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Abstract

Scenario tree reduction techniques are essential for achieving a balance between
an accurate representation of uncertainties and computational complexity when
solving multistage stochastic programming problems. In the realm of available
techniques, the Kovacevic and Pichler algorithm (Ann. Oper. Res., 2015 [1])
stands out for employing the nested distance, a metric for comparing multistage
scenario trees. However, dealing with large-scale scenario trees can lead to a
prohibitive computational burden due to the algorithm’s requirement of solving
several large-scale linear problems per iteration. This study concentrates on effi-
cient approaches to solving such linear problems, recognizing that their solutions
are Wasserstein barycenters of the tree nodes’ probabilities on a given stage. We
leverage advanced optimal transport techniques to compute Wasserstein barycen-
ters and significantly improve the computational performance of the Kovacevic
and Pichler algorithm. Our boosted variants of this algorithm are benchmarked
on several multistage scenario trees. Our experiments show that compared to the
original scenario tree reduction algorithm, our variants can be eight times faster
for reducing scenario trees with 8 stages, 78 125 scenarios, and 97 656 nodes.

Keywords: Nested Wasserstein Distance , Scenario Tree Reduction, Wasserstein
Barycenter, Optimal Transport, Stochastic Optimization, Scenario Selection.
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1 Introduction

Stochastic optimization techniques have proved essential in solving optimization
problems in the presence of uncertainties driven by variables such as fluctuating
prices, unpredictable demand, supply variations, resource availability, and scheduling
intricacies. The notion of stochastic programming is pioneered by Dantzig [2], and
applications can be found in various sectors, including the financial industry [3, 4],
supply chains [5], management science [6], energy economics [7, 8], electrical markets
[9], hydro-thermal power systems [10] and maintenance of units [11].

Multistage stochastic programming, a class of stochastic optimization, often relies
on scenario trees to represent the underlying stochastic process. In the quest for an
accurate representation of uncertainties, large scenario trees are required. However,
as the number of scenarios increases, so does the complexity of the problem and the
computational effort regardless of the optimization method, whether it is based on
scenario decomposition or stage decomposition [12]. Hence, finding a balance between
an accurate representation of uncertainties and numerical tractability is of paramount
importance in real-life applications modeled as multistage stochastic optimization
problems.

In 2003, the influential work [9] introduced scenario reduction techniques based on
the minimization of the Wasserstein distance between two scenario trees, pioneering
the forward reduction and backward selection methodologies. Based on these ideas,
[10] proposes to compute the Wasserstein distance at different nodes of a multistage
scenario tree to design a scenario tree reduction algorithm. Differently, [13] formulates
the scenario reduction problem as a mixed-integer linear programming problem. To
decrease the computational effort when dealing with the Wasserstein distance, which
can be formulated as a linear programming (LP) problem for finite sample of scenar-
ios, subsequent works [14, 15] employ entropy-regularization schemes leveraged by the
Sinkhorn–Knopp algorithm [16]. However, being based on the Wasserstein distance,
these techniques ignore the filtration (structure) of multistage scenario trees. Neglect-
ing the tree filtration potentially leads to deviations in solutions, because the solution
of a multistage stochastic optimization problem is non-anticipative. As an attempt to
cope with this shortcoming, the work [17] takes into consideration the so-called filtra-
tion distance, which relies on the tree structure. The stability results in that paper
are the basis for the scenario tree reduction approach proposed in [18], which is a
Wasserstein-based method that measures distances between nodes with the same par-
ent, ultimately reducing pairs of nodes until a stopping criterion is met. However, this
method encounters computational challenges, as it relies on solving NP-hard facility
location problems. The work [19] proposes a scenario tree reduction algorithm that cir-
cumvents this difficulty by clustering tree nodes based on a new filtration distance and
computes an approximation of the reduction problem. Scenario reduction strategies
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based on clustering are numerous in the literature, but often lack stability properties;
see, for instance, [20, 21] and references therein.

A milestone in the field of scenario tree reduction was the introduction of the
nested distance in [22], subsequently studied in [23]. The nested distance, also called
process distance, offers a valuable framework for comparing multistage scenario trees
as it considers the underlying filtrations. Leveraging the nested distance to guide sce-
nario tree reduction enables control over the reduced tree’s statistical quality and its
impact on the objective value of the underlying multistage stochastic optimization
problem. While it is relatively easy to calculate the nested distance between two given
trees [24], finding a tree (with given filtration) that minimizes the nested distance is
a much more challenging task. The reason is that the approximating tree’s probabil-
ities and support (i.e., the scenarios or outcomes) must be chosen to minimize the
nested distance. This leads to a challenging optimization problem, which is large-scale
and nonconvex. To tackle such a problem, Kovacevic and Pichler [1] introduced an
algorithm that directly targets the minimization of the nested distance by alternating
between probability and support optimizations. While the last task has an explicit
solution (should the Euclidean norm be employed as a metric in the nested distance),
optimizing the probabilities amounts to solving several large-scale LPs per stage. This
represents the main bottleneck of the scenario tree reduction algorithm of [24], which
can be partially avoided in some special cases. For instance, the work [8] provides a
variant of the algorithm capable of efficiently handling large-scale multistage scenario
trees provided the stochastic process is stage-wise independent, a strong assumption
we do not assume in this work. Hence, for general stochastic processes, there is a clear
need for more practical scenario tree reduction approaches based on the nested dis-
tance. This work contributes in this direction by boosting the Kovacevic and Pichler
(KP) algorithm [24].

One of our contributions stems from recognizing that the algorithm’s most time-
consuming task, the probability optimization step, amounts to computing Wasserstein
barycenters of the tree nodes’ probabilities. In addition, we leverage advanced optimal
transport techniques to compute Wasserstein barycenters within the KP’s algorithm
by employing efficient and dedicated approaches such as the Iterative Bregmann Pro-
jection method (IBP) [25] and the Method of Averaged Marginals (MAM) [26], to
attractively boost the computational performance for reducing scenario trees. As a
third contribution, we benchmark our variants of the KP algorithm on real-life data
and empirically show that they significantly outperform the baseline KP algorithm for
large-scale multistage scenario trees. Our findings alleviate the algorithm’s bottleneck,
helping thus to elevate the KP approach among the top algorithmic choices for sce-
nario tree reduction. We also emphasize the importance of the filtration initialization
in the finding of a reduced tree.

The remainder of this work is organized as follows. Section 2 presents the Kovace-
vic and Pichler’s approach and recalls the mathematical background for the nested
distance. The barycentric approaches are introduced in Section 3, and the improved
variant of the scenario tree reduction algorithm is developed. Some applications in
Section 4 compare the new approach with the original algorithm by Kovacevic and
Pichler, concluding with a speed-up method designed for real-life problems.
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2 The Kovacevic and Pichler’s approach

In [22], Pflug introduced the Nested Distance (ND), which is built on the Wasser-
stein distance, exploiting its structure and extending it to accommodate the specific
characteristics of stochastic processes (see also [23]). It is a tailor-made measure for
stochastic processes: it inherits the foundational properties of the Wasserstein distance,
such as its sensitivity to local structure and robustness to outliers, while providing a
more nuanced and specialized measure for comparing the similarities between different
realizations of stochastic processes.

2.1 Scenario trees and notations

A T-period scenario tree (N , A) is a discrete form of a random process - a family of
random variables (see [1] for more). It is a composed of (a set of) nodes N and edges
A.

A node m ∈ N is a direct predecessor or parent of the node n ∈ N , if (m,n) ∈ A,
where (m,n) denotes the edge between the nodesm and n. This relation is embodied by
the notation m = n−. Reciprocally, n is a direct successor (or child) of m and this set
is denoted m+, such that n ∈ m+ if and only if m = n−. In the same vein, we denote
the predecessors (or ancestors) of n ∈ N as A(n), the set of nodes for which there
exists a path to n: for example m1 = m2− and m2 = n− (equivalently n ∈ m2+ and
m2 ∈ m1+), then m1,m2 ∈ A(n). We consider only trees with a single root, denoted
by 0, i.e., 0− = ∅, but the methods developed here can be generalized for multi-root
trees (forests). Nodes nT ∈ N without successor nodes (i.e., nT+ = ∅) are called leaf
nodes. For every leaf node nT there is a sequence ξnT

:= (n0, . . . , nt, . . . , nT ) where
n0 ∈ A(n1), n1 ∈ A(n2) etc, from the root to the leaf node nT composed by T + 1
nodes. Ft is the filtration generated by the sigma-algebra of the family (ξn)n∈Nt

and
we define F := (Ft)t=1,...,T . The nodes bear a value named quantizer : ξ : N 7→ Ξ, we
call ξ(n) the quantizer of node n, where Ξ is a finite dimension metric space. We denote
the probability, assigned to node n, by P (n), that satisfies: P (n) =

∑
ñ∈n+ P (ñ) for

n ∈ N and
∑

n∈NT
P (n) = 1. We denote conditional probability between successors by

P (n|m) = P (n)/P (m) for m = n−. Furthermore, using a distance d : Ξt+1 × Ξt+1 →
R, we denote the distance between two nodes n1, n2 at stage t, respectfully, as:

dn1,n2
:=

∑
n∈ξn1

,n̄∈ξn2
,n and n̄ at stage t

d̃(ξ(n), ξ(n̄)) (1)

Where d̃ is a distance on Ξ.

2.2 Nested Distance for Trees

Using the tree notations introduced in Section 2.1, the process distance of order ι
between two trees P :=(ΞT+1,F , P ) and P′ :=(ΞT+1,F ′, P ′) is the discrete Nested
Distance for Trees (NDT). The transport mass between node i ∈ Nt and node j ∈ N ′

t

at stage t ∈ {1, . . . , T}, is noted πi,j or π(i, j).
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Fig. 1: Scenario tree notations.

Definition 1 (Nested Distance for Trees) For ι ∈ [1,∞), the process distance of order ι
between P and P′ is the ιth root of the optimal value of the following LP:

NDι(P,P′) :=



min
π

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j

s.t.
∑

{j:n∈A(j)} π(i, j|m,n) = P (i|m), (m ∈ A(i), n)∑
{i:m∈A(i)} π(i, j|m,n) = P ′(j|n), (n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1.

(NDT)

Note that (NDT) is a generalization of the Wasserstein distance. Indeed, the
transport plan π does not only respect the marginals imposed by P and P ′ but also
respects the conditional marginals. These constraints embed the filtration in the
definition of the distance between trees. Note that in the following, the term ND is
used to refer to the value of (NDT).

2.3 The Kovacevic and Pichler algorithm for scenario tree
reduction

The scenario tree reduction mechanism involves solving structure-like (NDT) prob-
lems, between the original tree and the smaller one. The latter has given filtration
(same number of stages but considerably fewer number of nodes than the original
tree), initialized probabilities and quantizer values.
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The scenario reduction optimization problem is non-convex, due to the optimiza-
tion of both quantizers and probabilities. The method in [1] operates a classical block
coordinate optimization scheme. As illustrated in Figure 2, after a filtration is chosen,
the first step is the optimization of the probabilities P ′ for fixed quantizers, and the
second step is the optimization of the quantizer values {ξ′(n) ∈ Ξ : n ∈ N ′} for fixed
probability. The latter step has an exact analytical solution in the Euclidean case,
i.e. ι = 2, and when d̃ in (1) is the Euclidean norm [1]. The probability optimization
is more difficult because it requires solving multiple (potentially large-scale) LPs. In
the remainder of this work, we will only develop the probability optimization, the
quantizer optimization will only be recalled briefly in Algorithm 3.

Fig. 2: A general scheme of the Kovacevic and Pichler algorithm: to approximate a
tree, a smaller tree with a given filtration is improved in order to minimize the nested
distance with the original tree. The probabilities and the quantizers are alternatively
optimized until convergence.

The probability optimization steps can be stated as follows: given the stochastic
process quantizers {ξ′(n) ∈ Ξ : n ∈ N ′} and structure of (N ′, A′), we are looking for
the optimal probability measure P ′ to approximate P :=(ΞT+1,F , P ), regarding the
nested distance. Inspecting formulation (NDT), it turns out that P ′ can be computed
by jointly optimizing with respect to πi,j and P ′(j|j−). This leads to the following
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large non-convex optimization problem:

min
π,P ′

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (∀m ∈ A(i), n)∑
i∈m+ π(i, j|m,n) = P ′(j|n), (∀n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1

P ′(j|j−) ≥ 0.

(2)

This is a bilinear problem, hence difficult to handle: there is a large number of decision
variables and bilinear constraints (issued by the conditional probabilities in the second
group of constraints, which involve the decision variables composing π and P ′). Using
the conditional probabilities π(i, j) = π(i, j|m,n)×π(m,n), we can derive the recursive
formula (3a) below.
Let δι(m,n) :=

∑
i∈m+,j∈n+ π(i, j|m,n)δι(i, j) for m ∈ Nt, n ∈ N ′

t , and δι(i, j) =
dι(ξi, ξ

′
j)

ι =: dιi,j for the leaves i, j of the trees.∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j =
∑

i∈NT ,j∈N ′
T

π(i, j)δι(i, j) (3a)

=
∑

i∈NT ,j∈N ′
T

∑
m∈i−,n∈j−

π(i, j|m,n)π(m,n)δι(i, j) (3b)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)
∑

i∈m+,j∈n+

π(i, j|m,n)δι(i, j)︸ ︷︷ ︸
δι(m,n)

(3c)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)δι(m,n). (3d)

Note also δι(0, 0) = ND(P,P′), recursively. Thanks to this recursive formula, the
problem can be split into recursive smaller problems for m ∈ Nt and n ∈ N ′

t : the
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conditional probability π(·, ·|m,n) is a solution to

min
π

∑
m∈Nt

π(m,n)
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (i ∈ m+)∑
i∈m+ π(i, j|m,n) =

∑
i∈m̃+ π(i, j|m̃, n), (j ∈ n+ and m, m̃ ∈ Nt)

π(i, j|m,n) ≥ 0.
(RP)

This reformulation of the problem is still bilinear, however, to overcome this difficulty,
[1] proposes to fix π(m,n) with the values computed from the previous iteration (or
initialized at first iteration) giving rise to a LP approximation. The authors have
empirically shown that after few iterations of their algorithm the values assigned to
π(m,n) stabilize.

Despite this approximation, the problem is still challenging due to its huge dimen-
sions. Thus, the method’s main limitation is its computational burden that becomes
prohibitive for large-scale scenario trees, as exemplified in Section 4. The reason is
that the method requires solving potentially large-scale LPs as in (RP) repeatedly.
We address the challenge by noticing that (RP) with fixed π(m,n) for m ∈ Nt for a
given n is a Wassertein barycenter problem (WB), for which specialized and efficient
algorithms exist.

3 The Probability Optimization Step (RP) is a
Wasserstein Barycenters Problem

We start with the Wasserstein distance definition.

Definition 2 (Wasserstein Distance) Given two probability measures µ, ν ∈ P (Rd), their
Wasserstein distance is the ι-th root of

W ι
ι (µ, ν) := min

π∈U(µ,ν)
⟨D,π⟩. (WD)

Where ⟨D,π⟩ :=
∑

r,s Dr,sπr,s. The cost matrix D is composed by the distance
values (dr,s)(r×s)∈[1,R]×[1,S], where R and S are the support sizes of µ and ν respec-
tively; π is the transport matrix between the two probability densities; and U(µ, ν) is
the set of all transport plans having marginals µ and ν.

Definition 3 (Wasserstein Barycenter) Given M measures {ν1, . . . , νM} in P (Rd), an ι-
Wasserstein barycenter with weights α ∈ ∆M is a solution to the following optimization
problem:

min
µ∈P (Rd)

M∑
m=1

αmW ι
ι (µ, ν

m) . (4)
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In what follows we present one of our contributions.

Proposition 1 The recursive problem (RP) with fixed π(m,n) for m ∈ Nt and a given n is
a Wasserstein Barycenter problem.

Proof Let M empirical (discrete) measures νm having finite support sets:

supp(νm) :=
{
ξ′m1 , . . . , ξ′mSm

}
and νm =

Sm∑
s=1

qms δξ′ms , (5)

with δu the Dirac unit mass on u ∈ Rd and qm ∈ ∆Sm , m = 1, . . . ,M .

A barycenter µ :=
∑R

r=1 prδξr with p ∈ ∆R of the family (νm)m∈[1,M ] is a solution to (4).
Problem (4) can be equivalently formulated as a LP, where πm for m = 1, . . . ,M denote

the transport plan between the µ and the probability measures, see Section 2 of [26]:

min
p,π

α1

R∑
r=1

S1∑
s=1

d
1
rsπ

1
rs + · · ·+ αM

R∑
r=1

SM∑
s=1

d
M
rsπ

M
rs

s.t.
∑R

r=1 π
1
rs = q1s , s = 1, . . . , S1

. . .
...∑R

r=1 π
M
rs = qMs , s = 1, . . . , SM

∑S1

s=1 π
1
rs = pr, r = 1, . . . , R

. . .
...∑SM

s=1 π
M
rs = pr, r = 1, . . . , R

p ∈ ∆R, π1 ≥ 0 · · · πM ≥ 0,

(6)

Let us now show that (RP) fits into this structure.
Let αn

mi
:= π(mi, n) for i = 1, . . . ,M , M = |Nt|, and (P ′(j|n))j∈n+ an auxiliary

vector of probabilities allowing to reformulate and couple the last group of constraints
in (RP):

∑
i∈m+ π(i, j|m,n) = P ′(j|n) for j ∈ n+, for all m = m1, . . . ,mM . Given
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t ∈ {1, . . . , T} and n ∈ N ′
t , problem (RP) reads as:

min
P ′,π

αn
1

∑
i∈m1+,j∈n+

π(i, j|m1, n)δι(i, j) + · · ·+ αn
M

∑
i∈mM+,j∈n+

π(i, j|mM , n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m1, n) = P (i|m1), (i ∈ m1+)

. . .
...∑

j∈n+ π(i, j|mM , n) = P (i|mM ), (i ∈ mM+)∑
i∈m1+

π(i, j|m1, n) = P ′(j|n), (j ∈ n+)

. . .
...∑

i∈mM+ π(i, j|mM , n) = P ′(j|n), (j ∈ n+)∑
j∈n+ P ′(j|n) = 1, π(i, j|m1, n) ≥ 0 · · · π(i, j|mM , n) ≥ 0,

(WB)

which is equivalent to

min
P ′(.|n)≥0

∑
m∈Nt

αn
mW ι

ι ((P
′(j|n))j∈n+, (P (i|m))i∈m+) s.t.

∑
j∈n+

P ′(j|n) = 1,

i.e., a Wasserstein Barycenter problem.
□

To further illustrate our interpretation of problem (RP) as a Wassertein Barycen-
ter problem, see Figure 3. The boxed subtree of the approximated (smaller) tree forms
a probability measure with support (n7, n8) and probability (P (n7|n3), P (n8|n3)); the
probabilities of this subtree helping to minimize the ND is a barycenter of the (orig-
inal tree’s) subtrees with initial nodes m3,m4,m5,m6. The Wasserstein Barycenter
(P (n7|n3), P (n8|n3)) is computed by solving (WB), the next (approximated tree’s)
subtree, that is the one issued by node n4 is solved in the same manner etc. The prob-
ability (P (n9|n4), P (n10|n4)) are computed by solving another barycenter problem,
but with different weights αn4

m (and costs) for m ∈ {m3,m4,m5,m6} (see eq. (WB)).
It is thus clear that several Wasserstein Barycenter problems must be solved at

every iteration of the scenario tree reduction algorithm [1]. The faster the computation
of such barycenters, the faster the Kovacevic and Pichler’s algorithm.

3.1 Wasserstein barycenters techniques for scenario reduction

Problem from (WB) is an LP and could, in principle, be solved by LP solvers such as
Gurobi, Cplex, HiGHs, and others. However, in real life applications of scenario tree
reduction, problem (WB) (equivalently problem from (RP)) can have huge dimensions
and be intractable by LP solvers, thus hindering the whole scenario tree reduction
process. Many methods can be employed to tackle problem (WB) (for e.g. [25, 27, 28]).
Note that these methods are typically employed to retrieve a barycentric probability
measure. However, in the context of this work, we instead focus on directly extracting
the transport plans between the measures and the barycenter. We will further develop
these concepts in the following sections. In the remainder of the paper, we use two
different WB algorithms, namely the Method of Averaged Marginals (MAM) [26] and
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Fig. 3: (left) Original tree, (right) Approximated tree. The probabilities
(P ′(n7|n3), P

′(n8|n3)) are computed as the Wasserstein Barycenter of the set of
(known) probabilities associated to the boxed subtrees on the left.

the Iterative Bregmann Projection algorithm (IBP) [25]. In the following, we simplify

the notation by denoting: π(·, ·|mm̂, n) := πm̂ ∈ RR×Sm̂

for all m̂ = 1, . . . ,M , since n
is fixed in (WB), and P (·|m) in (WB) is denoted by qm̂.

3.1.1 The Method of Averaged Marginals (MAM)

MAM’s main idea [26] is to reformulate (WB) as the problem of finding a zero of
the sum of two maximal monotone operators, which can be solved by the celebrated
Douglas-Rachford algorithm [29, 30]. When specialized to (WB), the paper [26] shows
that Douglas-Rachford algorithm boils down to Algorithm 1.

The projection step can be performed exactly, and in parallel, by using efficient
specialized methods [31]. We employ the notation πm

:s to denote the sth column of the
matrix πm.
The Method of Averaged Marginals, depicted in Algorithm 1, leverages the transport
plans from which one can extract marginals whose average is actually a barycenter
approximation. The MAM algorithm asymptotically solves (WB) and produces both
a barycenter and associate transport plans that are needed for the recursion problem
(RP). Note that Step 2 and 3 can be computed in parallel over the M measures. We
refer the interested reader to [26] for more details.

3.1.2 Computation of Transport Plans via Regularized Techniques

Utilizing efficient regularized methods enables us to quickly compute the transport
plans required for the scenario tree reduction approach. For example, the Iterative
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Algorithm 1 Method of Averaged Marginals - MAM

Input: Initial plan π = (π1, . . . , πm) and parameter ρ > 0
Set Sm ←| supp(qm) |, for m = 1, . . . ,M

Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 π
m
rs, m = 1, . . . ,M

Set Dm ← αm (δι(i, j))(i,j)∈m+×n+ and set qm = (P (i|m))i∈m+

while not converged do

p←
∑M

m=1 ampm ▷ Average the marginals

for m = 1, . . . ,M do
for s = 1, . . . , Sm do

πm
:s ← Proj∆(qms )

(
πm
:s + 2p−pm

Sm − 1
ρD

m
:s

)
− p−pm

Sm

end for
pm ←

∑Sm

s=1 π
m
rs ▷ Update the mth marginal

end for

end while

Bregman Projection (IBP) [25] is a state-of-the-art technique, that applies regulariza-
tion to the optimization problems presented in (WD) and (WB).

Consider the entropic function:

E(π) :=
∑
r,s

πr,s(log(πr,s)− 1), (7)

with the convention 0 log(0) = 0. This is a strongly convex function which assures that
E(π) ≥ 0 and E(π) = 0 if and only if π = 0. This function is employed to regularize
the LP (WD), leading to the following nonlinear optimization problem:

Wλ(µ, ν) := min
π∈U(µ,ν)

⟨D,π⟩+ 1

λ
E(π) (8a)

= min
π∈U(µ,ν)

1

λ

∑
r,s

(λDr,sπr,s + πr,s log(πr,s)− πr,s) (8b)

= min
π∈U(µ,ν)

KL(π|K) (8c)

Note that KL is the Kullback-Leibler divergence between π,K ∈ RR×S and Kr,s > 0

for all (r, s): KL(π|K) :=
∑
r,s

πr,s

(
log

(
πr,s

Kr,s

)
− 1

)
(the precise definition of matrix

K is given in the algorithm below).
By noticing that p = π1R, problem (WB) with Wλ introduced in (8), instead of the
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classical Wasserstein distance, writes:

min
πm ∈ U(µ, νm),
m = 1, . . . ,M

M∑
m=1

αmKL(πm|Km) (9)

Since problem (9) is strongly convex, it has a unique optimal solution. Following [25],
the optimal coupling πm,m = 1, . . . ,M can be derived after iterative KL projections
onto the right and left constraints, embodied by the sets U(µ, νm),m = 1, . . . ,M .

Algorithm 2 IBP algorithm

Input: Given αm for m = 1, . . . ,M , λ > 0, initialize v0 and u0 with an arbitrary
positive vector, for example 1S Initialize p0, for example 1R/R
Set Dm ← αm (δι(i, j))(i,j)∈m+×n+ and set qm = (P (i|m))i∈m+

Define Km = e−λDm

for all m = 1, . . . ,M
while not converged do

▷ Projections onto the constraints
for m=1,. . . ,M do

vm,k+1 = qm

(Km)Tum,k

um,k+1 = pk+1

Kmvm,k+1

end for

▷ Approximation of the barycenter
pk+1 =

∏M
m=1(K

mvm,k+1)αm

end while

return πm = diag(um)Kmdiag(vm) for all m = 1, . . . ,M

Observe that all the algorithm’s steps consist of matrix-vector multiplication, and
are thus simple to execute. Note that pk+1 is the current estimate of the barycenter
in Algorithm 2. The algorithm’s drawback is its accuracy, which strongly depends on
λ > 0. The greater is λ the closer is the solution of (9) to an exact solution of (WB).
However, if λ is too large, the values of K diverge, leading to computational issues
such as double-precision overflow errors.

3.2 Boosted Kovacevic and Pichler’s Algorithm

We rely on the previous subsections about Wasserstein barycenters computation meth-
ods to provide the following improved variant of the scenario tree reduction algorithm
of [1]. In Algorithm 3, given a multistage scenario tree represented byP = (ΞT+1,F , P )
a smaller scenario tree P′ = (ΞT+1,F ′, P ′) is constructed by updating the quantizer
values {ξ(n) ∈ Ξ : n ∈ N} and probability P ′, iteratively. The filtration F ′ is a
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data given to the algorithm. In other words, the number of scenarios and the struc-
ture of the reduced tree is an input data, and the algorithm seeks for the familly
{ξ′(n) ∈ Ξ : n ∈ N ′} and P ′ that minimizes the nested distance between P and P′.

Algorithm 3 Scenario tree reduction via nested distance and Wasser-
stein barycenters

▷ Step 0: input
1: Let the original T -stage scenario tree P = (ΞT+1,F , P ) and a smaller scenario

tree P
′0 = (ΞT+1,F ′, P

′0) be given.
2: Compute a transport probabilities π0(i, j) between scenarios (ξi)i∈NT

and(
ξ
′0
j

)
j∈N ′

T

3: Set k ← 0 and choose a tolerance Tol > 0

4: for k = 1, 2, . . . do
▷ Step 1: Improve the scenario values (quantizers)

5: Set ξ
′k+1(nt) =

∑
m∈Nt

πk(m,nt)∑
i∈Nt

πk(i,nt)
ξt(m) for all nt ∈ N ′

t for t = 1, . . . , T

▷ Step 2: Improve the probabilities
6: Set δk+1

ι (i, j)← d(ξi, ξj)
ι for all i, j ∈ NT

7: for t = T − 1, . . . , 0 do ▷ Recursivity
8: for all n ∈ N ′

t do ▷ Wasserstein barycenters
9: Set αn

m ← πk(m,n), m ∈ Nt

10: Use IBP, or MAM to compute πk+1(·, ·|·, n) solving (WB)
11: Set δk+1

ι (m,n)←
∑

i∈m+,j∈n+ πk+1(i, j|m,n)δk+1
ι (i, j), m ∈ Nt

12: end for
13: end for

▷ Build πk+1 the unconditional transport plan matrix
14: Set πk+1(0, 0)← 1
15: for t=1,. . . ,T do
16: Compute πk+1(i, j) = πk+1(i, j|m,n) × πk+1(m,n) for i ∈ Nt, j ∈ N ′

t and
m = i−, n = j−

17: end for

▷ Step 3: Stopping test
18: if δkι (0, 0)− δk+1

ι (0, 0) ≤ Tol then
19: Define P ′(nT ) =

∑
mT∈NT

πk+1(mT , nT ) for all nT ∈ N ′
T then P ′(n) =∑

j∈n+ P ′(j) for all n ∈ N ′
t , t ̸= T

20: Set NDι(P,P′)← δk+1
ι (0, 0)

21: Stop and return with the reduced tree P
′
= (ΞT+1,F ′, P ′) and nested

distance NDι(P,P′)
22: end if
23: end for
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Some comments on Algorithm 3 are in order.

Initialization

The probability P
′
and the scenario values {ξ′(n) ∈ Ξ : n ∈ N ′} will be updated by

the algorithm but the tree structure is fixed.
We will provide some initialization methods in Section 4.3.

Note that line 2 is a straightforward operation since the initial transport plan only

needs to respect the marginal constraints, therefore π0(i, j) = P (i|m)
|n+| for all m,n, i ∈

m+, j ∈ n+ is a sufficient initialization.

Quantizer Optimizations

Algorithm 3 only considers the Euclidean case (ι = 2) in line 4, but if ι ̸= 2, the
quantizer optimization step boils down to a gradient descent (see [1] for details) and
the algorithm is still applicable although slower.

Hyperparameters

IBP relies on the use of a parameter λ > 0 chosen by the user [25, 32]. Such parameter
has an impact on the result’s accuracy. The MAM algorithm also requires setting a
parameter, but it only impacts the convergence speed and can be determined with a
sensitivity analysis [26].

Parallelization

MAM is a parallelizable (and randomizable) algorithm, such a feature can also be
leveraged in Algorithm 3. Line 8 can also be treated in a parallel manner.

Stopping criteria

The given stopping criteria is a heuristic: the algorithm terminates when the improve-
ment of the nested distance between the two trees is below a certain level of tolerance
Tol.

Convergence

The algorithm leads to an improvement in each iteration. It should be kept in mind
that the above algorithm is nothing but a heuristic, as it is a block-coordinate scheme
seeking to minimize the nested distance by alternating minimization over scenarios
and then with respect to probabilities.

4 Applications

This section illustrates the performance of Algorithm 3 and its behaviour when using
different solvers to compute Wasserstein barycenters (i.e. solutions of (RP) and (WB)).
All the following applications employ Algorithm 3 in the Euclidean case, though similar
conclusions can be extended to other values of ι. If a standard LP solver is employed,
then Algorithm 3 boils down to the setting of [1]. We ensure that the considered solvers
attain the same level of precision when tackling the Wasserstein barycenter problems at
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Step 2 of Algorithm 3. Numerical experiments were conducted using 20 cores (Intel(R)
Xeon(R) Gold 5120 CPU ) and Python 3.9, using a MPI based parallelization when
possible. The test problems and solvers’ codes are available for download at the link
https://github.com/dan-mim/Nested tree reduction.

4.1 Impact of the Tree Size

In what follows, we consider scenarios trees composed by 4 to 8 stages and 5 to 6
children per nodes, offering numbers of scenarios and spanning from hundreds to
ten thousands nodes (see Table 1 for details). The quantizers of both trees are set
randomly within the range [−10, 10]. In our preliminary tests, the reduced tree is
always binary.

We consider the following variants of the algorithm, by varying the solver used to
compute the Wasserstein Barycenter in Step 2 of Algorithm 3:

• LP : Algorithm 3 employing the LP solver HiGHS;
• MAM : Algorithm 3 employing the Method of Averaged Marginals [26];
• IBP : Algorithm 3 employing IBP, inspired from the code of G. Peyré [33]. This
algorithm relies on the tune of an hyperparameter that has been preset to guarantee
its best efficiency and convergence.

All variants use Tol = 0.1 as a tolerance for the stopping test. It has been empirically
verified that results do not improve significantly if we decrease this tolerance further.

Fig. 4: Evolution of the Nested Distance along the reduction iterations for different
initial tree sizes. The final reduced tree has always two children per node.

Figure 4 shows that the exact ND between the original tree and the approximate
one, iteratively decreases, no matter the variant of Algorithm 3. All variants are ini-
tialized with the same tree, generated randomly (probabilities and scenarios). Note
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that the initial ND is always at least halved after the reduction. This emphasizes how
important is the use of a reduction method. Within this scale, one can see that every
variant converges to approximately the same precision, although not necessarily to
the same reduced scenario tree (because different solvers compute different optimal
transportation plans, impacting the construction of scenarios composing the reduced
tree).

Fig. 5: Evolution of the Nested Distance along the reduction iterations for different
initial tree sizes with a zoom.

Even though the ND decreases with all variants, it seems faster (in terms of number
of iterations) when using LP or MAM. Figure 5 shows that the IBP algorithm tends
to reach a less precise plateau. This is due to the core of the IBP method, which is
an inexact algorithm. MAM being an exact algorithm for solving (WB), it naturally
follows the lead of LP. The slight differences between the variants LP and MAM can
be explained by the fact that the general problem is non-convex and different optimal
transportation plans computed by different solvers can lead to different optimization
paths that result in different reduced scenario trees. Therefore, depending on the
employed solvers and the initialization, the approximated trees could be different while
still having close ND with the original tree.

Table 1 shows that for small initial trees, up to 7776 scenarios, the LP variant is
very efficient: it provides the lowest ND solution in the shortest time. But from 15625
scenarios and more, IBP is faster. As the number of scenarios increases, the relative
performances of MAM get better and, in our case with more than 46656 scenarios,
MAM is eventually twice faster than LP while reaching the same precision as depicted
in Figure 4. As shown in the last graph, with even more nodes and scenarios (78125
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Scenarios Nodes LP IBP MAM MAM 4 processors
216 259 0.17 0.49 2.21 0.56
1296 1555 1.54 14.83 18.23 6.28
7776 9331 74.25 161.19 344.83 124.44
15625 19531 487.58 323.76 816.46 341.62
46656 55987 4905 2136 2541 1256
78125 97656 13797 4334 3458 1635

Table 1: Total time (in seconds) per method for the studied trees.

and 97656, respectively), MAM is the fastest variant. Note that IBP is a very robust
method: not only is the precision reached more than reasonable, according to Figure 4,
but the total time of execution is always in the ballpark of the fastest execution
time of all algorithms. Leveraging that MAM is parallelizable, we ran results using
4 processors. We witnessed that in this configuration, the variant MAM is the most
advantageous one when the initial tree has more than 20000 scenarios by far.

4.2 Impact of the tree structure

We observed when using the different approaches to tackle real-life examples that the
structure of the initial large tree has an impact on the convergence speed. Real-life trees
do not span homogeneously from the root to the last stage, and when heterogeneity
occurs, switching from one method to another can make the global reduction algorithm
significantly faster.

Fig. 6: Influence of the tree structure on the computation time of a stage, depending
on the method in use: MAM in green and LP in orange.

Figure 6 illustrates the tree structure influence on the computation time of a stage,
depending on the algorithm used. The original large tree is built as follows: from the
root, two nodes are spanning (stage t = 2), then stage t = 3 counts n nodes. From
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this configuration, we made the number |n + | of children from these n nodes vary
from 1 to 600 children (stage t = T = 4). To put it differently, we built a tree with
n subtrees at stage 3 having dimension |n + |. We reduce this tree into a binary one
and evaluate stage 3 reduction time1. We recall that the most expensive step of the
algorithm consists in solving the greatest number of (WB) problems, thus stage 3.

Fig. 7: Influence of the tree structure on the computation time for small n.

For any number n of subtrees, the LP solver is always better when |n+ | is low, but
when increasing |n+ | MAM solver ends up being faster because it treats better larger
problems. This discrepancy gains momentum when the number of subtrees rises. It
is observed that the treshold is reached even faster when n is large. Therefore, at a
stage with n > 10 (and |n + | > 1) where the reduction can take more than 4s we
would advise to always use MAM. But, as illustrated in Figure 7, for smaller n we
would have a closer look, and use MAM only if |n + | > 150, otherwise keep the LP
method. Figure 6 and Figure 7 show that choosing the adequate method to tackle the
reduction can speed up the computation time from 20% to 35%. In practice, it can
be observed that this repartition ends up using half MAM (mostly for the deep stages
where t≫ 0) and half LP (mostly for the stages close to the root and the heterogeneity
in the structure) to reduce a real-life initial tree.

The IBP method is challenging to use in practice within the tree reduction algo-
rithm because of the complexity involved in tuning the hyperparameter λ, which
ideally needs to be carefully chosen for each barycenter computation to achieve
acceptable precision. Fine-tuning is necessary to control its accuracy. If a broadly set

1The computation time is evaluated as the mean of the five iterations along the reduction - at stage 3
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hyperparameter λ is used, the algorithm may either encounter double-precision over-
flow errors at certain stages or compute a solution that significantly deviates from the
exact optimization, without any guarantee or control over the resulting precision.

(a) n = 8 (b) n = 12

Fig. 8: Speed comparison with IBP for different λ: A positive time difference means
the method is faster than LP. Each curve is obtained by averaging the ND accuracy
over n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.

Fig. 9: Average influence of λ in the precision. Each curve is obtained by averaging
the ND accuracy over n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.

Figure 8 presents a study on the influence of a broad λ used for IBP in the tree
reduction algorithm for the same datasets as earlier. It shows that the use of IBP
enables the reduction tree algorithm to be fast for both small and large n and n+,
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and stresses that the smaller the λ the faster the reduction. But Figure 9 underlines
that this speed comes with a cost since the smaller the λ and the less accurate the
computation of the barycenter - the greater the ND. Figure 9 has been obtained by
averaging the ND accuracy over n 2, where the case λ = 100 is taken as reference.

4.3 Impact of the Initialization

In this section, we incorporate the reduction tree algorithm (utilizing either MAM or
LP, depending on the results from Section 4.2) into a stochastic optimization pipeline.
Data were collected from an industrial site in Solaize, France, where battery production
and local consumption have been monitored over several years. Using this data, we
generated scenarios for battery consumption and production throughout a single day,
divided into 48 time steps, employing the methodology outlined in [34]. This approach
allows us to create 100 2D scenarios, each consisting of 48 stages with scenario values
spanning from 0 to 25kW for the consumption and 0 to 40kW for the production.
These scenarios can be modeled as a large tree. We reduce this tree using various
initial filtrations to construct a smaller, approximate tree. To built these filtrations we
leverage two scenario selection algorithms:

• Kmeans method, starting from 100 scenarios it creates 25 clusters using the
Euclidean norm, and then computes the 25 corresponding barycenters;

• Fast Forward Selection (FFS) method, introduced by Heitsch and Römisch in [35].
The method iteratively selects scenarios that minimize the Wasserstein distance
to the remaining scenarios. At each step, the scenario that best approximates the
distribution is added to the reduced set until the desired number of 25 scenarios is
reached, ensuring an efficient yet effective reduction.

From these reduced number of scenarios we generate the associate trees. They will
initialize Algorithm 3. We make the experience multiple times by generating several
sets of scenarios.

Table 2 compares the ND to the original large tree, both before and after tree
reduction, highlighting the importance of the initial filtration. Note that the ND is
consistently reduced after the tree reduction algorithm, as expected. When FFS is used
to generate the initial filtration, the reduced approximated tree remains consistently
closer to the original tree in terms of nested distance, even if the ND between the
original tree and the FFS filtration is larger than that between the original tree and
the K-means filtration at initialization. This is because FFS is a specialized algorithm
designed to minimize the Wasserstein distance between the selected scenarios and the
original ones, thereby preserving the maximum amount of information from the initial
processes.

2n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.
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Table 2: Comparison of the ND to the original tree before and after tree reduction
using different initialization techniques.
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