a 3D model of the seabed.

Ref. [23] contrasts corrective methods, i.e., adaptations of RPC and SfM-MVS for
through-water use with ray tracing approaches, highlighting their limitations in handling
complex optical paths effectively. This comparison emphasizes the need for tailored
methodologies that can more effectively incorporate complex refraction adjustments while
maintaining robust uncertainty analysis in through-water photogrammetry. Ray tracing
methods, explicitly modeling refraction, offer a rigorous alternative for through-water
triangulation and geometric uncertainty evaluation. Significantly, the explicit modeling
employed by these methods enables a segmented analysis of the uncertainty budget,
which in turn allows for the extraction of meaningful insights regarding the quality of
measurements. Furthermore, advancements indicate that optimizing the cost function
in the object space enhances geometric accuracy compared to traditional methods that
primarily focus on the image space [23,25]. Despite these advancements, it is important to
note that coastal through-water photogrammetry studies have not yet fully incorporated
these techniques, largely due to the predominance of corrective methods dictated by
common software and dataset conventions in practice.

The discussed methods underscore the need for novel inferential approaches that
integrate both triangulation and uncertainty evaluation, specifically tailored for the unique
challenges of coastal environments. Our proposed likelihood-based triangulation method
addresses these challenges by offering an inclusive and extensible framework for evaluating
uncertainties in WCD inferences, leveraging advancements in both theoretical and practical
aspects of photogrammetry.

3. Methodology

This section delineates our approach for triangulating the positions of feature points
in through-water stereo-photogrammetry and quantifying the uncertainties associated
with WCD measurements. Our methodology mainly adopts the MLE framework, which is
theoretically equivalent to the commonly used least squares under specific assumptions and
thus is inclusive of traditional methods. Unlike the decoupled procedures of least squares
followed by the variance–covariance framework for uncertainty evaluation, the MLE
framework integrates estimation and uncertainty quantification into a cohesive process.
Its statistical properties, robust in large samples supported by first-order theory, make it a
comprehensive joint framework for both estimation and uncertainty analysis. Following
this, the first Section 3.1 addresses the proposed likelihood triangulation and the associated
statistical modeling assumptions. This allows for establishing the likelihood function
for through-water triangulation as well as the different geometric modeling aspects of
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the proposed approach. The second section addresses the statistical evaluation of the
uncertainties, employing first-order statistical tests for parameter uncertainty.

3.1. Proposed Likelihood Triangulation

Classical triangulation in photogrammetry typically utilizes collinearity equations to
relate the object coordinates x f of a feature point to its image coordinates xp, as well as the
camera’s interior and exterior orientations, whose parameters can be denoted as θio and
θeo, respectively. As depicted in Figure 1, the primary goal in this context is to minimize
reprojection error between the observed and modeled feature image coordinates, denoted
as xp. This is formally achieved through the following LS minimization:

min
(
xp − xp(x f , θio, θeo)

)2 (1)

Figure 1. Illustration of the process of minimizing reprojection error in stereo-photogrammetry.
Diagram of camera setup showing the Field Of View (FoV), focal length, and the Instantaneous Field
Of View (IFoV). The internal vector vs and feature image coordinates xp are highlighted, with a color
bar gradient indicating the reprojection likelihood magnitude.

Here, xp denotes the observed image coordinates of the feature point. As a consequence
of the equivalence between the least squares and the MLE when assuming additive
Gaussian errors, this optimization effectively seeks to maximize the likelihood:

L
(
xp(x f , θio, θeo); xp

)
(2)

This reprojection likelihood function describes the probability of observing the feature
point image coordinates given the parameters x f , θeo, θio. To achieve accurate triangulation,
calibration is critical to optimize interior orientation parameters such as the focal length
across surveys, while exterior orientations are often refined through spatial resection using
GCP to enhance accuracy. Triangulation methods often rely on optimal values of θio and θeo,
disregarding the integration of the uncertainty of interior and exterior orientations into the
estimation of the triangulated position of the feature points. This limitation is particularly
critical in coastal surveys, where access to GCP is often restricted. It becomes even more
crucial for pushbroom cameras, which must resolve or refine exterior orientation per swath
rather than per image. Additionally, the minimal texture and feature distinctiveness of
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seabeds in coastal waters may complicate pairing of features across overlapping images,
further reducing confidence in the exterior orientation.

To address these challenges, our methodology emphasizes probabilistic modeling
of camera pose, focusing particularly on its impact on the spatial uncertainty of the line-
of-sight from the camera to the incidence point vi. Figure 2 illustrates this likelihood
function, which can be employed in order to estimate the feature point position from
camera pose data:

L(vi(h, x f , xs); y|vs) (3)

Here, y represents the measured camera pose data, vs is a unit vector representing
the feature image coordinates in the sensor frame, h is the Water–Air Interface (WAI)
height, and xs is the modeled camera source position. Since the influence of interior
orientation is disregarded in the proposed approach, the internal vector vs, which describes
the feature coordinates in the sensor frame, is considered fixed and known posterior to
feature detection and pairing. This allows it to isolate the influence of the camera pose
noise on the line-of-sight vi and establish its spatial likelihood, as illustrated in Figure 2.

Figure 2. Line-of-sight representation in through-water photogrammetry. Representation of the
camera’s line-of-sight vi, demonstrating its path through the water column to the seabed feature
position x f . Color bar gradient illustrates the magnitude of the line-of-sight likelihood.

In this study, we focus on bathymetric measurements, particularly examining both
the WCD and WAI height presented in Figure 3. The WCD describes the geometry of
underwater environments, while the WAI marks the boundary between water and air, and
its ellipsoidal height h is used for surface refraction modeling.
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Figure 3. Geometric representation of refraction for a feature point x f and one incident ray at a planar
surface determined by the WAI height h.

3.1.1. Line-of-Sight Modeling

For each environmental geometric configuration consisting of the feature position x f
and WAI height h, the objective is to model the line-of-sight vector vi using the parameters
of the feature object coordinate x f , the camera source position xs, the horizontal water–air
interface height h, and the nadir nz. This allows us to account for the refraction effect at the
WAI through a strict geometric representation.

The steps involved in modeling the line of sight in the presence of a horizontal WAI
are as follows:

1. The incidence angle ξi, the angle between the feature vector v f =
x f −xs

|x f −xs | and the

nadir nz, is calculated as follows:

ξi = cos−1(v f · nz) (4)

2. Using Snell’s Law, the refraction angle ξr when transitioning from water to air is
as follows:

ξr = sin−1(n sin(ξi)) (5)

where n is the refractive index ratio, fixed at 1.33, representing the ratio of the speed
of light in air to that in water. The incidence and refraction angles calculated in steps
1 and 2 are computed as if there was no refraction. These angles do not represent the
actual incidence and refraction angles in the presence of refraction, but rather serve as
proxies to determine the backward rotation necessary to model the refraction effect in
the subsequent steps.

3. The adjusted vector vb to refraction, a function of v f , nz, and the refractive index n, is
computed by applying a rotation Rb(ξb) in the plane nz × vi, with angle ξb = ξi − ξr:

vb = Rb(ξb) · (−v f ) (6)

4. The incidence point xi on the interface, where vb intercepts the water–air interface, is
calculated as follows:

xi = x f +

 h −
[

x f

]
z

[vb]z

vb (7)
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where
[

x f

]
z

and [vb]z are the vertical components of x f and vb, respectively.

5. Finally, the line-of-sight vector vi, the normalized vector from xs to xi, is defined
as follows:

vi =
xi − xs

|xi − xs|
(8)

Figure 3 illustrates the flow of Equations (4)–(8), which collectively define the model
for the line-of-sight vector vi. This provides a direct relationship between the optical path
and the geometric parameters h, x f , and xs, and it ensures a strict modeling of through-
water refractive geometry. This model will now be used to address the influence of the
camera’s position and orientation on the spatial uncertainty of the line-of-sight vector.

3.1.2. Camera Pose Statistical Model

Given the geometric model for the line-of-sight vector vi, we can directly connect
these calculations to the triangulation process, which is pivotal for accurate underwater
reconstructions. Considering a known interior orientation, the line-of-sight vector vi
depends only on the camera pose.

Camera Pose Data

The position of the camera’s optical center is denoted as xs, and its orientation is
modeled using the unit quaternion qi representing the minimum rotation between the
internal vector vs and the line-of-sight vi pointing towards the incidence point, as illustrated
in Figure 4. Unit quaternions are selected for representing the camera’s orientation to avoid
the limitations associated with Euler angles, such as gimbal lock and the complexity
of interpolation. Unit quaternions also provide a compact, non-singular representation
for rotations and are particularly effective for continuous orientation tracking in three-
dimensional space.

Figure 4. Representation of the unit quaternion qi and the line-of-sight vector vi. The quaternion
rotates the camera’s internal vector vs to align with the incidence point xi. The rotation axis and
angle of qi are indicated, illustrating the geometric transformation involved.

The correspondence between the minimum rotation unit quaternions and the line-of-
sights is unique up to sign, meaning that both qi and −qi represent the same orientation.
The unit quaternion qi defining the minimal rotation from vs to vi can be defined as follows:
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qw = |vs||vi|+ vs · vi (9)[
qx qy qz

]
= vs × vi (10)

qi =
1√

q2
x + q2

y + q2
z + q2

w

[
qx qy qz qw

]
(11)

|vs| and |vi| are the magnitudes of the internal vector and the line-of-sight, respectively,
and vs · vi is the dot product of both vectors. vs × vi is the cross product yielding a vector
that is perpendicular to both input vectors, which represents quaternion components qx, qy,
and qz as the axis rotation component. qi is normalized to have unit magnitude.

Statistical Model

The position of the camera xs is modeled using a Gaussian distribution due to its
properties in reflecting Euclidean space errors:

fXs(xs; xs, Σs) =
1√

(2π)3 det(Σs)
exp

(
−1

2
(xs − xs)

TΣ−1
s (xs − xs)

)
(12)

Here, xs is the measured position vector of the sensor, and xs and Σs are parameters of
the sensor position and its variance–covariance matrix, respectively.

The camera orientation determined by a unit quaternion q is modeled using the
Bingham distribution, which is specifically designed for data constrained to the surface of
a hypersphere, like unit quaternions. This distribution is parameterized by an orientation
matrix M and a concentration matrix C, which adjust the distribution’s shape based on the
degree of certainty in the camera’s orientation:

fQ(q; M, C) =
1

F(C)
exp(qT MCMTq) (13)

Here, q is the random attitude measurement of the quaternion that represents the
observed orientation of the sensor. In the Bingham distribution, M ∈ R4×4 is an orthogonal
matrix and C is a diagonal matrix of size 4× 4 representing the orientation and concentration
parameters, respectively.

The concentration parameter C determines the spread or the shape of the distribution,
whereas the orientation parameter M represents the location of the distribution, also called
the orientation. The diagonal elements of the concentration matrix (C1 ≤ C2 ≤ C3 ≤ C4 = 0)
control the degree of anisotropy of the distribution. Due to the constraint of unit norm
on the quaternions, one of the diagonal concentration values must be zero. The fourth
diagonal element C4 is chosen, while other conventions may use the first element. An
isotropic distribution has equal concentrations along all three axes of rotation, resulting
in a uniform distribution of orientations C1 = C2 = C3 (see Figure 5). In an anisotropic
distribution, the diagonal elements of C are not equal, and the distribution is stretched
along one or more axes of rotation. F(C) is a normalization constant that depends on the
concentration of the density.

At this stage, it is critical to link the line-of-sight vi to the Bingham distribution
parameters to accurately formulate its likelihood. The orientation matrix M, where its
last column is defined by the quaternion qi(vi, vs), plays a pivotal role. This quaternion
aligns the sensor’s internal frame, described by vector vs, with the line-of-sight vector
vi. The remaining columns of M in isotropic conditions can be filled with an arbitrary
orthogonal complement using methods such as the Gram–Schmidt process or singular
value decomposition of qiq

T
i . Orientation data from (INS), characterized by pronounced

anisotropic uncertainties, with yaw being more variable than roll or pitch, necessitate
sophisticated configuration of the Bingham distribution’s parameters, M and C. Such data
typically arrive in Eulerian format, with mean and covariance values computed using
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spatial resection techniques or from outputs of a Kalman filter, and are foundational in
determining these parameters.

Figure 5. Illustration of the Bingham concentration parameter influence. The right,
middle, and left spherical plots correspond to C1 = C2 = C3 = −108, C1 = C2 = C3 = −109,
C1 = C2 = 100 C3 = −109, and C1 = 50 C2 = 100 C3 = −109, respectively. The black vector
represents the line-of-sight vi used to arbitrarly define an orientation matrix M for the Bingham
distribution. The red dot represent the incidence point xi. The spherical heatmap represents
the non-normalized Bingham log-density: qT MCMTq mapped to the interval [0, 1] for the three
concentration cases.

One can consider dynamically recomputing M and C for each line-of-sight by directly
sampling from the Eulerian noise associated with that specific orientation on the sphere.
Although this approach is capable of capturing the true variability in sensor orientation,
ensuring fidelity, it also requires sampling quaternion data points from the Eulerian data
distribution. However, its computational intensity limits scalability across large datasets,
particularly when considering optimization tasks. For practicality in extensive datasets, we
use this simpler approach. Ma and Ca are predetermined from a representative average of
the orientation data by resampling from the Eulerian attitude noise. Additionally, this static
setup efficiently approximates the dynamic method under conditions of minimal attitude
noise. The orientation density approximation can be formulated as follows:

fQ(q; vi, vs) =
1

F(Ca)
exp

(
qT

i (vi, vs)MaCa MT
a qi(vi, vs)

)
, (14)

The matrices Ma, Ca, and the normalization factor F(Ca) are derived from the camera
orientation data realization q and a fixed Euler attitude covariance using the maximum
likelihood estimation method described in [26] with 10,000 randomly sampled quaternions.
This ensures that the fixed parameters effectively model the orientation uncertainties,
streamlining computation while maintaining analytical rigor in the evaluation of WCD
uncertainties in through-water triangulation.

Having rigorously defined the statistical models for the camera’s position and orientation
using Gaussian and Bingham distributions, we have established a robust framework
to represent the stochastic nature of the camera’s pose. The line-of-sight vector vi, as
modeled in Section 3.1.1, depends on the horizontal water–air interface height h, the
camera source position xs, and the feature point coordinates x f . Hence, the position and
the orientation distributions combine into a joint probability density function for the camera
pose, parameterized as follows:

fY(y; h, x f , xs) = fXs(xs; xs, Σs)× fQ(q; vi, vs), (15)

where fY encapsulates the statistical model of the camera’s position and orientation (xs, q)
as a function of the line-of-sight parameters h, x f , xs since the internal vector vs is fixed.
This joint density function provides a quantitative measure of uncertainty and forms the
link to the line-of-sight vectors employed for through-water triangulation.
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3.1.3. MLE-Based Triangulation

Leveraging the presented camera pose statistical model, we construct the likelihood
function that accounts for both positional and rotational uncertainties in the camera setup.
The likelihood function L for a single feature point observed from a single camera can be
expressed as follows:

L(h, x f , xs; y) = fY(y; h, x f , xs) (16)

Assuming independent camera poses, the likelihood function L for a single feature
point observed from a multiple cameras can be expressed as follows:

L(h, x f , xs; y) =
M

∏
m=1

fY(ym; h, x f
m, xs

m) (17)

Disregarding the constant terms that do not involve the parameters, mainly the
normalization constants

√
(2π)3 det(Σs) and F(Ca), we can write the following:

L(h, x f , xs; y) ∝ exp

(
−

M

∑
m=1

[
(xm

s − xs
m)TΣ−1

s,m(x
m
s − xs

m) + qT
i Ma,mCa,m MT

a,mqi

])
(18)

The logarithm of this likelihood function, denoted as ℓ, can be written, ignoring the
constant terms, as a single index m summation with two quadratic forms:

ℓ(h, x f , xs : y) = −
M

∑
m=1

[
(xm

s − xs
m)TΣ−1

s,m(x
m
s − xs

m) + qT
i,m Ma,mCa,m MT

a,mqi,m

]
(19)

For multiple feature points observed from multiple sensors, the logarithm of this
likelihood function can be expressed as a double summation over k and m, where K
represents the number of feature points and M represents the number of sensors:

ℓ(h, x f , xs; y) = −
M

∑
m=1

K

∑
k=1

[
(xm

s − xs
m)TΣ−1

s,m(x
m
s − xs

m) + qT
i,k,m Ma,mCa,m MT

a,mqi,k,m

]
(20)

In a typical case, with two camera views observing a single feature point, the number
of parameters to estimate is 9, including 3 for x f , 1 for h, and 6 for both camera positions
xs = (xs

1, xs
2). The MLE is then obtained by maximizing this function with respect to the

parameters h, x f , and xs. For problems where we estimate the WAI height h, we utilize
multi-feature multi-view likelihood to leverage more statistical information and investigate
accuracy improvements.

3.2. Uncertainty Evaluation

Understanding the uncertainties associated with our estimations is crucial for robust
decision-making and inference. We begin by exploring the concept of profile likelihood,
which allows us to focus on parameters of interest while accounting for nuisance parameters.
This leads to first-order statistical tests, where we introduce the signed likelihood ratio
statistic and the Wald test statistic hypothesis testing and confidence interval (CI) computation.
Subsequently, we describe the procedure of assessing the performance of the CI in terms of
coverage probability, shedding light on the reliability of the first-order statistical tests. Our
investigation aims to provide insights into the uncertainty quantification process, essential
for interpreting and utilizing the results of our triangulation approach effectively.



Remote Sens. 2024, 16, 4098 12 of 26

3.2.1. Profile Likelihood

The likelihood function for through-water triangulation depends on the parameters
h, x f , xs, which can be decomposed into two components θ = (ψ, ω) depending on the
investigated parameter. The concept of profile likelihood plays a critical role in statistical
inference, particularly when focusing on a parameter of interest ψ while accounting for
nuisance parameters:

lp(ψ; y) = max
ω

l(ψ, ω; y) (21)

In essence, the profile likelihood ℓp(ψ; y) simplifies the likelihood function by focusing
on ψ and adjusting the nuisance parameters ω accordingly. This is achieved by maximizing
the likelihood with respect to the nuisance parameter, resulting in the constrained maximum
likelihood ω̂ψ for each value of ψ (see Figure 6).

Figure 6. Geometrical illustration of profile likelihood for a two-dimensional parameter space.

Notably, maximizing the profile likelihood is in accordance with the overall MLE of
θ = (ψ, ω):

θ̂ = arg max
ψ,ω

ℓ(ψ, ω; y) = arg max
ψ

ℓp(ψ; y) (22)

3.2.2. First-Order Statistical Tests

For scalar parameter ψ, first-order inference uses test statistics like the signed likelihood
ratio statistic r and the Wald test statistic to [27]:

r(ψ; y) = sign(ψ̂ − ψ)
√

2(ℓp(ψ̂; y)− ℓ(ψ; y)), (23)

to(ψ; y) = jp(ψ̂; y)−1/2(ψ̂ − ψ), (24)

where jp(ψ̂; y) = − ∂2ℓp(ψ̂;y)
∂ψ2 is the partial observed information. Under certain regularity

conditions, these test statistics asymptotically follow a standard normal distribution under
the null hypothesis:
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st(ψ̃; y)
O(n−1/2)−−−−−→ N (0, 1) for st ∈ {r, to}. (25)

It should be emphasized that scalar ψ test statistics are in harmony with multidimensional
inference. In those broader contexts, the test statistics converge to a chi-squared distribution,
where the degrees of freedom match the dimensionality of the interest parameter. This
ensures that focusing on a scalar parameter ψ does not deviate from the traditional
multidimensional inference context. Furthermore, the first-order arsenal includes the
score and the Wald test based on the expected Fisher information, in addition to the
test statistics investigated in this study. In particular, it is noteworthy to emphasize the
equivalence between the Wald test based on the expected Fisher information and variance–
covariance/LS under additive Gaussian errors (see Appendix A). This underscores the
profile likelihood framework as an encompassing approach that integrates traditional
variance–covariance practices. While this study excludes the use of this test statistic, as an
analytical expression of the expected Fisher information matrix cannot be readily obtained
due to the use of the Bingham distribution, it is essential to highlight that the expected and
observed information Wald tests often behave similarly in large samples.

3.2.3. Evaluation of Confidence Interval Performance

The performance of the CI for the parameter of interest is evaluated based on coverage
probability. Coverage probability is defined as the frequency with which the true value of
the parameter of interest, denoted as ψ̃, falls within the estimated CI A(y). Mathematically,
coverage probability is expressed as follows:

P(ψ̃ ∈ A(y)) = 1 − α (26)

Here, α represents the significance level, set at 0.05 for a 95% confidence level (CL) in
this study. To construct the CI, the following first-order test statistics are employed:

For r : ψ : |r(ψ; y)| ≤ zα/2, (27)

For to : ψ̂ ± zα/2

√
jp(ψ̂; y). (28)

zα/2 is the critical value corresponding to the α/2 tail of a standard normal distribution,
generally approximated as 1.96 for the 95% CL. Figure 7 demonstrates how hypothesis
testing and CI estimation are performed based on the profile likelihood for the 95% CL. In
order to empirically validate the coverage probability of CI, we use Monte Carlo simulations
to generate sample data y from the actual parameter values θ̃. Specifically, we calculate
the observed test statistic for each camera pose sample y at the true ψ̃ value under the
null hypothesis. An observed test statistic’s absolute value greater than zα/2 = 1.96 would
indicate that the null hypothesis can be rejected at the 95% CL. The ideal performance
under simulation would be rejecting the true hypothesis 5% of the time, indicating that the
confidence intervals derived from the investigated test statistic align with their expected
theoretical coverage.

Unlike variance–covariance approaches, profiling can reveal the asymmetric behavior
of CI in nonlinear setups, crucial for accurate uncertainty quantification. As highlighted in
Figure 7, Wald tests to result from construction of a linear slope, yielding a symmetric CI
around the MLE ψ̂. On the other hand, r effectively captures the asymmetric behavior that
can arise in non-linear setups.

For the WCD uncertainty evaluation, we consider the constrained triangulation
problem where h is fixed and known, whereas the primary parameter of interest is the
WCD, i.e., h − [x f ]z. Additionally, we consider the case where the interest parameter is a
systematic WAI height h that is inferred from multiple features observations.
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Figure 7. First-order statistical tests and hypothesis testing: The red line indicates rejection of the null
hypothesis ψ̃ (type I error), which should theoretically occur 5% of the time for a 95% CL, depending
on the statistical test performance. The r curve, depicted for a small sample scenario, is expected to
exhibit a linearly decreasing trend analogous to Wald tests with increasing sample sizes.

4. Results

In the this section, we present an overview of the main results obtained from our
probabilistic modeling and likelihood-based inference approach. We first begin by describing
the simulated experiments, consisting of realistic pushbroom geometric configurations in
coastal areas, used to validate the proposed methodology. The results are partitioned into
two main sections, WCD inference and WAI height inference, focusing on the uncertainties
of these parameters.

4.1. Simulated Experiments

The experimental setup for this study is designed to evaluate the performance of
the proposed method for pushbroom camera acquisition under various flight scenarios,
encompassing both airborne and drone operations. The airborne scenario simulates an
altitude of 2000 m, reflecting typical conditions for aircraft-based remote sensing missions,
while the drone scenario simulates a lower altitude of 120 m, indicative of low-altitude
drone surveys.

Figure 8 illustrates the camera positions (black squares) and their respective scanned
FoV (blue and orange triangles) for the drone scenario. We use aFoV of 48°; a relatively
extreme value to challenge our approach. To ensure comparability and consistency, the same
base–height ratio determined for along-flight directions (determined by the 60% overlap
constraint) is transposed to the single across-flight trajectory used for the Pc scenario. This
setup maintains a consistent geometric configuration across different orientations.

In the experimental setup, various viewing geometries were simulated to evaluate the
performance of the proposed method. Table 2 presents these viewing geometries, which
are determined by feature points Pl , Pr, and Pc. Table 3 presents the simulated INS classes
defining sensor pose quality metrics in terms of standard deviation.

For both the drone and the airborne experiments, three levels of camera pose quality
were considered: “fair”, “good”, and “excellent”. The positional accuracy ranges from
0.5 m for the fair class to 0.05 m for the good and excellent classes. In our simulations,
the precision of the camera’s attitude is modeled with distinct values for roll/pitch and
heading. Specifically, for the fair class, we use 0.1 degrees for roll/pitch precision and
1 degree for heading precision. For the good class, the precision is set at 0.01 degrees for
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roll/pitch and 0.1 degrees for heading. Lastly, the excellent class is characterized by a
uniform precision of 0.01 degrees for both roll/pitch and heading.

Figure 8. Geometric configurations for drone scenario for aFoV of 48° and an overlap of 60%.

Table 2. Base–height ratios for feature points for both drone and airborne scenarios.

Feature Point Base–Height Ratio (B/H) Viewing Scenario

Pc 0.36 Crossing lines
Pl 0.36 Parallel lines
Pr 0.72 Parallel lines

Table 3. Experimental setup classes with camera pose noise metrics in terms of standard deviation.

Camera Pose Quality Position Noise Attitude Noise
Rolling/Pitch Yaw

Fair 0.5 m 0.1° 0.1°
Good 0.05 m 0.01° 0.1°

Excellent 0.05 m 0.01° 0.01°

To assess the robustness and reliability of the proposed methodology, we perform
Monte Carlo simulations by generating synthetic datasets around a true parameter value.
A true attitude value of ã = (0, 0, 0) and a fixed covariance matrix Σa were considered for
the attitude, while the true camera positions were simply set to the simulated locations.
These simulations involve generating a large number of synthetic datasets represented by
random orientation and concentration matrices Ma, Ca, as well as random camera positions
xs, each with different levels of noise. The results of the simulations are used to evaluate
the performance of the methodology and to analyze the uncertainties of WCD and the
WAI height in terms of the 95% CI under different conditions. Concerning the numerical
computation of the MLE, the Adam optimizer is used for the WAI height inference, since
the dimension of the parameter space is relatively large in this problem. The trust region
optimizer available in the SciPy library is employed for the inference of WCD, chosen for
its efficiency in handling problems of relatively small scales.
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4.2. Water Column Depth Inference

In this section, we consider the WCD inference in the through-water context, assuming
that the water–air interface height is known and fixed at h = 0.

4.2.1. WCD Uncertainties

Figure 9 provides a graphical representation of the normalized profile likelihood
surfaces for three points, Pl , Pr, and Pc, specifically for the drone case. Each plot corresponds
to a planar cut along the yz-plane of the 3D multi-view likelihood profiled along the interest
parameter x f , displaying the confidence regions obtained using the likelihood ratio with
three degrees of freedom. We observe that the uncertainties for Pl are generally higher
compared to Pr and Pc, with a factor of 2 between Pl and Pr uncertainties. In the one-
medium photogrammetry, it is known that the vertical uncertainty is proportional to the
base height ratio. Additionally, the point Pc, which is viewed by perpendicular lines,
exhibits non-vertical uncertainty ellipses mainly because the line-of-sights are not co-planar
as suggested by the difference in camera contribution to the 3D likelihood in the yz-plane,
as highlighted by Figure 9 for point Pc. Analyzing the uncertainty ellipses within the
experiment classes present in Table 3, our results indicate that the WCD uncertainty shape
is not heavily influenced by the depth factor.

Figure 9. Normalized profile likelihood ℓp(x f ; y)− ℓp(x̂ f ; y) (noted with ℓp − ℓmax as a shortcut)
surfaces for the drone case and an excellent INS with confidence regions using the multidimentional
likelihood ratio statistic for the parameter x f . The first row displays the combined profile likelihood,
representing the sum of the likelihoods from both the left (second row) and right camera (third row)
perspectives. The left, middle, and right columns are for points Pl , Pr, and Pc, respectively. The white
dot represents the true feature position x̃i, while the black dot represents the maximum likelihood
estimate x̂i.

Focusing on the WCD as a parameter of interest, we can further examine its uncertainties
based on the to statistic using Monte Carlo simulations (as shown in Figure 10). The plot
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in Figure 10 provides a comparative analysis of the WCD uncertainty in terms of 95%
confidence interval widths along with error bars representing the standard deviation of
these intervals.

Figure 10. WCD uncertainties based on 95% confidence intervals, (±2σ), reported by the observed
Fisher information test statistic to for different scenarios.

Overall, the impact of depth on the uncertainty of WCD is less significant than other
viewing geometries. However, there is a slight increase in uncertainty as the depth increases,
especially in the drone scenario, with a 15% uncertainty increase from 1 m to 20 m depth vs
3% uncertainty increase in the airborne scenarios. This is mainly due to the fact that base
height ratio decreases as the depth of the simulated feature point increases, which generates
an elongation of uncertainty ellipses. In terms of camera pose quality, both the excellent
INS and good INS scenarios demonstrate relatively low and similar uncertainty values
(50 cm to 1 m in the drone case and 3 m to 6m in the airborne case), with similar trends
observed across different points. This indicates that increasing yaw precision does not
necessarily lead to a more precise WCD estimation given the defined viewing geometries.
Yaw rotation has a minimal effect on vectors that are close to the nadir, suggesting that
the internal vectors vs are not influenced by yaw precision even with a highFoV and
for large base–height ratio points. On the other hand, the fair INS class exhibits larger
WCD uncertainties (factor of 10) with higher variability in the obtained WCD uncertainty.
The airborne observations generally result in larger confidence regions and higher WCD
uncertainties compared to the drone scenario. An increased distance for the feature rays
results in an increased dilution of the attitude uncertainty; therefore, larger uncertainties
are to be expected for higher flight altitudes.

Our results suggest that uncertainties in the airborne scenario are approximately
six times greater than those in the drone scenario, despite a flight altitude ratio of 16:1
(2000 m for airborne versus 120 m for drone). Crucially, our study maintains consistent
key parameters such as base–height ratio, FoV, and image overlap across both scenarios.
In a purely geometric interpretation without probabilistic modeling, one might expect
uncertainties to scale proportionally with flight altitude. In this regard, our findings
indicate a statistical reduction in vertical uncertainty due to the intersection of two lines
of sight, which is indicated in Figure 9 by the intersection likelihood compared to the
single line-of-sight likelihood. We hypothesize that this effect increases with the altitude,
elucidating why increased distances in the airborne scenario do not linearly translate into
increased uncertainty, highlighting the influence of probabilistic modeling in the variability
of vertical uncertainties between different flight altitudes.
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Regarding the viewing geometry influence, WCD uncertainties for both drone and
plane scenarios follow a similar order (increasing from Pr to Pc to Pl) and show comparable
patterns of variability.

Interestingly, the uncertainties for point Pc (viewed by cross lines) exhibit high variability,
especially in the airborne flight and the fair INS case. In such a scenario, this increased
variability of the uncertainty estimates for point Pc can be attributed to the unique interplay
between its viewing geometry and the anisotropic attitude noise, with a low concentration
in the fair INS case. The viewing geometry of Pc inherently results in intersecting lines-of-
sight, but the sampled lines-of-sight in the fair INS class and high altitude airborne flight
result in greater variability in the positional likelihood near the MLE. This, coupled with
the effect of refraction, can account for this pronounced variability in the WCD uncertainty
estimates for Pc viewing geometry.

4.2.2. Evaluation of Uncertainty Metrics

In this section, we present the results of our likelihood-based inference approach for
estimating the WCD uncertainty using the to and r test statistics. The rejection rates of the
null hypothesis (true parameter value) were calculated through Monte Carlo simulations,
employing a significance threshold of α = 0.05.

Figure 11 displays the rejection rates for various combinations of INS performances,
depths, and viewing geometries in the drone scenarios. The statistical tests revealed a
strong correlation among the samples, with rejection rates consistently aligning closely
with the theoretical rejection rate of 5%, ranging from 3.5% to 7.0%. These findings indicate
that both the to and r test statistics are appropriate for estimating the 95% CI for the WCD
parameter. The observed correlation suggests that the WCD uncertainties are symmetric
in the drone scenarios. Although the expected Fisher information was not investigated
in this study, the low variability of the uncertainties in most cases (orange error bars in
Figure 10) indicates that it would have yielded similar results and performance to the
observed Fisher information.

Figure 11. Drone scenarios: rejection rates of the to Wald statistic (observed Fisher information) and
the signed likelihood ratio statistic r. The x-axis represents different simulated depths, while the
y-axis represents the rejection rate percentage based on a CL of 95%. The green dashed horizontal
line indicates the 5% rejection rate threshold.

For the airborne scenarios, we observed a similar performance to the test statistics,
except for point Pc, which showed distinct rejection rates, as illustrated in Figure 12.
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Figure 12. Airborne scenarios: rejection rates of the to Wald statistic (observed Fisher information) and
the signed likelihood ratio statistic r. The x-axis represents different cases, while the y-axis represents
the rejection rate percentage based on a confidence level of 95%. The green dashed horizontal line
indicates the 5% rejection rate threshold.

Specifically, for the fair INS scenario, the rejection rates for the to test statistic exceeded
15% at point Pc, while the r statistic demonstrated relatively consistent rejection rates
across different points (3.5–7%). Given the WCD uncertainty results of Pc, highlighted
in the previous section, we can infer that the higher variability in the WCD uncertainty
estimates for Pc in the previous subsection is consistent with the observed rejection rates.
These findings suggest that the to-based CI may overestimate the WCD uncertainty in
high-altitude scenarios. This is particularly the case for viewing geometries similar to Pc,
with a 19% rejection rate for the most noisy attitude scenario. On the other hand, the r
statistic showed greater effectiveness in estimating the WCD uncertainties in this particular
case (Pc and airborne fair INS).

In summary, the evaluation of uncertainty metrics through rejection rate analysis
provides valuable insights into the reliability of uncertainty estimation methods for both
the drone and airborne cases. Both scenarios exhibit reasonably consistent performance,
except under extreme attitude noise and non-parallel line viewing geometries.

4.3. Water–Air Interface Height Inference

In our experimental setup, we sought to present the profile likelihood of h under
multi-point and multi-view likelihood scenarios. To begin with, we need to clarify the
conditions under which the WAI height is inferable from camera poses. Primarily, when
the lines-of-sight are derived from parallel lines (i.e., Pl or Pr viewing geometry) or have
equal incidence angles (i.e., Pc viewing geometry), the lines-of-sight having the maximum
likelihood will always intersect, irrespective of the WAI height. In these cases, the parameter
h cannot be inferred because it has no influence on the likelihood. In contrast, when the
lines-of-sight are non-coplanar with the baseline [28], then the lines-of-sight having the
maximum likelihood will not intersect unless they are refracted under an optimal value
of the WAI height parameter. This distinct viewing geometry can be readily obtained
by introducing different incidence angles in the simulated lines-of-sight, allowing for the
inference of the parameter h through the profile likelihood analysis. Either translating
the same points (Pc, Pl and Pr) or introducing different flight altitudes provide viewing
geometries with different incidence angles. In our setup, points Pl , Pr, and Pc are translated
in both the x and y dimensions, with different offsets of δx and δy, respectively. For drone
simulations, δx = 5m and δy = 10m, whereas for the airborne scenarios, these offsets are
scaled by the altitude ratio. Applying these adjustments, we use the likelihood (20) for
the WAI height parameter h inference, with a WAI height true value of h̃ = 0, for varying
sample sizes, namely 1, 10, 100, 1000, 100, 00. Each sample refers to two measured camera
poses for a single feature point given the refraction at h̃. This means that for n samples, the
parameter is of dimension 9n + 1 (1 for h, 3n for xi, and 6n for xs).

Figure 13 shows on the left side WAI height-normalized profile likelihood obtained for
the translated point Pc at a depth of 5 m and for two sample sizes: 1 and 10. The associated
r statistic is presented on the right side of the figure with the CI for two levels, namely
95% and 68%. According to the profile involving only one sample (orange profile), two
non-intersecting lines-of-sight can provide an optimal value for the WAI height parameter
h. For both 1-sample and 10-sample profiles, we observe a typical asymmetry in the profile,
which is characterized by a flatness on the left side (below 5 m depth). This pattern can be
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mainly attributed to the fact that when the WAI is relatively below the WCD for a given
feature point, the positional likelihood should not decrease with the WAI height, since
there is no refraction above the WAI. The r statistic, affected by this flatness, successfully
captures this asymmetry, which results in a non-identifiable 95% CI lower bound for the
1-sample inference, although we could delineate 68% CI. On the other hand, 10 samples
provides sufficient statistical information for delineating both 95% bounds for the WAI
height h. However, based on the r 95% CI, the achieved precision of approximately 6.5 m
for 10 samples is notably high. Therefore, it would be valuable to explore the possible
improvement in WAI uncertainty when larger sample sizes are taken into account.

Figure 13. Drone and excellent INS scenario: WAI height inference based on likelihood profiling for 1
and 10 samples. The graphic on the left represents the normalized profile likelihood on the y-axis
according to the WAI height on the x-axis. The graphic on the right represents the r statistic on the
y-axis according to the WAI height on the x-axis. The black points correspond to the WAI height MLE
ĥ. Additionally, on the right side, the 95% CI for 10 samples are indicated as the width between the
intersections (marked by black stars) of the r statistic curve and the 95% confidence critical values
±1.96.

Figure 14 presents heatmaps of WAI height uncertainties, determined by the r CI for
point Pc across different INS classes for the drone scenario. These heatmaps account
for a variety of depths and sample sizes. As the sample sizes increased, so did the
statistical information, leading to more precise profile likelihoods and subsequently smaller
uncertainties in the WAI height. Interestingly, a trend of uncertainty decreasing by
a factor between 3 and

√
10 was noted. This pattern, where uncertainty contracts in

relation to the square root of the sample size (
√

n), echoes the square root law common in
Gaussian errors and is linked to the central limit theorem’s principle of sample averages
approaching a normal distribution as the sample size expands, leading to decreased
uncertainty. Analogously to the WCD inference, the good and excellent INS demonstrated
similar performances. Intriguingly, the depth has no major impact on the WAI uncertainties
except for the observed lag of the 1 m depth scenario with sample size compared to other
depths. This insinuates that the task of WAI inference tends to be more difficult when it
relies on observations taken at depths near the WAI surface.

In Figure 15, we display the depth-averaged WAI uncertainties, together with their
corresponding standard deviations, spanning viewing geometries, INS classes, and sample
sizes for both drone and airborne settings. It is often the case that the variability of
WAI uncertainty with depth, as indicated by error bars, is more pronounced in difficult
scenarios (10 samples). For the WAI height inference, the viewing geometry Pc showed the
best performance overall, suggesting that cross lines are strongly relevant in pushbroom
acquisitions if one is interested in inferring the WAI height. It is particularly noteworthy
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that the achieved WAI height 95% CI of 17 cm and 19 cm for the excellent and good INS,
respectively, closely aligns with the Global Navigation Satellite System (GNSS) precision
of 5 cm when considering a substantial sample size of 10, 000. This suggests that with
relatively small high resolution datasets, drone-based acquisitions can provide significantly
accurate estimations of the WAI height in optically clear shallow waters with a textured
seabed. Furthermore, considering the decline in uncertainties by a factor of

√
n with

increasing sample size, even with the fair INS quality, we extrapolate that drone flights
could achieve a WAI height precision of 16 cm given a sample size of about 1 million.
Although 1 million matched feature points may seem substantial for a single survey of
pushbroom imagery in coastal areas, given constraints like water clarity and a textured
seabed, this number of points is easily attainable with high-resolution frame video imagery
under optimal conditions. This emphasizes the efficiency of drone-based acquisitions even
with less-than-ideal INS quality, given an adequately large dataset of paired feature points.

Figure 14. Drone, Pc scenarios, WAI height uncertainty across different INS classes reported as r
statistic confidence intervals. Missing bins indicate non-identifiable 95% confidence intervals.

Figure 15. Depth-averaged WAI height uncertainty across different INS types and sample sizes
for each point, as reported by the r statistic confidence intervals. Missing bars correspond to non-
identifiable 95% confidence intervals for all the averaged depths. The numerical values displayed on
each bar correspond to the depth-averaged WAI height visually represented. The error bars represent
the standard deviation of WAI height uncertainty across the different depths.

In contrast, airborne measurements yield a higher degree of uncertainty in WAI
estimation, with no successful inference for the fair INS. Similarly to the WCD inference
results, this is largely attributed to the increased operational altitude that intensifies optical
distortion and viewing geometry variability due to a more distant and extensive footprint.
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Despite these challenges, airborne measurements with high-quality INS achieve a metric
precision for a 10,000 sample size, allowing us to extrapolate a centimeter precision level
for a sample size of 1 million.

5. Discussion

This study highlights the significant role of the camera pose quality on WCD uncertainty.
The excellent INS class, typically deemed a high standard in hydrography, did not achieve
satisfactory WCD precision (around 2 m) for airborne flights. This discrepancy underlines
the advantages of drone-based surveys operating at lower altitudes with high-quality camera
pose measurements, which provided high WCD precisions, specifically around 50 cm for
high base–height ratios like Pr. According to International Hydrographic Organization (IHO)
standards [29], this precision level falls within the ‘Order 1a’ requirements without taking
the influence of depth into account. However, the inherent limitations of higher base–
height ratios and low flight altitudes, such as reduced and inefficient coverage, need to be
considered. In contrast, for points Pl and Pc, the uncertainty ranged between 0.7 and 1 m,
meeting the requirements of the ‘Order 2’. Furthermore, we state that combining frame and
pushbroom imagery could further improve camera pose quality for high-altitude flights.
Indeed, our geometric likelihood approach enables through-water photogrammetry bundle
adjustment, presenting the opportunity to utilize frame imagery in order to improve camera
pose accuracy. While our study provides key insights into camera pose uncertainties in
through-water photogrammetry, it is important to note a limitation in our experimental
design concerning multi-view geometry principles. Specifically, our experiments did not
accommodate the principle of utilizing overlaps both across and along flight directions; a
common approach in multi-view geometry to augment camera pose samples and reduce
uncertainty in triangulation. Our focus was on maintaining uniform analysis across two
camera poses in order to directly compare the effects of stereo-geometry. This approach
is also appropriate given that pushbroom studies often rely on stereo-pair configurations,
where extensive cross-line datasets are very limited.

As we focused on pushbroom geometric scenarios in our study, we only investigated
two camera poses for triangulation, and we hypothesize that having an adequate number
of feature points for each camera pose can refine the pose and eliminate the reliance on
challenging-to-obtain GCP in coastal areas. Such advancements in camera pose quality
have the potential to significantly enhance the precision levels of drone observations,
potentially meeting stringent standards like the special order in clear shallow waters with
textured seabeds.

Furthermore, based on the WCD uncertainty results, the observed Fisher information
performance and its low sensitivity to sampling suggest that classical variance–covariance
propagation approaches are reliable except for certain challenging scenarios. These include
high flight altitudes, low-quality camera pose measurements, and viewing geometries
with non co-planar FoVs (Pc case). These viewing geometries are more prevalent in frame
imagery since the spatial footprint in frame imagery is rectangular, thus establishing the
likelihood ratio statistic as a potential tool for robust uncertainty estimation in such scenarios.

Beyond the evaluated uncertainties, it is worth emphasizing that our results contribute
to a deeper understanding of photogrammetric techniques for coastal photogrammetric
surveying. The ability to accurately infer the water surface position from imagery alone
reduces the reliance on additional tide data or separate WAI height observations. Although
our initial assumptions considered a horizontal water surface, not accounting for surface
fluctuations, the results showed a satisfactory precision of around 17 cm when using large
samples and non-intersecting viewing geometries. This precision level is particularly
impressive considering calm sea conditions and light weather situations, which can
be encountered in sheltered area with low significant wave heights. Nonetheless, it is
important to consider that in a real-world scenario, coastal water fluctuations could occur
due to a range of factors such as changes in tide and weather, which may influence
the temporal coherence of the imagery dataset. This consideration indicates that our
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approach can be further improved by taking into account these potential fluctuations.
For instance, simulations of wave spectra and sea state conditions can be used to create
more realistic scenarios, offering a comprehensive perspective on the influence of surface
fluctuations on WAI height uncertainties and their subsequent impact on the derived
bathymetric estimations. The noted viewing geometry condition for WAI height inference
might favor in-track stereo pairs more then across-track satellite stereo pairs, which are
often acquired with the same incidence angles. Therefore, a continuation of this study
would be extending the investigation of the effect of viewing geometry and proposing
appropriate flight acquisition modes for WAI height inference. Also, the performance of
r confidence intervals that we utilized to estimate uncertainties in WAI height were not
assessed through hypothesis testing, in contrast to what we performed for the WCD. This
examination was out of the scope of this study and therefore could serve as a potential area
for further investigation and research. Moreover, our approach for WAI inference can be
effectively adapted with stationary high-quality stereo camera observations as a technique
for tide monitoring.

The results also invite a deeper examination of innovative uncertainty modeling
methods. Such methods can be beneficial in harmonizing the geometric inference
of WCD with other forms of inference like radiometric estimation with analytical
radiative transfer models within a unified theoretical likelihood framework, as explored
by Jay et al. [30], Sicot et al. [31]. Interestingly, the relative insensitivity of the geometric
inference to depth variations, which contrasts with its radiometric counterpart, as suggested
by these studies, indicates potential complementarity between the geometric and radiometric
inference. However, it is important to recognize that both approaches, geometric and
radiometric, require a degree of optical water clarity. Therefore, the impact of depth can
introduce inherent constraints on both types of inferences, especially in environments with
turbid waters.

Our study is a robust step forward in uncertainty modeling for bathymetric photogrammetry
in coastal shallow waters and has unveiled several insights. The main focus of our study is
the investigation of camera pose uncertainties in through-water photogrammetry. However,
it is important to acknowledge that uncertainties may arise from additional sources, such as
matching errors, camera imperfections, and wave dynamics, which are significant factors
in coastal water imagery.

6. Conclusions

This study represents a detailed exploration of the potential and accuracy of through-
water photogrammetry, with a specific emphasis on the WCD and the WAI height inferences.
Our observations reveal the profound influence of viewing geometry and camera pose
quality on the resulting uncertainties, overshadowing the impact of depth.

Our approach bridges the gap between advanced probabilistic modeling and stereo-
photogrammetric triangulation. This innovative integration provides a comprehensive
understanding of the complexities associated with through-water 3D reconstruction methods.
The utility of drone technology, complemented by high-quality camera pose measurement
and spectral imagery, proves to be a compelling tool for high-precision through-water
photogrammetry. Importantly, these advancements contribute to the provision of a framework
for stereo-photogrammetry predictive uncertainties in bathymetric charting. Additionally,
we demonstrate that inferring the water surface elevation is achievable from camera pose
measurements, reducing the dependence on auxiliary data sources such as tide level
measurements or WAI height observations.

Notwithstanding the success of our investigations, we acknowledge the limitations of
our current study. Specifically, questions related to providing compelling recommendations
for viewing geometries and hypothesis testing for WAI height require further exploration
and elucidation. To enhance the robustness and reliability of our methodology under a
variety of conditions, we encourage future research to incorporate surface fluctuations and
camera optical imperfections.
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In conclusion, our study sets a robust foundation for future investigations in the
field of through-water photogrammetry. It contributes significantly towards refining
photogrammetric techniques and is shaping the future of through-water surveying and
data collection methodologies in coastal areas. Although this study marks only the initial
steps in this evolving field, we are confident that our efforts have established an essential
milestone, paving the way for further advancements in through-water photogrammetry.
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The following abbreviations are used in this manuscript:

WCD Water Column Depth
WAI Water Air Interface
GCP Ground Control Points
SfM Structure from Motion
MVS Multi-View Stereo
RPC Rational Polynomial Coefficients
FoV Field of View
IFoV Instantaneous Field of View
SDB Satellite-Derived Bathymetry
GNSS Global Navigation Satellite System
INS Inertial Navigation System
MLE Maximum Likelihood Estimation
LS Least Square
CI Confidence Intervals
CL Confidence Level

Appendix A. Equivalence Between the Wald Test Based on the Expected Fisher
Information and the Variance–Covariance Propagation Under Gaussian Errors

Under the assumption of Gaussian errors, Maximum Likelihood Estimation (MLE)
for the parameter vector θ and the Least Square (LS) estimator are equivalent. The log-
likelihood function for a model η(.) with centered additive Gaussian errors N (0, Σ) is
as follows:

ℓ(θ; y) = −1
2
(y − η(θ))TΣ−1(y − η(θ)) + constant, (A1)



Remote Sens. 2024, 16, 4098 25 of 26

where y is the vector of observations, and Σ is the covariance matrix of the errors.
The variance–covariance matrix associated with the LS estimator can be propagated
through a first-order Taylor series expansion of η(θ) around the MLE θ̂, as shown in the
following formula:

Σθ̂ = (JTΣ−1J)−1, (A2)

where J is the Jacobian matrix of partial derivatives of η(θ) with respect to the parameters
θ evaluated at θ̂. This expression for the variance–covariance matrix is equivalent to the
inverse of the expected Fisher information matrix at the MLE, known from the theory of
Gaussian errors [32]:

i(θ̂) = JTΣ−1J. (A3)

Therefore, the inverse of the expected Fisher i−1(θ̂) information provides the same
estimation of precision for the parameter estimates as the variance–covariance matrix
derived from the LS estimator.

Consider the inference of a parameter θ = (ψ, λ) and the following partitioning of i:

i(θ) =
(

iψψ(θ) iψλ(θ)
iλψ(θ) iλλ(θ)

)
(A4)

According to Section 4.6 of [33], the estimator ψ̂ is asymptotically unbiased with the
following variance:

ip(ψ̂)
−1 =

(
iψψ(θ̂)− iψλ(θ̂)iλλ(θ̂)

−1iλψ(θ̂)
)−1

(A5)

ip(ψ̂) is the partial expected Fisher information of ψ, which is simply the diagonal
value of i(θ̂)−1 at the block ψ. (A3) proves that ip(ψ̂)−1 is also the diagonal value of the
variance–covariance matrix (A2) under additive centered Gaussian errors. Furthermore, it
can be shown that:

ip(ψ̂) = E
[
−

∂2ℓp(ψ̂; y)
∂ψ2

]
(A6)

where ℓp(ψ) = ℓ(ψ, λ̂ψ) is the profile likelihood and − ∂2ℓp(ψ̂;y)
∂ψ2 is the observed Fisher

information for ψ. This establishes the equivalence between classical variance–covariance
inference and the Wald test ip(ψ̂)−1/2(ψ̂ − ψ) for evaluating the CI of ψ.
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